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Abstract

This paper considers the bootstrapping approach for measuring reserve uncertainty when applying
the model of Schnieper for reserves which sdpdrecurred But Not Repted (IBNR) and Incurred

But Not Enough Reserved (IBNER) claims. The Schnieper method has been explored in Liu and
Verrall (2009), and the Mean Square Errors of Prediction (MSEP) derived. This paper takes this
further by deriving the full predictive distribution, using bootstrapping. Numerical examples are
provided and the MSEP from the bootstrapping approach are compared with those obtained
analytically.



1 Introduction

The model of Schnieper (1991) separates out IBNR and IBNER claims, with the intention of
providing better estimates of outstanding lial@ktin cases when the over claims data are

inherently volatile. Although Mack (1993) usedme of the ideas from Schnieper, there has not
been much attention paid to the original paper since it was published. However, Liu and Verrall
(2009) have derived approximations to the M8anare Errors of Prediction (MSEP) of the

reserves and we believe that the method has the potential to be useful in practice. In this paper, we
continue with the development of the statigtibackground for the original method by showing

how the complete predictive distribution canapgroximated using bootstrapping methods. This is

a very important additional step to the theory derived in Liu and Verrall (2009), since the MSEP is
of only limited value in the context of riglssessment and capital modelling. For a proper
assessment of risk, and to use the model in the modern solvency setting, it is far better to use the
predictive distribution. Also, a simulation approach is often used in this context, and bootstrapping
has been found to be very convenient for this.

Section 2 gives a brief outline of the modeBahnieper. For more details, see Schnieper (1991)

and Liu and Verrall (2009). In Section 3 of this paper, we show how to construct an appropriate
resampling procedure for the Schnieper method, within a Generalised Linear Models (GLM)
framework. Note that the bootstrapping is a general method, which can be applied to any fully
defined model in order to obtain the sampling disttion for any statistic of interest. As was shown

in England and Verrall (1999) and England (2002), it is straightforward to extend the bootstrapping
procedure to enable an approximation to the ptiedidistribution to be obtained. This requires a

final step to be added to the resampling methddch then simulates a future observation from the
appropriate process distribution. A more complete discussion of bootstrapping methods can be
found in England and Verrall (2006), which also eams a fuller review of the literature on
bootstrapping for claims reserving in general. Nbtg the Schnieper method is a recursive method
for claims reserving, and the appropriate baokgd for this can be found in England and Verrall
(2006). The paper by England and Verrall (1998)ich first considered bootstrapping for the
chain-ladder technique, was based on the over-dispersed Poisson model which is non-recursive. For
ease of implementation, the detailed algorithm which can be used to obtain the bootstrap
approximation to the predictive distribution for tBehnieper method is given in the Appendix. In
section 4, we apply the bootstrap method to the data from Schnieper (1991) and show that the
results are very close to the results for the analytical estimation error derived in Liu and Verrall
(2009). This section also shows the full predictiisribution. Section 5 contains the conclusion.

2 The Schnieper Model

The idea behind the model of Schnieper (1991) sefarate a triangle of potentially volatile claims

data into two separate triangles: a trianglthefIBNER claims and a triangle of the real INBR

claims. In this way, the hope is that the separé&iagles will prove easier to deal with and will

provide better estimates of outstanding claims, doeti@r idea of the forces driving these. It is

assumed that the data in the two triangles are independent, and we briefly describe the models used
for each of these. For more details of these models, and of the estimation of the parameters and
forecasts, see Schnieper (1991) and Liu and Verrall (2009).

Without loss of generality, we assume that thia dae available in triangular form, indexed by
accident yeaii, and development yegr,The single triangle of data consists of the cumulative

incurred claims, and are denoted {9, :1<i <n;1<j<n-i+1:



It is assumed that the incremental incurred claiXs € X; ; ;) are the sum of incremental incurred
from the old claims £ D;;) and the new claimslj; ). In other words;- D;; represents the change in

the cumulative incurred claims for claims reported in previous development periods (IBNER data),
and N; is the new claims (IBNR claimseported in development peripdrhus,

X; =X j.=-D;+N;
and for cumulative claims:

X; =X, 1-D; +N;.

Schnieper also assumes that a measure of the expgsuseavailable for each accident yeain

common with Schnieper (1991), we do not attempt to forecast beyond developmentiVeaefer
to cumulative claims at development yeas “Ultimate Claims”.

We define the information up to payment ykdny H, and the information up to development year
k by F , where

H, ={N;,D; :1<i,j<n;i+ j-1<k]
F =

N.,D. :1<i,j <n;j <k¢.
]

and i

F, corresponds td3, in Mack (1993).

The general model assumptions are given as follows:

Assumption 1: There exist constaritsand §;, such that for known exposutg we have that,
E[N;|H,. ., |[=E4, 1<i,j<n

E[Dy[H. 2 |= X 40, 1<i<n2<j<n.

Assumption 2: There exist constamt$ and 77, such that

Var[ N |H,.; , |=Eo?, 1<i,j<n

Var| D, |H

ijz]z X 77, 1<i<n2<j<n.



Assumption 3: Independence between accident years
As in Schnieper (1991), it is assumed thllf;, D, :1< j<n}..{N; D, :1< j <n}, are

independent between accident years.

Assumption 4: Uncorrelatedness between development years

{ jIHi A<, ] sn} and{ j|Hijpid<i<in,2< | Sn} are uncorrelated.

For a discussion of these assumptions, see Liu and Verrall (2009). Based on these assumptions,

estimates of the parameters may be obtained, along with predictions of the development of future

claims. This is a recursive methahd full details of the derivatioof these estimates may be found
in Schnieper (1991) and Liu and Verrall (2009). Esémates of the parameters in the mean are
given by

4 :T 1<j<n.
D

i
i=1

and
n+l-j
" ZDU
S =—=L .
i T onelj ,2<]<n.
le -1
Also
n—j+1
g2=—t i( LE)  1sjsn-1,
n- J i=1 E1
and
n—j+1 “
oL L (D, -6,%, l) 2<j<n-1.
i nJ|:1X,_1 IS

These are the estimates that are used when the bootstrap methodology is applied. Finally, the
estimate of outstanding incurred claims in theiongbsingle triangle was derived by Schnieper.

Note thzanﬁ[xi kot |H ] is the prediction ofX; .., and we use the notation N, v for this:
EI:X| k+t :I = MNik+t Then xl k+t — (1_ §k+t) Xi,k+t—1 + Eij:kth - Note also that

E[ XipialHn |= X/ piy, and henceX,, ., = X,
formula.

forms the starting point in this recursive

in—i+1 in-i+1



3 Bootstrap Methodology

The Schnieper method presents an interesting exercise for bootstrapping in that there are two
separate triangles that have to be resampled independently. This is different from most other
applications of bootstrapping for claims reservingen a single triangle onsidered. In this

section, we describe how the resampling procedure can be adapted to this novel situation, and in the
Appendix we set out the algorithm in detail.

In order to apply the bootstrapping methodologyregire data which can be assumed to be
independent and identically distributed (iid). Since the data themselves are not iid, we resample
from the residuals rather than the raw data. Also, since the Schnieper method is based on recursive

N, D.

models, we use residuals of the ratieEsJT and ™ ", rather than the observed dakd, and D .
i ij-1

This has been discussed in detail in Englamti\&errall (2006). In order to calculate residuals

(suitably normalized), we require the mean and variance of each of the ratios. Following Liu and

Verrall (2009), the mean and variance assumptions for the Schnieper model are:

N, D,
ElZE“HHJZ:I =4, and E{X—J\HM} =5,

i,j-1

and

N, o’ D; 7
Var _J‘Hi+j—2 =—L andVar —]‘Hi+j—2 =—1
E E Xi i X -1

The idea of bootstrapping is to generate néangfles of data (“bootstrap samples”) which are
representative of the underlying distributiongla# estimates. When this has been done a

reasonable number of times and the required results saved, the sampling properties may be
estimated by simply looking at the properties of the bootstrap samples. So, for example, to obtain a
bootstrap estimate of the estimation error of the overall reserve, we generate a reasonable number
(in most cases we use 10,000) of new sets offdatathe original data and estimate the reserve for
each of these.

Corresponding to the two approximation approaches described in Liu and Verrall (2009), there are
two procedures that can be used in the bootstrapping process. If the estimation variance
approximation approach which is adopted by Bndland Verrall (2002) and Buchwalder et al

(2006) is followed, the bootstrap estimatdahe approximation is obtained by calculating the

sample variance of the bootstrap reserves. Howe\the approach of Mack (1993) is followed,

the bootstrap estimate of the estimation variance is obtained by calculating the average squared
difference between the bootstrap reserve estimate and the original reserve estimate. The rationale
for the first approach is clear: we simply estimate the estimation variance by the variance of the
bootstrap samples. The rationale for the second approach is that we require a bootstrap estimate of

()Zi’m - E[Xi’m | Hn])z, and this can be obtained by looking at the average squared difference
between the bootstrap valux,’, and )A(i,m.
To include the process error, we add an extra simulation after each bootstrap, using the appropriate

process distribution. This is the most straightforward way to include the process error, and more
details can be found in England and Verrall (2006).



N.. D.
Let f; =?f andg; = —

i i,j-1

Then the scaled Pearson residuals for the two triangles are given by:

A [E (. -2 A X (g -5,
rps(fij,,ij,E ,o“-j): E (&J' J) and rps(gij,(gj’xi’jil’;j): X,J 1;91 l) ]
j j

It is well known that a bias correction is requiredhe context of bootstrap estimation. In order to
) ) ) ) o n-—j L. )
include this, these residuals are adjusted by multiplyin by—Jl . This gives the adjusted

_l’_

residuals:

/ n—j ~ - / n—j a -
I‘”-: n_—j—i_lrps(fij,/lj,E,O'j)andez n_—m_rps(gij’5j’xi'j"l’rj)'

These adjusted residuals are sampled, with repleno generate bootstrap samples of residuals,
riJ.B and sjB, fori=12,...n;j=12,.. n—i+ 1 The triangles of pseudo data are then calculated by

inverting the residual definition:

o ~ T
i B _ B i
=+ and g, =5 +0,.

JE Xija

The appealing aspect of bootstrapping is that the calculations now only involve the simple
spreadsheet operations used in the original method to calculate the loss reserves. In other words,
they can be based on the original Schnieper paper, rather than involving any more complex
statistical analysis similar to that in Liu and Verrall (2009). Thus, for each bootstrap sample, the

bootstrap estimates of the parameters in the nﬂéamd o7, are calculated using the usual

B_ ,B
fij =T

weighted averages of the individual development factors. These are given in the following
equations:

n—j+1 n—j+1
B B
Z flJ E Z gij ><| j-1
B _ _i=l B _ _i=l
2’] T n-j+l and5] T on-j+l

Note that the observed da¥q,; ;, and the exposurg; act as the weights here: it is not correct to
use bootstrapped data for the weights.

The bootstrap estimates of the reserves for each row and the overall total can be obtained by
applying the bootstrap values of the parametéj?sand 6%, to the original formula of Schnieper
for the outstanding incurred claims:

X =(1-57

i,n—i+l+k — n—i+1+k

) Xipie + EA s for k=1,2,... j - with the initial point



xi,n—i+1 = Xi,n—i+l)'

Bootstrapping only addresses the estimation errah@omodel. If the aim of the exercise is to

obtain a bootstrap estimate of the estimation error, then this is all that is needed. However, for
claims reserving purposes, we also require the prediction error and the full predictive distribution of
the reserves. To obtain these, it is necessary to include the process error, using the process

distributions. The most straightforward option here, since we are only specifying the first two
moments, is to use normal distributions for bdth and D;;. (Note that it would be possible to use

other models, such as the over-dispersed Poissoibdigin.) Thus, the final step in the process to
obtain simulations of the loss reserves suitabiedtculating prediction errors and the predictive
distribution is to simulate from these processritistions, using the bootstrap sample values for the
means. In other words, for each triangle, we obtain simulated values of the incrementals, using the
appropriate process distributions:

ﬁ‘H
E

72
_ ivj2 ~ Normal (5jB,X—J)-

2
: D.
~Norma|(/1.3,i) and ——|H
E X i1 ij-1

i+j-2

These simulated values are then inserted into the equation for the cumulative claims,
X; =X ;,—D;+N; . Taking first differences gives the incremental claims which can be used for

calculating the prediction errors and predictive distributions.

The algorithm bootstrapping Schnieper’s model is set out in the Appendix. In section 4, we provide
illustrations of the bootstrapping method, and compare with the analytical results.

4 [llustration

In this section, we illustrate the results by applying the bootstrapping methodology to the data from
Schnieper (1991). The results are compared with the analytical methods, as well as the bootstrap
estimation of the prediction error using Mack's approximation.

The data used by Schnieper consisted of an IBNR triaXigleand exposureE, , which are shown
in Table 1. Tables 2 and 3 show the more detailed data, consisting of the new N@imﬂ,d the

changes in the existing claimsD,; . These data were taken fraanpractical motor third party
liability excess-of-loss pricing problem.

Table 1.Cumulative IBNR (X;;) and Exposurek, ) for both new and existing claims.

Dev year 1 2 3 4 5 6 7 Exposure
Accident year
1 7.5 | 28.9| 52.6/ 845 80.1 769 795 10,234
2 16 | 148 32.1] 39. 55.0 60)0 12,75p
3 13.8| 42.4| 36.3] 53.3 96.b 14,87p
4 29 | 140| 325 46.9 17,365
5 2.9 9.8 | 52.7 19,410
6 1.9 | 294 17,617
7 19.1 18,129




Table 2.Incremental incurred claims from new clains, ()

Dev year 1 2 3 4 5 6 7
Accident year

1 7.5 18.3 28.5 23.4 18.6 0.7 5.]
2 1.6 12.6 18.2 16.1 14 10.6

3 13.8 22.7 4 12.4 12.1

4 2.9 9.7 16.4 11.6

S 2.9 6.9 37.1

6 1.9 27.5

7 19.1

Table 3.Incremental incurred claims from existing claints; (.

Dev year 1 2 3 4 5 6
Accident year

1 -3.1 4.8 -8.5 23 3.9 2.5

2 -0.6 0.9 8.6 -1.4 5.6

3 -5.9 10.1 -4.6 -31.1

4 -1.4 -2.1 -2.8

5 0 -5.8

6 0

Table 4 shows a comparison of the results usiegatialytical methods derived in Liu and Verrall
(2009) and the bootstrap results. The bootstrap results were obtained using the estimation variance
approximation approach which is adopted by England and Verrall (2002) and Buchwalder et al
(2006), so that the bootstrap esdite of the approximation was obtained by calculating the sample
variance of the bootstrap reserves.

Table 4 A Comparison of Bootstrap and Analytical Results

Reserves Prediction Errors Prediction Errors %
Analytical Bootstrap Analytical Bootstrap, Analytical Bootstrap
i=2 4.4 4.3 9.5 9.4 215% 219%
i=3 4.8 4.8 14.3 14.4 298% 299%
i=4 329 33.2 29.8 31.4 91% 95%
i=5 60.3 61.1 415 43.0 69% 70%
i=6 77.2 77.6 44.9 45.6 58% 59%
i=7 104.3 104.8 51.5 51.5 49% 49%
Overall Total 283.9 285.8 122.0 122.9 43% 43%

It can be seen that there is a good agreement between the analytical results and those obtained using
bootstrapping (allowing for the fact that bootstrapping is a simulation-based method).



A major advantage of using bootstrapping over theyéinal approach is that it is also possible to
obtain a simulation of the predictive distribution. This is illustrated in Figure 1, which shows the
predictive distribution of the overall reserve the Schnieper method, smoothed using a Kernel
smoother with bandwidth 50.
0.004 -
0.003 -

0.002 A

0.001 A

L,
=

=200 0] 200 400 £00 800

Figure 1 Bootstrap Predictive Distribution of the Schnieper Overall Reserve

As mentioned in section 3, there are two appnaion approaches described in Liu and Verrall

(2009), and Tables 5 and 6 compare the difis@erwhen following these two approaches. The

column labeled E&V (2002) corresponds to the approach adopted by England and Verrall (2002)
and Buchwalder et al (2006). The second colsimows the results using the approach of Mack

(1993). The first approach, the estimation error is approximated using the sample variance of the
bootstrap reserves, and in the second approachotistrap estimate of the estimation variance is
obtained by calculating the average squared difference between the bootstrap reserve estimate and
the original reserve estimate. In both casas,ishdone before the sampling from the process
distribution when estimating the estimation error.

Table 5
A Comparison of Bootsap Estimation Errors

E &V (2002) Mack (1993)

i=2 6.929 6.938

i=3 10.040 10.061

i=4 16.183 16.384

i=5 23.689 23.883

i=6 23.629 23.897

i=7 27.677 27.976
Overall Total 98.017 99.020

Table 6

A Comparison of Bootstrap Prediction Errors

E &V (2002) Mack (1993)
i=2 9.361 9.266
i=3 14.399 14.330
i=4 31.414 31.735
i=5 43.017 43.333
i=6 45553 45.598
i=7 51.490 51.817
Overall Total 122.893 124.116




5. Conclusion

This paper has shown how bootstrapping can be applied in the context of the Schnieper method of
claims reserving. This is a novel applicatibecause it involves bootstrapping two separate

triangles. The illustration shows that it is possitd reproduce the MSEP of the analytical methods
that were derived in Liu and Verrall (2009). The ateges of the bootstrapping approach are that it

is straightforward to implement in a spreadshea®d, ifis also possible to obtain the full predictive
distribution. In the context of capital modeling and solvency, this is an important advantage.
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Appendix

This Appendix provides the algorithm, step by step, which is needed in order to implement the
bootstrap process described in section 2.

1. Calculate the link ratios and the variancetheflink ratios for true IBNR and IBNER run-off

N.. D.
triangles asfij = ?” and g; = —2 . Note that the variances,j2 andz-j2 , remain unchanged
i ij-1
throughout: they are not recalculated from the bootstrap samples.

2. Calculate the scaled Pearson residuals:

\/E fij _ij ~ A Xi,j—l gij _5‘;

¥ and rps(gijﬁj 1Xi,j—117j)= g )
(o2 T.

j j

rps(fij,ftj,li,&j)z

3. Adjust these two groups of scaled Pearson residuals by multiplyi g—g;ﬂj—l to correct the
+

bootstrap bias:

/ n—j A - / n—j a -
rij = n_—j_i_lrps(fij,lj’Ei ,O-]) and Sl = n_—j_i_lrps(gij,é‘j’xi'jlirj).

Start the iterative loop to be repeated N timiEs>(1000).
4. SetB=1.

5. Randomly draw, with replacement, from the constructed residual run-off triangles, denoted as
R={r,,i=1..n;j=1.n-i+ YandS={s;,i=1..n;j=1.n-i+ }, respectively. Denote the
bootstrap residuals a“§ and s?, i=12...n;j=12,.. n—i+ 1 so that two pseudo samples of

the Pearson residuals for true IBNR and IBNER claims are created and denoted as
R®={rf,i=1..nj=1.n-i+ fandS®={s},i=1..n,j=1.n-i+ §.

6. Calculate the bootstrap link ratios of the true IBNR and IBNﬁPand gijB using equations (3)
and (4).

7. Calculate theN; —weighted andD; —weighted average bootstrap development factors for the
true IBNR and IBNER A’ and &7, using equations (1) and (2), respectively.

8. Simulate a future payment feach cell in the lower triangfer both true IBNR and IBNER
claims, respectively, from the process distribution with the mean calculated from step 7.

N, B o? .
EJ‘HHH ~ Normal (4! ,EJ) for the true IBNR claims
D, B 2 .
and X—J‘H”j’z ~Normal (6, X L) for the future IBNER claims.
ij-1 ij-1

9. Calculate the simulated cumulative claims, usijg= X; , , —D; + N;;, and incremental claims

ij?



by taking first differences.

10. Sum the simulated incremental claims in the future triangle by origin year to give the origin
year reserves. Sum these to obtain the overall reserve.

11. Store the results, $8t=B + 1 and return to step 5 (te&art of the iterative loop) unt = N.



