
Asad, M. & Abhayaratne, C. (2013). Kinect depth stream pre-processing for hand gesture 

recognition. Paper presented at the 2013 IEEE International Conference on Image Processing, 

ICIP 2013, 15 September - 18 September 2013, Melbourne, Australia. 

City Research Online

Original citation: Asad, M. & Abhayaratne, C. (2013). Kinect depth stream pre-processing for 

hand gesture recognition. Paper presented at the 2013 IEEE International Conference on Image 

Processing, ICIP 2013, 15 September - 18 September 2013, Melbourne, Australia. 

Permanent City Research Online URL: http://openaccess.city.ac.uk/3583/

 

Copyright & reuse

City University London has developed City Research Online so that its users may access the 

research outputs of City University London's staff. Copyright © and Moral Rights for this paper are 

retained by the individual author(s) and/ or other copyright holders.  All material in City Research 

Online is checked for eligibility for copyright before being made available in the live archive. URLs 

from City Research Online may be freely distributed and linked to from other web pages. 

Versions of research

The version in City Research Online may differ from the final published version. Users are advised 

to check the Permanent City Research Online URL above for the status of the paper.

Enquiries

If you have any enquiries about any aspect of City Research Online, or if you wish to make contact 

with the author(s) of this paper, please email the team at publications@city.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by City Research Online

https://core.ac.uk/display/76980187?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk


KINECT DEPTH STREAM PRE-PROCESSING FOR HAND GESTURE RECOGNITION

Muhammad Asad ∗

Dept. of Computer Science
City University London, United Kingdom

Charith Abhayaratne †

Dept. of Electronics & Electrical Engineering
University of Sheffield, United Kingdom

ABSTRACT

Over the recent years there has been growing interest to propose a

robust and efficient hand gesture recognition (HGR) system, using

real-time depth sensors like Microsoft Kinect. The performance of

such HGR systems have been affected by the low resolution, noise

and quantization error in the depth stream. In this paper, we pro-

pose a method to pre-process Kinect depth stream in order to over-

come some of these limitations. The design approach utilizes the

hand tracker from OpenNI SDK to perform distance invariant seg-

mentation of hand region depth stream. This is followed by the con-

struction of three different projections of hand in XY, ZX and ZY

planes. These projections are then further enhanced using a com-

bination of morphological closing and simple averaging based in-

terpolation. The evaluation results show above 80% similarity with

ground truth, and 1.45-5.35% increase in accuracy for gestures with

recognition accuracy less than 90%.

Index Terms— Kinect sensor, pre-processing, depth stream,

hand gesture recognition, real-time

1. INTRODUCTION

With the recent introduction of Microsoft Kinect, there has been in-

creasing interest in research community to use this inexpensive and

powerful sensor in almost every domain in the field of Computer

Vision. The main attraction of Kinect sensor in this field is the real-

time provision of depth data. Combining this with the functionality

of different Computer Vision libraries, a whole new category of ap-

plications has started to emerge [1–3].

Since Microsoft Kinect’s introduction in 2010, there have been

numerous attempts to use it to propose a number of HGR systems

[4–13]. The depth stream acquired from Kinect sensor is low res-

olution (640x480) and contains random noise and quantization er-

ror [14]. This limits the operating range and functionality of most

of the existing techniques, where some approaches also utilize RGB

data stream to assist the depth stream based segmentation and HGR

[5–10]. Another category of HGR systems utilize only the hand tra-

jectory from depth stream to interpret gestures [11–13]. This paper

proposes a Kinect depth stream pre-processing method for HGR,

which extracts accurate 3D hand posture information and reduces

quantization error.

A number of pre-processing methods for Kinect depth stream

have been previously proposed. Most of these methods focus on

de-noising [15–18] and filling the ’holes’ discontinuity in the depth

stream [19–21]. There are some methods which focus on increas-

ing the resolution, hence reducing the quantization error [22, 23].
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Most of these methods are complex for real-time execution and fo-

cus on the overall enhancement of the depth streams. There is still a

need for a reliable and efficient Kinect depth stream pre-processing

method for HGR.

In this paper we propose a Kinect depth stream pre-processing

method for HGR systems. The proposed approach involves distance

invariant segmentation of hand region from the depth stream (section

2). This segmented depth stream is used to construct projections of

the hand region in three different planes. The quantization error in

the extracted projections is reduced by using a combination of mor-

phological operations and averaging based interpolation. Similarity

measure and a neural network based ground truth model is used to

evaluate the performance of this method (section 3).

2. PROPOSED DEPTH STREAM PRE-PROCESSING

The flowchart of the HGR system is presented in Fig. 1. This system

consists of five parts. Distance invariant segmentation step involves

segmenting the hand region using distance of the hand from the sen-

sor. This is followed by projection extraction in which projections of

the hand are extracted in XY, ZX, and ZY planes. Quantization error

reduction is then performed and contour features of these projections

are extracted. These features are used in the gesture recognition step,

where a neural network based classifier recognizes each posture of

the hand.

The proposed Kinect depth stream pre-processing approach con-

sists of three main steps, which are (i) distance invariant segmenta-

tion, (ii) projection extraction and (iii) quantization error reduction.

These methods are highlighted in Fig. 1 and discussed in detail be-

low.

2.1. Distance Invariant Hand Segmentation

The method proposed in this step performs distance invariant seg-

mentation on Kinect depth stream I to obtain hand region depth

stream Is by utilizing the hand tracker from OpenNI SDK. This hand

tracker extracts a hand point P = (Px, Py, Pz), defining the loca-

tion of the hand in 3D coordinates, which is utilized throughout this

paper. We collected a set of I with open hand pose at varying Pz . Is
was manually segmented from the collected set of I . For simplicity

Is is kept square in size, with side length S. Two sample frames with

this hand pose at Pz = 700mm and 1700mm are shown in Fig. 2(a)

and 2(c), respectively, in which the hand point location is marked

with a white dot on the palm of the hand. It can be observed from

these figures that the size of the hand region decreases with increased

Pz . We use this inverse relationship between Pz and S along with

their values extracted from the set of manually segmented Is in the

following equation to calculate the value of K.

S =
K

Pz

. (1)



Fig. 1. Flowchart of the HGR system using our proposed pre-processing method.

(a) (b)

(c) (d)

Fig. 2. Distance invariant segmentation at Pz = 700mm, (a) depth

stream I , (b) Segmentated depth stream Is with size 156x156 pixels,

and at Pz = 1700mm, (c) depth stream I , (b) depth stream Is with

size 64x64 pixels.

The value of K comes out to be 108000. This value is independent

of the sensor used, however it is dependent on the output resolution

of I . We use 640x480 pixel I for our implementation. When using a

different resolution I , the value for K can be easily recalculated us-

ing the above described method. Equation 1 is then used to segment

the hand region in all three axis, taking hand point (Px, Py, Pz) as

the origin for segmentation. Fig. 2(b) and 2(d) show the output of

this distance invariant segmentation for Fig. 2(a) and 2(c) respec-

tively.

2.2. Projection Extraction

The proposed approach uses a method similar to the construction

of action graphs in [24] and silhouette image based 3D matching

in [25]. The contribution of this work is to use a series of projections

to define a 3D hand gesture. This involves the use of a segmented

hand region depth stream to construct three silhouette projections in

XY, ZX and ZY plane. These projections provide the front, top and

side view of the hand respectively. Each of these projections are

stored as a mask (mxy , mzx, mzy) which are used in the next step

(a) (b) (c)

Fig. 3. Projections extracted from segmented hand region depth

stream, (a) mxy projection (front view), (b) mzx projection (top

view), (c) mzy Projection (side view).

for quantization error reduction and are given by

mxy(x, y) =

{

1, if Is(x, y) > 0

0, if Is(x, y) = 0
, (2)

mzx(z − cz, x) =

{

1, if Is(x, y) > 0

0, if Is(x, y) = 0
, (3)

mzy(z − cz, y) =

{

1, if Is(x, y) > 0

0, if Is(x, y) = 0
, (4)

where Is (x, y) is the segmented depth stream containing depth

value z at each location (x, y) and cz is a shifting offset defined by

Pz − S
2

. The extracted projections are normalized to 64x64 pixels

as each projection has different size due to dynamic segmentation

size from previous step. Fig. 3 shows the constructed projections

of hand region for an open hand pose, which includes noise and

quantization errors. The next subsection introduces steps to reduce

the quantization error.

2.3. Quantization Error Reduction

In [14], it was found that depth stream contains random noise and

quantization error which increases quadratically with increased dis-

tance from the sensor. The depth stream is quantized for discrete

values of x and y which gives rise to discontinuities when extracting

ZX and ZY projection as shown in Fig. 4. The proposed method for

this quantization error reduction consists of two different techniques

which, when combined, are able to reduce these errors. These ap-

proaches are explained below.

2.3.1. Morphological Filtering

The first approach used to reduce the quantization error is to perform

morphological closing operation using special structuring elements.



(a) (b) (c) (d) (e)

Fig. 4. Projections without quantization error reduction showing

mxy (top row), mzx (middle row) and mzy (bottom row) at Pz =
(a) 700mm, (b) 950mm, (c) 1200mm, (d) 1450mm, (e) 1700mm.

(a) (b) (c) (d) (e)

Fig. 5. Projections with morphological closing based quantization

error reduction showing mxy (top row), m′
zx (middle row) and m′

zy

(bottom row) at Pz = (a) 700mm, (b) 950mm, (c) 1200mm, (d)

1450mm, (e) 1700mm.

This approach uses two types of structuring elements, depending on

the orientation of quantization error gap. These structuring elements

are

VSE =





0 1 0
0 1 0
0 1 0



 , (5) HSE =





0 0 0
1 1 1
0 0 0



 , (6)

where VSE and HSE correspond to a vertical and horizontal line

structuring elements respectively. The selection of these structuring

elements for each projection is based on the orientation of disconti-

nuities in that particular projection. The output m′
zx and m′

zy of this

step is given by

m
′
zx = (mzx ⊕ VSE)⊖ VSE , (7)

m
′
zy = (mzy ⊕HSE)⊖HSE , (8)

where ⊕ is morphological dilation and ⊖ is morphological erosion.

These output masks are shown in Fig. 5. It can be observed from

this figure that the morphological closing operation only works for

Pz ≤ 950mm, which is due to lower magnitude of discontinuities

at less distances. Therefore, we introduce an interpolation step be-

fore these operations to make them work with Pz > 950mm. This

interpolation step is explained in detail in the next subsection.

(a) (b) (c)

Fig. 6. Projections with interpolation based quantization error re-

duction: mxy (top row), mzx (middle row) and mzy (bottom row)

at Pz = (a) 1200mm, (b) 1450mm, (c) 1700mm.

2.3.2. Interpolation

To reduce the quantization error for Pz > 950mm, we introduce

a simple averaging based interpolation step. This step is further di-

vided into two parts which are (i) searching for the regions with dis-

continuities, and (ii) interpolating them using a simple average of

previous and next existing values. The method involving detection

of these discontinued regions works by traversing through the pro-

jection masks in the opposite direction to the discontinuities. The

location of the first value found is stored as (prevx, prevy). These

values are used along with the immediate next existing line coor-

dinates (nextx, nexty) to reconstruct the region in between. The

reconstruction step involves finding the midpoint of both line coor-

dinates and setting its value to interpolate the region. This recon-

struction process is repeated recursively until the number of speci-

fied recursion steps is achieved. This interpolation method is applied

throughout the projections. The equation for the average based in-

terpolation operation is given by

m(
prevx + nextx

2
,
prevy + nexty

2
) = 1, (9)

where m = {mzx,mzy}. The computation power required by this

step is directly proportional to the size of the input projection and the

number of recursive steps. This makes it computationally expensive

to fill large quantization error gaps, i.e., quantization error at greater

Pz . To utilize these quantization error reduction techniques effi-

ciently, our system uses interpolation steps only for Pz > 950mm.

Furthermore, less number of recursive steps are performed, which

are sufficient to reconstruct projection masks when followed by mor-

phological closing operations. Fig. 6 shows the output, where the

number of recursion steps performed is two. The overall output of

the proposed method is shown in Fig. 7, combining both morpholog-

ical filtering and interpolation steps. It can be observed that the re-

constructed projections have increasing random noise with increas-

ing distance Pz . Therefore, we impose a range limitation of distance

Pz ≤ 1700mm on our proposed method.

3. EXPERIMENTAL RESULTS AND ANALYSIS

The choice of dataset collected to evaluate our proposed approach

holds significance in showing the improved performance in HGR

effectively. We divide a horizontal swipe gestures into 4 different

stages and call them gesture stages. These stages are shown as pro-

jections in Fig. 9. From this figure, the significance of these projec-

tions is evident in defining the 3D posture of the four gesture stages.



(a) (b) (c) (d) (e)

Fig. 7. Projections with the proposed quantization error reduction

step: Mxy (top row), Mzx (middle row) and Mzy (bottom row)

at Pz = (a) 700mm, (b) 950mm, (c) 1200mm, (d) 1450mm, (e)

1700mm.
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Fig. 8. Similarity measure of WQR and QR w.r.t. GT for four ges-

ture stages: Mzx (top row) and mzy (bottom row)

(a) (b) (c) (d)

Fig. 9. Projections of four gesture stages used for evaluation showing

Mxy (left), Mzx (center) and Mzy (right) (a) stage 1, (b) stage 2, (c)

stage 3, (d) stage 4.

When looking at these gestures from front, i.e., XY projection, they

are almost similar in shape. However together with other two pro-

jections, classifying them becomes an easy task.

We captured a dataset containing 2000 samples for each of the

four gesture stages , with Pz varying between 600mm to 1700mm.

Slight variations in the hand postures were also made while record-

ing, making the dataset challenging for HGR. Two sets of projec-

tions based features were extracted, one using the proposed pre-

processing quantization reduction method (QR), while other with-

out quantization reduction (WQR). Evaluation was done using two

different methods to quantify both the percentage increase in rele-

vant pixel count and the accuracy of the HGR. These experimental

techniques are presented in the subsections below, along with the

analysis of the output.

Table 1. Evaluation Results.Key; QR - Pre-processed Depth stream

with Quantization Reduction; WQR - Pre-processed Depth stream

Without Quantization Reduction

Gesture
Correct HGR Accuracy (%)

QR WQR QR WQR

1 1972 1959 98.60 97.95

2 1985 1981 99.25 99.05

3 1664 1557 83.20 77.85

4 1763 1734 88.15 86.70

3.1. Similarity measure w.r.t. Ground Truth

The significance of this experimental technique is to quantify the in-

crease in similarity of QR w.r.t. the ground truth (GT). To perform

this experiment, we extracted 100 equally spaced gesture stages in

the range 600 ≤ Pz ≤ 1700 from QR and WQR of the captured

dataset. The projections were manually edited for random error

noise and quantization error to generate the GT. The percentage sim-

ilarity of QR and WQR were calculated using the following formula

Similarity Two Images =
same white pixels

total white pixels in GT
. (10)

The results from this similarity measure are presented in Fig. 8,

with percentage similarity measure plotted against Pz for ZX and

ZY projection of all four gesture stages. It can be observed that with

increased Pz there is a significant decrease in similarity of WQR

and GT. Whereas, using our quantization reduction technique the

similarity measure remains above 80% for most values of Pz .

3.2. Accuracy of the HGR

To further validate the proposed quantization reduction approach,

a neural network model for all four gesture stages was constructed

using hand labelled ground-truth projections. Gesture stages from

each of the two sets of projections (QR and WQR) were recognized

using this model. The performance of the output was evaluated by

calculating the percentage accuracy using the correct recognition re-

sults. The results are presented in Table 1. It can be observed that

using quantization reduction steps encouraging results are achieved,

particularly for gestures with accuracy less than 90%. This is due

to the reason that in most cases the recognition rate is affected by

high quantization error in ZX and ZY projections. Reconstructing

these projections bring them closer in similarity to the actual ground

truth projections, hence accounting for significant increase in perfor-

mance.

4. CONCLUSION

In this paper, a Kinect depth stream pre-processing method for HGR

related application was proposed. This method used a distance in-

variant segmentation step, which utilized the distance of hand from

the sensor to segment only the hand region. The segmented hand

region was used to construct projections in three different planes.

The limitation of quantization error was overcome to some extent

by using a combination of morphological closing operations and a

simple averaging based interpolation technique. The proposed ap-

proach was evaluated using a similarity measure w.r.t. GT and a

neural network based GT model. The results show improvement in

accuracy of HGR by 0.2-5.35 %. Similarity measure shows that the

proposed method is able to reconstruct the projections significantly,

with above 80 % similarity with GT.
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