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Abstract 54 

Glycerol dialkyl glycerol tetraethers (GDGTs) are membrane-spanning lipids from 55 

Bacteria and Archaea that are ubiquitous in a range of natural archives and especially 56 

abundant in peat. Previous work demonstrated that the distribution of bacterial 57 

branched GDGTs (brGDGTs) in mineral soils is correlated to environmental factors 58 

such as mean annual air temperature (MAAT) and soil pH. However, the influence of 59 

these parameters on brGDGT distributions in peat is largely unknown. Here we 60 

investigate the distribution of brGDGTs in 470 samples from 96 peatlands around the 61 

world with a broad mean annual air temperature (−8 to 27 °C) and pH (3–8) range and 62 

present the first peat-specific brGDGT-based temperature and pH calibrations. Our 63 

results demonstrate that the degree of cyclisation of brGDGTs in peat is positively 64 

correlated with pH, pH = 2.49 x CBTpeat + 8.07 (n = 51, R2 = 0.58, RMSE = 0.8) and 65 

the degree of methylation of brGDGTs is positively correlated with MAAT, 66 

MAAT peat (°C) = 52.18 x MBT5me’ – 23.05   (n = 96, R2 = 0.76, RMSE = 4.7 °C). 67 

mailto:david.naafs@bristol.ac.uk
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These peat-specific calibrations are distinct from the available mineral soil 68 

calibrations. In light of the error in the temperature calibration (~ 4.7 °C), we urge 69 

caution in any application to reconstruct late Holocene climate variability, where the 70 

climatic signals are relatively small, and the duration of excursions could be brief. 71 

Instead, these proxies are well-suited to reconstruct large amplitude, longer-term 72 

shifts in climate such as deglacial transitions. Indeed, when applied to a peat deposit 73 

spanning the late glacial period (~15.2 kyr), we demonstrate that MAATpeat yields 74 

absolute temperatures and relative temperature changes that are consistent with those 75 

from other proxies. In addition, the application of MAATpeat to fossil peat (i.e. 76 

lignites) has the potential to reconstruct terrestrial climate during the Cenozoic. We 77 

conclude that there is clear potential to use brGDGTs in peats and lignites to 78 

reconstruct past terrestrial climate. 79 

 80 

Keyword: GDGT, biomarker, peatland, calibration, lignite 81 

 82 

Highlights: 83 

- Analysis of brGDGT distributions in global peat dataset 84 

- Correlation of brGDGT distributions with peat pH and mean annual air temperature  85 

- Development of peat-specific temperature and pH proxies   86 
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1. Introduction 87 

Although reconstructions of terrestrial environments are crucial for the understanding 88 

of Earth’s climate system, suitable depositional archives (especially longer continuous 89 

sequences) are rare on land. Peatlands and lignites (naturally compressed ancient peat) 90 

are one exception and offer remarkable preservation of organic matter. Peats can be 91 

found in all climate zones where suitable waterlogged conditions exist. Typical peat 92 

accumulation rates are on the order of 1-2 mm/year (Gorham et al., 2003) and because 93 

they exhibit minimal bioturbation (although roots might be present) they are widely 94 

used as climate archives during the late Quaternary, predominantly the Holocene 95 

(e.g., Barber, 1993; Chambers and Charman, 2004). Peat-based proxies include those 96 

based on plant macrofossils, pollen, and testate amoebae (e.g., Woillard, 1978; 97 

Mauquoy et al., 2008; Väliranta et al., 2012), inorganic geochemistry (e.g., Burrows 98 

et al., 2014; Chambers et al., 2014; Hansson et al., 2015; Vanneste et al., 2015), (bulk) 99 

isotope signatures (e.g., Cristea et al., 2014; Roland et al., 2015) and organic 100 

biomarkers (e.g., Nichols et al., 2006; Pancost et al., 2007; Pancost et al., 2011; 101 

Huguet et al., 2014; Zocatelli et al., 2014; Schellekens et al., 2015; Zheng et al., 102 

2015). Although these proxies can be used to provide a detailed reconstruction of the 103 

environment and biogeochemistry within the peat during deposition, an accurate 104 

temperature or pH proxy for peat is currently lacking (Chambers et al., 2012). This is 105 

particularly problematic because temperature and pH are key environmental 106 

parameters that directly affect vegetation type, respiration rates, and a range of other 107 

wetland features (e.g., Lafleur et al., 2005; Yvon-Durocher et al., 2014). The aim of 108 

this paper is to develop peat-specific pH and temperature proxies for application to 109 

peat cores as well as ancient peats from the geological record preserved as lignites. 110 

We focus on using membrane-spanning glycerol dialkyl glycerol tetraether 111 

(GDGT) lipids. In general, two types of GDGTs are abundant in natural archives such 112 

as peats: 1) isoprenoidal (iso)GDGTs with sn-1 glycerol stereochemistry that are 113 

synthesized by a wide range of Archaea, and 2) branched (br)GDGTs with sn-3  114 

glycerol stereochemistry that are produced by Bacteria (see review by Schouten et al., 115 

2013 and references therein). A wide range of brGDGTs occur in natural archives 116 

such as mineral soils and peat; specifically, tetra-, penta-, and hexamethylated 117 

brGDGTs, each of which can contain 0, 1, or 2 cyclopentane rings (Weijers et al., 118 

2006b). In addition, recent studies using peat and mineral soils have demonstrated that 119 

the additional methyl group(s) present in penta- and hexamethylated brGDGTs can 120 
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occur on either the α and/or ω-5 position (5-methyl brGDGTs) or the α and/or ω-6 121 

position (6-methyl brGDGTs) (De Jonge et al., 2013; De Jonge et al., 2014). 122 

brGDGTs are especially abundant in peat, in fact brGDGTs were first 123 

discovered in a Dutch peat (Sinninghe Damsté et al., 2000). The concentration of 124 

brGDGTs (as well as isoGDGTs) is much higher in the water saturated and 125 

permanently anoxic catotelm of peat compared to the predominantly oxic acrotelm, 126 

suggesting that brGDGTs are produced by anaerobic bacteria (Weijers et al., 2004; 127 

Weijers et al., 2006a; Weijers et al., 2011), potentially members of the phylum 128 

Acidobacteria (Weijers et al., 2009; Sinninghe Damsté et al., 2011; Sinninghe Damsté 129 

et al., 2014). Although the exact source organism(s) are/is currently unknown, in 130 

mineral soils (and potentially lakes) the distribution of bacterial brGDGTs is 131 

correlated with mean annual air temperature (MAAT) and pH (Weijers et al., 2007; 132 

Peterse et al., 2012; De Jonge et al., 2014; Loomis et al., 2014; Li et al., 2016). Over 133 

the past decade ancient deposits of mineral soils (e.g., Peterse et al., 2014) and peat 134 

(e.g., Ballantyne et al., 2010) have been used to reconstruct past terrestrial 135 

temperatures.  136 

Mineral soils differ from peat as the latter are normally water saturated, 137 

consist predominantly of (partially decomposed) organic matter (the organic carbon 138 

content of peat is typically> 30 wt.%), are typically acidic (pH 3-6), and have much 139 

lower density. The combination of these factors means that peat becomes anoxic at 140 

relatively shallow depths, whereas mineral soils are typically oxic. Indeed, Loomis et 141 

al. (2011) showed that the brGDGT distribution in waterlogged soils is different from 142 

that in dry soils and Dang et al. (2016) recently provided direct evidence of moisture 143 

control on brGDGT distributions in soils. These differences suggest that microbial 144 

lipids in peat might not reflect environmental variables, i.e. pH and temperature, in 145 

the same way as they do in mineral soils.  146 

Despite the high concentration of GDGTs in peats relatively few studies have 147 

examined the environmental controls on their distribution in such settings (Huguet et 148 

al., 2010; Weijers et al., 2011; Huguet et al., 2013; Zheng et al., 2015). Those studies 149 

found that the application of soil-based proxies to peats can result in unrealistically 150 

high temperature and pH estimates compared to the instrumental record. However, 151 

owing to the small number of peats that have been studied to date as well as the lack 152 

of peatland diversity sampled (the majority of peats sampled for these studies come 153 

from temperate climates in Western Europe), the correlation of temperature and pH 154 



6 
 

with brGDGT distribution in peats is poorly constrained. Notably, the lack of tropical 155 

peat brGDGT studies limits interpretations of brGDGT distributions in lignite 156 

deposits from past greenhouse climates (Weijers et al., 2011).  157 

Here we compare brGDGT distributions in a newly generated global data set 158 

of peat with MAAT and (where available) in situ peat pH measurements. Our aim is 159 

to gain an understanding of the impact of these environmental factors on the 160 

distribution of brGDGTs in peat and develop for the first time peat-specific 161 

temperature and pH proxies that can be used to reconstruct past terrestrial climate. 162 

 163 

2. Material and methods 164 

2.1 Peat material 165 

We generated a collection of peat comprising a diverse range of samples from around 166 

the world (Fig. 1). In total, our database consists of 470 samples from 96 different 167 

peatlands. In order to assess the variation in brGDGT distribution within one location, 168 

where possible we determined the brGDGT distribution in multiple horizons from 169 

within the top 1m of peat (typically representing several centuries of accumulation) 170 

and/or analyzed samples taken at slightly different places within the same peatland. A 171 

peat deposit typically consists of an acrotelm and catotelm, although marked 172 

heterogeneity can exist even over short distances (Baird et al., 2016). The acrotelm is 173 

located above the water table for most of the year and characterized by oxic 174 

conditions and active decomposition. The acrotelm overlies the catotelm, which is 175 

permanently waterlogged and characterized by anoxic conditions and very slow 176 

decomposition. Our dataset spans those biogeochemical gradients (e.g. acro/catotelm). 177 

Variations in peat accumulation rates differ between sites, implying that the ages of 178 

the brGDGT-pool might differ. 179 

Our database includes peats from six continents and all major climate zones, 180 

ranging from high latitude peats in Siberia, Canada, and Scandinavia to tropical peats 181 

in Indonesia, Africa, and Peru (Fig. 2). It covers a broad range in MAAT from −8 to 182 

27 °C. Although most samples come from acidic peats with pH <6, the dataset 183 

includes several alkaline peats and overall our dataset spans a pH range from 3 to 8. 184 

All samples come from freshwater peatlands, except for the one from the Shark River 185 

peat (Everglades, USA) that is marine influenced. Unsurprisingly, given their global 186 

distribution, the peats are characterized by a wide variety of vegetation, ranging from 187 
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Sphagnum-dominated ombrotrophic peats that are abundant in high-latitude and 188 

temperate climates to (sub)tropical peats dominated by vegetation such as Sagittaria 189 

(arrowhead) and Cyperaceae (sedge), and forested tropical peatlands. 190 

 191 

2.2 Environmental parameters 192 

The distribution of brGDGTs was compared to MAAT and in situ pH. MAAT was 193 

obtained using the simple bioclimatic model PeatStash, which provides surface air 194 

temperatures globally with a 0.5 degree spatial resolution (for details, see Kaplan et 195 

al., 2003; Gallego-Sala and Prentice, 2013). The temperature data in PeatStash is 196 

obtained by interpolating long-term mean weather station climatology (temperature, 197 

precipitation and the fraction of possible sunshine hours) from around the world for 198 

the period 1931–1960 (Climate 2.2 data are available online http://www.pik-199 

potsdam.de/~cramer/climate.html). Crucially, mean annual temperatures in peat are 200 

similar to MAAT, assuming that the peat is not snow-covered for long periods of time 201 

(McKenzie et al., 2007; Weijers et al., 2011). The temperature at the top surface of 202 

(high-latitude) peat can differ from the MAAT due to insolation by snow during 203 

winter and intense heating during summer. Despite this, the seasonal temperature 204 

fluctuations in peat are dampened at depth as temperatures converge to MAAT 205 

(Hillel, 1982; Laiho, 2006; McKenzie et al., 2007; Weijers et al., 2011). We assume 206 

that all peat horizons experienced MAAT (the only data available on a global basis). 207 

This is likely an oversimplification that introduces some additional uncertainty in our 208 

calibration. 209 

Where available, pH data were obtained from measured values reported in the 210 

literature or our measurements during sampling. For peats, pH cannot be determined 211 

using dried material, as is normally done for soils (Stanek, 1973). Accurate pH 212 

measurements can only be obtained from in situ measurements, especially for 213 

groundwater-fed wetlands, and these are not available for all locations. 214 

 215 

2.3 Lipid extraction 216 

For the majority of samples (>430 out of 470), between 0.1 and 0.5 g of dried bulk 217 

peat were extracted with an Ethos Ex microwave extraction system with 20 mL of a 218 

mixture of dichloromethane (DCM) and methanol (MeOH) (9:1, v/v) at the Organic 219 

Geochemistry Unit (OGU) in Bristol. The microwave program consisted of a 10 min 220 

ramp to 70 °C (1000 W), 10 min hold at 70 °C (1000 W), and 20 min cool down. 221 

http://www.pik-potsdam.de/~cramer/climate.html
http://www.pik-potsdam.de/~cramer/climate.html
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Samples were centrifuged at 1700 rounds per minute for 3 to 5 min and the 222 

supernatant was removed and collected. 10 mL of DCM:MeOH (9:1) were added to 223 

the remaining peat material and centrifuged again after which the supernatant was 224 

removed and combined with the previously obtained supernatant. This process was 225 

repeated 3 to 6 times, depending on the amount of extracted material, to ensure that 226 

all extractable lipids were retrieved. The total lipid extract (TLE) was then 227 

concentrated using rota-evaporation. An aliquot of the TLE (typically 25%) was 228 

washed through a short (<2 cm) silica column using DCM:MeOH (9:1) to remove any 229 

remaining peat particles. The TLE was dried under a gentle nitrogen flow and then re-230 

dissolved in hexane/iso-propanol (99:1, v/v) and filtered using 0.45 μm PTFE filters.  231 

A small number of peats were extracted using different methods and either the 232 

TLE or polar fraction was analyzed for GDGTs (see Table S1). Samples from the 233 

Kyambangunguru peat in Tanzania were extracted using the Bligh-Dyer protocol. 234 

Previous work on peat demonstrated that the brGDGT distribution  is similar using 235 

Bligh-Dyer extraction as Soxhlet extraction (Chaves Torres and Pancost, 2016). The 236 

TLE was cleaned over a short Si column at the OGU in Bristol. Both cleaned TLE 237 

and polar fractions were re-dissolved in hexane/iso-propanol (99:1, v/v) and filtered 238 

using 0.45 μm PTFE filters.  239 

 240 

2.4 Analytical methods 241 

All samples were analyzed for their core lipid GDGT distribution by high 242 

performance liquid chromatography/atmospheric pressure chemical ionisation – mass 243 

spectrometry (HPLC/APCI-MS) using a ThermoFisher Scientific Accela Quantum 244 

Access triplequadrupole MS. Normal phase separation was achieved using two ultra-245 

high performance liquid chromatography silica columns, following Hopmans et al. 246 

(2016). Crucially this method allows for the separation of the 5- and 6-methyl 247 

brGDGT isomers. Injection volume was 15 μL, typically from 100 μL. Analyses were 248 

performed using selective ion monitoring mode (SIM) to increase sensitivity and 249 

reproducibility (m/z 1302, 1300, 1298, 1296, 1294, 1292, 1050, 1048, 1046, 1036, 250 

1034, 1032, 1022, 1020, 1018, 744, and 653). The results were integrated manually 251 

using the Xcalibur software. Based on daily measurements of an in-house generated 252 

peat standard, analytical precession (σ) over the 12 months during which the data 253 

were analyzed is 0.01 for the proxy index we define below (MBT5me’, eq. 2). 254 

 255 
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2.5 Proxy calculation 256 

Guided by previous studies we used a range of proxies to express ratios of different 257 

GDGTs and the nomenclature of De Jonge et al. (2014) (Fig. 1).  258 

 259                                                                                             
The original methylation of branched tetraether (MBT) index compared the relative 260 

abundance of tetramethylated brGDGTs (compounds Ia-Ic) to that of penta- 261 

(compounds IIa-IIc’) and hexamethylated (compounds IIIa-IIIc’) brGDGTs that have 262 

one or two additional methyl groups (Weijers et al., 2007). It was recently discovered 263 

that the additional methyl groups in penta- and hexamethylated brGDGTs can also 264 

occur at the C6 position (6-methyl brGDGTs, indicated by a prime symbol; e.g. 265 

brGDGT-IIa’): the 6-methyl penta- and hexamethylated brGDGTs (De Jonge et al., 266 

2013). Excluding the 6-methyl brGDGTs from the MBT index resulted in the 267 

MBT5me’ index. In the global soil database the application of MBT5me’ led to an 268 

improved correlation with temperature (De Jonge et al., 2014). 269                                                       
In addition to different number of methyl groups, brGDGTs can contain up to two 270 

cyclopentane moieties (e.g., brGDGT-Ib and -Ic). CBT’ is a modified version of the 271 

original cyclisation of branched tetraether (CBT) index (Weijers et al., 2007) and in 272 

soils CBT’ has the best correlation with pH (De Jonge et al., 2014): 273                                                                  

The isomer ratio of 6-methyl brGDGTs (IR6me) reflects the ratio between 5- and 6-274 

methyl brGDGTs (Yang et al., 2015) with low (high) values indicative of a 275 

dominance of 5-methyl (6-methyl) brGDGTs: 276                                                                                                             

 277 

The isomerization of branched tetraethers (IBT) is related to IR6me but reflects the 278 

isomerization of brGDGT–IIa and –IIIa only (Ding et al., 2015): 279 
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The branched versus isoprenoidal tetraether (BIT) index (Hopmans et al., 2004) 280 

reflects the relative abundance of the major bacterial brGDGTs versus a specific 281 

archaeal isoGDGT, crenarchaeol (Fig. 1), produced by Thaumarchaeota (Sinninghe 282 

Damsté et al., 2002): 283                                                               
Finally, the isoprenoidal over branched GDGT ratio (Ri/b), related to the BIT index, 284 

records the relative abundance of archaeal isoGDGTs over bacterial brGDGTs (Xie et 285 

al., 2012). 286                                

 287 

2.6 Statistical methods 288 

Temperature and pH calibrations were obtained using the average proxy value for 289 

each peat and Deming regressions. The software we used was RStudio 290 

(RStudio Team, 2015) and Method Comparison Regression (MCR) package 291 

(Manuilova et al., 2014), which are freely available to download1. The Rscript and 292 

data are available in the appendices.  293 

Deming regressions differ from simple linear regression, which so far have 294 

been used in brGDGT proxy calibrations, as they account for error in the data on both 295 

the x- (e.g., proxy) and y-axis (e.g., environmental variable) (Adcock, 1878).  296 

We used the average proxy value for each peat to calculate Deming regressions, 297 

calibration errors (RMSE, see below), and calibration coefficients of determination 298 

(R2). The errors associated with proxy measurements (e.g. MBT5me’) and 299 

environmental parameters (MAAT/pH) are independent and assumed to be normally 300 

distributed. To calculate a Deming regression, the ratio of variances (δ) must be 301 

calculated. For MAAT we took a standard deviation (σ) of 1.5 °C based on the 302 

estimated mean predictive error of up to 1.4 °C for mean temperature in a similar 303 

dataset (New et al., 1999). For pH we took a standard deviation of 0.5 based on the 304 

average reported heterogeneity in pH for the peatlands used in the database (see 305 

Supplementary Table 1). For MBT5me’, CBT’, and CBTpeat we calculated the average 306 

                                                 
1 https://www.rstudio.com and https://cran.r-project.org/web/packages/mcr/index.html  

https://www.rstudio.com/
https://cran.r-project.org/web/packages/mcr/index.html
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standard deviation of each proxy from the entire peat data set (0.05, 0.25, and 0.2, 307 

respectively). This results in a ratio of variances of 0.0011 for the MBT5me’/MAAT 308 

calibration and 0.25 and 0.16 for the pH calibration based on CBT’ and CBTpeat, 309 

respectively. Residuals were calculated for the full dataset and using 310                                         

The root mean square error (RMSE) for y, the predictive error for the 311 

environmental parameter of interest (MAAT or pH), was calculated for the average 312 

proxy value of each peat and using 313 

                                                      

Where df stands for degrees of freedom, which in this case is n-1.  314 

 315 

3. Results  316 

Although we did not calculate concentrations, based on changes in signal intensity the 317 

relative abundance of GDGTs was always higher at depth compared to the top (~0–318 

20) cm of peat. BIT indices (eq. 6) range between 0.75 and 1, but 99% of the samples 319 

have a BIT value ≥0.95. Similarly, Ri/b ratios are typically <0.5. Only three samples 320 

from the São João da Chapada peat in Brazil have a Ri/b ratio >1.  321 

The majority of brGDGTs are tetramethylated and 5-methyl penta- and 322 

hexamethylated brGDGTs. The most abundant brGDGTs in peat are brGDGT-Ia and 323 

IIa. By extension, the IR6me ratio (eq. 4) is low. brGDGTs containing cyclopentane 324 

moieties are much less abundant than acyclic brGDGTs and brGDGT-IIIb(’) and -325 

IIIc( ’) are either below detection limit or present at trace abundances (≤ 1% of total 326 

brGDGTs). Indeed, three brGDGTs dominate the entire global dataset: tropical peats 327 

contain almost exclusively brGDGT-Ia (up to 99% of total brGDGTs), whereas in 328 

high-latitude peats brGDGT-IIa and -IIIa are dominant (Fig. 3).   329 

 330 

4. Discussion 331 

The observation that Ri/b ratios are low in most peats is consistent with previous 332 

observations that bacterial brGDGTs dominate over archaeal isoprenoidal GDGTs in 333 

peat (Schouten et al., 2000; Sinninghe Damsté et al., 2000; Pancost et al., 2003) and 334 

mineral soils (Hopmans et al., 2004).  335 

 336 
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4.1 Shallow vs deep GDGT distributions 337 

The apparent increase in GDGT abundance with depth is consistent with previous 338 

observations in peatlands (Weijers et al., 2004; Peterse et al., 2011) and reflects the 339 

combined effects of preferential GDGT production in anaerobic settings and the 340 

accumulation of fossil GDGTs over time at depth (Liu et al., 2010; Weijers et al., 341 

2011).  342 

In one high-latitude peat (Saxnäs Mosse, Sweden) the distribution of both 343 

intact polar lipids (compounds still containing a polar head groups) and core 344 

brGDGTs (compounds having lost their polar head group) differed between the acro- 345 

and catotelm and brGDGT abundances were much higher in the latter (Weijers et al., 346 

2009; Peterse et al., 2011). Based on these results Peterse et al. (2011) speculated that 347 

microbial communities differed between the oxic acrotelm and anoxic catotelm. As 348 

oxygen content can influence cellular lipid composition of bacteria, Huguet et al. 349 

(2010) speculated that oxygen availability could be one of the factors directly 350 

influencing the brGDGT synthesis by bacteria in peat, as opposed to influencing the 351 

type of source organism(s). Studies from lakes also suggested that changes in lake 352 

oxygenation state can influence the brGDGT distribution (Tierney et al., 2012; 353 

Loomis et al., 2014). 354 

Our dataset consists of a mixture of surface ( 0–15 cm) and deeper samples 355 

that extend through the top one meter of peat. For the majority of peats there is no 356 

detailed information available on water table depths and location of the acro/catotelm 357 

boundary. Nonetheless, to provide a first order assessment on whether there is a 358 

systematic and significant difference in core brGDGT distribution between the upper 359 

(assumed to be generally oxic) and underlying anoxic peat, we compared the relative 360 

abundance of the three most abundant brGDGTs (Ia, IIa, and IIIa) in the shallow 361 

surface peat (top 15 cm) with that of the deep peat below 15 cm (Fig. 3), although we 362 

acknowledge that this is likely an oversimplification. 363 

 There are some differences. In general the relative abundance of brGDGT-Ia 364 

is slightly higher in the top 15 cm of a peat compared to the peat below 15 cm, 365 

especially when its abundance is < 60%.  Overall, however, the distributions plot 366 

along the 1:1 line, indicating that there is no systematic difference in brGDGT 367 

distribution between the (assumed) oxic surface and the peat below 15 cm (likely 368 

anoxic). This does not preclude differences in brGDGT production between oxic and 369 

anoxic conditions, but this appears to be primarily expressed via greater production of 370 
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brGDGTs under anoxic conditions as demonstrated by the higher abundance of 371 

GDGTs across the acro/catotelm boundary (Weijers et al., 2006a). These results 372 

provide indirect evidence that oxygen availability does not significantly impact the 373 

degree of methylation of (core) brGDGTs. One possible explanation for why oxygen 374 

availability does not affect distributions is that brGDGTs could be predominantly 375 

produced by anaerobes throughout the peat, in low abundance in anaerobic 376 

microenvironments in shallow peat and in high abundance in the anaerobic catotelm. 377 

Several (high-latitude) peats, however, do appear to exhibit strong variations 378 

between deep and shallow sections of the peat. The down core records from Stordalen 379 

(Sweden) and Andorra (S. Patagonia), for example, are characterized by a large and 380 

abrupt shift in brGDGT distribution at depth (Fig. 4). The MBT5me’ indices recorded 381 

at the very top of these high-latitude peats are between 0.8 and 0.6, as high as those 382 

found in mid-latitude and subtropical peats, but decrease to values between 0.2 and 383 

0.4 below ~30 cm. Peats from temperate climates (e.g. Walton moss, UK) and the 384 

tropics (e.g. Sebangau, Indonesia) display much smaller or no change in brGDGT 385 

distribution with depth (Fig. 4 and 5). It appears that this offset in brGDGT 386 

distribution with depth is amplified in high-latitude peats. This is consistent with 387 

previous studies that indicated a difference in brGDGT-distribution between the acro- 388 

and catotelm in a high-latitude peat from southern Sweden (Weijers et al., 2009; 389 

Peterse et al., 2011). 390 

We argue that the high MBT5me’ values at the top of these high-latitude peats 391 

are heavily biased towards summer temperatures. At these settings winter 392 

temperatures are often below freezing for a prolonged period, likely causing bacterial 393 

growth and GDGT production to slow down significantly. Summer temperatures are 394 

much higher (e.g. mean warmest month temperature at Stordalen is around 13 °C), in-395 

line with the observed relatively high MBT5me’ values (e.g., 0.6-0.7 at Stordalen, see 396 

Figure 4). Deeper in the peat, seasonal temperature fluctuations are much less 397 

pronounced and temperatures rapidly converge to the MAAT (Vitt et al., 1995; Laiho, 398 

2006; McKenzie et al., 2007; Weijers et al., 2011), likely accounting for the lower 399 

MBT5me’ values in the deeper peat horizons. Moreover, the greater production of 400 

GDGTs in the anaerobic part of the peat will cause GDGT-based temperatures to 401 

rapidly converge on the deep peat growth temperature, overprinting the seasonal 402 

summer bias of fossil GDGTs synthesized at the surface.  403 
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This effect is diminished in temperate and especially tropical peatlands from 404 

around sea level, which we attribute to the lack of a preferred growing season in 405 

settings with smaller seasonal temperature ranges. In such settings temperatures are 406 

less frequently (or never) below freezing and brGDGT production in the top of the 407 

peat likely occurs for all or most of the year, such that GDGTs produced in both the 408 

shallow and deeper part of the peat record MAAT. This hypothesis needs further 409 

testing but indicates that 1) brGDGT production may be biased towards the warm 410 

season in the upper part of high-latitude/altitude peats; 2) care has to be taken when 411 

interpreting brGDGT-based trends in the top of such peats; and 3) the temperature 412 

signal in such peats is imparted at depth, such that downcore GDGT variations in 413 

ancient peat archives could potentially be temporally offset (precede) the climate 414 

events that caused them. However, as brGDGTs in long peat cores, and by extension 415 

ancient lignites (fossilized peats), are dominated by production at depth where 416 

temperature equals MAAT (see section 2.2) it is very unlikely that temperatures 417 

obtained from these archives are seasonally biased. 418 

In the remainder of this work, for high-latitude peats that show a clear offset 419 

between the top and deeper part of the peat we use only the average GDGT 420 

distribution from below 20 cm, as the majority of change appears to occur in the top 421 

20 cm. For the other peats we retain all data from the upper 1 m, not differentiating 422 

between the acro- and catotelm. To generate the temperature and pH calibrations we 423 

use the average brGDGT distribution for each peatland. For peats where multiple 424 

samples were analyzed, error bars indicate the deviation (1 σ) from the average. 425 

 426 

4.2 Influence of temperature and pH on brGDGTs in peats 427 

It is well established that in soils and lakes, environmental conditions such as 428 

temperature and pH are highly correlated with the brGDGT distribution (e.g.,Weijers 429 

et al., 2007; Peterse et al., 2012; Schoon et al., 2013; De Jonge et al., 2014; Loomis et 430 

al., 2014; Xiao et al., 2015; Li et al., 2016). In the following sections we investigate 431 

the influence of these parameters on the brGDGT distribution in peat using the 432 

average proxy value (e.g. MBT5me’) for each peatland. 433 

 434 

4.2.1 Influence of peat pH on brGDGT distribution 435 

Weijers et al. (2007) demonstrated that in a global mineral soil database the degree of 436 

cyclisation of brGDGTs is correlated to pH, with a higher fractional abundance of 437 
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brGDGTs that contain cyclopentane moieties in soils with a higher pH. Following the 438 

discovery of 6-methyl brGDGTs (De Jonge et al., 2013), it was shown that the degree 439 

of isomerization of brGDGTs, the ratio of 6-methyl versus 5-methyl brGDGTs, is also 440 

correlated to soil pH, with a higher fractional abundance of 6-methyl brGDGTs in 441 

soils with a higher pH (De Jonge et al., 2014; Xiao et al., 2015). Owing to the limited 442 

pH range of the few peats used to study brGDGTs so far and because all of these 443 

studies pre-date the recent analytical advances that allow for the separation of 5- and 444 

6-methyl brGDGTs, it is unknown whether pH has an influence on brGDGTs in peats 445 

or whether the dependence is similar to that found in soils. Our peat database spans a 446 

pH range from 3 to 8, similar to that of the soil database, allowing us to assess the 447 

influence of pH on the brGDGT distribution in such settings. 448 

 Although pH measurements are only available in 51 out of 96 peats, our 449 

results indicate that 6-methyl brGDGTs are present at either only trace abundances 450 

(IR6me <0.1) or are absent in acidic peats with pH <5.4 (Fig 6). Higher ratios occur in 451 

peats with higher pH. The highest ratio (0.58) occurs in the marine-influenced 452 

alkaline peat from the Everglades. Not surprisingly, the fractional abundances of the 453 

three most common 6-methyl brGDGTs (brGDGT-IIa’, -IIb’, -IIIa') are significantly 454 

correlated with pH with R-values between 0.4 and 0.6 (p<0.01) (Fig. 7). These results 455 

are consistent with observations from soils that indicate a positive correlation between 456 

the fractional abundance of 6-methyl brGDGTs and pH (De Jonge et al., 2014; Xiao 457 

et al., 2015).  458 

As a result, the IR6me as well as the related IBT index, both of which have 459 

been used to reconstruct pH in soils (Ding et al., 2015; Xiao et al., 2015), are 460 

correlated with pH in the peats (not shown). However, this comparison is complicated 461 

by the fact that 6-methyl brGDGTs are absent in many of the peats. For IR6me the 462 

absence of 6-methyl brGDGTs results in values that are 0, whereas IBT cannot be 463 

calculated for samples that lack 6-methyl brGDGTs as the logarithm of zero is 464 

undefined.  465 

The abundance of 6-methyl brGDGTs is generally lower in peats than in 466 

mineral soils with comparable pH. Indeed, 6-methyl brGDGTs are present in 99% of 467 

all soils in the global soil database, including soils with pH <5 where IR6me ratios can 468 

be as high as 0.4 (Fig. 6). Recent work has shown that in addition to pH the fractional 469 

abundance of 6-methyl brGDGTs is negatively correlated with soil water content, 470 

with fewer 6-methyl brGDGTs versus 5-methyl brGDGTs in soils with 60% water 471 
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content compared to soils with < 10% water content (Dang et al., 2016). It is likely 472 

that the negative correlation between soil water content and fractional abundance of 6-473 

methyl brGDGTs can explain the overall lower IR6me in peats as these are generally 474 

water saturated.  475 

In addition to 6-methyl brGDGTs, the fractional abundances of brGDGTs 476 

containing cyclopentane moieties (brGDGT–Ib and –IIb) are also significantly 477 

correlated to pH (R = 0.73 and 0.56, p<0.01, respectively) (Fig. 7a and 7c). The other 478 

brGDGTs are not significantly correlated to pH. These observations are consistent 479 

with those from soils, where both 5- and 6-methyl brGDGTs containing cyclopentane 480 

moieties are more abundant at higher pH (Weijers et al., 2007; Peterse et al., 2012; De 481 

Jonge et al., 2014). Consequently, and similar to soils (De Jonge et al., 2014; Xiao et 482 

al., 2015), CBT’ (eq. 3) in peat can be modeled as a function of pH (Fig. 8):  483                                                            
The slope of this calibration is different (higher) from that found in soils (see 484 

supplementary information), but the coefficient of determination is lower, and the 485 

RMSE is higher. A stronger correlation is obtained by using only compounds that are 486 

significantly correlated to pH in the numerator, CBTpeat: 487                                                                                                                  
Although the coefficient of determination increases and RMSE decreases using 488 

CBTpeat, the calibration uncertainties are still larger than those reported for soils (see 489 

supplementary information).  490 

It is noteworthy that in peats the correlation between brGDGT distributions 491 

and pH is much weaker than that with MAAT (see below). This contrasts with 492 

mineral soils, for which the correlation of CBT’ with pH (R2 = 0.85), is stronger than 493 

that of MATmr with MAAT (R2 = 0.68) (De Jonge et al., 2014). The weaker 494 

correlation can partly be explained by the smaller sample set used for the peat 495 

calibration (n = 51) versus soil calibration (n = 221),. However, taking 51 random 496 

mineral soils from the latter still yields a stronger correlation between CBT’ and pH 497 

than we obtain for the peat data set. In addition, the coefficient of determination of a 498 

calibration based only on peats with pH ≥ 5 is ~0.5 for CBTpeat, similar to that of the 499 

complete data set. We argue that the difference could be related to the observation 500 

that in mineral soils water content also influences the brGDGT distribution, especially 501 
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that of 6-methyl brGDGTs (e.g., Menges et al., 2014). Recently Dang et al. (2016) 502 

showed that CBT(5me) is higher in dry soils compared to wet soils. Because alkaline 503 

soils are often also dry whereas acidic soils are often wet, this effect could enhance 504 

the correlation between CBT’ and pH in soils. As peats are typically water saturated, 505 

the additional effect of soil water content is lacking, which may explain the weaker 506 

correlation between CBT’ and pH in peats compared to mineral soils.    507 

 508 

4.2.2 Influence of MAAT on brGDGTs in peats 509 

In mineral soils the distribution of brGDGTs is influenced by MAAT, with the degree 510 

of methylation decreasing as temperature increases (Weijers et al., 2007; De Jonge et 511 

al., 2014). A temperature effect on the brGDGT distribution was recently also found 512 

in one peatland (Huguet et al., 2013). Although the producers of brGDGTs are 513 

currently unknown, such a response is consistent with homeoviscous adaptation 514 

(Weijers et al., 2007). Here we investigate whether temperature has a significant 515 

correlation with brGDGTs in peats on a global scale.  516 

When plotted against MAAT, only 5-methyl brGDGTs lacking cyclopentane 517 

moieties (brGDGT-Ia, -IIa, and -IIIa) have significant correlations with MAAT (Fig. 518 

9). brGDGT-Ia is positively correlated with MAAT (R = 0.72, p<0.01), whereas 519 

brGDGT-IIa (R = 0.82, p<0.01), and -IIIa (R = 0.63, p<0.01) are negatively correlated 520 

with MAAT. These correlations are significantly higher than those found in the global 521 

soil data set (De Jonge et al., 2014). The degree of methylation of 5-methyl brGDGTs 522 

is captured in the MBT5me’ index (eq. 2). As such we use the MBT5me’ index to 523 

construct a peat-specific temperature proxy (Fig. 10): 524                                                                          
Crucially, no correlation is observed between MBT5me’ and pH (R2 = 0 and p > 0.8) 525 

and we observe no trend in the residuals. The coefficient of determination (R2) of 526 

MAATpeat is higher compared to a Deming regression of the expanded soil dataset (R2 527 

= 0.60, see supplementary information) as well as that of the linear MBT5me’ 528 

calibration (R2 = 0.66) suggested by De Jonge et al. (2014). Crucially, because the 529 

slope of the MAATpeat calibration is steeper, it could have greater utility for the 530 

reconstruction of tropical temperatures (MAATpeat reaches saturation at  29.1 °C), 531 

although these maximum temperatures are higher than the maximum MAAT in the 532 
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modern calibration data set which is 26.7 °C. In contrast, the Deming MBT5me’ soil 533 

calibration reaches saturation (i.e. MBT5me
’ = 1) at a temperature of 24.8 °C (see 534 

supplementary information), while the linear MBT5me’ calibration suggested by De 535 

Jonge et al. (2014) has a maximum of 22.9 °C.  536 

  537 

4.3 Implications for paleoclimate reconstructions and future work 538 

Compared to the natural archives previously used to reconstruct past terrestrial 539 

temperature change (e.g., riverine, lacustrine, and marine sediments), peats have a 540 

major advantage. For example, the brGDGTs in peat are mainly derived from in situ 541 

production. Mixing of brGDGT source areas, which complicates the application of 542 

GDGTs in sediments that represent a large catchment area (e.g., Zell et al., 2014; De 543 

Jonge et al., 2015; Sinninghe Damsté, 2016), is unlikely to be a problem. In addition, 544 

peats are overall characterized by anoxic conditions and the preservation potential of 545 

organic compounds such as brGDGTs is high. Finally, as peats are water saturated, 546 

especially the catotelm where the majority of brGDGT production occurs, the 547 

additional influence of changes in moisture content (Menges et al., 2014; Dang et al., 548 

2016) is also negligible. Nevertheless, there are limitations to this proxy that need to 549 

be considered when evaluating suitable palaeoclimate applications, and we explore 550 

those below. 551 

 552 

4.3.1 Late Holocene climate 553 

Here we provide peat-specific temperature and pH proxies that could be used to 554 

reconstruct terrestrial climate over a broad range of time scales, including the late 555 

Holocene. However, the estimated variation in terrestrial temperature of most places 556 

on earth during the last millennium is typically less than 1°C (Mann et al., 2009; 557 

Pages 2k Consortium, 2013), although there could be local exceptions. Such 558 

temperature change is much smaller than the calibration error (RMSE of ~ 4.7 °C). 559 

Although based on different lipids produced by different organisms, GDGT proxies 560 

can potentially record temperature changes smaller than the calibration errors when 561 

utilized within a highly constrained site-specific study (Tierney et al., 2010), although 562 

this interpretation was recently contested (Kraemer et al., 2015).  563 

Regardless of calibration issues, application of the MAATpeat calibration to 564 

late Holocene palaeoclimate remains problematic. A potential seasonal bias in the top 565 

of some high-latitude peats, as well as a potential difference between oxic and anoxic 566 
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production, appear to prevent application of this proxy to shallow peat sediments. 567 

Indeed, our downcore profiles spanning the top 1 meter of peat exhibit changes in 568 

brGDGT distributions equivalent to temperature variations of up to several degrees 569 

Celsius, larger than the expected climate variations. Moreover, as discussed above, 570 

GDGTs appear to be predominantly generated at depth, and although this evidently 571 

ensures they record MAAT it does mean that their reconstructed temperature signals 572 

start in deeper peat horizons, i.e. stratigraphically preceding the climate changes that 573 

caused them.   574 

Future work should determine whether these peat-specific proxies can be used 575 

to reconstruct small amplitude and/or short-lived temperature variation. However we 576 

currently urge caution in applying the peat-specific proxies to shallow peat cores to 577 

reconstruct late Holocene climate (e.g., Little Ice Age or Medieval Warm anomaly).  578 

 579 

4.3.2 Application to the last glacial 580 

We envision these proxies are well-suited to reconstruct large amplitude and more 581 

long-term temperature excursions such as those associated with the last glacial 582 

termination and early Holocene. Such transitions are recorded in some particularly 583 

long peat cores at several places around the world (e.g., McGlone et al., 2010; 584 

Vanneste et al., 2015; Zheng et al., 2015; Baker et al., 2016). To test whether the 585 

novel peat-specific temperature calibration can be used to reconstruct 586 

glacial/interglacial temperature variability, we applied this proxy to samples from the 587 

Hani peat sequence (Fig. 2). Hani peat is located in northeastern China and in places 588 

is up to 10 meters thick, spanning ~16,000 cal yrs (Zhou et al., 2010). We analyzed 589 

two samples from ~840 cm depth (corresponding to the late glacial at around 15.3 590 

kyr), and compared MAATpeat with that of two samples from around 100 cm depth 591 

(corresponding to the late Holocene with an age of 700-1000 yrs). Using MAATpeat 592 

we obtained an average temperature of around -0.8 °C for the late glacial (15.3 kyr). 593 

For the late Holocene (0.7-1 kyr) we obtained an average temperature of around 4.6 594 

°C (Table 1).  595 

Taking the calibration error of ~4.7 °C into account the reconstructed late 596 

Holocene temperatures (4.6 °C) are close to the observed modern-day MAAT of 597 

around 4 °C at this locality (Zhou et al., 2010). In contrast, applying soil calibrations 598 

to reconstruct MAAT at this site results in significantly higher values (up to 11 °C; 599 

Table 1). MAATpeat (as well as the soil MBT5me’ calibration) indicates that 600 
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temperatures increased from the late glacial to the late Holocene by around 5 °C. In 601 

contrast the MATmr mineral soil calibration indicates a smaller increase of around 3 602 

°C. A ~ 5 °C increase is similar to that observed in east Asian loess-paleosol 603 

sequences (Peterse et al., 2014), although that is based on the MBT(’)/CBT method. 604 

In addition a 5 °C deglacial temperature increase is similar to those of several sea 605 

surface temperature records available from similar latitudes in the Sea of Japan (Lee, 606 

2007). The next step should be multiproxy temperature reconstructions in a variety of 607 

locations to test the new calibration and to determine whether absolute temperatures 608 

obtained using MAATpeat are reliable. Nonetheless, this initial analysis indicates that 609 

MAAT peat yields temperature estimates that are consistent with both modern day 610 

observations and other proxy estimates for the last glacial. 611 

 612 

4.3.3 Deep time application 613 

We see considerable scope for future work with this proxy to reconstruct terrestrial 614 

temperature during past greenhouse periods and across hyperthermals (e.g 615 

Paleocene/Eocene Thermal Maximum; PETM). These events are recorded in lignite 616 

deposits. For example the PETM is documented in lignites from the UK (Collinson et 617 

al., 2003; Pancost et al., 2007). Importantly, lignites are the lowest (maturity) rank of 618 

coal and have not experienced significant burial and associated temperature and 619 

pressure that leads to the loss of GDGTs (Schouten et al., 2004, 2013). Due to their 620 

low thermal maturity, lignites are thought to retain their original brGDGT distribution 621 

over geological timescales. For example, brGDGTs have been reported in an 622 

immature late Paleocene lignite from the USA (Weijers et al., 2011), early Eocene 623 

lignites from Germany (Inglis et al., 2017), as well as Miocene lignite from Germany 624 

(Stock et al., 2016). Although analyzed using the classical analytical method that did 625 

not separate 5 and 6-methyl brGDGTs, the brGDGT distribution in a late Paleocene 626 

lignite from North America is dominated by brGDGT-Ia (Weijers et al., 2011), 627 

similar to that seen in modern peats from the tropics and suggesting high terrestrial 628 

temperatures. This is consistent with our overall understanding of terrestrial climate 629 

during the greenhouse world of the late Paleocene and early Eocene (Huber and 630 

Caballero, 2011). 631 

As the brGDGT distribution in peat deposits is dominated by production in the 632 

anoxic catotelm below the water table where the seasonal temperature cycle is muted 633 

(see section 4.1) brGDGT-based temperatures obtained from lignite deposits can be 634 
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considered to reflect MAAT. We envision that future studies applying our new peat-635 

specific calibrations to immature lignites will provide valuable new insights into 636 

terrestrial climate during the geological past. In addition, the GDGT concentrations in 637 

peats are generally much higher than those found in soils. We therefore propose that 638 

for studies of brGDGT distributions in (marine) sediments with a peat-dominated 639 

catchment area (e.g. Siberia (Frey and Smith, 2005)) or that contain independent 640 

evidence for the input of peat-derived material (e.g. high concentration of C31 αβ-641 

hopanes or palynologic evidence for the input of typical peatland vegetation), the 642 

majority of GDGTs is likely derived from peatlands. In such settings it is more 643 

appropriate to use a peat-specific calibration rather than a mineral soil calibration. 644 

 645 

5. Conclusions 646 

Using 470 samples from 96 peatlands from around the world we explored the 647 

environmental controls on the bacterial brGDGT distribution in peats. We 648 

demonstrate that brGDGT distributions are correlated with peat pH and especially 649 

mean annual air temperature (MAAT). We develop for the first time peat-specific 650 

brGDGT-derived pH and temperature calibrations. In addition to their application in 651 

ancient peat-forming environments, we also suggest that these calibrations could be 652 

preferable to the available mineral soil calibration in marginal marine settings when it 653 

is clear that brGDGTs are predominantly derived from peats. We suggest caution in 654 

applying this proxy to late Holocene peat (e.g., covering the Medieval Climatic 655 

Anomaly and/or Little Ice Age) as both the calibration error and downcore variation 656 

appears to be larger than expected climate signals during this period. Taken together 657 

our results demonstrate that there is clear potential to use GDGTs in peatlands and 658 

lignites to reconstruct past terrestrial climate, opening up a new set of sedimentary 659 

archives that will help to improve understanding of the climate system during the 660 

geological past. 661 
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Figure captions 1048 

Fig. 1: Structures of brGDGTs (with numbering) as well as isoprenoidal GDGT 1049 

crenarchaeol (cren), following (De Jonge et al., 2014). Roman numbers indicate tetra- 1050 

(I), penta- (II), and hexamethylated (III) brGDGTs, whereas letters indicate the 1051 

absence (a), presence of one (b), or two (c) cyclopentane rings. Prime symbols 1052 

indicate 6-methyl brGDGTs in which the additional methyl groups of the penta- and 1053 

hexamethylated brGDGTs occur at the α and/or ω-6 position instead of α and/or ω-5 1054 

position of 5-methyl brGDGTs.  1055 
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 1056 

Fig. 2: Map with the location of all peats used in this study. The star indicates the 1057 

location of the Hani peat sequence in NE China. 1058 

 1059 

Fig. 3: Fractional abundances of the three main brGDGTs in the top 15 cm of each 1060 

peat (assumed to be representative of the oxic acrotelm) versus the fractional 1061 

abundance of these brGDGTs between 15 and 100 cm in the peat (assumed to be 1062 

representative for the anoxic catotelm). For peats where multiple samples were 1063 

analyzed, error bars represent 1σ from the average fractional abundance.  1064 

 1065 

Fig. 4: Down core record of MBT5me’ in four peats: a high-latitude peat from Sweden 1066 

(blue squares), high-latitude peat from Patagonia (orange squares), temperate peat 1067 

from the UK (green triangles), and tropical peat from Indonesia (purple diamonds). 1068 

(For interpretation of the references to color in this figure legend, the reader is 1069 

referred to the web version of this article.) 1070 

 1071 

Fig. 5: Standard deviation of MBT5me’ for each low-altitude (< 1000 m) peat versus 1072 

latitude. The four peats used in figure 4 are highlighted. 1073 

 1074 

Figure 6: Ratio of 6-methyl over 5-methyl brGDGTs (IR6me) versus pH for peat 1075 

samples (black squares) together with the IR6me in the top 10 cm of mineral soils 1076 

(orange circles) (De Jonge et al., 2014; Ding et al., 2015; Xiao et al., 2015; Yang et 1077 

al., 2015; Lei et al., 2016). Vertical error bars on the peat data represent 1σ and are 1078 

based on the analysis of multiple horizons from the same peat. Horizontal error bars 1079 

represent the spread in pH reported for each peat. (For interpretation of the references 1080 

to color in this figure legend, the reader is referred to the web version of this article.) 1081 

 1082 

Figure 7: Fractional abundance of brGDGT versus pH for those compounds with a r-1083 

value greater than 0.45 A) brGDGT-Ib, B) brGDGT-IIa’, C) brGDGT-IIb, D) 1084 

brGDGT-IIb’, and E) brGDGT-IIIa’ (p < 0.01 for all compounds). Samples with 1085 

fractional abundances <0.001 are not included. Vertical error bars represent 1σ and 1086 

are based on the analysis of multiple horizons from the same peat. Horizontal error 1087 

bars represent the spread in pH reported for each peat.  1088 

 1089 
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Fig. 8: A) Average CBT’ for each peat versus pH (black circles) and C) average 1090 

CBTpeat for each peat versus pH (black circles). Solid blue lines in A and C represent 1091 

the Deming regression used to obtain the calibrations, while dashed black lines reflect 1092 

simple linear regressions. Horizontal error bars represent 1σ and are based on the 1093 

analysis of horizons samples from the same peat. Vertical error bars represent the 1094 

spread in pH reported for each peat. Also shown is the residual pH for all analyzed 1095 

peat samples (yellow circles), obtained by subtracting the estimated pH using the 1096 

CBT’ (B) and CBTpeat (D) deming calibrations from the observed pH. (For 1097 

interpretation of the references to color in this figure legend, the reader is referred to 1098 

the web version of this article.) 1099 

 1100 

Fig. 9: Fractional abundance of the three main brGDGT versus MAAT A) brGDGT-1101 

Ia, B) brGDGT-IIa, and C) brGDGT-IIIa (p < 0.01 for all compounds). Samples with 1102 

fractional abundances <0.001 were not included. Vertical error bars represent 1σ and 1103 

are based on the analysis of multiple horizons from the same peat. 1104 

 1105 

Fig. 10: Average MBT5me’ for each peat versus MAAT (black circles). The solid blue 1106 

line represents the Deming regression, whereas dashed lines reflect the simple linear 1107 

regression. Horizontal error bars represent 1σ and are based on the analysis of 1108 

multiple horizons from the same peat. Also shown is the residual MAAT of all 1109 

analyzed peat samples (yellow circles) obtained by subtracting the estimated MAAT 1110 

using the MBT5me’ Deming calibration from the observed MAAT. (For interpretation 1111 

of the references to color in this figure legend, the reader is referred to the web 1112 

version of this article). 1113 



Depth 
(cm) 

Age  
(yr) MBT5ME’ 

MATmr soil 
(RMSE 4.6 °C) 

MAT5me’ soil 
(RMSE 4.8 °C) 

MAATpeat 
(RMSE 4.7°C) 

De Jonge, 2014 De Jonge, 2014 This study 
86 ~700 0.53  6.6  10.9  4.5  

102 ~1000 0.53  6.6  11.3  4.8 

838 ~15,100 0.46  4.4  6.7  1.2 

846 ~15.400 0.39  2.8  5.4  -2.7 

  

Δ MAAT 3.0 °C 5.0 °C 5.4 °C 
 

Table 1
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