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Abstract 
Dissimilatory microbial sulfate reduction (MSR) is a process where microbes 

utilize sulfate as an electron acceptor to oxidize organic matter in anoxic 

environments. In modern marine sediments, MSR is responsible for over half of the 

anoxic oxidation of organic matter. In addition, the anaerobic oxidation of methane 

(AOM) is coupled largely to MSR in marine sediments, in a process called sulfate-

driven AOM, preventing the Earth’s oceans from becoming a major source of this 

potent greenhouse gas to the surface.   

The aim of this thesis was to elucidate the pathways of MSR coupled to organic 

matter oxidation and AOM by using a largely geochemical approach; specifically the 

chemical and isotope (C, S, O) variation in pure-culture sulfate reducing bacteria and 

sedimentary pore fluid profiles. I use this data to better understand how sulfate is 

involved in different diagenetic processes.  The most powerful tool that used was the 

combined measurement and modeling of sulfur and oxygen isotopes in sulfate 

(δ18OSO4 and δ34SSO4, respectively), which enabled me to model how sulfate is 

recycled within pure cultures as well as the natural environment.  

First I explore the combined multiple sulfur (33S /32S, 34S/32S) and oxygen 

(18O/16O) isotope fractionation in pure cultures of a marine Desulfovibrio sp. DMSS-1 

grown on different organic substrates. The use of multiple isotopes allows me to 

conclude that reversibility of each step during MSR in my experiment is correlates 

with the cell-specific rate sulfate reduction rate. I suggest that in environmental 

settings where the availability of the electron donor can change dramatically there 

may be more changes in the microbial mechanism of MSR that can be more 

pronounced.   

In the second half of this thesis I explore MSR in marine and marginal marine 

environments and the consumption of sulfate through sulfate-driven AOM and 

organoclastic MSR. I find that in environments where methane is in excess there is a 

lower limit of the slope between δ18OSO4 and δ34SSO4 that results in what I call a 

distinct isotopic signature. This isotope signature differs to that when sulfate is 

reduced by either organic matter oxidation or by the slower, diffusive flux of methane 

within marine sediments.  I suggest that this signature likely results from negligible 

reoxidation of sulfur species when the electron donor is abundant.  
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Chapter 1 

Introduction !
 

   The carbon budget at Earth’s surface determines Earth’s climate; this is 

because the partitioning of carbon among various surface reservoirs determines how 

much is in the atmosphere, where it acts as the dominant greenhouse gas (e.g. Sleep 

and Zahnle, 2001; Walker et al., 1983; Berner et al., 1983; Berner, 2003; Raymo et 

al., 1988).  The burial of organic carbon in shallow marine sediments represents a 

major removal pathway for carbon from Earth’s surface environment.  However, 

organic carbon in marine sediments may not simply be buried; organic carbon can 

undergo oxidation back to dissolved inorganic carbon or fermentation into methane; 

either oxidation of organic carbon, or turning it into methane (a gas) will prevent its 

ultimate burial (Aller, 2004; Froelich, et al., 1979).  Production of methane is a 

particularly interesting fate for organic carbon in sediments because methane is a 

greenhouse gas that is ten times more powerful than carbon dioxide.  The primary 

controls on the formation of methane from organic carbon in shallow marine 

ecosystems remain enigmatic. In sum, the fate of organic carbon, be it burial, 

oxidation, or methane production, in the subsurface plays an important role in the 

global carbon cycle and thus on climate.  

 

1.1 Microbial respiration  
 

Organic carbon oxidation in marine or marginal marine sediments is often tied 

to other biogeochemical cycles such as nitrogen, iron and sulfur (Froelich, et al., 

1979; Cappellen and Wang, 1996).  This is because during the oxidation of organic 

matter, bacteria can respire a variety of electron acceptors, including nitrogen, iron, 

manganese, and sulfur. The order in which these electron acceptors are used reflects 

the decrease in the free energy yield associated with their reduction (Figure 1.1) 

(Froelich, et al., 1979), the resulting changes in concentration of various elements in 
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the environment are shown in Figure 1.1. The largest energy yield is associated with 

aerobic respiration (oxidation of organic carbon with molecular oxygen - O2), 

therefore as long as oxygen is available, aerobic respiration dominates the oxidation 

of organic carbon.  In today’s surface environment, oxic respiration dominates in the 

ocean water column, and the very top of marine sediments. Oxygen diffusion into 

sediments can persist a few tens of meters in the deep ocean, and a few millimetres in 

the shallowest sediments, before it is consumed.  The depth of this oxygen penetration 

is a function of the supply of organic carbon to the sediments (which sets the rate of 

oxygen consumption) as well as the sedimentation rate (how quickly the organic 

carbon can be buried).  

 

 

Figure 1.1: The order of the use of different electron acceptors as function of 

sediment depth redrawn from Froelich, et al. (1979) 

 

Once oxygen is depleted in marine sediments there are a series of other electron 

acceptors that microbial populations can respire to continue to oxidize organic matter.  

They are used in decreasing energy yield, first denitrification (NO3
- is the electron 

acceptor), then manganese and iron reduction (Mn4+ and Fe3+ are the electron 
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acceptors), followed by sulfate reduction (aqueous SO4
2-) and finally organic matter 

fermentation into methane (methanogenesis) (Figure 1.1 - Froelich, et al., 1979; 

Berner, 1980).  

 

Sulfate reduction, also known as dissimilatory sulfate reduction, microbial 

sulfate reduction and bacterial sulfate reduction in the literature, is responsible for the 

majority of organic matter oxidation in marine sediments due to the high 

concentration of sulfate in the ocean (at least two order of magnitude more abundant 

than oxygen at the sea surface - Kasten and Jørgensen, 2000). In addition, the 

methane produced during methanogenesis in marine sediments is nearly quantitatively 

consumed by archaea that couple this oxidation to microbial sulfate reduction 

(Boetius, et al., 2000; Niewöhner, et al., 1998). Of particular importance, therefore, 

for understanding the fate of organic carbon within sediments is to understand the 

microbial utilization of sulfur.  Despite its important role, the dynamics of microbial 

sulfate reduction and the possible redox couplings of sulfate to other electron 

acceptors, such iron, remain enigmatic. The main goal of this thesis is to investigate 

the dynamics of microbial sulfate reduction and the coupling of sulfate reduction to 

methane production and oxidation using a geochemical approach.  Specifically, I 

focus on the geochemical, particularly isotope, composition of pore water (defined as 

the water occupying the spaces between sediment particles) combined with reactive-

transport and other microbial mechanistic models.  

 

1.2 Dissimilatory microbial sulfate reduction 

  

At a cellular level, the biochemical steps during microbial sulfate reduction 

have been investigated over the past 50 years (Harrison and Thode, 1958; Kaplan and 

Rittenberg, 1963; Rees, 1973; Farquhar et al., 2003; Brunner and Bernasconi, 2005; 

Wortmann, et al, 2007; Sim et al., 2011a).  During microbial sulfate reduction, 

bacteria respire sulfate and produce sulfide as an end product simplified as:  

 

SO4
2- + 2CH2O → 2HCO-

3 + H2S                                 (1.1)  
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 This process consists of at least four major intracellular steps (e.g. Rees, 1973; 

Canfield, 2001a and Figure 1.2): during step 1, the extracellular sulfate is brought into 

the cell; in step 2, the sulfate is activated with adenosine triphosphate (ATP) to form 

Adenosine 5' Phosphosulfate (APS); in step 3, the APS is reduced to sulfite (SO3
2-); in 

the 4 step sulfite (SO3
2-) reduced to another sulfur intermediate (SnOn); and in step 5 

this sulfur intermediate is reduced to sulfide.  It is generally assumed that all four 

steps are reversible (e.g. Brunner and Bernasconi, 2005; Eckert et al., 2011).  The 

reduction of sulfite to sulfide (step 4 through 5) remains the most enigmatic, and may 

occur in one step with the enzyme dissimilatory sulfite reductase or through the multi-

step trithionite pathway producing several other intermediates (e.g. trithionate (S3O6
2-) 

and thiosulfate (S2O3
2-) -- Kobayashi et al. 1969; Brunner and Bernasconi, 2005; Sim 

et al. 2011a; Bradley et al., 2011). 

 

!
 

Figure 1.2: The steps of microbial sulfate reduction. 

 

Given that each of the four steps is reversible, understanding the relative 

forward and backward fluxes at each step and how these fluxes relate to the overall 

rate of sulfate reduction, is critical for understanding the link between the rate of 

microbial sulfate reduction and the rate of organic matter oxidation. Changes in 

environmental conditions (e.g. temperature, carbon substrate, pressure) likely impact 

the relative forward and backward fluxes at each step within the cell as well as the 

overall rate of microbial sulfate reduction, but the relative role of these environmental 

factors in the natural environment remains elusive.  Within the marine subsurface, 

measurements of sulfate concentrations in sedimentary pore water and subsequent 

diffusion-reaction modelling of the rate of sulfate depletion with depth can be used for 

calculating the overall rate of sulfate reduction below the ocean floor (e.g. Berner, 

1980; D'Hondt et al., 2004; Wortmann, 2006; Wortmann et al., 2007; Bowles et al., 
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2014).  These sulfate concentration profiles alone, however, cannot provide details 

about how the individual biochemical steps at a cellular or community level may vary 

with depth or under different environmental conditions or how many times sulfate 

may be cycled before it is ultimately reduced.   

 

1.3 Other sulfur redox reactions   
 

The end product of microbial sulfate reduction is hydrogen sulfide (H2S). 

Ultimately, this reduced form of sulfur has two possible fates: burial as pyrite or 

oxidation back to sulfate or other intermediate valence state sulfur species.  In the 

presence of dissolved ferrous iron, sulfide will react quickly to form iron monosulfide 

(FeS).  This amorphous mineral, in the presence of more sulfide will react to form 

pyrite and release hydrogen gas (Luther, 1991):  

      

FeS + H2S  → FeS2 + H2    (1.2) 

 

Alternatively, in the presence of an oxidant (such as oxygen, ferric iron, nitrate 

or manganese) this sulfide can undergo chemical or microbial oxidation to produce 

sulfate and/or a variety of sulfur intermediates (such as thiosulfate-- S2O3
2-, zero-

valent sulfur-- S0, or sulfite-- SO3
2-).  

 

In marine sediments, it has been demonstrated that hydrogen sulfide (H2S) can 

also reduce iron oxide minerals to form ferrous iron and elemental sulfur (e.g. Pyzik 

and Sommer, 1981; Yao and Millero, 1996; Canfield, 1989):    

 

2FeOOH + H2S + 4H+ → 2Fe2+ + S0 + 5H2O (1.3) 

This elemental sulfur production is one example of the way that intermediate 

valence state sulfur species can be produced during sedimentary sulfur cycling. These 

intermediates of sulfide oxidation, produced by both chemical and biological 

processes, may undergo further oxidation, reduction and disproportionation. 

Microbial disproportionation of sulfur intermediates is a metabolic process in which 

sulfur serves as the electron donor as well as the electron acceptor in the same 
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reaction. Microbial disproportionation produces both hydrogen sulfide and sulfate 

(e.g. Bak and Cypionka, 1987; Thamdrup et al., 1993): 

 

4S0 + 4H2O  →  3H2S  + SO4
2- + 2H+  (1.4) 

S2O3
2- + H2O  →  H2S  + SO4

2-    (1.5) 

4SO3
2- + 2H+  →  H2S  + 3SO4

2-   (1.6) 

 

The combination of chemical oxidation and microbial disproportionation of 

intermediates of sulfide oxidation may result in sulfate formation (Figure 1.3), even in 

the absence of electron acceptors stronger than iron. 

 

 
 

Figure!1.3:!Distribution!and!fate!of!the!different!sulfur!species!intermediates!in!
marine!sediments!(adapted!from!Zopfi!et!al.,!2004)!
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1.4 Methanogenesis 
 

Any organic matter that is not oxidized aerobically or anaerobically can undergo 

further reduction, leading to the formation of methane through process called 

methanogenesis (e.g. Whiticar et al., 1986). In freshwater sediments the dominant 

pathway for methanogenesis is acetate fermentation (acetoclastic methanogenesis, Eq. 

1.7), whereas in marine sediments it is CO2 reduction by hydrogen (hydrogenetic 

methanogenesis, Eq. 1.8) (Whiticar et al., 1986): 

 

CH3COOH → CO2 +CH4  (1.7) 

4H2 + CO2 → 2H2O + CH4  (1.8) 

 

One of the factors controlling the fate of organic carbon is the competition 

within marine sediments between methane-producing microorganisms and sulfate 

reducing bacteria for common substrates such as hydrogen and acetate (Ward et al., 

1985).  It is commonly assumed that in the presence of sulfate, sulfate reduction will 

out-compete methanogenesis, restricting this process to deeper depths in the 

sediments (e.g. Lovley and Klug, 1983). This suggests that the depth of 

methanogenesis depends primarily on the type of organic matter and the sulfate 

concentrations within the pore water of the sediments. In sediments with larger 

amounts of organic carbon, the zone of methanogenesis may be located a few 

centimeters below the sediment water interface, while in sediments with less organic 

carbon, the zone of methanogenesis can be located tens or hundreds of meters below 

sediment-water interface (Valentine, 2002; Sivan et al., 2007). 

 

1.5 Sulfate-driven anaerobic methane oxidation 
 

Upwardly diffusing methane can be oxidized microbially (called 

methanotrophy), both aerobically (via oxygen— e.g. Cicerone and Oremland, 1988) 

and anaerobically (anaerobic oxidation of methane – AOM—e.g. Martens and Berner, 
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1974; Hinrichs et al., 1999; Boetius et al., 2000; Milucka et al., 2012).  In marine and 

marginal marine sediments, AOM has been identified as the main process consuming 

methane within sediments, and this methane oxidation is primarily coupled to sulfate 

reduction (hereafter called sulfate-driven AOM) (Eq. 1.9—e.g. Martens and Berner, 

1974; Barnes and Goldberg, 1976; Reeburgh, 1976): 

 

SO4
2- + CH4 → HCO3

- + HS- + H2O                                 (1.9)  

 

Sulfate-driven AOM often results in a geochemically detectable transition zone 

at the boundary between methane diffusing upwardly through the network of 

sedimentary pore water, intersecting with sulfate, diffusing downwardly from the 

overlying ocean (e.g. Niewöhner et al., 1998).  Although marine sediments harbour 

the largest natural reservoir of methane on the planet, methane emissions from marine 

sediments are an order of magnitude smaller than those from rice paddies or terrestrial 

wetlands; this is because of sulfate-driven AOM, which nearly quantitatively 

consumes all the naturally produced methane (Wuebbles and Hayhoe, 2002).  The fact 

that the vast majority of methane in marine sediments is oxidized through sulfate-

driven AOM means that the Earth’s oceans are not a major source of this potent 

greenhouse gas (Reeburgh, 2007). 

 

 Sulfate-driven AOM was first identified using evidence from sedimentary 

geochemical profiles (Martens and Berner, 1974; Barnes and Goldberg, 1976; 

Reeburgh, 1976). This process was initially controversial among microbiologists, 

because neither the responsible organism nor the mechanism was identified.  About 

twenty years ago, field and laboratory studies demonstrated coupling between 

methanogens and sulfate reducers (Hoehler et al., 1994).  Later, microbiologists and 

geochemists showed that consortia of archaea and bacteria are involved in AOM in 

some seep environments (Hinrichs et al., 1999; Boetius et al., 2000; Orphan et al., 

2001), and that at least three groups of archaea may perform AOM (named ANME-1, 

ANME-2, and ANME-3) associated with sulfate reducing bacteria (Boetius et al., 

2000; Orphan et al., 2002; Niemann et al., 2006). It was suggested that the archaea are 

responsible for the methane oxidation while the sulfate reducing bacteria separately 

reduce the sulfate. Recently it was shown that some ANMEs are able to oxidize 
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methane and reduce sulfate alone and the bacteria-archaea consortia may not be 

required (Milucka et al., 2012). 

 

Some specifics of sulfate-driven AOM and its link to the subsurface 

sedimentary sulfur cycle, however, remain enigmatic.  For instance, if we consider the 

proposed consortia for sulfate-driven AOM, it is still unclear what drives the coupling 

between sulfate reducers and methane oxidizers and how this is energetically 

favourable for each. If we consider, on the other hand, that a single ANME performs 

both sulfate reduction and methane oxidation (Milucka et al., 2012—Figure 1.4), we 

do not yet know how prevalent this is in the natural environment and the role of key 

intermediate chemical species in this pathway of sulfate-driven AOM, and how they 

may catalyse this microbial process.  Additionally, sulfate-reducing bacteria can 

oxidize sedimentary organic matter, yet several studies have shown that when 

methane is present, all available sulfate is reduced through the less energetically 

favourable pathway of AOM (Kasten and Jørgensen, 2000; Niewöhner et al., 1998; 

Sivan et al., 2007). The lack of answers to these questions limits our understanding of 

the subsurface sulfur cycle and the crucial coupling to methanotrophy.  

 
 

Figure 1.4: The pathway of sulfate-driven anaerobic methane oxidation. After 

Milucka et al., 2012 
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In summary, within an anoxic environment, the fate of sulfur and the 

intermediate-valence-state sulfur species is likely to be a key factor in dictating the 

fate of subsurface organic carbon. Understanding the sulfur dynamic in marine 

sediments is an important factor in the large-scale global carbon and the redox 

condition of the surface ocean. In this thesis, I will explore the dynamics of microbial 

sulfate reduction and its coupling to organic matter oxidation in both pure culture 

batch experiment and in pore water from different marine and marginal marine 

settings. The main geochemical tool that I will employ is the sulfur and oxygen 

isotopic composition of sulfate.     

 

1.6 Pore water geochemistry profiles 
 

Pore water is water that occupies the pore space in sediment – it is also called 

pore fluid and I will use these two terms interchangeably throughout the thesis. 

Interpreting the change in the chemical composition of pore water can reveal different 

chemical and biological reactions that are producing or consuming various elements, 

and numerical modelling allows us to explore the rates of these reactions (e.g. Berner, 

1980; Berg et al., 1998). Regarding sulfate, three types of sulfate concentration profile 

shapes have been observed in subsurface sedimentary pore fluids; linear, concave-

down and concave-up (Figure 1.5). A linear concentration profile (where the second 

derivative is zero) is found in diffusion-controlled systems, where sulfate diffuses 

from seawater concentrations at the sediment-water interface to low concentrations at 

depth. In this case, sulfate is being consumed in a single zone, which is often coupled 

to methane oxidation. When the profile is concave down, it is interpreted as continual 

consumption of sulfate with depth below the sea floor. In this case the second 

derivative of the best-fit curve through the pore fluid data yields a constant value, 

which is the rate of sulfate consumption per volume of sediment with depth.  

Concentration profiles that are concave up (red line in Figure 1.5) are less frequently 

found for sulfate and usually relate to sulfide oxidation or evaporate dissolution.  
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Figure 1.5: Schematic concentration profiles and the corresponding reaction rate (in 

this case sulfate) through sediment cores. 

 

Since pore water cannot be considered as a closed system, the concentration of 

different components is not only dependent on the rate of production or consumption 

but also only on the rate of transport between the different layers of sediment. 

Therefore, a mass-conservation model that describes the pore water depth profiles 

needs to be employed in order to account for this rate of transport – largely through 

diffusion and advection. The basic conservation equation for the concentration of a 

chemical species ‘i’ in pore water (mol·L-3) has a general form, as developed by 

Berner (1980), that includes terms for diffusion, sedimentation advection and 

reactions, respectively: 

 
∂φCi
∂t
=φ·

∂
∂z
· Ds

∂Ci
∂z

-φ· U+ω
∂Ci
∂z
- Ri (1.10)!

 

where Ci is the concentration of solid or liquid component i in mass per unit 

volume of total sediment, ϕ is the porosity, t is time, z is the layer depth, Ds is the 
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diffusion coefficient in area of total sediments per unit time, U is the velocity of flow 

relative to the sediments-water interface, ω is the rate of burial of the layer below the 

sediments-water interface and R is the reactions affecting i. It is through the use of 

Equation 1.10 that geochemical pore fluid profiles can be modelled to understand rate 

of both reaction and transport of elements within the subsurface.   

 

1.7 Process-based stable isotope geochemistry 
 

Stable isotopes can be a useful tool for the study of a variety of microbially-

mediated processes within marine sediments.  Isotopes, which are ‘versions’ of an 

element with a different number of neutrons in the nucleus, do not necessarily react at 

the same rate in various chemical and biological reactions, therefore measuring the 

ratio among various isotopes and how it changes over the course of a chemical or 

biological reaction provides independent information about the nature of the reaction. 

In this work, the primary tool I use to explore the process of sulfate reduction and its 

coupling to methane oxidation are sulfur and oxygen isotopes in dissolved sulfate 

together with carbon isotopes in dissolved inorganic carbon and methane.  

 

Stable isotopes (for an element X), are commonly reported using δ notation, 

give as: 

 

δX=
Rsample-Rstd
Rstd

·1000 (1.11)!

 

Where Rsample and Rstd are the ratios between the heavier and the lighter isotopes in a 

sample and an internationally recognized standard, respectively.   

 

Delta notation is used for reporting isotope ratios because the variation in the ratio is 

largely in the ‘parts per thousand’ or permil, order of magnitude.  Use of ratios 

normalized to the same standard allow laboratories around the world to compare 

analyses.  
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The fractionation factor (α), or magnitude by which isotopes are partitioned between 

two reservoirs (here between reservoir A and B) is defined as: 

  

α=
1000+δA
1000+δB (1.12)!

 

and the isotope fractionation(ε), given in permil (‰), defined as:  

 

ε=(α−1)⋅1000  (1.13) 

 

Isotopes of a given element can be partitioned, or fractionated, in the natural 

environment both through kinetic and equilibrium processes: Kinetic isotope 

fractionation occurs because each isotope reacts at a different rate during a chemical 

reaction. Typically, the lighter isotope (less neutrons, for example carbon with 6 

neutrons – 12C) reacts more quickly than the heavier isotope (for example carbon with 

7 neutrons 13C).  Therefore as a reaction progresses, the product of the reaction 

concentrates the ‘light’ isotope and the reactant pool gets progressively enriched in 

the ‘heavy’ isotope. The second mechanism by which isotopes can be partitioned, or 

fractionated, is equilibrium isotope fractionation, which is the partial separation of 

isotopes between two molecules that are found in chemical, or isotopic, equilibrium. 

In equilibrium isotope fractionation the isotopes are distributed among various 

chemical species such that the energy of the system is minimized.  

 

The total natural abundance of sulfur, oxygen isotopes are given in Table 1. The 

reference standard for sulfur isotopes is CDT (Canyon Diablo Troilite, a sample from 

a meteorite found in a crater in Arizona, US), the reference standard for oxygen 

isotopes is SMOW (Standard Mean Ocean Water) and the reference standard for 

carbon isotopes is PDB (Pee Dee Belemnite).  
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Table 1.1: Isotopic abundance and relative atomic mass (amu) of stable isotope of 

sulfur and oxygen.  

 

Sulfur 

Isotopes 

Abundance 

(%) 

Mass 

(amu)  

Oxygen 

Isotopes 

Abundance 

(%) 

Mass 

(amu) 
32S 95.039 31.97207  16O 99.759 15.99491 
33S 0.748 32.97146  17O 0.037 16.99914 
34S 4.197 33.96786  18O 0.204 17.99916 
36S 0.014 35.96708     

 

1.7.1 Sulfate and oxygen isotopes in dissolved sulfate 

  

The use of isotope geochemistry, specifically the stable sulfur (33S/32S and 
34S/32S) and oxygen (18O/16O) isotope ratios, has helped reveal some of the dynamics 

of the intracellular steps during MSR.  Given that every step during MSR partitions 

each sulfate isotopologue (A molecular entity that differs only in isotopic 

composition) in a different manner, the isotope fractionations of the major or minor 

sulfur or oxygen isotopes in the extracellular sulfate pool should reflect the dynamics 

between the different steps and their relative reversibilities (Figure 1.2).  Most studies 

using isotopes to investigate MSR exploit the ratios of 32S and 34S measured in 

sulfate, sulfide, or sulfur intermediates (e.g. Canfield et al., 2001b; 2006; 2010; 

Kamyshny et al., 2011; Knossow et al., 2015; Zerkle et al., 2010).   Studies focusing 

on the fractionation of the 34S isotope from the 32S isotope during MSR have found 

that most of the enzymatic steps during MSR prefer the 32S isotope, distilling 32S into 

the produced sulfide pool, leaving 34S behind in a Rayleigh-type isotope distillation. 

The magnitude of sulfur isotope fractionation during MSR can be as high as ~70 ‰ 

for δ34SSO4 (Wortmann et al., 2007; Canfield et al., 2010; Sim et al., 2011a), as sulfide 

and sulfate approach isotopic equilibrium (Szabo et al., 1950; Tudge & Thode, 1950; 

Farquhar et al., 2003; Johnston et al., 2007; Leavitt et al., 2013; Wing and Halevy, 

2014).  
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More recently studies have employed coupled 32S, 33S, and 34S isotopes (e.g. 

Farquhar et al., 2003; 2008; Zerkle et al., 2010; Sim et al., 2011a; 2011b; Leavitt et 

al., 2013; 2014; Ono et al., 2006) or 34S/32S and 18O/16O isotope ratios (Brunner et al., 

2005; 2012; Wortmann et al., 2007; Farquhar et al., 2008; Turchyn et al., 2006; 2010). 

Under strictly mass dependent fractionation, the magnitude of the δ33SSO4 

fractionation is around half (0.5147 at 25ºC-- Farquhar et al., 2003) of the 

fractionation of δ34SSO4. Over the last 60 years, studies have shown that the magnitude 

of the sulfur isotope fractionation, for either 34S or 33S versus 32S is a function of 

microbial metabolism and carbon source (e.g. Sim, et al., 2011b; Brüchert, 2004), the 

amount of sulfate available (e.g. Canfield, 2004; Habicht et al., 2002; Farquhar et al., 

2003), the temperature (e.g. Canfield, et al., 2006) and the sulfate reduction rate (e.g. 

Canfield, et al., 2001a; Leavitt et al., 2013; Sim et al., 2011a;2011b).  

 

Oxygen isotopes in dissolved sulfate (δ18OSO4) also increase as MSR progresses, 

but often reach isotopic equilibrium with water and cease increasing further (Figure 

1.6; Fritz et al, 1989; Böttcher et al., 1998, 1999; Turchyn et al, 2006; 2010 

Wortmann, et al, 2007; Aller et al, 2010; Zeebe, 2010). Pure culture studies have 

shown that oxygen atoms from water are incorporated into sulfate during MSR (Fritz 

et al, 1989; Mizutani and Rafter 1973; Brunner et al., 2005; Mangalo et al, 2007; 

Mangalo et al, 2008) much more rapidly than would be expected by abiotic oxygen 

isotope exchange between water and sulfate under normal surface conditions (pH>1, 

temperature <100ºC) (Chiba and Sakai 1985; Lloyd, 1968; Rennie and Turchyn, 

2014). This rapid oxygen isotope exchange during MSR is attributed to the 

intracellular exchange of oxygen atoms between sulfur intermediate species such as 

sulfite and water (Mizutani and Rafter, 1973; Fritz, et al., 1989) and occurs over time 

scale of minutes (Betts and Voss, 1970; Horner and Connick, 2003; Wankel et al., 

2014; Müller et al., 2013).  If a portion of sulfate that is brought into the cell is 

partially reduced and then reoxidized back to the residual sulfate pool, this exchange 

of oxygen isotopes between sulfate and water can be measured. The observed (and 

modelled) oxygen isotope enrichment over the isotopic composition of the water 

(δ18OSO4- δ18OH2O) between 22 to 30‰, reflecting this intracellular oxygen isotope 

exchange (e.g. Böttcher et al., 1998, 1999; Turchyn et al, 2006; 2010 Wortmann et al, 

2007; Zeebe, 2010; Knöller et al., 2006). 
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In some experiments with natural populations and in the environment, data 

comparing δ18OSO4 and δ34SSO4 show a clear linear pattern as MSR progresses 

demonstrating that both oxygen and sulfur isotopes undergo kinetic isotope 

fractionation and the aforementioned isotope equilibrium with water is not always 

immediately observed (e.g. Sivan et al., 2014).  The magnitude of this kinetic isotope 

fractionation for δ18OSO4 has been suggested to be 25% of the magnitude of δ34SSO4 

(Rafter and Mizutani 1967; Mandernack et al., 2003).  Therefore, the oxygen isotope 

fractionation observed during MSR is understood to be a combination of the kinetic 

isotope effect associated with each of steps during MSR (similar to sulfur isotopes) 

and the equilibration of oxygen isotopes between sulfur species in intermediate 

valence state and water, and the contribution of these sulfur species to the 

extracellular sulfate pool.  

 

Interpreting the relative evolution of the δ18OSO4 and the δ34SSO4 in the 

extracellular sulfate pool during microbial sulfate reduction in natural environments, 

and what this relative evolution tells us about the enzymatic steps during sulfate 

reduction remains confounding. My hypothesis is that there is an incredible amount 

that can be learned about the mechanism of microbial sulfate reduction and its 

coupling to the carbon cycle by exploring how this relative evolution varies in the 

environment.  Figure 1.6 shows schematically how pore water sulfate and sulfur and 

oxygen isotope profiles often look in nature, where pore water sulfate concentrations 

decrease below the sediment-water interface and the oxygen and sulfur isotope ratios 

of sulfate increase, but may evolve differently relative to one another. One question is 

what are the factors controlling microbial sulfate reduction in natural environments 

when the coupled sulfur and oxygen isotopes increase linearly (Trend A), compared 

to when they are decoupled and oxygen isotopes are seen to plateau (Trend B)?  A 

second problem is that the majority of our understanding of the biochemical steps 

during microbial sulfate reduction comes from pure culture studies; how does this 

understanding translate, if at all, to the study of microbial sulfate reduction in the 

natural environment?  
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Figure 1.6: Schematic possible behaviour of sulfate during microbial sulfate 

reduction as SO4
-2, δ18OSO4 and δ34SSO4 profiles (a) and δ18OSO4 vs. δ34SSO4 (b). 'Trend 

A' shows that δ18OSO4 and δ34SSO4
 increase at a constant ratio, while sulfate reduction 

propagates with depth (e.g. Aharon and Fu, 2000).  'Trend B' shows an increase in 

δ34SSO4 and δ18OSO4 values at the onset of the curve,  δ18OSO4 reaches equilibrium 

values as sulfate reduction progresses with depth while δ34SSO4 continue to increase.  

Redrawn from Antler et al., 2013. 

 

It has been suggested that this relative evolution of the δ18OSO4 vs. δ34SSO4 

during microbial sulfate reduction should be connected to the overall sulfate reduction 

rate (Böttcher et al., 1998; 1999; Aharon and Fu, 2000, Brunner et al., 2005) where 

the steeper the slope on a plot of δ18OSO4 vs. δ34SSO4 (the plot on the right in Figure 

1.6) the slower the sulfate reduction rate.  This suggestion was elaborated upon by 

Brunner et al. (2005), who formulated a model for mass flow during microbial sulfate 

reduction.  In this work, Brunner et al. (2005) deduced that the overall sulfate 

reduction rate is important for the relative evolution of δ18OSO4 and δ34SSO4, but that 

the rate of oxygen isotope exchange between sulfur intermediates and water, and the 

relative forward and backward fluxes at each step further modifies the evolution of 

δ18OSO4 vs. δ34SSO4.  In my M.Sc thesis and the major paper that came out of that work 

(Antler et al., 2013), I demonstrated this correlation by both measuring and then 

compiling sulfur and oxygen isotope data in sulfate from globally distributed marine 

and marginal marine pore water, where the sulfate reduction rate varies over seven 
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orders of magnitudes (Figure 1.7—after Antler et al., 2013).  ! In my PhD I am 

exploring this relationship further with pure culture sulfate reducers and specifically 

during sulfate-driven anaerobic methane oxidation. 

 

 
 

Figure 1.7: The inverse of the slope of between δ18OSO4 vs. δ34SSO4 plotted vresus the 

average net sulfate reduction rate (nSRR), as deduced from our data and worldwide 

pore water profiles. The labels of each point indicate the site's name (After Antler et 

al., 2013). 

 

1.7.2 Carbon isotopes 

 

Carbon isotopes are another geochemical tool that yield information on the 

subsurface processing of organic carbon.  Specifically, carbon isotopes provide a 

good constraint on the depth distribution and location of methane production and 

methane consumption because of the large carbon isotope fractionation associated 

with both these processes (e.g. Whiticar, 1999; Borowski et al., 2000).  During 

methanogenesis, 12C is strongly partitioned into methane; the δ13C of the methane 

produced can be between -50‰ to -100‰.  In contrast, the residual dissolved 

inorganic carbon (DIC) pool becomes highly enriched in 13C, occasionally by as much 

as 50‰ to 70‰.  Oxidizing this methane during AOM on the other hand, results in 
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13C-depleted dissolved inorganic carbon and slightly heavier δ13C values of the 

residual methane, due to both a fractionation of 0‰ to 10‰ during methane oxidation 

and to the initial δ13C value of the methane itself (Alperin et al., 1988; Martens et al., 

1999).  Therefore, in sedimentary environments where methane is being produced and 

consumed, the δ13C of dissolved inorganic carbon in the pore water typically follows 

a depth profile where it decreases from the surface to the zone of AOM and then 

increases below in the zone where methane is being produced (e.g. Blair and Aller, 

1995; Sivan et al., 2007; Malinverno and Pohlman, 2011—Figure 1.8).    

 

 
 

Figure 1.8: Schematic sulfate and methane concentrations profile (a) and DIC 

concentration and δ13CDIC profile (b).  
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1.8 Thesis objectives  
 

Given the wide importance of the redox sulfur cycle in the oxidation of organic 

carbon, my thesis was built around using a geochemical approach to explore the 

coupling of microbial sulfate reduction to the methane cycle. The main goal of this 

thesis was to study the mechanism of microbial sulfate reduction and sulfate-driven 

AOM using δ18OSO4 and δ34SSO4.  

 

The specific objectives of my PhD thesis are: 

 

! To generate a combined model for δ18OSO4 and δ34SSO4 during microbial sulfate 

reduction.    

! To test how the relationship between δ18OSO4 and δ34SSO4 differ during microbial 

sulfate reduction coupled to organic carbon oxidation and sulfate-driven AOM.  

! To study the coupling between sulfate and methane in the sediment transition 

zone and understand how it is linked to methane fluxes. 

 

Thesis roadmap   

 

The remaining four chapters of my thesis comprise the modelling, laboratory 

and field studies undertaken as part of my PhD.  I will start in chapter two with a 

numerical mass-balance model for sulfur and oxygen isotopes during microbial 

sulfate reduction and sulfate-driven AOM; this model is applied to the natural 

environment and to pure culture studies through the rest of the thesis. In Chapter 3, I 

will explore, through pure culture experiments, the dynamics of microbial sulfate 

reduction.  Chapter 4 then explores the differences between microbial sulfate 

reduction and sulfate-driven anaerobic methane oxidation in estuarine sediments. I 

will take this forward in Chapter 5 to discuss and examine how the sulfate-driven 

AOM is different between sites with different methane fluxes.  Finally I will 

summarize these results with a theory for what determines the slope between sulfur 

and oxygen isotopes in sulfate in different natural environments and how it is possibly 

traceable in the geological record.  
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Chapter 2 

Models and methods 
  

A Geochemical approach has been employed for decades to understand the 

physiology of microbes during MSR (Harrison and Thode, 1958, Kaplan and 

Rittenberg, 1964, Rees, 1973, Farquhar et al., 2003, Brunner and Bernasconi, 2005, 

Wortmann et al., 2007, Eckert et al., 2011 and Holler et al., 2011). The measurement 

and the subsequent modelling of the concentration of the reactant (sulfate) or the 

product (sulfide) can be use to calculate the net rate of the reaction, in this case 

microbial sulfate reduction. However, these measurements cannot provide 

information on reactions with higher complexity; such as the reversibility of 

individual steps in a catabolism pathway (a complex sequence of many enzymatic 

reactions and intermediates). In addition, in the natural environment, sulfur is 

involved in more biologically or abiotically mediated reactions than just MSR (see 

discussion in Chapter 1). Therefore, in order to understand sulfur metabolism in more 

comprehensive way, a different geochemical approach is required.  

 

In this thesis I use a geochemical approach to understand microbial sulfate 

reduction (MSR) in both pure culture and in the natural environment. The main tools 

that I will employ are sulfur and oxygen isotopes in measured dissolved sulfate 

accompanied by measurements of other isotopes and concentrations. Before I embark 

on the geochemical studies, I will first summarize models that have been used to 

understand how sulfur and oxygen isotopes in dissolved sulfate change during MSR, 

including the development of a new model that comprised my MSc thesis which has 

been modified for my PhD and that I employ throughout the subsequent studies.  I 

will then examine to what extent closed system models apply to sedimentary systems, 

which by definition are open systems.  These two numerical models of microbial 

metabolism and exploring closed and open system behaviour I will employ to discuss 

my data throughout my thesis. Finally, in this chapter I will conclude by presenting 

the main analytical methods that I use for the rest of this thesis. 
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Table 2.1:  Explanation of expressions 
 

 
 

Parameter unit Explanation Chapters
α [/] Isotope fractionation factor 2,3

α 3xSi_j [/]
Isotope fractionation factors for sulfur for the 
forward (i=f) and backward (i=b) reactions j 

(j=1...5). x=3,4,6
2,3

α18Οi_j [/]
Isotope fractionation factors for oxygen for the 

forward (i=f) and backward (i=b) reactions j 
(j=1...5).

2,3

bk M T-1 Backward flux in k th step of MSR network 2,3
csSRR M T-1 Cell -1 Cell specific sulfate reduction rate 3

D0 L2 T Molecular diffusion coefficients 2,5
Ds L2 T Effective diffusion coefficient 2,5
ε ‰ Isotopic fractionation 2,3

ε18Oex	 ‰ Oxygen isotopic fractionation between water and 
sulfur intermediates 

2,3

Ε33S ‰
The deviation between the calculated value for a33S 

and the expected mass-dependent relationship 
between a33S and a34S

2,3

ε34Stotal ‰ total S isotopic fractionation 2,3
fk M T-1 Forward flux in k th step of MSR network 2,3

φκ [/] Ratio between backward and forward flux in kth step 
of MSR network

2,3

ϕ [/] Porosity (Volumetric) 2,5

ϑ* [/] Power-law parameter connecting mass-dependent 
sulphur isotope fractionation for 33S and 34S

2

JSO4 M L-1 Sulfate flux accros the sediment water interface 5
K Cells M-1 Specific growth rates 3

U L T-1 The velocity of flow relative to the sediments-water 
interface

2

Y T-1 Grow yield 3

Δ δ13CCH4 ‰ Carbon isotopic shift in methane during Anerobic 
oxidation of methane

5

δ13CCH4 ‰ Carbon isotopic composition of methane 1,2,4,5

δ13CDIC ‰ Carbon isotopic composition of dissolved inorganing 
carbon

1,2,4,5

δ18OH2O ‰ Oxygen isotopic composition of water 2,3,4
δ18OS4O ‰ Oxygen isotopic composition of sulfate All

δ18OSO4(A.E) ‰ Oxygen isotopic composition of sulfate at apparent 
equlibrium

2,3

δ34SSO4 ‰ Sulfur isotopic composition of sulfate All

θO [/] Ratio between sulfite back reaction to the outer 
sulfate pool and the overall sulfate reduction rate

2,3

ω L T-1 Rate of burial of the layer below the sediments-water 
interface

2
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2.1 The use of models of sulfur and oxygen isotope fractionation 

during microbial sulfate reduction 
 

Numerical models of MSR use sulfur (33S/32S and 34S/32S) and oxygen (18O/16O) 

isotope ratios in dissolved sulfate as experimental constraints, add assumptions about 

cellular energetics, electron flow and maximum isotope fractionations imparted by 

some enzymes, and then solve for the magnitude of backward and forward fluxes 

associated with the modelled reactions.  These models have been used to reconstruct 

environmental processes and physiological conditions from observed isotope 

fractionations (e.g. Canfield et al., 2001a; 2006; Farquhar et al., 2003; 2007; Johnston 

et al, 2007; Sim et al., 2011a;2011b; Leavitt et al., 2013; Wing and Halevy, 2014).  

The use of either multiple sulfur or sulfur and oxygen isotopes provides a set of two 

independent equations to solve, and therefore can resolve the relative fluxes at up to 

two branching points within the cell, but there are more than two reactions, or 

branching points, to account for (e.g. Figure 1.2 in Chapter 1, Figure 2.1 here). The 

problem is therefore under-constrained, as there are more variables than equations. 

Many studies work around this limitation by merging several steps together, most 

notably, considering the reduction of sulfite to sulfide as single step.  However, 

Brunner et al. (2012) modelled the sulfur and oxygen isotope evolution during MSR, 

and in so determined that a single-step sulfite reduction to sulfide (step 4 and 5— 

Figure 2.1) is not consistent with the isotope data.  In theory, combining multiple 

sulfur and oxygen isotopes would help constrain the problem, and provide an 

equivalent number of variables and equations, however, only a few studies have 

combined multiple sulfur and oxygen isotopes (32S, 33S, 34S and 18O and 16O) (e.g. 

Farquhar et al., 2008). I will use this multiple isotope approach in Chapter 3 in pure 

culture studies. In this section, however, I will summarize past models efforts, 

including mine published in my MSc, for sulfur and oxygen isotopes during MSR.  
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Figure 2.1: Schematic of the microbial sulfate reduction pathway. Note that this is 

similar to Figure 1.2 in Chapter 1 modified to assign fluxes to the various steps and 

isotope fractionation factors. Steps of microbial sulfate reduction and the presumed 

points of oxygen and sulfur isotope fractionation. ij_j, α34Si_j and α18Oi_j are the fluxes 

and the isotope fractionation factors for sulfur and oxygen, respectively, for the 

forward (i=f) and backward (i=b) reactions j (j=1...5). fk (k=1,2 and 4) is the ratio 

between the backward and forward fluxes. ε18Oex is the oxygen isotopic fractionation 

between water and sulfur intermediates  

  

The overall sulfur isotope fractionation during MSR is modelled as a 

superposition of the various forward and backward fluxes at each step with any 

isotope partitioning occurring at each step (Rees, 1973; Brunner and Bernasconi, 

2005; Farquhar et al., 2003; Sim et al., 2011b) and is given mathematically by (after 

Brunner et al 2012):  

 

α3xStotal=

ϕ1·ϕ2·ϕ3·ϕ4· 1-α
3xSf_5 +…

ϕ1·ϕ2·ϕ3·α
3xSf_5· 1-α3xSf_4 +…

ϕ1·ϕ2·α
3xSf_5·α3xSf_4· 1-α3xSf_3

α3xSf_5·α3xSf_4·α3xSf_3
+1 (2.1)

 

!
where α3xStotal is the total expressed sulfur isotope fractionation factor for isotope 3x 

(x=3,4,6), α 3xSi_j is the sulfur isotope fractionation during the forward (i=f) and 

backward (i=b) reaction j (where j=1…5) and φk (where k=1…4) is the ratio between 

the fluxes of the four intracellular steps summarized in Figure 2.1: 

Step 2 Step 1 Step 3 Step 4 SO4
2-

(ex) SO4
2-

(in) APS SO3
2-

 SnOn H2S 

Cytoplasmic membrane 

f1, α3xSf1
, α18Of1 

f3, α3xSf3
, α18Of3 

f2 
f4, α3xSf4

, α18Of4 

b2 
b1 

b3 
b4 

f5, α3xSf5 

Step 5 

H2O 

ε 18O
ex 
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ϕk=
bk
fk

(2.2) 

!
Thus, models of MSR (Rees, 1973; Brunner and Bernasconi, 2005; Farquhar et 

al., 2003; Sim et al., 2011b; Brunner et al., 2012) assign maximum values of sulfur 

isotope fractionation in the forward steps 1,3,4 and 5, respectively, and assume that all 

other steps do not fractionate sulfur isotopes – e.g., Rees, 1973). 

For minor isotopes (such as 33S), the relationship between the isotope fractionation for 
33S /32S (compared with 34S/32S) is commonly given as (e.g. Young et al., 2002; 

Farquhar et al., 2003; Johnston et al, 2005): 

 

ln α33S =ϑ*·ln α34S (2.3)!
 

where  ϑ* is the calculated temperature-dependent equilibrium isotope fractionation 

between sulfate and sulfide (0.5147-- Farquhar et al., 2003). The deviation between 

the calculated value for α33S and the expected mass-dependent relationship between 

α33S and α34S is defined as: 

 

E33S=1000· α33S-α34S0.515 (2.4) 

 

Whereas the isotope fractionation of 33S in every step during MSR does not 

deviate from a mass dependent fractionation with respect to 34S (Equation 2.1), the 

overall expressed isotope fractionation can deviate from a purely mass-dependent 

relationship.  The magnitude of this offset is a function of the relative forward and 

backward fluxes of every step during MSR and stems from the fact that the mixing 

between two pools is linear, but the mass-dependent fractionation obeys a power law 

(Farquhar et al., 2003; Farquhar et al., 2007; Johnston et al, 2007). Mixing between 

two pools with variable branching points is common in metabolisms such as MSR, 

and it has been used in the past to calculate the dynamics of the forward and 

backward fluxes of each step during MSR as well as explore the evolution of 

microbial metabolism over the course of Earth history (e.g. Canfield, 2004; Farquhar 
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et al., 2003; 2013; Sim et al., 2011b; Johnston et al., 2005; 2006; 2011; Crowe et al., 

2014; Paris et al., 2014). This is demonstrated in Figure 2.2a.  

 

Oxygen isotopes in dissolved sulfate (δ18OSO4) are thought to record information 

complementary to that revealed by sulfur isotopes. The relative change between 

δ18OSO4 and δ34SSO4 has been used as a tracer of pyrite oxidation (e.g. Balci et al., 

2007; Brunner, et al., 2008; Heidel and Tichomirowa, 2011; Kohl and Bao, 2011), 

sulfur disproportionation (e.g. Cypionka et al., 1998; Böttcher et al, 2001; Böttcher 

and Thamdrup, 2001; Böttcher et al, 2005 ), cryptic cycling of sulfur (e.g. Aller et al, 

2010; Johnston et al., 2014; Riedinger et al., 2010; Mikucki et al., 2009) and sulfate-

driven anaerobic oxidation of methane (e.g. Aharon an Fu, 2000; 2003; Deusner et al., 

2014; Sivan et al., 2014).     Changes in the reversibility of all steps during MSR 

(Figure 2.1) leads to differing changes in the oxygen - and sulfur - isotope 

composition of sulfate as MSR progresses.  

 

The model for oxygen isotopes in sulfate is derived from the work of Brunner et 

al. (2005, 2012).  In order to understand the relative evolution of sulfur and oxygen 

isotopes in sulfate during bacterial sulfate reduction in pure culture, Brunner et al. 

(2005, 2012) solved a time dependent equation in which the oxygen isotope exchange 

between sulfur intermediates and ambient water and the cell specific sulfate reduction 

rates are the ultimate factors controlling the slope of δ18OSO4 vs. δ34SSO4 during the 

onset of bacterial sulfate reduction.  For the purpose of this thesis (as applied to 

natural environments rather than pure cultures) I reconsidered this model in three 

ways.  First, the cell specific sulfate reduction rate varies over orders of magnitudes in 

different natural environments, yet the relative evolution of δ18OSO4 vs. δ34SSO4
 plot 

versus depth may exhibit the same pattern. Therefore, I suggest that any time 

dependent process related to the isotope evolution (e.g. the rate of the oxygen isotopic 

exchange between ambient water and sulfur intermediate such as sulfite) is faster than 

the other biochemical steps during bacterial sulfate reduction.  Second, in the models 

of Brunner et al. (2005, 2012) the equilibrium value for the δ18OSO4 depended 

critically on the value of δ18O of the ambient water.  However, the equilibrium value 

for δ18OSO4 in natural environments shows a range (22-30‰) that cannot be explained 

only by the variation in δ18O of the ambient water (which ranges from 0 to -4‰).  It 
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has been suggested that this large range of oxygen isotope equilibrium values may 

reflect isotope exchange at different temperatures, although more recent studies have 

shown that the temperature effect is small (~2‰ between 23 to 4°C -- Brunner et al., 

2006; Zeebe, 2010).   Alternatively the large range of oxygen isotope equilibrium may 

reflect the combined effect of kinetic and equilibrium oxygen isotope fractionation 

(Wortmann et al., 2007; Turchyn et al., 2010).  The latter has led to the observed 

δ18OSO4 at equilibrium to be termed ‘apparent equilibrium’ (δ18OSO4(A.E)). For my 

model, therefore, I attributed the change in the δ18OSO4 to change in the mechanism of 

the bacterial sulfate reduction and not to changes in the δ18O of the water.  Third, the 

model of Brunner el al. (2005, 2012) ruled out a linear relationship between δ18OSO4 

and δ34SSO4 which has not been observed in pure culture.  My model had to account 

for a linear relationship, which has been observed in natural environments.  

 

   To address these issues, I removed the characteristic timescale used by 

Brunner et al. (2005, 2012) for the cell-specific sulfate reduction rate and focus 

instead on how the different fluxes at each step impact the evolution of δ18OSO4 vs. 

δ34SSO4. I further allowed changes in the equilibrium values of the δ18OSO4 due to a 

combination of equilibrium and kinetic oxygen isotope effects rather than only 

through a change in the δ18O of the ambient water. 

 

The assumptions in my model include: 

• The system is in steady state.  This means sulfate reduction rate = fi –bi  

(where i=1,2,3— Figure 2.1). 

• I model oxygen isotopic exchange between ambient water and sulfite (Betts 

and Voss, 1970; Horner and Connick, 2003; Müller et al., 2013; Wankel et al., 

2014).  This oxygen isotope exchange contributes three oxygen atoms to the 

sulfate that will ultimately be produced during reoxidation, while the fourth 

oxygen atom is gained during the reoxidation of the AMP-sulfite complex to 

sulfate (Wortmann et al., 2007; Brunner et al., 2012).  

• Oxygen isotopic exchange is considered to be much faster with respect to 

other biochemical steps, which means, that for any practical purpose, sulfite is 

constantly in oxygen isotopic equilibrium with ambient water.  This results in a 

solution that is independent of the timescale of the problem. This is because the 
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timescale for this isotope exchange, given intracellular pH (6.5-7 — Booth, 

1985), should shorter than minutes (Betts and Voss, 1970; Wankel et al., 2014). 

• The kinetic oxygen isotopic fractionation during the reduction of APS to 

sulfite (f3) is equal to 25% of the sulfur isotope fractionation (ε18Of_3: 

ε34Sf_3=1:4) (Mizutani and Rafter, 1969). This value for the kinetic oxygen 

isotope fractionation is the lowest value that was found in lab experiments, and 

therefore I consider it to be the closest to the real ratio between ε18Of_3 and 

ε34Sf_3. This assumption has not been made by Brunner et al. (2005, 2012) and 

allows my model to simulate a linear relationship between δ18OSO4 and δ34SSO4. 

• Any kinetic oxygen isotope fractionation in step 4 or step 5 (the reduction of 

sulfite to sulfide) is not significant for oxygen isotopes, since oxygen isotope 

exchange during the back reaction (step 3) resets the δ18O of the sulfite.  

• Step 5 was simplified by making it unidirectional. I am able to do this because 

recent work has suggested that even if sulfide concentrations are high (>20 

mM), only ~10% of the sulfide is re-oxidized (Eckert et al., 2011) which is 

insignificant with respect to the overall recycling of other sulfur intermediates 

(Wortmann et al., 2007; Turchyn et al., 2006).  

 

The full derivation of the model equations using these assumptions, and similar to the 

derivation in Brunner et al., 2012, is in Appendix A and yields the following 

continuous (See appendix B for function analyse) solution for δ18OSO4(t) as function of 

δ34SSO4(t):  

 
If ϕ1·ϕ2·ϕ3=0 then

�
18OSO4 t =

�18Ototal
�34Stotal

· �34SSO4 t -�
34SSO4 0 +�18OSO4(0)

and if 0<ϕ1·ϕ2·ϕ3<1 then

�
18OSO4 t =�

18OSO4(A.E)-exp -�O·
�
34SSO4 t -�

34SSO4 0
�34SStotal

· �18OSO4(A.E)-�
18OSO4(0)

(2.5)!

!
 

where ε34Stotal and ε18Ototal are the measured sulfur and oxygen isotope fractionations, 

respectively, and δ34SSO4(t), δ34SSO4(0), δ18OSO4(t) and δ18OSO4(0)  are the isotopic 
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compositions of sulfur and oxygen in the residual sulfate at time t and time 0, 

respectively. δ18OSO4(A.E) is the isotopic composition of oxygen in the residual sulfate 

at ‘apparent equilibrium’, and θO is a parameter initially formulated by Brunner et al. 

(2005). This parameter define as the ratio between sulfite back reaction to the outer 

sulfate pool and the overall sulfate reduction rate (Brunner et al., 2012): 

 

θO=
ϕ1·ϕ2·ϕ3
1-ϕ1·ϕ2·ϕ3

(2.6)!

 

Factorization of equation (2.5) suggests that there are two distinct stages on a cross-

plot of δ18OSO4 vs. δ34SSO4 during microbial sulfate reduction: 

 

1. Apparent linear phase. The initial stage of the δ18OSO4 vs. δ34SSO4 cross-plot during 

MSR can be approximated by a linear line. The mathematical term for this line can be 

described by the first term of an Equation 8 Taylor series around δ34SSO4(0) and 

δ18OSO4(0)  (Antler et al., 2013). The slope of this apparent linear phase (SALP) can 

therefore be written as:  

 

SALP=θO
δ18OSO4(A.E)-δ

18OSO4(0)
ε34Stotal

(2.7)!

 

The value of the SALP can vary between 0.25 to over 10 and has been shown to be a 

function of the sulfate reduction rate (Böttcher et al., 1998; 1999; Brunner et al., 

2006; Aharon and Fu, 2000; Antler et al., 2013) and the electron donor type and 

supply rate of this electron donor (Sim et al., 2011b)  

 

2. Apparent equilibrium phase. This is the last stage on the δ18OSO4 vs. δ34SSO4 cross 

plot, where the δ18OSO4 reaches a constant value while the δ34SSO4 continues to 

increase. In the natural environment, the δ18OSO4 equilibrium can vary between 22‰ 

and 30‰ over the δ18O of the water (e.g. Wortmann et al., 2007; Turchyn et al., 2006; 

Knöller et al., 2006). Several sulfur intermediates have been suggested to exchange 

oxygen isotopes with water; most notably APS (e.g. Mizutani and Rafter, 1973; Fritz, 

et al., 1989), sulfite (e.g. Wankel et al., 2014; Muller et al., 2013) and AMP (e.g. 
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Wortmann et al., 2007; Wankel et al., 2014). Recent studies have ruled out the 

equilibrium between APS and water (Brunner et al., 2012; Kohl et al., 2012). Under 

cytoplasmic pH (6-7), sulfite reaches isotopic equilibration in matters of minutes 

(Betts and Voss, 1970); the rapidity of the oxygen isotope equilibrium implies that 

sulfite in the cell is in fully equilibration with water. The value of apparent 

equilibrium, including the effect of the kinetic oxygen isotope fractionation, is 

expressed mathematically as:  

 

δ18OSO4(A.E)=δ
18OH2O+ε18Oex+

ε18Of_1
ϕ1·ϕ3

+
ε18Of_3
ϕ3

(2.8) 

 

Since δ18OSO4 does not always reach apparent equilibrium within the frame of 

given experiment or even at times in the natural environment, the apparent 

equilibrium value (δ18OSO4(A.E)) can be obtained from the fact that SALP and 

δ18OSO4(A.E) should correlate (Equation 2.7); this correlation implies that you can 

calculate δ18OSO4(A.E) from a cross plot of SALP vs. δ18OH2O. At the intercept of a 

SALP vs. δ18OH2O line (δ18OH2O=0), the δ18OSO4(A.E) is equal to: 

 

δ18OSO4(A.E)=SALP(δ18OH2O=0)·
ε34Stotal
θO

+δ18OSO4(t=0) (2.9) 

 

where SALP(δ18OH2O=0) is the slope of the apparent linear phase predicted at 

δ18OH2O=0 (and the intercept on the SALP vs. δ18OH2O plot)  and δ18OSO4(t=0) is the 

initial δ18OSO4 value (at time zero).  

 

Similarly, a useful way to study the mutual evolution of δ18OSO4 and δ34SSO4 

with respect to reaction progress (e.g. the decrease in sulfate concentration with time 

during MSR) is to plot θO vs. ε34Stotal (Figure 2.2b). Previous studies have used this 

cross-plot to investigate the mechanism of MSR (Brunner, et al., 2005; Knöller et al., 

2006; Turchyn, et al., 2010; Brunner et al., 2012; Antler et al., 2013) and sulfate-

driven anaerobic methane oxidation (Deusner et al., 2014).  Because both ε34Stotal and 

θO are functions of the forward and backward fluxes during MSR (Equations 6 and 9, 

respectively), this plot can be used to relate sulfur and oxygen isotope measurements 
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to the intracellular MSR fluxes. This is because for every set of given forward and 

backward fluxes there is specific θO and ε34Stotal. However, since there are more 

branching points in the framework of MSR than the solution for θO and ε34Stotal, the 

ratio of between the forward and backward fluxes of every branching point cannot be 

solved uniquely.  Figure 2.2b also demonstrates the relationship between θO vs. 

ε34Stotal and the ratio of intracellular fluxes.   

 

Calculations of θO must assume a certain value of δ18OSO4(A.E) (e.g. Brunner et 

al., 2006; Knöller et al., 2006— see also equation 2.5). However, if δ18OSO4 did not 

reach equilibrium there might be a big uncertainty in estimating this δ18OSO4(A.E). We 

can think about alternative ways to estimate θO without the needs of a measured 

δ18OSO4(A.E);  here, I resolve this by noting that δ18OSO4(A.E) is proportional to the 

δ18OH2O (Eq. 2.8), and their differentials are equal: d(δ18OSO4(A.E))=d(δ18OH2O), 

therefore they are directly proportional. In addition, the slope of the apparent linear 

phase (SALP) is proportional to δ18OSO4(A.E) (Eq. 2.9). Hence, SALP is also 

proportional to δ18OH2O: 

 

SALP∝δ18OH2O (2.10) 

!
According to equation 2.7, the proportionality coefficient should be equal to 

θO/ε34Stotal and is equal to the slope of the SALP vs. δ18OH2O. Then, ε34Stotal is easily 

calculated from experimental measurements, and θO can be derived. 

 

The θO vs. ε34Stotal diagram (Figure 2.2b) has similarities with the Ε33S vs. 

ε34Stotal diagram (Fig, 2.2a), but typically one of the two of them is used alone. 

Chapter 3 will explore whether the use of combined θO vs. ε34Stotal and Ε33S vs. 

ε34Stotal diagrams can enable the probing of different processes and reaction rates 

during MSR. In theory, this combined isotope approach explores a wider range of 

steps in the MSR network, not all of which can be inferred by using θO vs. ε34Stotal or 

Ε33S vs. ε34Stotal plots alone.      
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Figure 2.2: Ε33S vs. ε34Stotal (a) and θO vs. ε34Stotal (b) diagrams. The black and the 

gray meshes are the solutions where φ4 (the fluxes ratio of step 4, the reduction of 

sulfite to SnOn—figure 1) is minimal (=0) and maximal (=1), respectively.  The 

arrows represent the direction n by which each flux ratio (Figure 1) changes in the 

diagrams. In theory, an experiment where two of three of E33S, ε34Stotal, and θO are 

measured will plot within the black and the grey meshes and it will allow solution for 

the relative fluxes at the various steps during MSR.  Here, I use the isotope 

fractionation for steps 3,4 and 5 as α 3xS= 0.975 (Brunner et al., 2012) and 

θ*=0.5147 (Farquhar et al., 2003). 

 

2.2 Applying my time-dependent closed system model to pore fluid 

profiles  
       

In this section I discuss the use of my model of microbial sulfate reduction 

metabolism (Section 2.1) to understand what controls the relative evolution of δ18OSO4 

vs. δ34SSO4 in the natural environment.  Applying what is effectively a “closed 

system” model to an “open system” (environmental pore fluids) requires 

understanding the physical parameters that control each of the sulfate species 

concentrations (in this case 34S16O4
2-, 32S 18O16O3

2- and 32S16O4
2- ) within the fluids in 
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the sediment column (Jørgensen, 1979; Wortmann et al., 2007; Wortmann and 

Chernyavsky, 2011).  

 

In my thesis I utilize SALP, that is the relative change of δ18OSO4 vs. δ34SSO4, 

rather than the δ18OSO4 value at apparent equilibrium although both hold information 

about the mechanism of the microbial sulfate reduction (see Equation 2.7 and 2.8).  

Focusing on SALP enables investigating the mechanism of microbial sulfate 

reduction from sites that were not cored deep enough to observe apparent equilibrium.  

Also, it is not clear whether the δ18OSO4 really reaches equilibrium values at some 

sites.  

 

The outstanding question is how can I apply SALP as observed in the relative 

evolution of the δ18OSO4 and δ34SSO4 in the pore fluids to the model for the 

biochemical steps during bacterial sulfate reduction as derived for pure cultures?  In 

order to investigate to what extent the closed system model can be apply to an open 

system, I generated sulfate, δ18OSO4 and δ34SSO4 synthetic profiles for two extreme 

cases, deep-sea and estuarine sediments. The profiles were generated using the 

general diagenetic equation (Berner, 1980):            

 
∂φCi
∂t
=φ
∂
∂z

Dz
∂Ci
∂z

-(U+ω)
∂Ci
∂z
- Ri (2.11)!

 

where Ci is the concentration of solid or liquid component i in mass per unit volume 

of total sediment, t is time, z is the layer depth, ϕ is the porosity Ds is the effective 

diffusion coefficient in area of total sediments per unit time, U is the velocity of flow 

relative to the sediments-water interface, ω is the rate of burial of the layer below the 

sediments-water interface and R is the reactions affecting i. 

 

  Ci stands for each one of the different sulfate species (in this case 32S16O4
2-, 

34S16O4
2-, S18O 16O3

2- as all other species considered as much less abundant). For my 

purpose, I assume no advection and uniform porosity throughout the sediment column 

and with time. In addition, sulfate reduction rates were considered as constant in 

space and time (the reduction rate of each sulfate species was calculated using the 
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overall sulfate reduction rate and the expected change in δ18OSO4 and δ34SSO4 

according to the close system model— see above). Therefore equation 2.11 can be 

written as: 

 

∂Ci
∂t
=Ds

∂2Ci
∂z2

-ω
∂Ci
∂z
-SRR(Ci) (2.12)!

 

I solved equation 2.12 using a finite difference approach. The sulfate species 

concentrations began at seawater concentrations throughout the entire sediment 

column, except at the deepest point in each case where the concentrations were 

considered as zero. I let all the profiles reach to steady state (steady state defined 

when the maximum different between the concentrations two time intervals at given 

depth is smaller than 10 orders of magnitudes than the concentration at this depth). 

The assumption that Ds=D0·ϕ2 (Berner et al., 1980) was used for estimating the effect 

of tortuosity. ϕ  is the porosity and the molecular diffusion coefficient for sulfate in 

seawater (D0) was calculated based on Donahue et al. (2008): 

 

D0= 4.655+0.2125·T ·10
-6 (2.13)!

!
where D0 is the molecular diffusion coefficient of sulfate (cm2 sec-1) and T is the 

temperature (ºK). 

 

Two extreme cases were considered: (a) Deep-sea temperature (2°C), low 

sedimentation rate (10-3 cm·year-1) and slow net sulfate reduction rate (low as 10-12 

mol·cm-3·year-1), typical of deep-sea environments versus (b) Surface temperature 

(25°C), high sedimentation rate (10-1 cm·year-1) and high net sulfate reduction rate 

(5⋅10-4 mol·cm-3·year-1) conditions similar to shallow marginal-marine environments.  

In each case I have calculated the “closed system” solution for a given mechanism, or 

intracellular fluxes during microbial sulfate reduction, and then separately calculated 

the “open system” for the same mechanism give the natural conditions described 

above.   
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Figure 2.3 presents the calculated open system versus closed system SALP for 

the two extreme environments, as function of the change in φ3 (where φ1 and φ4 are 

fixed and equal to 0.99 and 0, respectively).  It can be seen that in applying the closed 

system solution to the open system can lead to underestimation of as much as 10% in 

the value of φ3 (For changes in φ1 and φ4, the misestimate will be similar in 

magnitude). Although there are vastly different physical parameters between these 

two synthetic sites, the resulting calculated SALPs are not significantly different. This 

similarity in calculated SALP is because the main difference moving to an open 

system from a closed system is the change the relative diffusion flux of any of the 

isotopologues.  I conclude that it is possible to read the SALP from δ18OSO4 and 

δ34SSO4 pore fluid profiles and apply my closed system model to understand the 

mechanism, with the caveat that I have error bars on my resulting interpretation.  

 

 
Figure 2.3: The slope of the apparent linear phase as a function of φ3 (where φ1 and 

φ4 are fixed and equal to 0.99 and 0, respectively) for 3 different scenarios: Closed 

system (according to Equation 2.7), simulation of typical deep-sea sediment and 

simulation of typical estuary sediment.    
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2.3 Analytical methods  
!
Table 2.1 summarizes the measurements that have been made in each of the 

chapters in this thesis.  Cation (Na+, K+, Ca2+, Mg2+, Sr2+) concentrations were 

analysed by Inductivity Coupled Plasma-Atomic Emission spectroscopy (ICP-AES, 

P-E optima 3300, at the Geological Survey of Israel) with error of 2%. Sulfate 

concentrations were measured by Ion Chromatography (IC, Dionex DX5000, at Ben 

Gurion University of the Negev) with an error of 3%. Sulfide concentrations were 

measured by spectrophotometer using modified methylene blue assay (Cline, 1969). 

DIC concentrations were measured according to the peak height and calibration curve 

on the Continues Flow Gas Source Isotopic Ratio Mass Spectrometer (CF-GS-IRMS 

Thermo, at Ben Gurion University of the Negev) with an error of 0.2 mM.  For 

methane measurement, 1 ml headspace sample was taken from the crimped vial with 

a gas-tight pressure lock after the bottle was shaken vigorously. Methane was 

measured from the headspace on a Focus Gas Chromatograph (Thermo, at Ben 

Gurion University of the Negev) with ShinCarbon column with precision of 2 µM L-1. 

Cell density was measured by epifluorescence microscopic counts of cells stained by 

SYTOX-Green nucleic acid stain. 

 

2.3.1 Isotope measurements   

 

Sulfur isotopes  

 

For δ34SSO4 analysis, sulfate was precipitated as barium sulfate (barite) using a 

saturated barium chloride solution. The barite was then washed with 6N HCl and 

distilled water.  The barite was combusted at 1030°C in a Flash Element Analyzer 

(EA), and the resulting sulfur dioxide (SO2) was measured by continuous flow on a 

GS-IRMS (Thermo Finnegan Delta V Plus Godwin Laboratory, University of 

Cambridge). The error for δ34SSO4 was determined using the standard deviation of the 

standard NBS 127 at the beginning and the end of each run (~0.3‰ 1σ).  Samples 

were corrected to NBS 127, IAEA-SO-5 and IAEA-SO-6 standards (20.3‰, 0.5‰ 
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and  -34.1‰, respectively). The δ34SSO4 values are reported versus Vienna Canyon 

Diablo Troilite (VCDT). 

 

For multiple sulfur isotope measurements (δ33S and δ34S), sulfide generated 

during batch culture growth was extracted by acidifying the culture medium with 6 N 

HCl at 80°C under nitrogen gas for two hours. H2S(g) produced during this 

distillation was precipitated as ZnS in a Zn–acetate solution (0.18 M). After the 

extraction of sulfide, the samples were purged by nitrogen gas for an additional hour 

to ensure the complete removal of sulfide. Sulfate in the remaining medium was 

reduced to sulfide by reacting with 30 ml of the reducing agent (mixture of HI, H3PO2 

and HCl, Thode et al., 1961). The samples were boiled and purged by N2 gas. After 

the volatile products were passed through a condenser and a trap containing distilled 

water, sulfide gas generated from sulfate reduction was collected in the AgNO3 trap. 

Ag2S samples were then reacted with an excess of fluorine gas at 300 °C. The 

produced SF6 gas was purified by gas chromatography and transferred into an 

isotope-ratio mass spectrometer for multiple sulfur isotope measurements in dual-inlet 

mode (Stable Isotope Geobiology Laboratory at Massachusetts Institute of 

Technology). The analytical reproducibility of measurements using the fluorination 

method, as determined by repeated analyses of international reference material, is 

±0.1‰ and ±0.2‰ and ±0.01‰  for δ33S, δ34S and δ33S-0.515•δ34S, respectively.  

 

Oxygen isotopes  

 

δ18OH2O was measured by a Continues Flow Gas Source Isotopic Ratio Mass 

Spectrometer (CF-GS-IRMS Thermo, at Ben Gurion University of the Negev) 

coupled to a Gas Bench II (GBII) interface. Vials containing 0.5 ml of the sample 

were flushed with helium and 0.4% CO2 gas-mixture and the samples were measured 

after equilibrating for 24 hours. Samples were corrected to three standards (-7.3, 0.2 

and 11.2‰).  The error of the measurement was ± 0.1‰. δ18OH2O reported versus 

Vienna Standard mean Ocean water (VSMOW).    

 

For δ18OSO4 analysis, barite was pyrolyzed at 1450°C in a Temperature 

Conversion Element Analyzer (TC/EA).  The resulting carbon monoxide (CO) was 
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measured by continuous helium flow on a GS-IRMS (Thermo Finnegan Delta V 

advance, at the Godwin Laboratory, University of Cambridge). Samples for δ18OSO4 

ran in replicates (n=3-5) and the standard deviation of these replicate analyses was 

used as the error (~0.3‰ 1σ). Samples for both δ18OSO4 and δ34SSO4 were corrected to 

NBS 127 and IAEA-SO-6 standards (8.6‰ and -11.35‰). δ18OSO4 reported versus 

Vienna Standard Mean Ocean water (VSMOW).  

 

δ18O Measurement validation 

  

The pure culture growth experiments (Chapter 3) were done with enriched 18O 

water (with δ18OH2O up to ~78‰), which introduces several analytical issues. First, it 

is not clear how linear the mass spectrometers are for high values of δ18OH2O and 

δ18OSO4. A non-linear response will result in error in the analysis since our isotope 

measurements are often exceeding the calibration envelope. I resolved this by diluting 

the high samples with a standard with low oxygen isotopic composition (-7.3‰ and -

11.35‰ for δ18OH2O and δ18OSO4, respectively). An example is shown in Figure 2.4 

Both δ18OH2O and δ18OSO4, are shown with the mixing line between the high δ18O 

sample and the low δ18O standard. This exercise demonstrates that there is no 

significant effect on the δ18OH2O and δ18OSO4 measurements as far from the calibration 

envelope as my experiments were done. 

 

The second potential problem with using high δ18OH2O is the incorporation of 

water molecules into the barite crystal lattice. In order to examine the effect of the 
18O-enriched water on the measurement, I compare the initial δ18OSO4 from all our 

experiment versus the δ18OH2O of the solution (Figure. 2.5). From this I show that the 

highest δ18OSO4 I measure are, ironically, in the lowest δ18OH2O, in addition there is no 

significant difference between δ18OSO4 that was measured with water that had a 

δ18OH2O of ~75‰ or ~35‰ (Figure 2.5). This suggests that, for this experimental 

setup, there is virtually no effect of the oxygen isotopic composition of water on the 

oxygen isotopic composition of the sulfate during laboratory handling. I suggest that 

the high δ18OSO4 value in the experiment with low δ18OH2O is most likely due to 

different batches of Na2SO4 salt that were used, which is also supported by different 

initial δ34SSO4 which is ~1‰ in the experiments with higher the δ18OSO4. 
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Figure 2.4: The measured δ18OH2O (a) and δ18OSO4 (b) plotted versus sample dilution 

with a low value standard. The samples fraction is the fraction of the samples in the 

final mixture between the sample and the low standard.   

 

 
 

Figure 2.5: The initial δ18OSO4 of each experiment versus the ambient δ18OH2O. 
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Carbon isotopes  

 

δ13CDIC and δ13CCH4 were measured by a Continues Flow Gas Source Isotopic 

Ratio Mass Spectrometer (CF-GS-IRMS Thermo, at Ben Gurion University of the 

Negev) through a Gas Bench II (GBII) interface and the PreCon (for δ13CCH4). The 

errors were 0.1‰ for δ13CDIC and 1‰ for δ13CCH4 between replicates. The values are 

reported versus Vienna Pee Dee Belemnite (VPDB) standard. 

 

Table 2.2: Summary of the measurements that have been done in each one of the 

thesis chapters  

 

!
Measurement 

!
Major 
Cation SO4 H2S Cells 

count DIC CH4 δ34S δ33S δ18Oa
 δ13Cb

 

Chapter 
3                     

Chapter 
4                     

Chapter 
5                     

 

[a] δ18OSO4 and δ18OH2O 

[b] δ13CDIC and δ13CCH4  
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Chapter 3 

Combined 33S and 18O isotope tracing of 

intracellular sulfur metabolism during 

microbial sulfate reduction 

 
 

Given that each of the steps during MSR is reversible, understanding the 

relative forward and backward fluxes at each step within the cell and how these step-

specific fluxes relate to the overall rate of sulfate reduction is critical for 

understanding how MSR impacts the subsurface carbon cycle. Changes in 

environmental conditions also should impact the fluxes at each step as well as the 

overall rate of MSR, but a quantitative understanding of the complete impact of these 

factors on the overall rate of MSR remains elusive. 

 

! Both oxygen and sulfur isotopes in the residual sulfate during sulfate reduction 

are affected by the changes in the intracellular fluxes of sulfur species within the 

bacterial cells. However, as I have outlined both in the introduction and the previous 

chapter, these isotopes in the residual sulfate are affected in different ways, and thus 

the change of one isotope versus the other helps solve for the relative change in the 

flux of each intracellular step as sulfate is being reduced (Farquhar et al., 2003; Rees 

1973). The sulfur and oxygen isotope composition of residual sulfate has been used to 

explore the mechanism of traditional (organoclastic) sulfate reduction both in pure 

culture (e.g. Knöller et al., 2006; Mangalo et al., 2007; 2008; Brunner et al., 2005; 

2012) and in the natural environment (e.g. Böttcher et al., 1998, 1999;  Wortmann 

2007, Turchyn 2006; Aller et al., 2010).  

 

Pure culture experiments (i.e. experiment with single strain of an isolated 

microbe) are informative in studying microbial metabolism as pure cultures allow us 
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to study a single metabolism over a potential range of conditions. There are two main 

methods through which pure culture experiments are conducted; close system batch 

reactors experiment and open system chemostats (also known as flow-through 

reactors). While batch culture allow us to ascertain changes with time over the growth 

of the pure culture, a chemostat allows the culture to reach to steady state conditions. 

Both approaches have been used to explore MSR metabolism  (e.g. Farquhar et al., 

2003; Canfield et al., 2006; Sim et al., 2011b; Eckert et al., 2011).   However, the 

“Achilles heel” of pure culture experiment is the lack of an environmental context; 

over 90% of the microbes present in marine sediments and soil samples are with an 

unknown metabolism. Therefore, studying only single bacteria give only partially 

constrains on environment and it is heavily biased toward microbes that are easier to 

isolate.  

 

In this chapter I aim to: 1. Test whether the major and minor sulfur isotopes and 

the oxygen isotope systems record complementary or identical information about 

intracellular processes; and 2. explore the magnitude of the equilibrium and kinetic 

oxygen isotope effects.  To do this, I experimentally explore the respective evolution 

of three isotope ratios: 33S /32S, 34S/32S and 18O/16O during MSR in pure culture as a 

function of the csSRR and δ18OH2O. These measurements are then used to constrain 

models of δ34SSO4, δ 33SSO4 and δ18OSO4. I will conclude this chapter by comparing my 

pure culture results with results from pore fluids from marine and marginal marine 

environments.   

 

3.1 Methods 
 

Pure culture marine Desulfovibrio sp.  (Strain DMSS- 1—Sim et al. 2011) was 

incubated at room temperature (22ºC) in the dark to medium consisting of (per liter): 

NaHCO3, 9 g; Na2SO4, 3 g; KH2PO4, 0.2 g; NH4Cl, 0.3 g; NaCl, 21 g; MgCl2•6H2O, 

3 g; KCl, 0.5 g; CaCl2•2H2O, 0.15 g; resazurin, 1 mg, as well as 1 ml of trace element 

solution SL-10 (Widdel et al., 1983), 10 ml of vitamin solution described as a part of 

DSMZ medium 141 (DSMZ, Braunschweig, Germany: Catalogue of strains 1993), 

and 1 ml of selenium stock solution (0.4 mg of Na2SeO3 per 200 ml of 0.01 N 

NaOH). Sodium ascorbate (1.5 g per liter) was added as a reducing agent. Lactate/ 
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Malate/ Ethanol/ Fructose/ Glucose were used both as an electron donor and as a 

carbon source. The medium was titrated to pH 7.5 and prepared anaerobically under 

N2/CO2 (80%/20%). Each incubation experiment with different organic substrates 

was repeated three times using isotopically labelled water with different initial oxygen 

isotope compositions. 

 

Bacteria were pre-cultured with the respective electron donor before inoculation 

(step a and b—Figure 3.1): about 1ml of pre culture medium was transfer to a 100ml 

of fresh medium after washing the plaque (step c—Figure 3.1). Then, 10ml of 

inoculated medium was transfer to 7 15ml vial (step e—Figure 3.1) which each 

provided a single-point batch experiment. Each vial was eliminated each time point, 

by removing 1ml of sample for cell counts and sulfide measurement and the injection 

of 2ml of 20% ZnAc. About 1ml were then filtered for sulfate concentration and 

another filtered 1ml was added to 1ml saturated BaCl solution to precipitated BaSO4. 

The remaining solution was used to analyse multiple sulfur isotopes. The specific 

analytical methods were detailed in Chapter 2.     
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Figure 3.1: Schematic depiction of experimental preparation. Step a: inoculation of 

strain DMSS-1 into 5 separate mediums for pre culturing. Seop b: bacteria grow on 

five different electron donors (Lactate, Malate, Ethanol, Fructose and Glucose). Step 

c: inculcation of the bacteria into 100ml fresh medium stock after per culturing.  Step 

e: Dividing the stock into 7 different single point batch reactors. Step f: experiment 

starts.      
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Table 3.1: Combinations of electron donors (rows) and isotopic composition of 

the water (δ18OH2O -- columns) used in experiments. ‘+’ marks the explored 

combination 

 

-5‰ 35‰ 75‰ 

Lactate + + + 

Malate + 

 

+ 

Ethanol + + + 

Fructose + + + 

Glucose + + + 

 

 

3.1.1 Cell-specific sulfate reduction rate calculation 

 

Many previous studies have addressed the relationship between the sulfate 

reduction rate  (or more specifically the cell specific sulfate reduction rate) and the 

magnitude of the sulfur isotope fractionation. The average cell-

specific sulfate reduction rate (often abbreviated as csSRR) is calculated from 

the ratio between the specific growth rate and the growth yield. The specific growth 

rates (K) of exponentially growing cells in batch culture were calculated using:  

 

K=
dln ⁡(c)
dt

(3.1)!

 

Where c is the cells density (cells/ml) and t is time. The grow yield (Y) is the 

ratio of the change in cell density and the change in sulfate (or sulfide) concentration:  

 

Y= dc

dSO4
2-

(3.2)!

csSRR is therefore equal to: 

 

csSRR=
K
Y

(3.3) 
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3.2 Results  
 

All results from the pure culture growth experiments are tabulated in Appendix 

A.4.1.  Figure 3.2 is a composite figure showing sulfate concentrations cell density 

and δ34SSO4 and δ18OSO4 measured in experiments with all different electron donors. In 

this figure I present only the experiments with δ18OH2O≈75‰, because the change in 

most parameters are consistent among the various experiments (independent of the 

δ18O of the water) but the experiment with δ18OH2O≈75‰ was sub-sampled at the 

highest resolution. Sulfate concentrations decreased with time as expected during 

MSR, and cell densities, δ34SSO4 and δ18OSO4 increased with time in all experiments, 

showing the growth and sulfate reduction by DMSS-1 under all tested conditions.  

The largest and the smallest decreases in sulfate concentration were observed in the 

experiments with lactate and glucose, respectively, confirming that lactate stimulates 

faster rates of MSR than glucose.  The δ34SSO4 and δ18OSO4 showed the opposite trend, 

where sulfur and oxygen isotope ratios changed more rapidly when DMSS-1 grew on 

glucose than when the bacterium grew on lactate.  

 

To compare sulfur isotope fractionation among the experiments, I plot the 

change in δ34SSO4 from is initial value (δ34SSO4(t)- δ34SSO4(0)) versus the natural 

logarithm of the ratio of the remaining sulfate (Figure 3.2a); The more rapid the 

change δ34SSO4 versus the depletion in sulfate concentration the bigger the sulfur 

isotope effect.  It can be seen that the highest sulfur isotope enrichment is in the 

glucose experiment, followed by fructose, malate, ethanol and then lactate with the 

smallest δ34SSO4 change versus the depletion of sulfate.  Similarly, I can use the cross-

plot of δ18OSO4 vs. δ34SSO4 (Figure 3.3b) to demonstrate the how the relative 

enrichment of δ18OSO4 and δ34SSO4 change among the experiments. In this plot (Figure 

3.3b) the higher the slope between δ18OSO4 and δ34SSO4 the more rapid δ18OSO4 is 

changing relative to δ34SSO4. The δ18OSO4 enrichment versus δ34SSO4 is the highest in 

the glucose experiment and the lowest in the lactate experiment.  
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Figure 3.2:  Time dependent sulfate (SO4

2-) concentration and cell density (a) and 

δ34SSO4 and δ18OSO4 (b) for DMSS-1 grow on lactate (#.1), malate (#.2), ethanol (#.3) 

Fructose (#.4) and glucose (#.5) (where # indicates panels a and b)  in the experiment 

with δ18OH2O =~75 ‰. Other results can be found in table S1 in the supplemental 

online material.   

0 1 2 3 4 5 6 7
ï2

1

4

7

10

0 1 2 3 4 5 6 7
8

12

16

20

24

0 2 4 6 8 10 12

0

2

4

6

8

0 2 4 6 8 10 12
8.5

10.5

12.5

14.5

16.5

18.5

0 1 2 3 4 5 6 7 8
ï1

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8

9

11

13

15

17

5 10 15 20 25 30 35 40 45 50
ï5

0

5

10

15

20

5 10 15 20 25 30 35 40 45 50
0

20

40

60

80

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
10

15

20

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

7

8

9

0 1 2 3 4 5 6 7
10

15

20

0 1 2 3 4 5 6 7

7

8

9

0 2 4 6 8 10 12
10

15

20

0 2 4 6 8 10 12
6

7

8

0 1 2 3 4 5 6 7 8
10

15

20

0 1 2 3 4 5 6 7 8

7

8

9

5 10 15 20 25 30 35 40 45 50
10

15

20

5 10 15 20 25 30 35 40 45 50

7

8

9

Time (Days) 

Time (Days) 

Time (Days) 

Time (Days) 

Time (Days) 

Time (Days) 

Time (Days) 

Time (Days) 

Time (Days) 

Time (Days) 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
ï1

0

1

2

3

4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
8.5

9.5

10.5

SO
42-

 (m
M

) 

δ3
4 S

SO
4 (

‰
 C

D
T

) 

δ1
8 O

SO
4 (

‰
 S

M
O

W
) 

L
og

10
[C

el
l d

en
si

ty
] 

(C
el

ls
/m

l) 
  

SO
42-

 (m
M

) 

δ3
4 S

SO
4 (

‰
 C

D
T

) 

δ1
8 O

SO
4 (

‰
 S

M
O

W
) 

L
og

10
[C

el
l d

en
si

ty
] 

(C
el

ls
/m

l) 
  

SO
42-

 (m
M

) 

δ3
4 S

SO
4 (

‰
 C

D
T

) 

δ1
8 O

SO
4 (

‰
 S

M
O

W
) 

L
og

10
[C

el
l d

en
si

ty
] 

(C
el

ls
/m

l) 
  

SO
42-

 (m
M

) 

δ3
4 S

SO
4 (

‰
 C

D
T

) 

δ1
8 O

SO
4 (

‰
 S

M
O

W
) 

L
og

10
[C

el
l d

en
si

ty
] 

(C
el

ls
/m

l) 
  

SO
42-

 (m
M

) 

δ3
4 S

SO
4 (

‰
 C

D
T

) 

δ1
8 O

SO
4 (

‰
 S

M
O

W
) 

L
og

10
[C

el
l d

en
si

ty
] 

(C
el

ls
/m

l) 
  

L
ac

ta
te

 
M

al
at

e 
E

th
an

ol
 

Fr
uc

to
se

 
G

lu
co

se
 

(a.1) (a.2) 

(b.2) (b.1) 

(c.1) (c.2) 

(d.2) (d.1) 

(e.1) (e.2) 



 

!

!
CHAPTER 3 

!
! !

!
55 

 
 

Figure 3.3: Isotope enrichment. Sulfur isotope vs. the natural logarithm of the 

residual sulfate fraction left in the experiment after bacterial sulfate reduction (a), 

δ18OSO4 vs. δ34SSO4 (b). The rightmost panel shows an enlargement of the middle panel 

(c). 

 

3.4 Discussion 
 

3.4.1 Placing a limit on kinetic oxygen isotope fractionation  

 

In Chapter 2, I summarized how through the use of stable sulfur (33S/32S and 
34S/32S) and oxygen (18O/16O) isotope ratios, isotope geochemistry can reveal 

intracellular processes during MSR.  Isotopes do not necessarily react at the same rate 

in various chemical and biological reactions. Therefore, the ratios among various 

isotopes and their changes over the course of a chemical or biological reaction can 

provide independent information about the nature of the reaction. There are two ways 

through which isotopes of a given element may be partitioned, or fractionated, in the 

natural environment. First, kinetic isotope fractionation occurs because each isotope 

react at a different rate during a chemical reaction and typically, lighter isotopes 

reacts more quickly than the heavier isotopes.  Therefore, as a reaction progresses, the 

product of the reaction concentrates the light isotope and the reactant pool gets 

progressively enriched in the ‘heavy’ isotope. The second mechanism by which 

isotopes can be partitioned is equilibrium isotope fractionation, which is the partial 

separation of isotopes between two molecules that are found in chemical, or isotopic, 
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equilibrium. In equilibrium isotope fractionation the isotopes are distributed among 

various chemical species such that the energy of the system is minimized. 

 

As introduced in Chapter 1 and Chapter 2, the use of δ18OSO4 analyzed during 

MSR mainly targets the reoxidation of intracellular reduced-valence sulfur, although 

the potential importance of kinetic oxygen isotope fractionation is becoming 

increasingly recognized (Brunner 2005:2012; Farquhar et al., 2008; Wortmann 2007, 

Turchyn 2006; Aller et al., 2010; Antler et al., 2013; Wankel 2014). Kinetic oxygen 

isotope fractionation during MSR further complicates interpretations of δ18OSO4, 

because it can influence the apparent equilibrium value (Wortmann et al., 2007; 

Turchyn et al., 2010; Antler et al., 2013—see also equation 2.8 in chapter 2). Some 

studies have previously assumed no kinetic oxygen isotopic fractionation (Brunner et 

al., 2006; 2012), and some estimate an overall kinetic oxygen isotope fractionation as 

high as 10‰ (Wankel et al., 2014).  Turchyn et al. (2010), suggested that the kinetic 

oxygen isotope fractionation cannot be higher than 4‰. All these assumptions lead to 

differing conclusions about cellular fluxes of sulfur and electrons during MSR and 

complicate interpretations of environmental data. 

 

The kinetic oxygen isotope fractionation can only be studied when the effect of 

water-isotope equilibrium on the δ18OSO4 is minimal; that is to say the reoxidation of 

intracellular intermediate valence state sulfur species is minimal. I explore this by 

plotting the slope of the apparent linear phase (‘SALP’, Chapter 2, equation 2.7) 

against the oxygen isotope composition of the water (Figure 3.4a).  My experiments 

demonstrate that the oxygen isotopic composition of water affects the calculated 

SALP in all experiments, including conditions that previously would have been 

interpreted dominantly kinetically driven. Therefore, there is an equilibrium, or 

reoxidative, component contributing to the total sulfate-oxygen isotope fractionation 

under all tested conditions.  However, the experiment exhibiting the smallest 

influence of this oxygen isotope equilibrium can place a limit on the total kinetic 

oxygen isotope fractionation. Thus by picking the lowest SALP among all the 

calculated SALPs, I can identify the upper limit for the kinetic oxygen isotope effect. 

Figure 3.4a shows that the kinetic isotope effect has the largest contribution to the 

measured δ18OSO4 in cultures grown on lactate. 
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The SALP from the lactate experiment grown in water with a δ18OH2O of -5.3‰ 

is the most moderate slope calculated (Figure 3.4a). This moderate slope, 0.009 ± 

0.03, indicates that the kinetic isotope effect on oxygen relative to sulfur is negligible. 

However, the variation in δ18OSO4 in the lactate experiment is very small (~1‰) and 

the error on the analytical measurement for δ18OSO4 is high (on the order of 0.4‰), 

requiring a more conservative calculation. Therefore, I consider the experiment on 

malate, which exhibited the second most moderate slope (Malate- Figure 3.4a).  In 

this case, the slope was still smaller than 0.2, which suggests that the magnitude of the 

kinetic oxygen isotope fractionation cannot be larger than 25% of the magnitude of 

the kinetic isotope fractionation for sulfur isotopes. Overall, I suggest that the kinetic 

oxygen isotope fractionation (ε18Ototal) is between 0 and 5‰.  This value is in 

agreement with Brunner et al. (2005; 2012) and the estimates derived by Turchyn et 

al. (2010) in pure culture studies. However, environmental studies, which find linear 

correlations on the δ18OSO4 vs. δ34SSO4 cross-plot with slopes between 0.34-0.5, 

require considerably higher values for kinetic oxygen isotope fractionation (Sivan et 

al., 2014).  

 

The calculated δ18OSO4(A.E) for each of my experiments is presented in Figure 

3.4b as a function of the cell specific sulfate reduction rate. It can be seen that there is 

an inverse correlation between the δ18OSO4(A.E) value and the cell specific sulfate 

reduction rate. As mentioned in Chapter 2, it has been suggested that the range of 

values often observed for the δ18OSO4(A.E) has been attributed to equilibration of 

intracellular intermediates at different temperatures (impacting the oxygen 

equilibrium isotope fractionation factor). However, because my experiments were 

conducted at the same temperature (~22ºC) and at the same time, I can rule out 

temperature effects on these different oxygen isotope equilibrium. Thus, other factors, 

related to the cell physiology and growth conditions, must modify the value of 

δ18OSO4(A.E). This correlation validates the idea that MSR can generate a range of 

apparent equilibrium values, rather than a fixed value, as previously suggested 

(Wortmann et al., 2007; Turchyn et al., 2010; Wankel et al., 2014; Antler et al., 

2013). This correlation also demonstrates that in the presence of growth conditions 

that favour high cell-specific sulfate reduction rates, the kinetic oxygen isotope 
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fractionation outcompetes the equilibrium fractionation as the δ18OSO4 equilibrium 

tends to infinity (as predicted by Equation 2.8 in Chapter 2).  

 

 
 

Figure 3.4: The slope of the apparent linear phase on the δ18OSO4 vs. δ34SSO4 cross-

plot (SALP) plotted against the oxygen isotopic composition of water used in the 

experiments (a). The apparent equilibrium value of δ18OSO4 (δ18OSO4(A.E)) in each 

experiment plotted against the sulfur isotopic fractionation ε34Stotal  in each 

experiment (b) .   

 

3.4.2 Tracing of intracellular sulfur metabolism during microbial sulfate 

reduction 

 

Sulfur isotope fractionation in my experiments was calculated using Rayleigh-

type distillation by plotting the change in the sulfur isotopic composition against the 

fraction of the remaining sulfate (Figure 3.3a). Similar to previous experiments with 

the same strain of sulfate reducing bacteria (Sim et al., 2011a,b), the sulfur isotope 

fractionation varied greatly, depending on the electron donor.  A number of previous 

studies explored the relationship between the sulfate reduction rate (or cell specific 

sulfate reduction rate) and the magnitude of sulfur isotope fractionation in pure 

culture experiments (e.g. Leavitt et al., 2013; Sim et al., 2011b), in batch culture 

experiments with natural populations (e.g. Stam et al., 2011) or by calculating isotope 

fractionations from pore water fluids (e.g. Aharon and Fu, 2000; Wortmann et al., 

2001). Typically, these studies report an inverse correlation between ε34Stotal and the 
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sulfate reduction rate (e.g. Ono et al., 2014).  My experiments used different organic 

donors to change the cell-specific sulfate reduction rate and reproduced the same 

inverse relationship between the cell-specific sulfate reduction rate and the magnitude 

of sulfur isotope fractionation (Figure 3.5a). This is consistent with previous studies 

of DMSS-1 in culture experiments (Sim et al., 2011a; b). This confirms that the 

smaller the sulfur isotope fractionation is, the lower the fluxes of intracellular sulfur 

intermediates that are being oxidized back to the sulfate pool. Consequently, later 

steps of sulfate reduction (steps 3,4 and 5 — Fig 2.1 chapter 2) have the greatest 

influence on the total sulfur isotope fractionation, with larger forward fluxes reducing 

the overall sulfur isotope fractionation (e.g. Rees 1973; Brunner and Bernasconi, 

2005; Canfield 2006; Wing and Halevy, 2014). 

 

To further explore the intracellular steps during MSR, the minor sulfur isotopes 

(34S /32S versus 33S /32S) provide information on the mixing among different pools 

within the MSR framework (see also Figure 2.2a chapter 2).  As discussed in Chapter 

2, plotting E33S (which provides information on the mixing between the different 

intracellular sulfur pools) versus the sulfur isotope fractionation (ε34Stotal ) allows us to 

resolve some of the intracellular fluxes (up to two branch points – see Figure 2.2a for 

an example of this type of plot). Figure 3.5b presents the calculated Ε33S vs. ε34Stotal 

from my experiments.  It can be seen that the results from this study fall within the 

grey mesh of model space for φ4=1 (the flux ratio of step 4 - the reduction of sulfite to 

polysulfide — Figure 2.1 chapter 2). However, when I plot my data together with 

literature data using the same stain (DMSS-1 --Sim et al., 2011a; 2011b) it is clear 

that the Ε33S vs. ε34Stotal data cannot be explain solely by assuming φ4=1 or φ4=0 and 

additional information is needed to solve the intracellular fluxes uniquely.   

 

I can use the oxygen isotope in sulfate data to resolve this further.  Figure 3.5c 

shows θO calculated from my five different electron donor experiments and plotted 

against ε34Stotal (similar to Figure 2.2b chapter 2).  The θO largely correlates with 

ε34Stotal, where the higher values of ε34Stotal are associated with the larger values of θO. 

Notably, not all the data points fall within the envelopes for the two end member 

solutions (φ=0 and φ=1, black lines and grey lines, respectively, Figure 3.5c).  
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The presence of some data points outside the modelled space in E33S vs. ε34S 

and θO vs. ε34Stotal plots (Figure 3.5a, b, c) is consistent with observations made by 

Brunner et al. (2012) and Sim et al. (2011b) using either one or the other of the plots.  

In practice, this indicates that previous models that account for different branching 

point during MSR, as constrained by stable isotopes of sulfur and csSRRs, do not 

adequately explain all observations that have been made in pure culture and in the 

natural environment. Models currently use either E33S vs. ε34S or θO vs. ε34Stotal, and 

simplify to two branching points (typically the reduction of APS to sulfite and the 

reduction of sulfite to sulfide), but should likely consider additional branching points 

(and enzymatic steps where sulfite is not reduced to sulfide in one step).  My 

experiments with DMSS-1 in pure culture and different electron donors express cell-

specific sulfate reduction rates that vary over two orders of magnitude. The increase 

in cell-specific sulfate reduction rates and the accompanying variations in the stable 

sulfur (33S/32S and 34S/32S) and oxygen (18O/16O) isotope ratios can be used to further 

explore the dynamics of MSR.  

 

 The mismatch between my data and the model space can be used to solve the 

rates of each of the reactions at each branching point. Because the relationships 

among ε34S, E33S, θO and the fluxes ratio are not linear, I solve for each individual 

flux ratio by minimizing the misfit. This flux ratio solution (φ1, φ3 and φ4) is shown in 

Figure 3.5d as a function of the cell-specific sulfate reduction rate;  all the fluxes 

ratios correlate with the cell-specific sulfate reduction rate. My experiments can be 

divided into three broad categories based on the key branching reaction: 1) Lactate 

experiment, with high cell-specific sulfate reduction rates and minimal reoxidation of 

sulfur intermediates; 2) Malate, ethanol and fructose, with moderate cell-specific 

sulfate reduction rates, where sulfite is likely to be the key branch point; 3) Glucose, 

with slow cell-specific sulfate reduction rates where the last step (the reduction to 

sulfide) is the key branch point.  
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Figure 3.5: Isotopic fractionation. (a) Fractionation of 34S/32S as a function of the cell 

specific sulfate reduction rate (csSRR) in this study. Data from Sim et al. (2011a,b) 

are plotted for comparison. Ε33S vs. ε34Stotal (b) and the θO vs. ε34Stotal (c) diagram. 

The bottom right panel (d) is the calculated flux ratio of steps 1,3 and 4 (Figure 2.1—

methods section) as a function of the cell specific sulfate reduction rate. 

 

Oliveira et al. (2008) suggest that the DsrC protein plays a key role in the 

reduction of S0 produced by DsrAB.  In addition, Bradley et al. (2011) suggest that 

both the rate of electron supply and ratio of electrons over sulfite supplied to the Dsr 

subunits will impact the key sulfur intermediate, or branch point, within the reduction 

network. According to my flux calculation (Figure 3.5d) all steps correlate with the 

cell-specific sulfate reduction rate, and therefore it seems that there is no one branch 
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point or step that limits the process; instead, my data suggest that at each branching 

point the reversibility anticorrelates with the overall reduction rate. I suggest that in 

my experimental set up, where the electron donor was not limiting, at the onset of the 

reaction the reversibility of each enzyme was regulated by the cell-specific sulfate 

reduction rate. However, in different settings, where the electron donor or sulfate 

concentrations might be limited or unavailable it is possible that one of the steps will 

become rate-limiting.    

 

In conclusion, I found a strong correlation between the csSRR and ε34S, E33S, 

θO (Figure 3.5) and δ18OSO4(A.E) (Figure 3.4). In addition, as was developed in chapter 

2, the variation on both sulfur and oxygen isotopes is tied to the reversibility of each 

enzymatic step during MSR. This confirms that the reversibility of each reaction is 

closely related to the csSRR and likely determines it. Based on the sulfur and oxygen 

isotopic fractionation I also compute the reversibility of each step and find that the 

reversibility of all the steps (1, 3 and 4) is anti-correlates with the csSRR. Therefore, 

it seems like there is no one rate-limiting step, but all the reversibility of all the steps 

aligns with each other according to the csSRR.     

 

3.4.3 Environmental implications 

 

To what extent do results from pure culture experiments such as this explain the 

geochemical variability in the natural environment?  This section addresses this 

question by applying my insights from pure culture experiments to δ18OSO4 and 

δ34SSO4 data from previously published pore fluids.  This will lead to the next two 

chapters where I will apply the use of δ18OSO4 and δ34SSO4 data that I acquired from 

pore fluids I collected in various shallow marine environments. In this discussion 

relating pore fluid data to my pure culture experiments, the depth below the seafloor 

of total consumption of sulfate is used to calculate the net sulfate reduction rate: 1) 

sulfate is consumed over three meters below the seafloor in environments with high 

sulfate reduction rates (on the order of 10-4 to 10-5 mol cm-3 year-1) such as estuaries 

and methane seeps (Aharon an Fu, 2000 & 2003). 2) Sulfate is consumed between 

three and ten meters in environments with moderate sulfate reduction rates (on the 

order of 10-6 mol cm-3 year-1), including the continental shelf and river deltas (Aller et 
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al., 2010). 3) When sulfate is consumed deeper than ten meters below the seafloor, the 

environment is considered to have low sulfate reduction rates (lower than 10-7 mol 

cm-3 year-1), exemplified by organic-poor deep-sea sediments (Turchyn et al., 2006; 

Wortmann et al., 2007).   

 

Figure 3.6 plots these three categories of site (color coded) for pore fluid 

isotopes in a δ18OSO4 vs. δ34SSO4 crossplot, and overlays the curves for the relative 

evolution of δ18OSO4 vs. δ34SSO4 based on my experiments.  Figure 3.6 shows a 

number of notable features. First, the overall variation in the data from pore fluids 

follows my findings, where at lower sulfate reduction rates, the δ18OSO4 increases 

rapidly compared to the δ34SSO4.  Second, most of the pore fluid data fall above my 

laboratory-derived estimate for kinetic oxygen isotope fractionation.  Lastly, data 

points from many field sites with moderate to low sulfate reduction rates fall above 

the curve of my glucose experiment, which records the highest oxygen isotope 

enrichment in pure culture to date.   

 

In an open system, such as marine sediments, different transport mechanisms 

should modify the δ18OSO4 and δ34SSO4 versus those predicted from closed system 

batch experiments (Jørgensen, 1979; Wortmann et al., 2007).  Therefore, if I want to 

compare my results from this study to pore fluid data, it is important to consider how 

the prevalence of the open system will affect the δ18OSO4 vs. δ34SSO4. My model in 

Chapter 2 suggests that using a calculation of SALP in an open system versus closed 

system, at the most moderate SALP the δ18OSO4 vs. δ34SSO4 in closed and opened 

system are virtually the same. When the SALP is steeper, on the other hand, closed 

system and open system diverge and the open system conditions moderate the 

calculated SALP.  I suggest therefore, that the gaps between my experiments and pore 

fluid δ18OSO4 vs. δ34SSO4 data cannot be explained simply by the different transport 

mechanism of the open system pore fluids versus my closed system batch 

experiments, because the direction by which the closed system results should be 

modified is in the opposite directions of the mismatch between my experiments and 

the pore fluids.    
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Overall, pore fluids and pure culture experiments of microbial sulfate reducers 

exhibit similar trends.  Some gaps between them can be explained by the much lower 

cell-specific sulfate reduction rates relative to batch experiments (e.g. Holmkvist et 

al., 2011). However, some features, such as the high oxygen isotope equilibrium 

values (which can be more than 5‰ higher then expected from my experiment—

Figure 3.6) with high apparent SALP in pore fluids from sites with slow sulfate 

reduction rates may not be explained only by MSR even if I consider any potential 

temperature effect on the oxygen isotope equilibrium between sulfur intermediates 

and water.  Therefore, I suggest that different processes control this relationship in 

those cases. For instance, in gas seeps, where sulfate-driven anaerobic oxidation of 

methane is present, I will demonstrate in subsequent chapters that δ18OSO4 vs. δ34SSO4 

shows a linear correlation with moderate slopes (Aharon an Fu, 2000;2003; Rubin-

Blum et al., 2014; Wehrmann et al., 2011) due to little reoxidation of reduced sulfur 

species (Antler et al., 2015).  In contrast, in organic-poor sediments, the sulfate 

reduction rate is low, a extracellular complex sulfur-iron or sulfur-manganese cycling 

is possible, pushing the slopes on δ18OSO4 vs. δ34SSO4 toward much steeper slopes as 

δ18OSO4 increases with minor change in δ34SSO4  (e.g. Aller et al., 2010, Blake et al., 

2006; Böttcher et al., 2006). 

 

The next challenge will be to resolve the gap between the pure cultures 

experiments and in situ pore fluid δ34SSO4 and δ18OSO4. This might be enabled by the 

increasing availability of coupled measurements of δ34SSO4, δ33SSO4 and δ18OSO4 

together with csSRR. Studies of microbial cultures at even lower cell-specific sulfate 

reduction rates than now available may also yield even higher δ34SSO4, δ33SSO4 and 

δ18OSO4 signals and expand the known range of oxygen and sulfur isotope 

fractionations accessible to MSR.   
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Figure 3.6: δ18OSO4 vs. δ34SSO4 data from pore fluids data superposed with estimation. 

(Data were taken from Aharon and Fu, 2000; 2003; Aller et al., 2010 Antler et al., 

2013; Böttcher et al., 1998; 1999; 2006; Blake et al., 2006; Wehrmann et al., 2011; 

Wortmann 2006; 2007)     

3.5 Conclusions  
 

In this chapter I presented multiple sulfur and oxygen isotope data from pure 

culture Desulfovibrio sp. (Strain DMSS-1). Within these cultures on different electron 

donors, the cell specific sulfate reduction rates vary over two orders of magnitudes. I 

demonstrate how both the isotopic fractionation of sulfur and oxygen in dissolved 

sulfate record different processes even under controlled conditions and as a function 

of sulfate reduction rates. As previously shown, the 34S/32S fractionation varies 

between 7 and 61‰ and correlates with the cell specific sulfate reduction rates. As for 

the oxygen isotopes in dissolved sulfate, in this chapter, I show for the first time that 

oxygen isotopes can exceed the isotopic composition of the water and that the oxygen 

isotopes apparent equilibrium is also a function of the cell specific sulfate reduction 

rates. I later used these results to solve uniquely the fluxes ratios of each individual 

step during microbial sulfate reduction.  

 



 

!

!
CHAPTER 3 

!
! !

!
66 

I also compared my pure culture sulfur and oxygen isotopes results to results 

from pore fluid sulfate from the literature. Although my experiments show the highest 

sulfur and oxygen isotopes ever recorder from pure culture, the isotopes results do not 

cover the entire span of the results from within the natural environment. I suggest that 

the gap between lab experiments and the natural environment is probably due to the 

fact that in the natural environment the organic matter availability is much lower then 

even in my slowest experiment.  In addition, it is possible that other processes such as 

sulfur oxidation to sulfide, sulfur disproportionation and sulfate-driven anaerobic 

methane oxidation impact the isotopic correlation in the natural environment from the 

one predicted by pure culture experiments. More pure culture experiments that push 

down the organic matter availability even further are needed, in addition to 

experiments with natural population to explore the integrated of all the processes that 

involve sulfur on the isotopic signature of sulfur and oxygen in dissolved sulfate.     
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Chapter 4 

Sulfur and oxygen isotope insight into      

sulfate-driven anaerobic methane oxidation in 

estuarine sediments 
 

 

Estuaries sit at the transition zone between the marine and terrestrial 

environments and provide an ideal location to study microbial sulfate reduction and 

sulfate-driven anaerobic oxidation of methane (AOM). This is because estuaries often 

trap large amounts of organic carbon from terrestrial weathering and yet are coupled 

with high sulfate concentrations from the ocean.  Worldwide, there are ~1200 major 

estuaries, covering an area of 500,000km2 - the equivalent to almost 0.5% of the 

ocean floor. Because estuaries are in shallow water they can be easily sampled (unlike 

deeper marine sediments) and because of the high supply of organic carbon, anaerobic 

microbial reactions often occur higher up in the sediment column then they do in open 

marine sediments.  

 

Several coastal areas in the South- and East- Mediterranean are characterized by 

relatively small-stream estuaries with low natural flows and a high load of organic 

carbon. In certain cases, as along the Mediterranean coast of Israel, the bottom 

bathymetry of the lower parts of the coastal streams lies below sea level, which 

enables the intrusion of seawater and the formation of highly salinity-stratified 

estuaries which can extend up to a few kilometers inland. The combination of high 

concentrations of sulfate (from the ocean) and fast depletion of sulfate within 

sediments due to high organic matter load, makes these sites ideal to investigate the 

sedimentary microbial sulfate reduction, sulfate-driven AOM and even deeper 

processes in relatively short cores. 
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As explored throughout this thesis, the sulfur and oxygen isotope composition 

of residual sulfate has been used to explore the mechanism of microbial sulfate 

reduction during organic matter oxidation both in pure culture (e.g. Mangalo et al., 

2007; Mangalo et al., 2008; Turchyn et al., 2010; this thesis) and in the natural 

environment (e.g. Böttcher et al., 1998; Böttcher et al., 1999; Aharon and Fu, 2000; 

Aharon and Fu, 2003; Turchyn et al., 2006; Wortmann et al., 2007; Antler et al., 2013 

– see introduction/Chapter 1 of this thesis).  However, only recently have sulfur and 

oxygen isotopes in sulfate been used specifically to study sulfate-driven AOM, and to 

understand whether the intracellular mechanism of sulfate reduction is different when 

microbial sulfate redcution is coupled to AOM as opposed to generic organic matter 

oxidation, also known as organiclastic sulfate reduction (Deusner et al., 2014; Sivan 

et al., 2014). The fact that coupled sulfur and oxygen isotopes in sulfate haven’t been 

analysed near the sulfate-methane transition zone to explore sulfate-driven AOM is 

partly because of the technical difficulty of measuring the isotopes of sulfate where 

the sulfate concentration is low.  

 

In the last 15 years, much biological and biochemical evidence was gathered on 

the differences between microbial sulfate reduction coupled with organic matter 

oxidation versus coupled in sulfate-driven AOM, however, little is still know about 

how these biological and biochemical differences affect the geochemistry. In this 

chapter, I will investigate microbial sulfate reduction and sulfate-driven AOM at two 

different estuary sites, located off the Mediterranean coast of Israel (The Yarqon and 

the Qishon estuaries), using multi-isotope measurements to further our understanding 

of the dynamic of this process.  I report carbon isotopes in dissolved inorganic carbon 

(δ13CDIC), sulfur and oxygen isotopes in pore fluid sulfate (δ34SSO4 and δ18OSO4, 

respectively) and carbon isotopes in pore fluid methane (δ13CCH4) as well as the 

concentrations of dissolved inorganic carbon (DIC), sulfate, and methane. The 

samples were collected off the Mediterranean coast of Israel (The Yarqon and the 

Qishon estuaries).  
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4.1 Methods 
 

4.1.1 Study sites 

 

The Yarqon (Site Y3-- Figure 4.1) is the largest coastal river in Israel with a 

length of 27.5 km and a drainage basin area of 1800 km2.  The estuary contains high 

organic carbon load from up-stream of 20-60 mg L-1 (Gafny et al., 2000) and a lower 

water mass close to seawater salinity.  The Qishon (Site QB2-- Figure 4.1) stream 

drainage area occupies 1100 km2, with intensive agricultural activity and industry 

taking place within the basin.  The 7-km long Qishon estuary is characterized by the 

penetration of seawater, thereby producing a highly stratified water column.  Nearby 

industrial plants provide high nutrients/carbon load in the Qishon estuary (Eliani-

Russak et al., 2013). The salinity of the pore fluids in the two estuaries is close to the 

salinity of the eastern Mediterranean (Antler et al., 2013; Eliani-Russak et al., 2013) 

with a δ18OH2O of 2± 0.5%, similar to previous measurements of the δ18OH2O of the 

eastern Mediterranean (e.g. Sisma-Ventura et al., 2009).  Thus the water at the 

boundary layer of the estuary sediments is predominantly saline Mediterranean water 

and the pore fluids see far less of the top layer of estuarine freshwater.  

 

4.1.2 Sampling and samples preparation 

 

The sediments from the Yarqon estuary (location: 32° 4.334'N, 34° 46.559'E, 

water depth: 2m, distance from the shore: 1km) were sampled by 50 cm long perspex 

tubes using a gravity corer.  The sediments from the Qishon estuary (location: 32° 

48.503'N, 35° 1.717'E; water depth: 4m; distance from the shore: 0.7km) were 

sampled by a box corer sub-sampled by 50 cm long Perspex tubes and by piston 

corer. The sediment was returned immediately to the lab and sliced to 1 cm slices 

under an argon atmosphere to avoid oxygen contamination.  For methane and δ13CCH4 

measurements, a special corer with side holes (1 cm in diameter) every two 

centimeters has been designed for quick and more precise subsampling.  Through this 

special corer, ~2 ml of the sediment was taken using an edge cut syringe into a 

flushed argon bottle containing 5 ml sodium hydroxide (1.5 N) and the bottle was 
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sealed with crimper.  

 

 

 
 

Figure 4.1: Map of the study area: Eastern Mediterranean region (a), A core from the 

Yarqon estuary (b), sampling at the Qishon estuary (c). The dots and the 

corresponding labels indicate the site locations and names, respectively. 

 

Pore fluids were extracted using a centrifuge flushed with argon. 2 ml of filtered 

samples were transferred into vials for measurement of major ions and the δ18OSO4 

and δ34SSO4.  Those samples were flushed with argon for 15 minutes.  Pore fluid 

sulfate was precipitated as barium sulfate (barite) using a saturated barium chloride 

solution. The barite was then washed with 6N HCl and distilled water. For the 

dissolved inorganic carbon and δ13CDIC measurements the sample was filtered (0.45 

µm) and transferred into poisoned syringe containing HgCl2 powder. The details of 

the methods are included in Chapter 2.  

 

 

 

Qishon 

Yarqon 

(a) 

(b) (c) 
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4.2 Results 
 

In the Yarqon estuary (Y3—Figure 4.2) the pore-fluid sulfate concentration 

profile (Figure 4.2a) shows an almost linear decrease from the sediment-water 

interface down to complete sulfate depletion at the sulfate-methane transition zone at 

15 cm.  The dissolved inorganic carbon concentration profile mirrors the sulfate 

profile, increasing from the sediment water interface to 50 mM at 25 cm (Figure 

4.2b). Methane concentrations increase from the sediment-water interface up to 0.6 

mM around 11 cm depth and then level off (Figure 4.2c).  The δ13CDIC sharply 

decreases from -17‰ at the sediment-water interface to -23‰ at 10 cm and remains 

at this value downcore. Both the δ18OSO4 and δ34SSO4 increase with depth, below 10 

cm the increase in δ18OSO4 moderates with depth (Figure 4.2a and 4.2d, respectively). 

The δ13CCH4 values (Figure 4.2c) are scattered throughout the core and vary over a 

range of around 15‰.    

 

In the Qishon estuary (QB2— Figure 4.3) sulfate is depleted by 18 cm. Similar 

to the profile observed in the Yarqon sediments, the dissolved inorganic carbon 

concentration profile mirrors the sulfate concentration profile. (Figure 4.3a and 4.3b).  

Methane concentrations are similar in magnitude to the Yarqon in the box corer 

profile, however the piston corer profile enabled us to observe an increase in methane 

to 2 mM at a depth of 26 cm (Figure 4.3c).  In the Qishon the δ13CDIC decreases from -

10‰ to -18‰ in the upper 10 cm, but then increases sharply to -7 ‰ by 30 cm 

(Figure 4.3b).  As in the Yarqon, in the Qishon both the δ18OSO4 and δ34SSO4 increase 

with depth (Figure 4.2 a and d and 4.3 a and d, respectively).  δ13CCH4 data are 

scattered but shows 15‰ decrease below a depth of 15cm (Figure 4.3c). 
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4.3 Discussion  
 

4.3.1 Methanogenesis and methanotrophy in the Yarqon and the Qishon 

sediments 

 

At first glance, both studied sites seem to have comparable subsurface 

geochemistry and thus likely a similar sequence of anaerobic microbial reactions in 

the sediments: a decrease in sulfate concentrations and corresponding accumulation in 

dissolved inorganic carbon and some increase in methane concentrations (Figure 4.2 

and 4.3).  Both sites are good candidates for sulfate-driven AOM in a marginal marine 

setting.  Other than the depletion of sulfate followed by the increase in methane 

concentration, is there other evidence for both methane production and subsurface 

methane consumption in these estuarine environments?  

 

One indication for methanogenesis and methanotrophy in these estuarine 

sediments is the δ13CCH4. During AOM, 12C-bearing methane is preferentially 

oxidized leaving 13C-bearing methane behind. Thus the δ13CCH4 should become more 
13C depleted with depth below the depth of methanotrophy due to less methane 

consumption and the production of 13C depleted methane below.  The δ13CCH4 profiles 

from the Yarqon and the Qishon cores suggest that at both sites there is subsurface 

methane production and consumption; δ13CCH4 increases from around -75‰ below the 

sulfate minimum zone to -60‰ in the top sediments (Figure 4.2 and 4.3).  This 

change in the δ13CCH4 suggests there is a zone of production of methane and above it a 

zone of consumption of methane.  However, the scattered profiles do not allow me to 

estimate clearly the depth distribution. 

 

The isotopic composition of dissolved inorganic carbon (δ13CDIC) can also 

provide evidence for the spatial location of methanotrophy and methanogenesis 

within subsurface sediments.  Due to the extremely high carbon isotope fractionation 

during methanogenesis (up to 100 ‰—Whiticar, 1999) the resulted methane is much 

more 13C depleted, or lighter, than the resulting or residual dissolved inorganic 

carbon.  Methane oxidation, on the other hand, has a much smaller carbon isotope 
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fractionation (0-10‰— Alperin et al., 1988; Martens et al., 1999), producing 

dissolved inorganic carbon that has a similar carbon isotope composition to its 

methane precursor. The δ13CDIC profiles from the Yarqon and the Qishon (Figure 4.2b 

and 4.3b, respectively) are markedly different, although from the sediment-water 

interface to 7cm depth the δ13CDIC decreases at both of the cores, suggesting 12C 

enriched dissolved inorganic carbon is being added to the pore fluids. However, 

below 7cm in the Yarqon, the δ13CDIC remains fairly constant (Figure 4.2b) while in 

the Qishon the δ13CDIC starts to increase again, as would be expected from the classic 

isotope geochemistry profiles of insitu deep methanogenesis (Figure 4.3b).  

 

The fact that the δ13CDIC in the Yarqon does not increase suggests that the 

methane is produced much further below the studied core or that the methane is 

produced and consumed at the same depth (7cm in the Yarqon).  If the methane is 

produced below the studied sediment core, then at this ‘other location’ a pool of 

isotopically heavy dissolved inorganic carbon would exist, coupled to the isotopically 

light pool of generated methane.  That isotopically heavy dissolved inorganic carbon 

would need to be diffusing elsewhere, or precipitated as authigenic carbonate at the 

‘other location’ such that I do not observe it within my studied sediment core, while 

the methane diffuses or advects to my studied site.  The second possibility to explain 

the lack of change in the δ13CDIC below 7cm in the Yarqon is that the methane is 

produced at the same depth where it is consumed.  This would create an isotopically 

closed system where the δ13CDIC does not change dramatically, and is not inconsistent 

with the measurement of isotopically light methane that I have made in the Yarqon.  

Since methane concentrations are two orders of magnitude less than the dissolved 

inorganic carbon concentration, 12C-rich methane can be generated locally (in small 

concentration) without necessarily impacting the residual δ13CDIC.  

 

The difference in the δ13CDIC profiles between the Qishon and the Yarkon is the 

first suggestion that the subsurface microbial processes are different between these 

two sites.  While the carbon isotopes suggest that the location of methanogensis and 

methanotrophy are different between the Yarqon and Qishon estuaries, my question is 

whether this impacts the link between sulfate and methane. The sulfate concentration 

profiles at both sites are slightly different as well. While at the Yarqon site the sulfate 
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concentration profile is almost linear, at the Qishon site the sulfate concentration 

profile is slightly concave-up.  I plot the dissolved inorganic carbon vs. sulfate 

concentrations (Figure 4.4), which reveal that the ratio of change in sulfate versus 

dissolved inorganic carbon is also different between the sites.  In the Yarqon 

sediments, the ratio of change in sulfate versus dissolved inorganic carbon is close to -

1:1 (one mole of sulfate consumed to one mole of dissolved inorganic carbon 

generated Figure 4.4a), while in the Qishon estuary the ratio is not constant with 

depth and changes from almost -1:2 at the upper part of the core to -1:1 at the lower 

part (Figure 4.4b).  This stoichiometric ratio between sulfate and dissolved inorganic 

carbon hints at the pathway through which sulfate is being consumed: during sulfate-

driven AOM we expect a ratio of -1:1 (Similar to Burdige and Komada, 2011) 

between sulfate consumption and dissolved inorganic carbon production (Eq. 1.9, 

introduction), while in organic matter oxidation we expect a mol ratio of -1:2 for 

sulfate consumption to dissolved inorganic carbon production (Eq. 1.1, introduction). 

 

 

 
 

Figure 4.4: Dissolved inorganic carbon (DIC) vs. sulfate concentration from the 

Yarqon (a) and the Qhison (b). The slope is -1.2 at the Yarqon whereas it is -1.9 at the 

Qishon in the upper part of the core and it decreases to -1 in the bottom part.  
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This stoichiometry by itself, however, does not provide definitive evidence for 

the microbial processes occurring in these sediments.  This is because there might be 

other sources and sinks of dissolved inorganic carbon (or sulfate) in the sediment that 

could interfere with the stoichiometrically predicted ratios.  For example, oxidation of 

organic matter by electron acceptors other than sulfate, or subsurface precipitation of 

carbonate minerals could both interfere with the ratio of sulfate to dissolved inorganic 

carbon.  Furthermore, subsurface sulfide oxidation could also interfere with the 

sulfate- dissolved inorganic carbon ratio.  Although these may be a problem in this 

environment, I still conclude that the sharply different sulfate-to- dissolved inorganic 

carbon ratios between the sites indicate sulfate-driven AOM dominates in the Yarqon 

sediments and in the Qishon, the upper 10 cm are dominated by organo-clastic sulfate 

reduction and sulfate-driven AOM is occurring below. 

 

Over all, although there are similarities in the concentration profiles of pore 

fluid sulfate, dissolved inorganic carbon and the methane concentrations between the 

Yarqon and Qishon estuary sites, the rate of change of the sulfate vs. dissolved 

inorganic carbon and the carbon isotopes (of both methane and dissolved inorganic 

carbon) are fundamentally different.  I suggest that these differences can be attributed 

to different depth distributions of the microbial activity or to the reactivity of organic 

matter.  In the Qishon, the microbial activity is spatially stacked like the ‘classic’ 

marine sulfate-driven AOM profiles, with the upper section (0-7cm) dominated by 

sulfate-driven organic matter oxidation, the middle section (7-15 cm) dominated by 

sulfate-driven AOM and the bottom section (15-30cm) dominated by methanogenesis 

(Figure 4.2 and 4.3). In contrast, in the Yarqon, the methane is either being produced 

and consumed at the same depth or is being produced elsewhere and is diffusing into 

the studied core, and there is little evidence that sulfate is consumed through anything 

other than sulfate-driven AOM. 

 

4.3.2 Sulfur and oxygen isotope insight into the sulfate-methane coupling    

 

  As suggested above, the pore fluid profile of dissolved inorganic carbon and 

sulfate do not, alone, provide enough detail about the mechanism of sulfate-driven 

AOM in either the Yarqon or Qishon sediments.  In contrast the carbon isotopes of 
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the dissolved inorganic carbon suggest that the distribution of methane production and 

consumption may be different at the two sites.  Given that we have the potential for 

different processes between these two sites, the question is whether there is a 

difference in the mechanism of sulfate reduction between these two sites.  As 

mentioned in the thesis introduction, the sulfur and oxygen isotope composition of 

pore fluid sulfate can yield unique insight into the understanding of the mechanism of 

sulfate reduction when coupled either to organic matter oxidation or to AOM. 

 

Although both the sulfur and oxygen isotope composition of sulfate increase at 

both sites, the relative change in the δ18OSO4 versus δ34SSO4 is unique at each site, 

hinting that the mechanism of sulfate reduction differs between the different sulfate-

driven AOM zones (Figure 4.5).  The δ18OSO4 vs. δ34SSO4 cross-plot from the Yarqon 

shows two stages; until 10cm depth the δ18OSO4 increases moderately relative to the 

δ34SSO4 (=0.37— Figure 4.5a), but deeper in the sediment the δ18OSO4 remains constant 

while δ34SSO4 increases.  At the Qishon the slope between the δ18OSO4 and δ34SSO4 is 

almost double that of the Yarqon, but becomes more moderate at depth (Figure 4.5a—

solid line).  However, due to poor sampling resolution (low sulfate concentration 

yields small amount of barite which is then not sufficient for δ18OSO4 and δ34SSO4 

analysis), I suggest that the moderation of the slope in the Qishon may actually be 

concave, as has been seen at other sites (e.g. Böttcher et al., 1998; Aller et al., 2010; 

Antler et al., 2013) and not necessarily a two-step curve (Figure 4.5a- dashed line).  
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Figure 4.5: δ18OSO4 vs. δ34SSO4 from the Yarqon (site Y3- red) and the Qishon (site 

QB2- blue) estuaries (Israel), the solid lines are two-stages linear fit, and the dashed 

line is the option of concaved curve (a), and data from Organic-carbon poor deep-sea 

sediment (Turchyn et al., 2006) and cold seeps (Aharon and Fu 2000). The dashed 

lines are schematic.   

 

Extending this type of dataset to other sulfate-methane transition zones would 

allow us to probe how different mechanisms of sulfate-driven AOM are manifest in 

subsurface isotope geochemistry. However, the paucity of isotope data from similar 

marginal marine environments makes this comparison tricky.  The slope of δ18OSO4 

vs. δ34SSO4 seems to be pointing to environmental controls on the mechanism of 

sulfate reduction.  For example, Aharon and Fu (2000) studied the relationship 

between δ18OSO4 and δ34SSO4 in the Gulf of Mexico and found that the slope emerging 

between δ18OSO4 vs. δ34SSO4 is as low as 0.29 during sulfate reduction associated with 

gas seeps.  On the other hand, in natural environments where no methane was 

detected and microbial sulfate reduction proceeds via organoclastic oxidation, the 

slope between δ18OSO4 vs. δ34SSO4 is normally steeper than 0.8 (compiled by Antler et 

al., 2013).  I plot these two extremes of the slope of δ18OSO4 vs. δ34SSO4 together with 

data from the current study (Figure 4.5b): I used the data from Turchyn et al. (2006) 

(ODP site 1086, leg 175, located in the West African Margin in 780 m deep water) as 

a representative of an organoclastic sulfate reduction dominated site, and the data 

from Aharon and Fu (2000) (located in the Gulf of Mexico, water depth of 591m) as 
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representative of a site where sulfate-driven AOM dominates.  The data in blue on the 

furthest left represent microbial sulfate reduction only through organic matter 

oxidation (the data is from a organic carbon-poor deep-sea sediment site) while the 

data in red is the data from the gas seep in the Gulf of Mexico (Aharon and Fu, 2000).  

The Yarqon and Qhison data fall between these extremes, however the data from the 

Qishon are closer to the organic-carbon-poor deep-sea sediment site and the data from 

the Yarqon are more similar in slope to the gas seep site with dominated sulfate-

driven AOM.  

 

The shape of the δ18OSO4 vs. δ34SSO4 cross-plot holds information about the 

recycling of sulfur intermediates during microbial sulfate reduction, as discussed in 

the introduction (Brunner et al., 2005; Turchyn et al., 2006; Wortmann et al., 2007; 

Brunner et al., 2012; Antler et al., 2013).  The quicker the δ18OSO4 changes relative to 

δ34SSO4 (or the steeper the slope on a cross plot like in Figure 4.5) the more sulfate is 

brought into the cell, exchanges oxygen atoms with water, and is returned back to the 

extracellular sulfate pool, relative to the amount that is reduced (Bruner et al., 2005; 

Antler et al., 2013).  In contrast, when the δ34SSO4 evolves more rapidly than the 

δ18OSO4 (a shallower slope on a cross plot like Figure 4.5), then more sulfate is 

brought into the cell and reduced, and less is intercellularly recycled back to sulfate.  

Changes in the slope of the isotopes in δ18OSO4 vs. δ34SSO4 space likely indicate 

changes in the mechanism of which sulfate is been reduced (changes in the 

intercellular forward and backward fluxes).   

 

There are other factors that can impact the relationship between δ18OSO4 and 

δ34SSO4 that may be important within these estuary sediments.  For example anaerobic 

sulfide oxidation within marine sediments would produce sulfate that has a low 

δ34SSO4 and a δ18OSO4 close to the δ18O of the water (e.g. Aller et al., 2010); this would 

drive the uppermost pore fluids both lower in their sulfur and oxygen isotope 

compositions. Also, if sulfide is partially reoxidized and then undergoes 

disproportionation this would also impact the slope of δ18OSO4 vs. δ34SSO4, although 

this would have a variable effect on the isotopes given the pathway of 

disproportionation (Cypionka et al., 1998; Böttcher et al., 2001; Böttcher et al., 2005; 

Böttcher and Thamdrup, 2001; Aharon and Fu, 2003).  I assume that these processes 
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are less important in these estuary sediments than the dominant process of sulfate-

driven AOM.  In addition, if the sulfate concentration is not in steady state, as the 

sulfate concentration profile in the Qishon may suggest, this can impact the 

relationship between δ18OSO4 and δ34SSO4.  Aller et al. (2010) has shown that the 

impact of the non-steady state sulfate concentrations on the δ18OSO4 vs. δ34SSO4 is not 

dramatic. In addition, in the Qishon and the Yarqon, the characteristic time scale of 

diffusion of sulfate is at least an order of magnitude higher than in the sediment that 

Aller et al. (2010) studied and therefore the δ18OSO4 vs. δ34SSO4 relationship should be 

much more resilient to perturbations in sulfate concentration. Finally, the uppermost 

pore water consists mainly of seawater at both sites with similar oxygen isotopic 

composition of the water. This rules out that the difference between the two sites is a 

result of a different water source.  

 

For these two estuaries, I suggest that as the slope of δ18OSO4 vs. δ34SSO4 

decreases with depth at both studied sites this indicates a shift in the mechanism of 

microbial sulfate reduction (Figure 4.5a).  In the Yarqon, where this moderation is not 

linked to other geochemical changes with depth in the core, I suggest that this 

moderation may reflect a subtle change of the percentage of recycling of sulfur 

intermediates, or the point where the oxygen isotopes have reached ‘apparent 

equilibrium’ with water.  On the other hand, in the Qishon, the change in the slope of 

the δ18OSO4 vs. δ34SSO4 cross-plot is synchronous with the break in slope in dissolved 

inorganic carbon:sulfate space (Figure 4.4) and the change in the carbon isotopes of 

pore fluid dissolved inorganic carbon.  This suggests that the sulfur and oxygen 

isotopes in sulfate shift in the Qishon in response to a change in the type of the 

electron donor used by the sulfate reducing bacteria from organic matter to methane. 

The reason for this difference in the mechanism of the sulfate reduction may be 

connected to the depositional setting of each of the site. I speculate, that the high 

organic content (TOC) in the Qishon (∼10%) versus the Yarqon (∼2.5%) may 

promote organoclastic sulfate reduction over sulfate-driven AOM (Sivan et al., 2007; 

Pohlman et al., 2013) at the upper part of the sediment.  

 

Recent studies have found that the pathway by which sulfate is being reduced 

during sulfate-driven AOM may be fundamentally different than during microbial 
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sulfate reduction (Holler et al., 2011, Milucka et al., 2012).  During sulfate-driven 

AOM, zero-valent sulfur was found to be a key intermediate, which later can be 

disproportionated resulting in sulfide and sulfate (Milucka et al., 2012).  The impact 

of this fundamentally different mechanism on the δ18OSO4 vs. δ34SSO4 is not yet clear.  

Steeper δ18OSO4 vs. δ34SSO4 is typically correlated to higher percentage of recycling of 

sulfur intermediates (Brunner et al., 2005; Brunner et al., 2012; Antler et al., 2013).  

My results suggest that during sulfate-driven AOM, less sulfur intermediates are 

being re-oxidized back to sulfate compared to organoclastic sulfate reduction.   

 

Another possibility is that the linear trend found in the δ18OSO4 vs. δ34SSO4 cross 

plot at sites with sulfate-driven AOM is a result of mixing through diffusion of sulfate 

with two isotopic end members. This explanation however has been challenged due to 

the different environmental setting of the sediments from the Yarqon estuary and the 

Gulf of Mexico, with significantly different temperature, porosity, water pressure and 

sedimentation rate, which impact the rate of diffusion of sulfate and its different 

isotopologues.      

 

4.4 Summary and conclusions  
 

In this chapter I presented pore fluid isotopes and concentration measurements 

from two estuaries, the Yarqon and the Qishon.  These pore fluid profiles had steep 

redox gradients, including depletion of sulfate concentration with depth and a 

corresponding increase in the concentrations of dissolved inorganic carbon and 

methane.  Although these two estuaries are similar in many regards, the zonation of 

various processes differs between the two sites. The data indicate that in the Qishon, 

organoclastic sulfate reduction takes place in the upper part of the sediment and 

sulfate-driven AOM occurs below. In contrast, at the Yarqon, the entire sediment is 

mostly dominated by sulfate-driven AOM.  I suggest that the use of multiple isotopic 

and geochemical measurements elucidate these differences.  

 

In addition, the δ18OSO4 vs. δ34SSO4 pattern at these two sites is different; this 

suggests different pathways for the sulfate to be reduced and recycled. My data, 

together with data from the literature reveals that the δ18OSO4 vs. δ34SSO4 for the 
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Qishon is similar to sites from organic-carbon poor deep-sea sediments where 

organoclastic is dominates, whereas the Yarqon is similar to cold seeps, which are 

dominated by sulfate-driven AOM. I suggest that the different δ18OSO4 vs. δ34SSO4 

patterns are the result of different mechanisms during this processes. However 

experiments with natural sediments are required to rule out the effect of diffusion or 

advection that may result in linear correlation between δ18OSO4 vs. δ34SSO4 in cold 

seeps. These patterns have the potential to provide a unique geochemical fingerprint 

for each process, and therefore aid us in assessing the location of these processes 

within marine or marginal marine sediments. In addition, this fingerprint could 

potentially be preserved in the geological record in the form of carbonate-associated 

sulfate particularly in authigenic carbonates.  This will be explored later in the thesis. 
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Chapter 5 

Sulfur and oxygen isotope tracing of sulfate 

driven anaerobic methane oxidation in the 

South-Eastern Mediterranean 
 

 
In the last chapter I explored how, within estuarine sediments, changes in 

sulfate and methane concentrations in pore water can be used to assess the nature and 

coupling of sulfate consumption to methane oxidation.  In that chapter I was able to 

demonstrate that the intracellular mechanism of MSR is different when sulfate 

reduction is coupled to methane oxidation versus when it is coupled to organic carbon 

oxidation.  Now I would like to explore the nature of the mechanism of MSR in 

sulfate-driven AOM.  The zone where this sulfate-driven AOM occurs doesn’t always 

look the same, and can be divided broadly into two types largely related to the 

methane flux.  The first type is a sharp sulfate-methane transition depth where 

chemical reactions zones are distinct: a methane-devoid zone in the upper parts of the 

sediment and sulfate-devoid zone below. In this case, microbial sulfate reduction 

quantitatively consumes the methane diffusing upwards from the lower zone of 

methane production. The second type of sulfate-driven AOM occurs where methane 

‘seeps’ from the sediment surface into the water column; in this case there is no sharp 

transition zone in the geochemistry of the pore fluids between where sulfate and 

methane are present, and methane escapes full consumption and can ‘bubble’ out of 

the sediment. Because sulfate-driven AOM leads to an increase in pH and alkalinity, 

carbonate precipitation is often associated both with methane seeps and at the sulfate-

methane transition zone. Both of these types of sulfate-methane transition zones can 

be observed in the sediment of the Eastern Mediterranean Sea, albeit at different 

depths and locations. 
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The shallow sediments of the South-Eastern Mediterranean continental shelf are 

affected by the current oligotrophic conditions and contain low overall organic carbon 

concentrations (<1 weight%), and have not been extensively investigated previously. 

In spite of the low overall organic carbon content in these sediments, Schattner et al. 

(2012) interpreted a band of high-amplitude scattered reflectivity observed in high 

(~0.3 m) resolution seismic profiles across this part of the continental shelf (northern 

Israel) to reflect the presence of a ‘gas front’ within the seafloor sediments at water 

depths between 37 and 112 m.  This presence of gas, deep in the sediments suggests 

that somewhere above the gas a sulfate-methane transition zone would exist in these 

sediments. Schattner et al. (2012) also observed repeatedly (over ~3 years) acoustic 

reflectivity in the water column above the seafloor, which they concluded represented 

active gas seepage. Thus it seems that there is both a sulfate-methane transition zone 

in the sediments as well as the possible presence of a methane seep.  

 

In many ways these findings weren’t a surprise. The deeper water South-Eastern 

Mediterranean Sea is a hotspot of methane and other hydrocarbon seepage (Coleman 

& Ballard 2001; Heijs et al. 2007; Loncke 2004; Mascle et al. 2006; Omoregie et al. 

2008; Omoregie et al. 2009). During the 2011 exploration season of the Nautilus E/V, 

gas/fluid-charged sediments emitting methane and other hydrocarbons, possibly 

associated with deeper reservoirs of natural gas, were discovered at a water depth of 

approximately 1000m in the area of small faults and scarps within Palmachim 

disturbance feature in the Levantine basin (Coleman et al. 2012). These sediments 

were associated with visible gas bubbling at the sampling location and the presence of 

biogenic carbonates, resulting from the AOM-induced alkalinity shift (Knittel & 

Boetius 2009).  I participated in this cruise and in one other cruise to shallower 

sediments on the Eastern Mediterranean shelf.  In this chapter I will explore the 

relationship between sulfur and oxygen isotopes in dissolved sulfate during sulfate-

driven AOM at methane seeps and at the sulfate methane transition zone in both the 

deep and shallow sediments of the South-Eastern Mediterranean from samples 

acquired during 2011 Nautilus E/V field session and 2013 R.V. Shikmona off the 

shore of Israel.  
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5.1 Methods 
 

5.1.1 Study sites 

 

Samples were collected during the 2011 Nautilus E/V field season at a water 

depth of 1134 meters.  Nautilus E/V is equipped with Hercules and Argus Remotely 

Operated Vehicle (ROV) systems, which are able to collect high-resolution video, 

oceanographic data, and precision sampling. Acre ‘black patch’ and Palmachim ‘gas 

seep’ cores were taken with 7 cm diameter, 30 cm long pushcores. The ‘black patch’ 

was observed and sampled at the Acre location, 32°56.1464´ N 34°46.9735´ E, at 

water depth of 1099 m (Acre core—Figure 5.1). Since the patch was present on a 

slope of a pockmark (70°-90°), the cores were taken at this location perpendicularly to 

the sediment surface by hovering ROV and were virtually horizontal. Separate cores 

were taken for the quantitative and isotopic analysis of methane and sulfate and for 

the determination of microbial populations. The ‘gas seep’ location was sampled at 

the Palmachim disturbance, at 32°08.9668´ N 34°07.6177´E (Palmachim) (Figure 

5.1).  

 

In shallower sediments, Core PC-6 (32.921567´ N 34.902367´ E) was obtained 

in August 2013 on the R.V. Shikmona in undisturbed seafloor sediments at water 

depth of 49m (Figure 5.1). The sediment core (5.5 m long) was collected by a benthos 

2175 piston corer. The study site location was chosen because it was on top of high-

amplitude scattered reflectivity, interpreted to be related with the presence of free gas 

bubbles (Schattner et al. (2012) ‘Gas Front’). The actual coring location corresponds 

in general to relatively shallow interpreted gas related reflectivity. The sediment cores 

were sliced on board every 40-50 cm within minutes of the core extraction from the 

seafloor.  

 

For methane measurements at Acre and Palmachim, a special corer with side 

holes (1 cm in diameter—similar to the core used in chapter 4) has been designed for 

quick and more precise subsampling in order to reduce the amount of methane lost 
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during sampling. Because methane is still likely lost during sampling, our 

measurements are minimum methane concentrations.  

  

 
 

Figure 5.1: Map of the study area in a map of the Eastern Mediterranean region (a). 

Sampling at Arce (b), Palmachim (c) and Netanya (d) sites.  

!

5.2 Results 
 

The sediment and pore water profiles from the shallow core PC-6 and the 

deeper cores at Acre and Palmalchin are shown in Figures 5.2 and 5.3.  Sulfate 

concentrations decrease from 27 mM to 5 mM over 7 cm at Acre, and from 32 to 16 

mM over 12 cm at Palmachim (Figure 5.2a).  Methane concentrations at the Acre site 

were variable around 0.27 mM in the upper part of the core peaking at 0.77 mM at 1.5 

cm and 1.4 mM at 4.5 cm. At Palmachim, methane concentrations were lower at 0.03 

mM in the upper part of the core, but peaked at 0.77 mM at 14 cm (Figure 5.2). The 

dissolved inorganic carbon increased from 4mM to 11mM over 11cm at Acre.  

 

At the shallower site, PC-6, sulfate concentrations decreased with depth until 

reaching the sulfate methane transition zone at 3.5 meters below the seafloor. 

Methane concentrations then increased to 0.5 mM over the next meter. The dissolved 

Israel'

The'Mediterranean'sea'

Netanya (PC-6).  

Palmachim  

Acre  

(a) 

(b) 

(d) 
(c) 
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inorganic carbon concentration increased with depth from 2 mM to 25 mM (Figure 

5.3). 

 

 The isotope results are presented in Figures 5.2 and 5.3. At Acre, the maximum 

δ34SSO4 - 54‰ - was found between 6 and 9 cm below the sediment-water interface, 

the δ18OSO4 at this depth reaching 20.4‰. As a reminder, seawater has a δ34SSO4 of 

20.3‰ and a δ18OSO4 of 8.6‰; Figure 5.2e. The δ13CCH4 had a minimum of -80 ‰ at 

5.5 cm.  The δ18OSO4 / δ34SSO4 and δ13CCH4 profiles are mirror images of one another, 

as sulfur and oxygen isotopes in sulfate increase, the carbon isotope composition of 

the methane decreased (Figure 5.2e). At Palmachim, the δ34SSO4 and δ18OSO4 

increased 32 ‰ and 14‰, respectively, reaching their maximum at 10.5 cm below the 

sediment water interface. The δ13CDIC also decreased sharply, from -19‰ -52‰ over 

these 10.5 cm (Figure 5.2f). At the shallower site, PC-6 both δ34SSO4 and δ18OSO4 

increase with depth 35‰ and 25‰, respectively (Figure 5.3d and e). The δ13CDIC 

decreased to -25‰ at the sulfate-methane transition zone. Below that depth the 

δ13CDIC increased to -20 ‰ (Figure 5.3f). Only two measurements of δ13CCH4 are 

available below the sulfate-methane transition zone, measured at -93‰ (Figure 5.3g). 
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Figure 5.2: Chemical and isotopic depth profiles in pore water from sediment cores 

collected during the 2011 Nautilus E/V field season and on the R.V. Shikmona from 

the Mediterranean continental shelf of Israel at 1000m water depth. 
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Figure 5.3: Chemical and isotopic depth profiles in pore water from sediment cores 

collected in August 2013 off the coast of Netanya (PC-6) at 50m water depth.  

 

5.3 Discussion  
 

5.3.1 Methanogenesis and methanotrophy in the South-Eastern Mediterranean 

 

The pore fluid geochemistry provides evidence of the different microbial 

processes that occur within the sediment. In all sites studied, both the two deep and 

one shallow, methane concentrations increase and sulfate concentrations decrease 
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with depth below the sediment-water interface (Figure 5.2 and 5.3); this is suggestive 

of methane production and oxidation and microbial sulfate reduction.  The hypothesis 

that these sites contain methanogenesis, methanotrophy, and microbial sulfate 

reduction is supported by the changes in the carbon isotope composition of the 

methane and the changes in the sulfur and oxygen isotope composition of the sulfate, 

as introduced in the previous chapter.   

 

The presence of high concentrations of methane at these sites does not alone 

require microbial methanogenesis, as there are two processes for methane production. 

Methane produced during the decomposition of organic matter under high pressure 

and temperature condition is thermogenic. The carbon isotope composition of 

thermogenic methane is between -20 and -60‰ (Schoell, 1988). The second natural 

production pathway for methane occurs in anaerobic environments by archaea. The 

carbon isotopic composition of methane originated from this process is ~-50 to -

110‰ (Schoell, 1988). All the sites discussed in this chapter show an extremely 

depleted δ13CCH4 value that ranges between ~-40 and -90‰. Such a light isotopic 

signature is indicative that methane at these sites was made microbially. 

 

Another important question regarding the dynamic of methane in these sites is 

the location of methane production. We can use the geochemistry to determine 

whether the methane was produced in situ or it advected from greater depths, similar 

to Chapter 4. Specifically the carbon isotope composition of dissolved inorganic 

carbon tends to decrease when methane is oxidized, and increase when methane is 

produced.  For example at site PC-6, there is a large increase in the δ13CDIC in the 

deep part of the sediments which is due to methanogenesis, and it fits the hypothesis 

of in-situ production of methane just below the sulfate-methane transition zone. 

However, there is no direct evidence of in-situ methanogenesis at either deep sits Arce 

and Palmachim. These two cores did contain abundant Achaea that are often 

associated with methanogenesis such as Methanococcus and Methanococcoides 

(Rubin-Blum et al., 2014): this suggests microbial methane production although there 

is no ‘smoking gun’ for this process as microbial presence does not necessarily 

require their activity.  
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Due to the nature of hydrocarbon seeps, it is difficult to determine the precise 

relationship between sulfate and methane, based on the concentration profiles at 

Palmachim and Arce alone; methane in these sites is ‘in excess’, and it escapes as 

bubbles from the sediment to the overlying water, so the standard diffusion-dominated 

pore fluid profiles are not as readily established.  To explore this further, the dissolved 

inorganic carbon and δ13CDIC can be used to try to determine the source of the 

dissolved inorganic carbon, and if it comes from methane oxidation or other organic 

matter oxidation. To calculate the carbon isotopic composition of the source molecule 

(δ13Csource) I use the an isotopic mass balance equation as followed:   

 

δ13Csource=
δ13CDIC(z)·DIC(z)-δ

13CDIC(0)·DIC(0)
DIC(z)-DIC(0)

(5.1) 

 

where δ13Csource is the carbon isotopic composition of the source, δ13CDIC(z), DIC(z), 

δ13CDIC(0) and DIC(0) are the carbon and the isotopic composition at z and 0 depth, 

respectively.  

!
The dissolved inorganic carbon concentrations at the Palmachim site increase to 

around 10 mM (from 2mM at the sediment-water interface) with δ13CDIC of  -52 ‰.  

The mass balance calculation suggests that the sharp decrease in the δ13CDIC within 

the pore fluid requires a source of dissolved inorganic carbon with a δ13C between -73 

to -67 ‰, which is close to the δ13CCH4 that we measured (~ -70‰ in the deeper part 

of the Palmachim core —Figure 5.2g). This suggests that in the Palmachim 

sediments, the entire dissolved inorganic carbon pool within the pore fluids is 

produced from the oxidation of methane but the carbon isotopes don’t support 

methanogenesis within this core section. Unfortunately, the dissolved inorganic 

carbon and δ13CDIC measurements are absent at Acre so I cannot calculate the isotope 

constraints on methane oxidation versus other organic molecules.  

 

Another interesting feature that can be found at Acre is an increase in sulfate 

concentrations in the deeper part of the core. At this depth, where sulfate 

concentrations increase, we also note that the δ18OSO4, δ34SSO4 and δ13CCH4 decrease. 

This is possible due to the unique setting of this core (Figure 5.1). This core was taken 
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horizontally from a cliff. This unique setting, implies that there might be unique 

boundary conditions and seawater enveloping this black patch. Therefore, based on 

the geochemistry I hypothesize that the black patch from Acre is a horizontal, 

cylindrical-shape, localized, organic matter-rich feature.  

     

At the shallower site Netanya (core PC-6), the sulfate profile shows a linear 

trend toward the sulfate-methane transition zone. Similar decreases have been 

observed in many profiles around the world and are interpreted that sulfate is reduced 

only by methane at the sulfate-methane transition zone rather than by other organic 

carbon compounds above (e.g. Niewöhner et al. 1998; Boetius et al. 2000; Aharon an 

Fu, 2000; Sivan et al. 2007; introduction to this thesis). Since this site is dominated by 

diffusion, looking at the dissolved inorganic carbon isotopic mass balance, similar to 

the calculation I did with Palmachin, in order to determine the source of the dissolved 

inorganic carbon will result in a bias toward the lighter isotope. In addition, at sites 

dominated by diffusion, it has been shown that carbon isotope equilibrium often 

occurs between the dissolved inorganic carbon and methane (Yoshinaga et al., 2014). 

Alternatively, by examining the stoichiometry of sulfate concentrations and the 

dissolved inorganic carbon it is possible to determine whether sulfate is reduced 

through AOM versus through organic matter (similar to the work in the estuaries in 

Chapter 4). The ratio between the depletion of sulfate and the increase in dissolved 

inorganic carbon plus the change in calcium, magnesium and strontium at site 

Netanya pore water is -1.1 (Fig 5.4). This stoichiometry is expected for sulfate-driven 

AOM, so I conclude that this is the dominant process at site PC-6. In summary, in all 

sites shallow and deep there is clear evidence that sulfate-driven AOM is the 

dominant process by which sulfate is being reduced.  
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Figure 5.4: dissolved inorganic carbon (DIC) plus the change in calcium, magnesium 

and strontium vs. sulfate concentration from the Netanya (PC-6) pore water. The 

dashed line is the best-fit regression line.  

 

5.3.2 Sulfur and oxygen isotope insight into the sulfate-methane coupling    

 

The shape of the cross-plot between sulfur and oxygen isotopes in dissolved 

sulfate (δ18OSO4 vs. δ34SSO4) can be used to explore the way that sulfate is reduced 

during sulfate-driven AOM (e.g. Avrahamov et al., 2014; Deunser et al., 2014; Sivan 

et al., 2014).  As I have explored throughout this thesis, when both sulfur and oxygen 

isotopes in sulfate are measured, they form a particularly useful tool to resolve the 

various redox changes of sulfur as it is transformed from sulfate to sulfide and back. 

Although both the sulfur and oxygen isotope composition of sulfate increases with 

depth at all sites, the relative change in the δ18OSO4 versus δ34SSO4 is unique at each 

site, hinting that the mechanism of sulfate reduction differs among the different 

sulfate-driven AOM zones (Figure 5.5). At the Palmachim and Acre sites very 
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moderate slopes are found in the δ18OSO4 vs. δ34SSO4 cross plot, 0.44±0.065 and 

0.34±0.06, respectively. Given that this slope can vary between 0.27 and 10, I 

consider these two sites to be very similar and similar slopes can be found in other 

hydrocarbon seeps and estuaries where hydrocarbons are rich. At the PC-6 site, the 

slope between the δ18OSO4 and δ34SSO4 is much steeper than in Acre and Palmachim 

(1.7± 0.2), but becomes moderate at depth (Figure 5.5). 

 

Similarly to what I explored in Chapter 4, it is helpful to put into context the 

δ18OSO4 vs. δ34SSO4 data of the three sites studied in this chapter with other δ18OSO4 vs. 

δ34SSO4 data from sites where sulfate-driven AOM was found. This will allow me to 

extend the discussion to the differences among tabulated data. I compare my data to 

two other published locations with sulfate-driven AOM. The first is Gulf of Mexico 

δ18OSO4 vs. δ34SSO4 isotopes data, that were taken from Ahaorn and Fu (2000) from a 

methane seep. The second is ODP site 1082 (Turchyn et al., 2006) located in the 

South West Atlantic that has a sulfate-methane transition zone at 25 meters below the 

sediment-water interface (Figure 5.5b).  

 

 
 

Figure 5.5: δ18OSO4 vs. δ34SSO4 from Palmachim, Arce and Netanya (PC-6) pore water 

sulfate. The lines are two-stages linear fit (a), and data from Organic-carbon poor 

deep-sea sediment (ODP 1082-- Turchyn et al., 2006) and cold seeps (Aharon and Fu 

2000) (b). The dashed lines are schematic.   
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It has recently been discovered that there is back reaction of sulfide and 

dissolved inorganic carbon to sulfate and methane, respectively, during sulfate-driven 

AOM (Holler et al., 2011; Yoshinaga et al., 2014): 

 

SO4
2-+CH4⟺HS-+HCO3

-+H2O (5.2) 

!
 Yoshinaga et al. (2014) showed that the rate of increase in the δ13CCH4 below 

the sulfate-methane transition zone (called Δ δ13CCH4— Figure 5.6) is inversely 

correlated with the sulfate fluxes toward the sulfate-methane transition zone due to 

carbon isotopic equilibrium between δ13CCH4 and δ13CDIC.  This isotope equilibrium 

happens because the reaction takes place close to thermodynamic equilibrium 

(ΔG→0). This back reaction should promote isotopic equilibrium between sulfur in 

sulfate and sulfide as well as carbon in dissolved inorganic carbon and methane. 

Oxygen isotopes in sulfate will also be affected by this back reaction, since new 

oxygen atoms are being acquired during the reoxidation. Therefore, the back reaction 

will leave a mark on the δ18OSO4 vs. δ34SSO4 curve during sulfate driven AOM.  

 

 
 

Figure 5.6: Schematic profiles of SO4
2– and CH4 concentrations (a), of CH4 and DIC 

and the relationship between the carbon isotopic shift (Δ δ13CCH4) and sulfate flux. 

After Yoshinaga et al. (2014). 

 

0 20 40 60
0

10

20

30

40

50
CH

4  

SO
2- 4 

SMTZ 

Methanogenesis 
Zone  

δ13C Concentrations!

Methane-limited  

Sulfate-limited  

δ 13C
CH

4  δ 13C
D

IC  

Δδ13CCH4 

Δ
δ1

3 C
C

H
4 

Sulfate flux (µmol cm-2 year-1) 

(a)  (b)  (c)  



 

!
!

!
CHAPTER 5 

!
! !

97 

In order to assess the impact of sulfate supply on the sulfur vs. oxygen isotope 

slope in sulfate-driven AOM and in order to analyze what this tells us about the 

dynamic of sulfate-driven AOM, I will explore the relationship between the slope of 

the δ18OSO4 vs. δ34SSO4 curves and sulfate flux. The sulfate diffusive flux was 

calculated according to Fick’s first law of diffusion:  

 

JSO4=-φ·DS·
d SO4

2-

dZ
(5.3) 

!
where ϕ is the porosity, Ds is the effective diffusion coefficient in the sediment and 

d(SO4
2-)/dz is the one-dimensional sulfate concentration gradient. The molecular 

diffusion coefficient for sulfate in seawater (D0) was calculated based on Donahue et 

al. (2008): 

 

D0= 4.655+0.2125·T ·10
-6 (5.4)!

 

where D0 is the molecular diffusion coefficient of sulfate (cm2 sec-1) and T is the 

temperature (ºK). The assumption that Ds=D0·φ2 (Berner et al., 1980) was used for 

estimating the effect of tortuosity.  

 

Figure 5.7 shows the slope of δ18OSO4 vs. δ34SSO4 plot vs. the calculated sulfate 

flux from sites where sulfate-driven AOM was detected; the three reported in this 

chapter, and several from the literature. It can be seen that this plot can be divided in 

two sections. At large sulfate fluxes the δ18OSO4 vs. δ34SSO4 slope does not change 

significantly as a function of the flux of sulfate and the slopes clusters around 0.3 to 

0.45; as explored in Chapter 2, this implies sulfur and oxygen isotopes are impacted 

only by kinetic isotope fractionation.  At low sulfate fluxes, the slopes are larger and 

negatively correlated with the increasing flux.  It is important to note that the high 

fluxes comprise sites where an excess of methane was found, such as cold seeps and 

estuaries, whereas the latter represents sites where distinct deeper sulfate-methane 

transition zones were observed.  This implies that the relationship between the supply 

of sulfate and the back reaction during sulfate-driven AOM is more complex then 

previously assumed.  
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To investigate further the correlation between the slope of the δ18OSO4 vs. 

δ34SSO4 cross-plot and the sulfate flux from marine sediments, I calculated this slope 

from two published experiments where sulfate-driven AOM was done in the 

laboratory. Figure 5.8 shows the calculated slope versus the methane concentration in 

these experiments. It can be seen that the correlation between the slope and sulfate 

flux in the natural environment is the same as this correlation versus methane 

concentration in laboratory experiments, but also the lower limit of this slope is 

similar (~0.35±0.1). Overall, these results indicate that the slope on the δ18OSO4 vs. 

δ34SSO4 cross-plot is fundamentally a function of the methane concentration/supply, 

which in marine sediments control the sulfate flux from the overlying ocean into the 

sediments. In cases where methane is in excess, the δ18OSO4 vs. δ34SSO4 results in a 

close to linear behaviour with very moderate slope.       

 

 

 

 

 
Figure 5.7: The slope on δ18OSO4 vs. δ34SSO4 plot (SALP) vs. the calculated sulfate flux 

from different sites. Closed symbols data from the literature, open symbols, sites from 

this study. The grey area includes sites where methane is in excess and the white area 

sites with sharp sulfate methane transition zone.     
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!

 
Figure 5.8: The slope on δ18OSO4 vs. δ34SSO4 plot (SALP) vs. methane concentration 

from laboratory experiments. Open symbols- data from Sivan et al. (2014), closed 

symbols- data from Deunser et al. (2014).   

 

5.3.3 A sensitivity analysis for oxygen and sulfur isotopes in sulfate during 

sulfate-driven AOM 

!
The strong correlation between δ18OSO4 and δ34SSO4 during sulfate-driven AOM 

at ‘methane-in-excess’ environments can explain by a process that impacts sulfur and 

oxygen isotopes in a similar manner.  One possibility would be mixing between two 

end-members with different δ18OSO4 and δ34SSO4. However, because of the variety of 

settings studied, where the temperature, water pressure, salinity and sulfate 

concentration range significantly, it is difficult to invoke binary mixing to explain this 

data. This is also supported by the reactive-transport model developed in Chapter 2, 

which found that the physical parameters in the natural environment play only a 

secondary role in shaping the slope in δ18OSO4 versus δ34SSO4 space. This suggests that 

this unique isotope correlation is, ultimately, inert to the physical conditions that 

dominate mixing in any particular environment. 
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One way to produce a linear relationship between δ18OSO4 and δ34SSO4 is 

through Rayleigh-style distillation, where a kinetic isotope effect impacts both 

δ18OSO4 and δ34SSO4 as sulfate is consumed; in this case, the δ18OSO4 less reflects any 

oxygen isotope equilibration with water. This distillation pattern would require 

negligible reoxidation of sulfur intermediates, since any reoxidation incorporates 

external oxygen atoms in the resulting sulfate.  It was recently suggested for methane 

oxidation by ANME-2 from cold-seep environments that one of every eight (~12%) 

of the reduced sulfur intermediates formed is reoxidized back to sulfate through 

disproportionation of polysulfide intermediates (Milucka et al., 2012, Holler et al., 

2011). I will now use numerical model to estimate the impact of this level of 

reoxidation on the slope between δ18OSO4 and δ34SSO4.   

 

In order to understand the relative evolution of sulfur and oxygen isotopes in 

sulfate during sulfate-driven AOM, I derive a basic numerical model based on the 

enzymatic model proposed by Milucka et al. (2012).  In the Milucka et al. (2012) 

enzymatic model, methane oxidation and sulfate reduction to elemental sulfur (or all 

the way to sulfide) is performed by methanotrophic archaea alone (ANME). Zero-

valent sulfur then reacts with sulfide to form disulphide, which subsequently 

disproportionates into sulfate and sulfide. For each eight-sulfate molecules that are 

brought into the cell, one recycles back to sulfate during this disulfide 

disproportionation and the other seven molecules are reduced to sulfide. 

 

Some of the specifics of this enzymatic model remain enigmatic which presents 

challenges for my numerical approach to the problem.  For example, both sulfur and 

oxygen isotopes are partitioned during the various enzymatic steps with unknown 

kinetic and equilibrium fractionation factors.  Here, I perform a carful sensitivity 

analysis, in order to deal with this uncertainty. The assumptions in my model include 

(summarized in Figure 5.9): 

1) The kinetic isotope fractionation between sulfate and zero-valent sulfur is 

25±10 ‰ (Rees, 1973)  

2) The kinetic oxygen isotopic fractionation is equal to 25% of the sulfur isotopic 

fractionation between sulfate and zero-valent sulfur (Mizutani, Y. and Rafter 

1969; See also Chapter 2 and Chapter 3).  
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3) The kinetic isotope fractionation between zero-valent sulfur and sulfide is 

25±10 ‰ (Rees, 1973). 

4) The isotopic composition of the disulfide was taken as the average value 

between zero-valent sulfur and sulfide. This is since each one of them 

contributes the same number of sulfur atoms to the resulting disulfide. 

5) The sulfur isotopic fractionation between disulfide and sulfate is 15±15 ‰ 

(Böttcher et al., 2001).  

6) The sulfur isotopic fractionation between disulfide and sulfide is -5±5 ‰ 

(Böttcher et al., 2001). 

7) The result δ18OSO4 during disulfide disproportionation is 20±5 ‰ (Böttcher et 

al., 2001). 

 
Figure 5.9: Sulfur pathway during sulfate-driven AOM (After Milucka et al., 2012) 

and the isotopic fractionation associated with each of the steps.  

 

Figure 5.10 summaries all the possible solutions for δ18OSO4 vs. δ34SSO4 within 

the uncertainties of my assumptions. The result for the model suggests that even with 

these unknowns, all the solutions have a near linear relationship with a slope that 

varies between 0.24 and 0.4.  If I consider only the primary values, my model 
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suggests that if more than 40% of the sulfate entering the cell is reoxidized, it will 

impact the slope between δ18OSO4 vs. δ34SSO4 such that the slope is higher than 0.4 

(Figure 5.11). My data is therefore consistent with the level of intermediate-sulfur 

oxidation postulated in the Milucka et al (2012) model for sulfate-driven AOM. 

 

 
Figure 5.10: The δ18OSO4 vs. δ34SSO4 results from the proposed model. Each of the grey 

lines represent a solution based on the different combination of the isotope 

fractionation of sulfur and oxygen isotopes at each step. Dashed lines are the 

envelope of all the possible solutions within the proposed uncertainty.  
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Figure 5.11: The change in the slope of δ18OSO4 vs. δ34SSO4 (SALP) as a function of the 

fraction of sulfate recycled.   

 

As we understand that the process of sulfate-driven AOM operates close to 

thermodynamic equilibrium (e.g. Holler et al., 2011), the degree of back reaction is 
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methane flux is so high that an exceedingly small fraction of intermediate valence 
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oxygen isotopes in dissolved sulfate will be the fractionation during the reduction of 

sulfate to sulfide. At locations where there is a sulfate-methane transition zone the 

methane supply is low there is much more back reaction of sulfide to sulfate which 
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methane supply; where methane supply is higher than this threshold, this out-

competes the sulfate transport and we see bubbles. Where the methane flux is low, 

this is equalized by the sulfate flux and a constant slope emerges. 

 

 
Figure 5.12: Schematic chemical profiles of methane-diffusion-limited (a) methane-

in-excess environments (b) and the respective curve of δ18OSO4 vs. δ34SSO4 (c). the grey 

area represent the sulfate-driven AOM zone.   

 

5.4 Summary  
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sulfate. I suggest here that although the net reaction is similar in gas seeps and SMTZ, 

they represent two different environments and cannot longer be treated in the same 

manner.  In the next chapter I will explore the applications of this unique isotopic 

fingerprint in methane seeps.  
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Chapter 6 

Perspective:  a unique isotopic fingerprint 

during sulfate-driven anaerobic oxidation of 

methane 

 
 

The transient release of biogenic or thermogenic methane from sedimentary or 

other subsurface environments has the potential to greatly impact global climate 

because methane is a strong greenhouse gas (MacDonald, 1990).  Catastrophic release 

of methane from marine sediments has been invoked to explain transient climate 

perturbations throughout Earth history, most notably the Paleocene-Eocene Thermal 

Maximum, 55 million years ago (Dickens et al., 1995).  Today, the majority of 

methane produced within the subsurface, however, will be oxidized within the 

subsurface or near the sediment-water interface (Reeburgh, 2007).   

 

In this thesis, I demonstrated that much information can be gained by cross 

plotting δ18OSO4 versus δ34SSO4 during the onset of microbial sulfate reduction, as both 

isotopes are initially evolving to heavier values in a close-to-linear manner before 

isotope equilibrium for δ18OSO4 is reached.  The slope of this isotope-enrichment 

phase relates to the rate of sulfate reduction, where faster rates of sulfate reduction 

result in the δ34SSO4 increasing more rapidly than the δ18OSO4 (a shallower slope), 

while slower rates of microbial sulfate reduction result in the δ18OSO4 increasing more 

rapidly than the δ34SSO4 (a steeper slope – Chapter 3, see also Böttcher et al., 2008; 

Aharon and Fu, 2000; Antler et al., 2013).  I interpreted this relationship as an 

increase in the reoxidation of sulfur intermediates when the rate of sulfate reduction 

decreases and while this relationship is broadly accepted, the specifics need 

refinement.  For example, in Chapter 4, I found that under nearly-identical rates of 
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microbial sulfate reduction, organoclastic microbial sulfate reduction and sulfate-

driven AOM result in markedly different slopes between δ18OSO4 and δ34SSO4.  In this 

chapter, I will demonstrate for the first time that the slope between δ18OSO4 and 

δ34SSO4 has a unique value when sulfate reduction is coupled to methane oxidation in 

‘methane-in-excess’ environments – such as cold seeps - versus when sulfate-driven 

AOM is occurring in ‘methane-diffusion-limited’ environments (where there is a 

sharp sulfate-methane transition zone), or during organoclastic microbial sulfate 

reduction. 

 

The sites that I presented in this thesis can be sort into three types of 

environments: 1) ‘methane-in-excess’ environments where methane exists in bubbles, 

2) ‘methane-diffusion-limited’ environments where sulfate and methane do not 

coexist, and 3) ‘methane-devoid’ or organoclastic microbial sulfate reduction, 

environments where sulfate-driven AOM is not the dominant process: 

 

1) The Yarqon estuary is the largest coastal river in Israel, and contains high 

organic carbon load and almost seawater salinity and high methane 

concentrations (up to 2mM – ‘methane-in-excess’) (Chapter 4). 

!
2) The ‘Black patch’ was discovered during 2011 Nautilus E/V field season in 

front the cost of Arce (Israel) inside a pockmarked field. The black patch and 

has cylindrical symmetry and high methane concentrations (up to 1.5 mM – 

‘methane-in-excess ’) (Chapter 5). 

!
3) The Palmachim ‘Gas seep’ was sampled at the ‘Palmachim disturbance’ 

offshore Israel at water depth of 1134 m, and has visible methane gas bubbling 

(‘methane-in-excess’) (Chapter 5). 

 

4) The Qishon estuary drainage area occupies 1100 km2, with intensive 

agricultural activity and industry taking place within the basin and dominates 

by organoclastic sulfate reduction (Chapter 4).  
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5) The Southeastern Mediterranean shelf (Site PC6- Netanya- Israel). This site 

shows a distinct sulfate-methane transition zone at depth of 3.6 m (Chapter 5) 

suggesting that ‘methane-diffusion-limited’ sulfate-driven AOM. 

 

The slope of the δ18OSO4 versus δ34SSO4 cross-plots from the ‘methane-in-

excess’ environments, fall into a narrow range compared to the data collected from 

‘methane-diffusion-limited’ and organoclastic -sulfate reduction environments (Figure 

6.1). The unique slope in the δ18OSO4 versus δ34SSO4 data in ‘methane-in-excess’ 

environments is 0.37 ± 0.01 (95% confidence interval). The significance of this data 

set is shown in Figure 6.2, where a wider compilation of δ18OSO4 and δ34SSO4 data 

from the literature is presented along with the data from my thesis. The slope in each 

environment was calculated as the linear regression of the tangent on a δ18OSO4 versus 

δ34SSO4 cross-plot near the axis (I exclude sites with poor statistics-- R2<0.85 and 

n<3).  It can be seen that the slope of δ18OSO4 versus δ34SSO4 in methane seep 

environments aggregates around the slope in δ18OSO4 versus δ34SSO4 space from 

Figure 6.1. The locations with ‘organoclastic sulfate-reduction’ or ‘methane-

diffusion-limited’ have a slope that varies significantly (Figure 6.2). 
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Figure 6.1: The δ18OSO4 versus δ34SSO4 data from methane-in-excess (gray symbols), 

methane-diffusion-limited (open symbols) and organoclastic sulfate reduction (closed 

symbols). 
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Figure 6. 2: The slope of the δ18OSO4 versus δ34SSO4 cross-plot (SALP) compiled from 

different environments. ‘N.D’- sites where methane measurements are not available. 

The dashed line is the average slope of all the ‘methane-in-excess’ sites. Error bars 

represent a 95% confidence interval. Complete lists of references and data are 

available in table A.4.4.1.  
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sulfur and oxygen isotopes in a similar manner.  One possibility would be mixing 

between two end-members with different δ18OSO4 and δ34SSO4. However, because of 

the variety of settings studied, where the temperature, water pressure, salinity and 

sulfate concentration range significantly, it is difficult to invoke binary mixing to 

explain this data. This is also supported by a reactive-transport model, formulated by 

Antler et al. (2013) and introduced in Chapter 2, which found that the physical 

parameters in the natural environment play only a secondary role in shaping the slope 

in δ18OSO4 versus δ34SSO4 space. This suggests that this unique isotope correlation is, 

ultimately, inert to the physical conditions that dominate mixing in any particular 

environment. 
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In Chapter 5 I demonstrated that one way to produce a linear relationship 

between δ18OSO4 and δ34SSO4 is through Rayleigh-style distillation, where a kinetic 

isotope effect impacts both δ18OSO4 and δ34SSO4 as sulfate is consumed. In that 

chapter, the results for my sensitivity analysis among the range of possible enzymatic 

isotope fractionations demonstrated that all solutions with negligible reoxidation 

(12%) have a near linear relationship with a slope that varies between 0.24 and 0.4. In 

addition, my model suggests that up to 40% of the intracellular sulfur could be 

reoxidized before the slope distinct from the natural range in the slope in ‘methane-in-

excess’ environments.   

 

In environments with ‘methane-diffusion-limited’ sulfate-driven AOM, the 

δ18OSO4 versus δ34SSO4 cross-plot can deviate from the unique slope found in 

‘methane-in-excess’ environments.  This more rapid increase of δ18OSO4 versus 

δ34SSO4 is due to a larger impact of oxygen isotope equilibrium between sulfur 

intermediates and water and a subsequent reoxidation of these sulfur intermediates 

impacting the extracellular δ18OSO4 (e.g., Brunner et al., 2005). In these ‘methane-

diffusion-limited’ environments, methane concentrations are lower and the microbial 

reaction approaches thermodynamic equilibrium, which means increased back 

reaction of intermediate-sulfur species to sulfate  (Holler et al., 2011; Yoshinaga et 

al., 2014). It was recently suggested that enzymatic reversibility in sulfate-driven 

AOM is a function of the methane flux, where high methane flux correlates with low 

reversibility (Yoshinaga et al., 2014); my results support this conclusion. At 

‘methane-in-excess’ environments, the methane flux is so high that an exceedingly 

small fraction of intermediate valence state sulfur is reoxidized or recycled. This 

ultimately results in a unique isotopic signature of δ18OSO4 versus d34SSO4 in these 

environments that can be used to distinguish between ‘methane-in-excess’ and 

‘methane-diffusion-limited’ environments. 

 

Cold methane seeps are often accompanied by carbonate precipitation as well as 

other authigenic minerals such as barite (e.g., Fu et al., 1994). This is because 

anaerobic methane oxidation leads to an increase in pH and alkalinity. These 

authigenic minerals can fossilize; carbonate accretions are found throughout the 
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geological record (e.g., Jiang et al., 2003; Kiel, 2015), often containing exceptionally 
13C depleted carbonate highly suggestive of the methane source (e.g., Peckmann and 

Thiel, 2004). However, 13C-depleted carbonate, produced from methane oxidation, 

does not distinguish the paleoenvironment of methane consumption or its link to 

microbial sulfate reduction. It was previously suggested that the δ18OSO4 and δ34SSO4 

in barite can be used to identify fossilized methane seeps (Johnson et al., 2004). I have 

compiled the δ18OSO4 and δ34SSO4 from barite found in recent methane seeps and plot 

these data with pore fluid δ18OSO4 and δ34SSO4 from modern ‘methane-in-excess’ 

environments (Figure 6.3).  The barite sulfur and oxygen isotope measurements fall 

within the envelope created by modern pore fluid δ18OSO4 and δ34SSO4 data.  This 

suggests that the unique isotopic fingerprint that I found in pore fluid δ18OSO4 and 

δ34SSO4 (Figure 6.1) has the potential to be preserved in the geological record and as 

new tool for identifying fossilised ancient methane seeps.  Since this isotopic 

fingerprint is expressed as a linear line, the strength of my finding is that the slope 

does not depend on the initial isotopic composition but on the relationship among the 

various data points.  
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Figure 6.3: The δ18OSO4 versus δ34SSO4 data from cold methane seeps and seeps 

analogues (gray) and barite deposits associated with cold methane seeps (open 

symbols) from the Gulf of Mexico (Rhombus–Fu and Aharon, 1997, Squares–Feng 

and Roberts, 2011) and from the Sea of Okhotsk (Circles–Greniert et al., 2002). 

 

 

Conclusions 

 

My data compilation and sensitivity analysis (see chapter 5) demonstrates that 

there is a lower limit to the slope between δ18OSO4 and δ34SSO4 during the onset of 

microbial sulfate reduction, which results in a distinct isotopic signature in 

environments where methane is in excess. This distinct isotopic signature likely 

results from negligible reoxidation of sulfur species when the electron donor is 

abundant. In addition, a change in the microbial community structure between 

‘methane-in-excess’ and ‘methane-diffusion-limited’ environment is possible since 

different anaerobic methanotrophs thrive under different supplies of methane.  I 
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therefore suggest that the sulfur and oxygen isotopes in dissolved sulfate can be used 

to track the relationship between methane and sulfate both in modern marine 

sediments and in the geological record. This appears to be a robust tool as it scales 

across many environments with different depositional settings.     

          

I suggest that sulfur and oxygen isotope in dissolved sulfate can be used to track 

the relationship between methane and sulfate in marine sediments and in the 

geological record.  This seems to be robust tool as it scales across many environments 

with different depositional settings. Measurements from barite deposits associated 

with methane seeps demonstrate that this unique isotopic signature found in pore fluid 

sulfate is potentially preserved. Diagenetic barite is often found in marine sediments 

and rocks and has a diagnostic pitted texture compared with biogenic barite (Paytan et 

al., 2002); typically this barite is not analysed isotopically because it acquires a 

subsurface isotope signature so is less useful for paleoceanographic reconstruction of 

the biogeochemical sulfur cycle.  The logical follow up study could analyse these 

diagenetic barites or authigenic carbonate from the Cenozoic and late Cretaceous to 

assess the nature of methane fluxes in certain locations over geological time. The 

preservation potential of this signal is high as these minerals are usually part of large 

lithological build-ups associated with methane seeps. In addition, it is easy to test if 

the minerals hold the original isotope signal. For instance, barite that precipitates 

during sulfate-driven AOM has a typical morphology and SEM images may reveals if 

the barite has been grown diagenetically (Greinerta et al., 2012). As for carbonate-

associated-sulfate, any reprecipitation of carbonates will also affect the δ13C of the 

carbonate and since the original δ13C is extremely depleted it is easy to estimate if 

there is any alteration of the original signal.  A second possibility would be to analyse 

authigenic carbonate or diagenetic barite across intervals where methane seeps have 

been invoked to cause transient climate perturbations.  For example, could a 

fingerprint of the hypothesized North Atlantic methane leak proposed to cause the 

Paleocene-Eocene Thermal maximum (Chun et al., 2010) be found in the geological 

record?   
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Summary 
!
Isotope partitioning and the relative reversibilities of several enzymatic steps 

during microbial sulfate reduction (MSR) and sulfate-driven anaerobic oxidation of 

methane (AOM) influence the measured isotopes ratios of 33S /32S, 34S/32S and 18O/16O 

in the residual sulfate as MSR proceeds.  Previous studies have shown that the 

availability and type of organic substrate consumed during MSR control the 

magnitude of the isotope fractionation between 34S and 33S versus 32S, but the 

influence of the electron donor on the fractionation of oxygen isotopes is less well 

understood. In this Thesis I further our understanding of microbial sulfur metabolism 

with particular focus on the organic matter type and availability through pure culture 

experiments and studies in the natural environment.  

 

First I explored the combined multiple sulfur (33S /32S, 34S/32S) and oxygen 

(18O/16O) isotope fractionation in pure cultures of a marine Desulfovibrio sp. DMSS-1 

grown on different organic substrates. The use of the coupled oxygen and major and 

minor sulfur isotopes allows me to resolve more than two enzymatic branch points 

with in the microbial cells during MSR. My measurements show that the isotope 

fractionation of both oxygen and major and minor sulfur isotopes correlate with the 

cell-specific rate of MSR, with faster reduction rates producing smaller isotopic 

fractionation for all isotopes. This relationship indicates that more intracellular sulfur 

intermediates may be reoxidized when the flux of electrons from the electron donor is 

low. The use of multiple isotopes allowed me to conclude that not only does the 

isotope fractionation change as a function of the cell-specific sulfate reduction rate, 

the isotope fractionation also changes with the degree of reversibility of each step 

during MSR. I suggested that in environmental settings where the availability of the 

electron donor can change dramatically there may be more changes in the microbial 

mechanism of MSR that can be more pronounced.   

 

I then used multiple stable isotope measurements in two highly stratified 

estuaries located along the Mediterranean coast of Israel (the Yarqon and the Qishon) 
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to explore the consumption of sulfate through sulfate-driven AOM versus 

organoclastic MSR.  At both sites, pore fluid sulfate is rapidly consumed within the 

upper 15-20 cm. Although the pore fluid sulfate and dissolved inorganic carbon (DIC) 

concentration profiles change over a similar range with respect to depth, the sulfur 

and oxygen isotopes in the pore fluid sulfate and the carbon isotopes in the pore fluid 

DIC are fundamentally different. This pore fluid isotope geochemistry indicates that 

the microbial mechanism of sulfate reduction differs between the studied sites. I 

suggested that in the Yarqon estuary, sulfate is consumed entirely through AOM, 

whereas in the Qishon, both AOM and bacterial sulfate reduction through organic 

matter oxidation coexist.  These results have implications for understanding the 

microbial mechanisms behind sulfate-driven AOM.  In addition, I compiled data from 

marine and marginal marine environments that supports my conclusion that the 

intracellular pathways of sulfate reduction varies among environments with sulfate-

driven AOM.   

 

In the next chapter I explored sulfate-driven AOM in two environments from 

the three different sites in the southeastern Mediterranean. Methane can be transported 

within the pore space of marine sediments either via diffusion or as bubbles.  When 

methane travels in bubbles, these bubbles often escape complete oxidation and reach 

the overlying water where the methane emerges from the sediment in “cold” seeps. In 

these three sites in the southeastern Mediterranean methane is seeping from two sites 

but transported by diffusion at the other.  My analyses demonstrated strong 

correlation between the slope on a plot of δ18OSO4 vs. δ34SSO4 and the flux of sulfate; 

the flux of sulfate at these sites is linked to the transport dynamics of methane. In 

addition, at high fluxes of sulfate, particularly at the sites where methane is seeping or 

‘in excess’, I founded that there is a lower limit of the slope between δ18OSO4 and 

δ34SSO4 that results in what I called a distinct isotopic signature. My numerical model 

results suggest that this distinct isotopic signature likely results from negligible 

reoxidation of sulfur species when the electron donor is abundant. In addition, a 

change in the microbial community structure between ‘methane-in-excess’ and 

‘methane-diffusion-limited’ environment is possible since different anaerobic 

methanotrophs thrive under different supplies of methane.   
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Finally, I summarized the thesis by demonstrating that by using the sulfur and 

oxygen isotope composition of sulfate, a unique isotopic signature emerges during 

microbial sulfate reduction coupled to methane oxidation in all measured bubbling 

cold seeps. This isotope signature differs to that when sulfate is reduced by either 

organic matter oxidation or by the slower, diffusive flux of methane within marine 

sediments.  I also showed through a comparison with the literature data, that this 

unique isotope fingerprint is preserved in the rock record in authigenic build-ups of 

barite associated with methane cold seeps. I therefore suggested that the sulfur and 

oxygen isotopes in dissolved sulfate can be used to track the relationship between 

methane and sulfate both in modern marine sediments and in the geological record. 

This appears to be a robust tool as it scales across many environments with different 

depositional settings. 
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Appendix 1: Mathematical derivation of the 
change in oxygen isotopes during microbial 
sulfate reduction 
 
 
First we consider the following reaction: 

 

 
 

At steady flow the mass balance equation for the sulfate can be written as: 

 

d SO4
-2

dt
=f1-b1 = f2 A.1.1 !

 

And 

 

dt=
d SO4

-2

f1-b1
(A.1.2)!

 

If the oxygen isotopic exchange between the sulfite and the ambient water ˃˃ than f1, 

b1 and f2, the isotopic mass balance equation for !!"!(!"!) can be written as: 

 

d SO4
-2 ·δ18O(SO4)
dt

=b1· δ
18O(H2O)+εexchange -f1· δ

18O(SO4)+εSO4-SO3 (A.1.3)!

 

According to the derivative's chine rule and eq. A.1.2: 
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d SO4
-2 ·δ18O(SO4)
dt

= SO4
-2 ·
d δ18O SO4

dt
+δ18O SO4 · b1-f1 A.1.4 !

 

 

And therefore: 

 

SO4
-2 ·
d δ18O SO4

dt
=b1· δ

18O H2O +εex-δ
18O SO4 -f1· εSO4-SO3 A.1.5  

 

 

Rearranging eq. A.1.5 results with: 

 

d δ18O SO4

b1· δ
18O H2O +εex-δ

18O SO4 -f1· εSO4-SO3
=

dt
SO4-2

A.1.6 !

 

The combination between eq. A.1.6 and A.1.2 yield: 

 

d δ18O SO4

b1· δ
18O H2O +εex-δ

18O SO4 -f1· εSO4-SO3
=
1
b1-f1

·
d SO4

-2

SO4-2
A.1.7 !

 

 

The solution of eq. A.1.7 

 

ln
φ2 δ

18O H2O +εex-δ
18O SO4 -φ1· εSO4-SO3

φ2 δ
18O H2O +εex-δ

18O SO4 (0) -φ1· εSO4-SO3
=
-b1
b1-f1

·ln
SO4

-2

SO4-2 (0)
A.1.8 !

  

Defining !!/!! ≡ !!  

 

ln
δ18O H2O +εex-δ

18O SO4 - 1φ1
· εSO4-SO3

δ18O H2O +εex-δ
18O SO4 (0) -

1
φ1
· εSO4-SO3

=-
!1
!1-1

·ln
SO4

-2

SO4-2 (0)
A.1.9 !

 



 

!
!

!
APPENDIX 1 

!
! !

131 

 

According to  

!

δ18O SO4 (A.E)= δ
18O H2O +εex -

1
φ1
· εSO4-SO3 A.1.10  

 

 

Embedding equation A1.10 into A.1.9: 

 

ln
δ18O SO4 (A.E)-δ

18O SO4

δ18O SO4 (A.E)-δ
18O SO4 (0)

=-
φ1
φ1-1

·ln
SO4

-2

SO4-2 (0)
A.1.11 !

 

and can be written in more general form: 

 

ln
δ18O SO4 (A.E)-δ

18O SO4

δ18O SO4 (A.E)-δ
18O SO4 (0)

=-θ·ln
SO4

-2

SO4-2 (0)
A.1.12 !

 

Where θO is only a function of the ratio between the backward and forward fluxes.  

According to Rayleigh distillation: 

 

δ34S SO4 -δ
34S SO4 (0)
εS

=ln
SO4

-2

SO4-2 (0)
(A.1.13)!

And ultimately: 

 

ln
δ18O SO4 (A.E)-δ

18O SO4

δ18O SO4 (A.E)-δ
18O SO4 (0)

=-θ·
δ34S SO4 -δ

34S SO4 (0)
εS

A.1.14 !

 

 

This relationship should conserved at higher complexity of reaction (e.g. the reaction 

presented in Figure 2.2 —Brunner et al., 2005; Brunner 2012). 
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Appendix 2: Function analysis  
 

Continuity 
 

This appendix addresses the question of the continuity of the following function: 

 

δ18OSO4(t)=

ε18Ototal
ε34Stotal

· δ34SSO4 t -δ
34SSO4 0 +δ18OSO4(0) ϕ1·ϕ2·ϕ3=0

δ18OSO4(A.E)-exp -θO·
δ34SSO4 t -δ

34SSO4 0
ε34SStotal

… 0<ϕ1·ϕ2·ϕ3<1

∙ δ18OSO4(A.E)-δ18OSO4(0)

(A.2.1)!

where ε34Stotal and ε18Ototal are the measured sulfur and oxygen isotope fractionations, 

respectively, and δ34SSO4(t), δ34SSO4(0), δ18OSO4(t) and δ18OSO4(0)  are the isotopic 

compositions of sulfur and oxygen in the residual sulfate at time t and time 0, 

respectively. δ18OSO4(A.E) is the isotopic composition of oxygen in the residual sulfate 

at apparent equilibrium, and θO is a parameter initially formulated by Brunner et al. 

(2005). 

 

By definition: 

θO=
ϕ1·ϕ3
1-ϕ1·ϕ3

(A.2.2) 

δ18OSO4(A.E)=δ
18OH2O+ε18Oex+

ε18Of_1
ϕ1·ϕ3

+
ε18Of_3
ϕ3

(A.2.3) 

ε34Stotal=S
34Sf_1+ϕ1·S

34Sf_3+ϕ1·ϕ3·S
34Sf_4 (A.2.4) 

One can notice by inspection that A.2.3 diverges for ϕ1 = 0 or ϕ3 = 0. This is the 

reason why δ18OSO4(t) needs to be defined as a piecewise function, and its continuity 

needs to be studied for the singular point. 

 

I would like to examine the behaviour of δ18OSO4(t) where φ3 tends to 0, that is where 

all the sulfite produced in the cell is reoxidized back to sulfate. One can observe that 

the following limits are sensible as the constants can be neglected with respect to the 

divergent terms: 
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!

lim
ϕ3→o

δ18OSO4(A.E) ≈
ε18Of_1
ϕ1·ϕ3

+
ε18Of_3
ϕ3

(A.2.5) 

 
lim
ϕ3→o

!! ≈ϕ1·ϕ3 (A.2.6) 

lim
ϕ3→o

ε34S!"!#$ ≈S
34Sf_1+ϕ1·S

34Sf_3 (A.2.7) 

and since: 

lim
x→o

exp x ≈1+x 

we can write:  

 

lim
ϕ3→o

exp -θO·
δ34SSO4 t -δ

34SSO4 0
ε34SStotal

≈1-θO·
δ34SSO4 t -δ

34SSO4 0
ε34SStotal

(A.2.8) 

 

Hence, we can substitute equation A.2.8 into the function A.2.1 

 

δ18OSO4(0)=δ
18OSO4(A.E)-δ

18OSO4(A.E)+δ
18OSO4(0)+…

θO·
δ34SSO4 t -δ

34SSO4 0
ε34SStotal

(δ18OSO4(A.E)-δ
18OSO4(0))

(A.2.9) 

Rearranging equation A.2.9: 

 

δ18OSO4(t)-δ
18OSO4(0)

δ34SSO4(t)-δ
34SSO4(0)

=
θO

ε34Stotal
δ18OSO4(A.E)-δ

18OSO4(0) (A.2.10) 

 

 

inserting equation A.2.5 into equation A.2.10 

 

δ18OSO4(t)-δ
18OSO4(0)

δ34SSO4(t)-δ
34SSO4(0)

≈
θO

ε34Stotal

ε18Of_1
ϕ1·ϕ3

+
ε18Of_3
ϕ3

(A.2.11) 

 

 

inserting equation A.2.6 and A.2.7 into equation A.2.11: 
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δ18OSO4(t)-δ
18OSO4(0)

δ34SSO4(t)-δ
34SSO4(0)

≈
ϕ1·ϕ3

S34Sf_1+ϕ1·S
34Sf_3

ε18Of_1
ϕ1·ϕ3

+
ε18Of_3
ϕ3

(A.2.12) 

 

and finally:  

 

δ18OSO4(t)-δ
18OSO4(0)

δ34SSO4(t)-δ
34SSO4(0)

≈ ε
18Of_1!ϕ1·ε

18Of_3
S34Sf_1+ϕ1·S

34Sf_3
(A.2.13)  Q.E.D 

 

 

The functional form of δ18OSO4, where φ3→0  is also the solution where δ18OSO4 is 

affected only by kinetic isotope fractionation (similar to δ34SSO4).   

 

Therefore δ18OSO4 is well defined by two continuous functions and can be written as:   

  

δ18OSO4(t)=

ε18Ototal
ε34Stotal

· δ34SSO4 t -δ
34SSO4 0 +δ18OSO4(0) ϕ1·ϕ2·ϕ3=0

δ18OSO4(A.E)-exp -θO·
δ34SSO4 t -δ

34SSO4 0
ε34SStotal

… 0<ϕ1·ϕ2·ϕ3<1

∙ δ18OSO4(A.E)-δ18OSO4(0)

(A.2.14)!

 

 

Mathematical term for the slope of the apparent linear phase (SALP) 
  

I define the slope of the apparent linear phase (SALP), as an approximation of the 

δ18OSO4 vs. δ34SSO4 curve to a linear line where gradient of the slope is always the 

highest at the onset of this curve (in marine settings). Therefore, I will analyse the 

behaviour of this curve around the point δ18OSO4(0),  δ34SSO4(0). Recalling that the first 

order Taylor expression approximates a function to a straight line I will formulate the 

mathematical term for the apparent linear phase. 

 

Since at  ϕ1·ϕ2·ϕ3=0  the δ18OSO4 vs. δ34SSO4 curve already gives a straight line I will 

only deal with the case where 0<ϕ1·ϕ2·ϕ3<1.  
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First we can recognize that the δ18OSO4 dependence on δ34SSO4 is of the form: 

! ∙ !!" + ! ≈ ! + ! + ! ∙ ! ∙ !  

 

Therefore:  

 

δ18OSO4(t) = −δ18OSO4(A.E)+δ18OSO4(0)+δ18OSO4(A.E) − θO·
δ34SSO4 t -δ

34SSO4 0
ε34SStotal

∙ δ18OSO4(A.E)-δ18OSO4(0)  

 

rearranging:  

 

δ18OSO4(t) = δ18OSO4(0) − θO·
δ34SSO4 t -δ

34SSO4 0
ε34SStotal

∙ δ18OSO4(A.E)-δ18OSO4(0)  

 

in this equation δ18OSO4 is linearly correlated to δ34SSO4. 

 

 

The slope of this straight line (SALP) is therefore:  

 

SALP=-θO·
δ18OSO4(A.E)-δ

18OSO4(0)
ε34SStotal

 

QED 
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Appendix 3: Codes 
 

Plotting E33S vs. e34Stotal diagram 
!
%This!code!generates!the!E33S!vs.!ε34Stotal!(Chapter!2)!!
!
clear!all!
!
f=figure;!
hold!on;!
!
theta=0.5147;%equilibrium!between!34S!and!33S!fractionation!
!
a3=0.975;!%sulfur!34!fractionation!step!3!
a4=0.975;!%sulfur!34!fractionation!step!4!
a5=0.975;%sulfur!34!fractionation!step!5!
!
!
a333=a3^theta;%sulfur!33!fractionation!step!3!
a334=a4^theta;%sulfur!33!fractionation!step!4!
a335=a5^theta;%sulfur!33!fractionation!step!5!
!
T=[0.01!1!2!3!4!5!6!7!!8!9!9.9999999]*10^J1;!
!
T1=linspace(0.001,0.99999999,30);!
!
T2=[9.999999]*10^J1;!
!
for!i=1:length(T2)!
!
!!!!X4=T2(i);!
!
!!!!for!j=1:length(T)!
!!!!!!!!X3=T(j);!
!!!!!!!!X1=T1;!
!
!!!!!!!!a34(1:length(T1),j)=((X1.*X3.*X4)+X1*X3*(1JX4)*a5+X1*(1JX3)*a4*a5+...!
!!!!!!!!(1JX1)*a3*a4*a5)/(a3*a4*a5);!%calculating!total!34S!fractionation!
!!!!!!!!a33(1:length(T1),j)=((X1.*X3.*X4)+X1*X3*(1JX4)*a335+X1*(1JX3)*a334*a335+...!
!!!!!!!!(1JX1)*a333*a334*a335)/(a333*a334*a335);!%calculating!total!33S!fractionation!
!
!!!!Delta(1:length(T1),j)=1000*((a33(1:length(T1),j))J(a34(1:length(T1),j)).^0.515);!
!!!!%Calculating!33E!
!
!!!!end!
!
!!!!%Plotting!
!!!figure!(f)!
!!switch!i!
!!!!!!!!case!2!
!!!!!!!!plot(epsilon34(1:length(T1),:),Delta(1:length(T1),:),'color',[.8!.8!.8],'linewidth',1)!
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!
!!!!!!!!case!1!
!!!!!!!!plot(epsilon34(1:length(T1),:),Delta(1:length(T1),:),'color',[.0!.0!.0],'linewidth',1)!
!
!!end!
!!!!for!j=1:length(T)!
!!!!!!!!X1=T(j);!
!!!!!!!!X3=T1;!
!
!!!!!!!!a34(1:length(T1),j)=((X1.*X3.*X4)+X1*X3*(1JX4)*a5+X1*(1JX3)*a4*a5+...!
!!!!!!!!(1JX1)*a3*a4*a5)/(a3*a4*a5);%Calculating!total!34S!fractionation!
!!!!!!!!a33(1:length(T1),j)=((X1.*X3.*X4)+X1*X3*(1JX4)*a335+X1*(1JX3)*a334*a335+...!
!!!!!!!!(1JX1)*a333*a334*a335)/(a333*a334*a335);!%Calculating!total!33S!fractionation!
!
!!!Delta(1:length(T1),j)=1000*((a33(1:length(T1),j))J(a34(1:length(T1),j)).^0.515);!
!!!!!!!%Calculating!33E!
!
!
!!!!end!
!!!%Plotting!
!!!!figure!(f)!
!!!!switch!i!
!!!!!!!!case!2!
!!!!!!!!plot(epsilon34(1:length(T1),:),Delta(1:length(T1),:),'color',[.8!.8!.8],'linewidth',1)!
!
!!!!!!!!case!1!
!!!!!!!!plot(epsilon34(1:length(T1),:),Delta(1:length(T1),:),'color',[.0!.0!.0],'linewidth',1)!
!!!!end!
!
end!
!
z=get(f,'children');!
set(z(end),'YDir','reverse','XDir','reverse','FontName','Times!new!
Roman','FontSize',[16],'FontWeight','Bold');!
axis!square!
!
Published!with!MATLAB®!R2014a!
 
 

Plotting θo vs. e34Stotal diagram 
!
%This!code!generates!the!θO!vs.!ε34Stotal!(Chapter!2)!!
!
f=figure;!
hold!on;!
!
T=[1!2!3!4!5!6!7!!8!9!9.9999999]*10^J1;!
!
T1=linspace(0.1,0.9999999,30);!
!
T2=[4!7]*10^J1;!
!
for!i=1:length(T2)!
!
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!!!!X4=T2(i);!
!
!!!!for!j=1:length(T)!
!!!!!!!!X3=T(j);!
!!!!!!!!X1=T1;!
!
!!!!!!!!a34(1:length(T1),j)=((X1.*X3.*X4)+X1*X3*(1JX4)*a5+X1*(1JX3)*a4*a5+...!
!!!!!!!!(1JX1)*a3*a4*a5)/(a3*a4*a5);%total!34S!fractionation!
!
!!!!epsilon34(1:length(T1),j)=1000*(1Ja34(1:length(T1),j));!%fractionation!for!sulfur!
!!!!!C(1:length(T1),j)=X1.*X3./(1JX1.*X3);%theta!calculation!
!
!
!!!!end!
%plotting!
!!!figure!(f)!
!!switch!i!
!!!!!!!!case!2!
!!!!!!!!semilogy(epsilon34(1:length(T1),:),C(1:length(T1),:),'color',[.8!.8!.8],'linewidth',1)!
!
!!!!!!!!case!1!
!!!!!!!semilogy(epsilon34(1:length(T1),:),C(1:length(T1),:),'color',[.0!.0!.0],'linewidth',1)!
!!!!end!
!
!!!!for!j=1:length(T)!
!!!!!!!!X1=T(j);!
!!!!!!!!X3=T1;!
!
!
!!!!!!!!a34(1:length(T1),j)=((X1.*X3.*X4)+X1*X3*(1JX4)*a5+X1*(1JX3)*a4*a5+...!
!!!!!!!!(1JX1)*a3*a4*a5)/(a3*a4*a5);%total!34S!fractionation!
!
!!!!epsilon34(1:length(T1),j)=1000*(1Ja34(1:length(T1),j));!%fractionation!for!sulfur!
!!!!!C(1:length(T1),j)=X1.*X3./(1JX1.*X3);!%theta!calculation!
!
!
!!!!end!
!
!
!!!!end!
!
!!!!!!!figure!(f)!
!!switch!i!
!!!!!!!!case!2!
!!!!!!!!semilogy(epsilon34(1:length(T1),:),C(1:length(T1),:),'color',[.8!.8!.8],'linewidth',1)!
!
!!!!!!!!case!1!
!!!!!!!semilogy(epsilon34(1:length(T1),:),C(1:length(T1),:),'color',[.0!.0!.0],'linewidth',1)!
!!!!end!
!
!
!
z=get(f,'children');!
set(z(end),'YDir','reverse','XDir','reverse','FontName','Times!new!
Roman','FontSize',[16],'FontWeight','Bold');!
!
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!
axis!square!
Undefined!function!or!variable!'a5'.!
!
Published!with!MATLAB®!R2014a!
!
!

Reactive transport model  
!
function![SO4!S32O4!S34O4!SO164!SO184!D]=!Timestep2(X,X32,X34,X16,X18,SRR,X1,X3,Ds)!
!
%!This!function!receives!as!an!input!the!concentrations!of!the!different!sulfate!isotopologues!at!time!
%!n!
%!and!calculate!the!concentration!at!time!n+1!
!
!
%!this!function!receives!the!concentration!of!sulfate!(X),!sulfur32!(X32),!sulfur!34!(X34),!Oxygen!16!
%(X16),!Oxygen!18!(X18),!sulfate!reduction!rate!(SRR)!the!intracellular!fluxes!ratios!X1!and!X3!(see!
%chapter!2),!and!the!effective!diffusion!coefficient!of!sulfate!at!time!n!
!
%!the!output!is!sulfate!(SO4),!sulfur32!(S32O4),!sulfur!34!(S34O4),!Oxygen!16!(SO164),!Oxygen!18!
%(SO184)!at!time!n+1!
%!D!is!the!maximum!absolute!difference!between!the!concentration!at!time!n!and!n+1!
!
!
Rcdt=0.045005;!
Rsmow=!0.0020052;!
!
!X(X<0)=0;!
!X32(X32<0)=0;!
!X34(X34<0)=0;!
!X16(X16<0)=0;!
!X18(X18<0)=0;!
!
d34Si=(X34./X32JRcdt)/Rcdt*1000;!
d18Oi=(X18./X16JRsmow)/Rsmow*1000;!
!
!
!
dt=1;!%the!time!intervalJ!sec!
dz=1;%!depth!intervalJ!cm!
W=10^J1/365/24/60*10;!%mm/min!
!
!
SO4=nan*X;!
S32O4=nan*X32;!
S34O4=nan*X34;!
SO164=nan*X16;!
SO184=nan*X18;!
!
!
!
A=SRR;!
!
a=1.022;!
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!
for!i=2:length(X)J1!
!
!!!!d34Sfrac=frac(X(i,:),X(i,:)JSRR,d34Si(i,:),X1(:),X3(:));!
!!!!d18Ofrac=OS(X(i,:),X(i,:)JSRR,d18Oi(i,:),X1(:),X3(:));!
!
!
!!!!Rs=(d34Sfrac)/1000*Rcdt+Rcdt;!
!!!!Ro=(d18Ofrac)/1000*Rsmow+Rsmow;!
!
!!!!SRR34=X34(i,:)'J(X(i,:)'JSRR).*Rs./(Rs+1);!
!!!!SRR32=X32(i,:)'J(X(i,:)'JSRR)./(Rs+1);!
!
!
!
!!!!SRR16=X16(i,:)'J(X(i,:)'JSRR)./(Ro+1);!
!!!!SRR18=X18(i,:)'J(X(i,:)'JSRR).*Ro./(Ro+1);!
!
!
!!!!if!X(i,1)>X(1)*0.01!
!!!!!!!!SRR=A;!
!!!!else!
!!!!!!!!SRR=A*X(i,1)/(X(1)*0.01);!
!!!!end!
!
!!!!!if!SO4(i,:)<=X(1)*0.001!%||!isnan(d34Si(i,j))!||!isnan(d34Si(i,j))!
!!!!SO4(i,:)=0;!
!!!!S32O4(i,:)=0;!
!!!!S34O4(i,:)=0;!
!!!!SO164(i,:)=0;!
!!!!SO184(i,:)=0;!
!
!!!!%solving!the!equation!for!each!depth!
!!!!!!else!
!!for!j=1:length(X3)!
!
!
!
!!S32O4(i,j)=dt*(Ds*(X32(iJ1,j)J2*X32(i,j)+X32(i+1,j)))/dz^2JSRR32(j)+X32(i,j)+W*(X32(i,j)J
X32(i+1,j))/(2*dz);!
!!S34O4(i,j)=(dt*(Ds*(X34(iJ1,j)J2*X34(i,j)+X34(i+1,j))/dz^2JSRR34(j))+X34(i,j))+W*(X34(i,j)J
X34(i+1,j))/(2*dz);!
!
!!!SO164(i,j)=(dt*(Ds*(X16(iJ1,j)J2*X16(i,j)+X16(i+1,j))/dz^2JSRR16(j))+X16(i,j))+W*(X16(i,j)J
X16(i+1,j))/(2*dz);!
!!!SO184(i,j)=(dt*(Ds*(X18(iJ1,j)J2*X18(i,j)+X18(i+1,j))/dz^2JSRR18(j))+X18(i,j))+W*(X18(i,j)J
X18(i+1,j))/(2*dz);!
!
!
!!end!
!
!!!!!!!!SO4(i,:)=dt*(Ds*(X(iJ1,:)J2*X(i,:)+X(i+1,:))/dz^2+W*(X(i,:)JX(i+1,:))/(2*dz)JSRR)+X(i,:);!
!
!
!!!!!end!
end!
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!
!
!
!
SO4(1,:)=X(1,:);!
SO4(length(X),:)=X(end,:);!
!
S32O4(1,:)=X32(1,:);!
S32O4(length(X32),:)=X32(end,:);!
!
S34O4(1,:)=X34(1,:);!
S34O4(length(X),:)=X34(end,:);!
!
SO184(1,:)=X18(1,:);!
SO184(length(X),:)=X18(end,:);!
!
SO164(1,:)=X16(1,:);!
SO164(length(X),:)=X16(end,:);!
!
SO4(1,:)=X(1,:);!
SO4(length(X),:)=X(end,:);!
!
!
!
S32O4(S32O4<SRR)=0;!
S34O4(S34O4<SRR)=0;!
SO184(SO184<SRR)=0;!
SO164(SO164<SRR)=0;!
SO4(SO4<SRR)=0;!
!
!
for!i=1:length(X3)!
D(i,:)=[max(abs(SO4(:,i)JX(:,i)));max(abs(SO164(:,i)JX16(:,i)));max(abs(SO184(:,i)J
X18(:,i)));max(abs(S32O4(:,i)JX32(:,i)));max(abs(S34O4(:,i)JX34(:,i)))];!
end!
!
D=max(D(:));!
end!
!
!
function!d18Of=OS(SO4i,SO4f,d18Oi,X1,X3)!
!
%this!fanction!calculate!the!oxygen!isotope!composition!during!
%bacterial!sulfate!reduction!
!
%input:!SO4iJ!initial!sulfate!concetration!
%SO4fJ!final!sulfate!concetration!
%d18OiJ!initial!oxigen!isotopic!composition!
%X1!and!X3J!the!fluxs!ratio!for!steps!1!and!3!(see!chapter!2)!
%output:!d18OfJ!final!oxygen!isotopic!composition!
!
f=SO4f/SO4i;!
!
epsilon=J3+25*X1+25*X1.*X3;%sulfur!fractionation!
!
theta=X1.*X3./(1JX1.*X3);%thetaO!value!
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!
AE=17+0+1./X3.*25/4J3./4./(X1.*X3);%apparent!equilibrium!value!
!
!
d18Of=exp(theta.*log(f)).*(JAE+d18Oi')+AE;!
!
end!
!
function!d34Sf=frac(SO4i,SO4f,d34Si,X1,X3)!
!
%this!function!calculate!the!sulfur!isotope!composition!during!
%bacterial!sulfate!reduction!
!
%input:!SO4iJ!initial!sulfate!concentration!
%SO4fJ!final!sulfate!concentration!
%S18OiJ!initial!sulfur!isotopic!composition!
%X1!and!X3J!the!fluxs!ratio!for!steps!1!and!3!(see!chapter!2)!
%output:!S18OfJ!final!sulfur!isotopic!composition!
!
f=SO4f/SO4i;!
!
!epsilon=J3+25*X1+50*X1.*X3;%sulfur!fractionation!
!
!d34Sf=d34Si'Jepsilon.*log(f);!
!
end!
!
Published!with!MATLAB®!R2014a!
!
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Appendix 4: Data Repository 
 

A.4.1 Data tables for Chapter 3 
!
δ18O(H2O)= -5.6‰       
Experiment Sample Time 

(days) 
SO4 

(mM) 
H2S 

(mM) 
Cells 
(#/ml) 

δ34S 
(SO4) 

δ18O 
(SO4) 

Lactate 0.0 0.0 21.0 0.1 8.34E+06 -1.9 10.1 
Lactate 1.0 1.2 20.3 0.3 3.11E+07 -1.6 9.9 
Lactate 2.0 1.7 18.9 0.4 1.19E+08 -1.4 9.8 
Lactate 3.0 2.2 17.4 1.6 2.72E+08 -1.1 9.8 
Lactate 4.0 2.7 14.1 2.4 3.90E+08 -0.1 9.8 
Lactate 5.0 3.0  4.2 5.51E+08 0.8 9.5 
Lactate 6.0 3.2 10.4 5.0 7.21E+08 1.9 9.8 
Lactate 7.0 3.7 10.5 5.3 8.34E+08 2.9 10.1 
Lactate 8.0 3.9 10.3 5.1 9.73E+08 2.8 9.9 

 
 
 

      

Experiment Sample Time 
(days) 

δ33S 
(SO4) 

δ34S 
(SO4) 

δ33S (H2S) δ34S 
(H2S) 

 

Lactate 5.0 3.0 0.6 1.3 -3.1 -6.0  
Lactate 6.0 3.2 0.7 1.6 -3.0 -5.7  
Lactate 7.0 3.7 1.4 2.7 -2.9 -5.5  

      ! !
δ18O(H2O)= 32.2‰       
Experiment Sample Time 

(days) 
SO4 

(mM) 
H2S 

(mM) 
Cells 
(#/ml) 

δ34S 
(SO4) 

δ18O 
(SO4) 

Lactate 0 0.2 17.9 0.6 4.18E+06 -0.6 9.6 
Lactate 1 2.2 17.0 1.4 5.00E+07 -0.1 9.3 
Lactate 2 2.9 15.1 4.1 1.04E+08 0.3 9.3 
Lactate 3 3.1 14.1 4.6 2.21E+08 0.0 9.2 
Lactate 4 3.4 12.4 5.3 3.04E+08 1.2 9.2 
Lactate 5 3.8 9.2 5.1 4.46E+08 3.5 9.5 
Lactate 6 4.0 8.9 8.3 4.87E+08 3.5 10.0 
Lactate 7 4.4 9.0 8.4 4.18E+08 3.5 9.2 

        
δ18O(H2O)= 75.3‰       
Experiment Sample Time 

(days) 
SO4 

(mM) 
H2S 

(mM) 
Cells 
(#/ml) 

δ34S 
(SO4) 

δ18O 
(SO4) 

Lactate 0 0.2 20.3 0.3 5.83E+06 -0.7 9.3 
Lactate 1 2.2 19.6 1.3 2.67E+07 -0.5 9.2 
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Lactate 2 2.9 18.2 3.0 1.06E+08 -0.2 9.4 
Lactate 3 3.1 16.7 4.5 1.84E+08 0.3 8.7 
Lactate 4 3.4 15.9 5.3 2.63E+08 0.4 9.8 
Lactate 5 3.8 12.0 7.0 3.87E+08 2.5 9.5 
Lactate 6 4.0 11.5 8.9 3.81E+08 2.8 9.9 
Lactate 7 4.4 11.3 8.3 5.83E+08 3.7 10.1 

 
 

       

δ18O(H2O)= -5.6‰       
Experiment Sample Time 

(days) 
SO4 

(mM) 
H2S 

(mM) 
Cells 
(#/ml) 

δ34S 
(SO4) 

δ18O 
(SO4) 

Malate 0 0.0 21.9 0.0 7.21E+06 1.2 10.2 
Malate 1 2.3 22.4 0.3 1.33E+07 1.7 10.3 
Malate 2 3.0 18.2 0.5 3.11E+07 2.0 10.3 
Malate 3 4.0 18.0 1.1 1.19E+08 2.6 10.6 
Malate 4 4.8 16.3 2.3 2.72E+08 4.0 10.5 
Malate 5 5.3 15.7 3.4 3.90E+08 5.4 10.8 
Malate 6 5.8 14.1 4.7 5.51E+08 8.0 11.3 
Malate 7 6.3 12.6 6.4 7.21E+08 9.6 12.0 

        
δ18O(H2O)= 72.9‰       
Experiment Sample Time 

(days) 
SO4 

(mM) 
H2S 

(mM) 
Cells 
(#/ml) 

δ34S 
(SO4) 

δ18O 
(SO4) 

Malate 0 0.3 21.4 0.0 2.45E+08 -0.8 9.4 
Malate 1 3.5 20.3 0.4 1.13E+09 0.5 10.6 
Malate 2 3.9 19.9 1.3 4.16E+09 0.9 11.0 
Malate 3 4.5 18.7 2.8 9.31E+09 2.3 12.8 
Malate 4 5.3 14.7 3.6 1.19E+10 5.1 17.1 
Malate 5 5.9 14.2 4.1 1.35E+10 8.2 21.2 
Malate 6 6.3 14.1 7.4 2.45E+10 8.1 21.7 

        
Experiment Sample Time 

(days) 
δ33S 

(SO4) 
δ34S 

(SO4) 
δ33S (H2S) δ34S 

(H2S) 
 

Malate 3 4.5 1.1 2.1 -11.1 -21.6  
Malate 4 5.3 2.6 5.0 -10.7 -20.8  
Malate 5 5.9 4.2 8.3 -10.3 -20.1  

        
δ18O(H2O)= -5.4‰       
Experiment Sample Time 

(days) 
SO4 

(mM) 
H2S 

(mM) 
Cells 
(#/ml) 

δ34S 
(SO4) 

δ18O 
(SO4) 

Fructose 0 0.0  0.1 6.42E+06 1.3 10.3 
Fructose 1 3.8 20.1 0.2 7.44E+07 1.8 10.6 
Fructose 2 5.1 19.7 0.1 8.44E+07 2.8 10.5 
Fructose 3 5.9 19.8 0.6 1.02E+08 2.5 10.6 
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Fructose 4 6.9 19.3 0.8 2.10E+08 3.2 10.5 
Fructose 5 7.7 19.1 1.2 2.36E+08 3.7 10.9 
Fructose 6 8.1 18.0 1.9 4.45E+08 5.1 11.3 
Fructose 7 8.7 17.8 2.3 5.87E+08 5.7 11.6 
Fructose 8 9.1 18.0 2.8 6.42E+08 6.9 11.8 

 
 
 

       

δ18O(H2O)= 30.9‰       
Experiment Sample Time 

(days) 
SO4 

(mM) 
H2S 

(mM) 
Cells 
(#/ml) 

δ34S 
(SO4) 

δ18O 
(SO4) 

Fructose 0 0.0 20.3 0.2 1.26E+08 -0.5 9.3 
Fructose 1 2.2 20.3 0.3  -0.5 9.5 
Fructose 2 4.1 19.9 0.6 1.90E+09 -0.2 9.9 
Fructose 4 5.8 19.2 1.4 4.44E+09 1.2 11.4 
Fructose 5 7.2 17.7 2.5 8.04E+09 3.0 12.5 
Fructose 6 7.9 14.8 3.7 1.23E+10 5.5 13.7 
Fructose 7 8.2 15.1 3.8 1.26E+10 5.1 13.6 

        
Experiment Sample Time 

(days) 
δ33S 

(SO4) 
δ34S 

(SO4) 
δ33S (H2S) δ34S 

(H2S) 
 

Fructose 2 4.1 -0.4 -0.7 -12.4 -24.2  
Fructose 4 5.8 0.9 1.7 -10.7 -20.8  
Fructose 5 7.2 1.7 3.2 -11.3 -21.9  
Fructose 7 8.2 2.5 4.9 -8.0 -15.5  

        
δ18O(H2O)= 74.7‰       
Experiment Sample Time 

(days) 
SO4 

(mM) 
H2S 

(mM) 
Cells 
(#/ml) 

δ34S 
(SO4) 

δ18O 
(SO4) 

Fructose 0 0.0 20.3 0.6 5.82E+06 -0.8 9.2 
Fructose 1 2.2 20.2 0.8  -0.6 9.3 
Fructose 2 4.1 20.5 1.3 3.22E+07 0.0 11.2 
Fructose 3 5.8 17.9 2.1 8.44E+07 0.9 11.0 
Fructose 4 7.2 11.9 8.5 9.29E+08 4.9 17.9 
Fructose 5 7.2 15.9 6.8 6.13E+08 4.1 17.3 
Fructose 6 7.2 16.0 6.9 5.82E+08 3.7 17.5 

        
        

δ18O(H2O)= -5.3‰       
Experiment Sample Time 

(days) 
SO4 

(mM) 
H2S 

(mM) 
Cells 
(#/ml) 

δ34S 
(SO4) 

δ18O 
(SO4) 

Ethanol 0 0.0  0.0 2.02E+08 1.1 10.3 
Ethanol 1 1.9 20.8 0.1  1.6 10.3 
Ethanol 2 5.8 19.0 1.8 5.70E+09 2.6 10.8 
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Ethanol 3 7.0 17.9 2.8 9.11E+09 3.1 10.7 
Ethanol 4 8.1 16.4 4.7 1.54E+10 4.7 11.0 
Ethanol 5 8.8 14.9 6.8 2.26E+10 5.9 11.4 
Ethanol 6 9.3 14.7 6.4 2.11E+10 6.3 11.8 
Ethanol 7 10.0 14.2 6.4 2.10E+10 6.5 11.6 
Ethanol 8 10.6 14.5 6.1 2.02E+10 6.6 11.7 

 
 

       

δ18O(H2O)= 75.4‰       
Experiment Sample Time 

(days) 
SO4 

(mM) 
H2S 

(mM) 
Cells 
(#/ml) 

δ34S 
(SO4) 

δ18O 
(SO4) 

Ethanol 0 0.7 20.2 0.4 2.80E+08 -0.2 9.5 
Ethanol 1 6.0 19.6 1.1 3.47E+09 0.0 10.1 
Ethanol 3 8.1 18.6 2.5 8.27E+09 0.6 10.1 
Ethanol 4 9.0 17.5 6.1 2.00E+10 1.7 11.8 
Ethanol 5 9.8 15.6 5.9 1.96E+10 3.4 13.3 
Ethanol 6 10.9 12.8 6.7 2.23E+10 6.3 17.0 
Ethanol 7 11.8 11.4 8.5 2.80E+10 7.6 18.4 

        
Experiment Sample Time 

(days) 
δ33S 

(SO4) 
δ34S 

(SO4) 
δ33S (H2S) δ34S 

(H2S) 
 

Ethanol 4 9.0 0.7 1.5 -9.1 -17.6  
Ethanol 5 9.8 1.9 3.7 -8.0 -15.5  
Ethanol 6 10.9 3.3 6.5 -8.1 -15.7  
Ethanol 7 11.8   -7.3 -14.2  

   ! !    
δ18O(H2O)= 31.5‰       
Experiment Sample Time 

(days) 
SO4 

(mM) 
H2S 

(mM) 
Cells 
(#/ml) 

δ34S 
(SO4) 

δ18O 
(SO4) 

Ethanol 0 0.8 20.2 0.4 2.36E+08 -0.7 9.3 
Ethanol 1 6.0 19.0 1.7 5.39E+09 0.4 9.9 
Ethanol 3 8.1 16.8 3.6 1.18E+10 2.3 11.6 
Ethanol 4 9.0 15.1 7.4 2.45E+10 3.3 11.9 
Ethanol 5 9.8 14.7 6.8 2.24E+10 3.7 12.8 
Ethanol 6 10.9 11.2 8.6 2.86E+10 7.8 15.1 
Ethanol 7 11.8 11.3 7.1 2.36E+10 8.1 15.3 

        
δ18O(H2O)= -4.7‰       
Experiment Sample Time 

(days) 
SO4 

(mM) 
H2S 

(mM) 
Cells 
(#/ml) 

δ34S 
(SO4) 

δ18O 
(SO4) 

Glucose 1 0.2 20.4 0.0 6.83E+07 0.9 10.4 
Glucose 2 3.8 20.2 0.1  1.3 10.5 
Glucose 3 9.3 18.1   1.1 10.3 
Glucose 4 15.1 19.2   1.3 10.9 
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Glucose 5 20.4 20.0 0.2 5.32E+08 1.6 10.9 
Glucose 6 25.3 19.9 0.4 1.28E+09 2.0 11.8 
Glucose 7 30.0 19.9 0.6 1.90E+09 2.6 12.1 
Glucose 8 37.3 19.3 1.2 3.83E+09 4.1 13.5 
Glucose 9 40.9 18.7 1.6 5.17E+09 6.0 14.4 
Glucose 10 45.3 18.1 2.1 6.83E+09 8.1 15.2 

 
 

       

δ18O(H2O)= 31.0‰       
Experiment Sample Time 

(days) 
SO4 

(mM) 
H2S 

(mM) 
Cells 
(#/ml) 

δ34S 
(SO4) 

δ18O 
(SO4) 

Glucose 0 16.9 19.9 1.0 9.11E+07 0.7 17.7 
Glucose 1 9.8 20.2 0.6 8.50E+07 0.3 10.8 
Glucose 2 1.0 20.4 0.4 1.44E+07 -0.5 8.4 
Glucose 3 26.2 19.5 0.9 1.72E+08 2.6 27.1 
Glucose 4 30.7 18.7 1.7 2.74E+08 4.2 32.9 
Glucose 5 43.8 15.1 5.0 8.90E+08 15.9 48.3 
Glucose 7 36.1 18.2 2.6 3.56E+08 6.1 38.8 

        
Experiment Sample Time 

(days) 
δ33S 

(SO4) 
δ34S 

(SO4) 
δ33S (H2S) δ34S 

(H2S) 
 

Glucose 3 26.2 1.2 2.2 -31.6 -60.5  
Glucose 5 43.8 8.4 16.4 -31.6 -60.5  
Glucose 7 36.1 2.7 5.3 -24.1 -46.4  

        
δ18O(H2O)= 77.8‰       
Experiment Sample Time 

(days) 
SO4 

(mM) 
H2S 

(mM) 
Cells 
(#/ml) 

δ34S 
(SO4) 

δ18O 
(SO4) 

Glucose 0 5.9 20.2 0.3 4.06E+06 -0.3 8.7 
Glucose 1 14.8 20.0 0.5 2.78E+07 0.2 14.5 
Glucose 2 22.0 19.5 0.5 8.17E+07 1.1 25.8 
Glucose 3 31.2 19.1 0.9 1.71E+08 3.3 48.4 
Glucose 4 35.7 18.3 1.8 3.51E+08 5.5 63.5 
Glucose 5 48.8 14.6 5.6 9.71E+08 16.2 81.3 
Glucose 7 41.1 17.7 2.5 4.06E+08 7.2 72.6 

!

  

A.4.2 Data tables for Chapter 4 
!
Table A.4.2.1: Pore fluids analyses at the Yarqon. 
 

Depth SO4  δ34S (SO4) δ18O (SO4) DIC  δ13C(DIC) CH4  δ13C(CH4) 
(cm) (mM) (VCTD) (VSMOW) (mM) (PDB) µM (PDB) 
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0.0 31.6 20.8 10.0     
0.6 32.2 22.6 10.8 7.2 -17.0 62  
1.9 28.4 25.1 11.7 11.4 -19.8  -67.3 
3.1 24.4 n.d 13.0 14.8 -20.9 89  
4.3 21.4 28.9 13.3 17.4 -21.1  -68.1 
5.6 19.1 31.9 13.6 21.5 -22.3 238  
6.8 14.4 35.4 15.2 25.4 -21.8  -73.8 
8.1 13.1 38.5 16.8 30.2 -22.1 372  
9.3 10.0 43.5 18.5 33.7 -22.6  -78.6 

10.6 6.9  18.9 35.4 -22.1 616  
11.8 5.0 51.3 18.6 41.6 -22.2  -76.6 
13.0 3.6  18.8 40.1 -21.6 488  
14.3 2.8  17.0    -73.6 
15.5    45.9 -22.0 461  
16.8 1.3   44.8 -21.8  -80.5 
18.0 1.3   42.7 -21.9 439  
19.3 1.1   43.4 -22.2  -82.7 
20.5      445  
21.7 0.8   48.3 -22.5  -80.0 
23.0 0.9   47.1 -22.9 395  
24.2    50.3 -23.3  -78.2 

 
 
Table A.4.2.2: Pore fluids analyses at the Qhison. 
 

Depth SO4  δ34S(SO4) δ18O(SO4) DIC  δ13C (DIC) CH4  δ13C(CH4) 
(cm) (mM) (VCTD) (VSMOW) (mM) (PDB) (µM) (PDB) 

0  20.9 11.8     
0.6 30.2 21.2 14.1 -9.9 1.8 0.3  
1.7 30.4 22.0 14.7 -13.0 5.6 0.4  
2.9 27.5 23.9 16.9 -15.5 6.2 0.7 -62.5 
4.0 27.7 26.1 18.1 -17.0 10.8 0.5  
5.2  27.7 19.7 -17.5 12.8 0.5  
6.3 23.5   -18.0 16.8 0.5  
7.5 22.2 31.5 21.5 -18.3 18.2 0.4 -60.2 
8.6 20.9   -18.2 24.0 0.4  
9.8 18.7     0.2  

10.9 16.8 36.9 22.6 -18.1 27.4 0.4  
12.1 14.7   -17.7 33.6   
13.2 12.3 43.1 24.3   0.2  
14.4 8.2     0.2 14.0 
15.5 6.6   -16.5 40.9 0.3  
16.6    -15.6 42.7 0.3 -70.6 
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17.8 2.6     0.5  
18.9 1.4   -13.2 45.9 0.3 -73.2 
20.1 1.3   -12.6 48.6 0.3  
21.2 0.7   -11.0 52.7 0.3  
22.4    -10.1 47.0   
23.5 0.6       
24.7 0.5       
25.8    -8.4 52.1   
28.1 0.5   -7.6 48.8   
30.4 0.3   -7.1 50.6   

 
 
Table A.4.2.3: Dissolved methane analyses from piston core at the Qishon 
 

 Depth (cm) CH4  (mM) 

 13.5 0.9 

 16.5 0.5 
 26.5 2.1 
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A.4.3 Data tables for Chapter 5  
 
Table A.4.3.1: Pore fluids analyses at the Acre 
!

 Depth(cm) SO4 (mM) δ34S (SO4) δ18O (SO4) 
NA-8-1 1 26.5 25.3 11.8 
NA-8-2 2  27.3 11.0 
NA-8-3 3 15.1 31.0 11.9 
NA-8-4 4  36.5 14.7 
NA-8-5 5 8.5 43.5 17.8 
NA-8-6 6  47.4 20.2 
NA-8-7 7 5.2 52.1 20.4 
NA-8-8 8  53.6 19.4 
NA-8-9 9 5.2 53.2 20.1 

NA-8-10 10  46.9 18.5 
NA-8-11 11 7.0 42.2 16.7 
NA-8-12 12  39.3 16.4 

 

Table A.4.3.2: Methane and δ13CCH4 analyses at the Acre 

Depth(m) CH4 (mM) δ13C(CH4) 
0.5 0.3 -67.5 
1.5 0.8 -76.0 
2.5 0.3 -73.8 
3.5 1.0 -75.7 
4.5 1.4 -77.0 
5.5 1.4 -80.6 
6.5 1.3 -78.8 
7.5 1.3 -78.3 
8.5 1.4 -78.2 

 

Table A.4.3.3: Pore fluids analyses at the Palmachim 

 Depth (cm) SO4(mM) δ34S(SO4) δ18O(SO4) DIC (mM) δ13C(DIC) 
NA-80-1 0 31.9 20.2 8.6   
NA-80-2 0.5 n.d 21.7 9.7 4.1 -19.1 
NA-80-3 4.5 32.0 21.7 9.4 6.8 -33.4 
NA-80-4 8.5 28.2 24.9 11.0   
NA-80-5 10.5 16.4 32.3 14.1 10.7 -52.2 
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Table A.4.3.4: Methane and δ13CCH4 analyses at the Palmachim 

Depth (cm) CH4 (uM) δ13C(CH4) 
0 31.7 -59.3 
4 254.9 -43.1 
8  -70.6 

14 776.2 -70.4 
15 209.8 -68.2 
16 0.7 -69.3 

 

Table A.4.3.4 Pore fluid analyses at site PC-6 

Depth [cm] SO4 [mM] CH4 [µM] δ13CDIC DIC [mM] δ18OSO4 δ34SSO4 
0 31.8  -1.3 2.4 9.4 20.2 
1 31.2 0 -10.0 3.7 10.9 21.4 

44 29.6 0 -13.7 4.4   
84 26.4 0 -19.4 7.2 12.6 22.5 

134 20.8 0   15.2  
184 17.1 0 -26.4 13.5 18.3 25.5 
234 12.8 0 -28.6 15.8 20.5 28.2 
284 8.0 0 -30.6 18.6 24.0 32.2 
324 4.5 0 -32.0 22.0 25.2 34.0 
364 0.0 1 -32.8 21.7   
404 0.0 114 -30.9 23.5   
444 0.0 466 -27.8 24.3   

!
!
 

Data table for Chapter 6 
!
Table A.4.4.1 Worldwide pore fluid δ18OSO4 vs. δ34SSO4 slope and the coresponding 
references. 

Site name Location Type Slope Error (2σ) na Reference  

NA 8b  SE Mediterranean 
Sea MiEf 0.45 0.06 5 Rubin-Blum 

et al. (2014) 

NA 80c  SE Mediterranean 
Sea MiEf 0.34 0.06 12 Rubin-Blum 

et al. (2014) 

2639-3 Gulf of Mexico MiEf 0.34 0.15 5 Aharon and 
Fu. (2003) 

2639-4 Gulf of Mexico MiEf 0.29 0.04 5 Aharon and 
Fu. (2003) 

2647-3 Gulf of Mexico MiEf 0.34 0.16 5 Aharon and 
Fu. (2003) 
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Oil Gulf of Mexico MiEf 0.34 0.06 13 Aharon and 
Fu. (2000) 

Gas Gulf of Mexico MiEf 0.28 0.04 12 Aharon and 
Fu. (2000) 

Ref Gulf of Mexico MiEf 0.66 0.3 6 Aharon and 
Fu. (2000) 

Strander 
Bucht, 

Station 6 
Baltic Sea MiEf 0.45 0.04 10 Strauss et al., 

(2012) 

Strander 
Bucht, 

Station 5 
Baltic Sea MiEf 0.29 0.13 7 Strauss et al., 

(2012) 

Y1d Yarqon estuary 
(Israel) MiEf 0.35 0.01 11 Antler et al. 

(2013) 

Y2 Yarqon estuary 
(Israel) MiEf 0.47 0.05 6 Antler et al. 

(2013) 

Y3 Yarqon estuary 
(Israel) MiEf 0.37 0.03 8 Antler et al. 

(2014) 

Q2 Qishon estuary 
(Israel) MDg 0.73 0.16  6 Antler et al. 

(2014) 

OS00-17 Amzon delta N.Dh 0.3 0.2 4 Aller et al. 
(2010) 

OS00-16 Amzon delta N.Dh 0.29 0.05 6 Aller et al. 
(2010) 

OST-2- 
LOW Amzon delta MDg 1.04 0.42 10 Aller et al. 

(2010) 
OST-2- 
RISING Amzon delta MDg 0.58 0.12 9 Aller et al. 

(2010) 

PC6e SE Mediterranean 
Sea MDLi 1.25   0.2  6 This study 

BA1 SE Mediterranean 
Sea MDg 1.06 0.11 8 Antler et al. 

(2013) 

HU SE Mediterranean 
Sea MDg 0.99 0.13 5 Antler et al. 

(2013) 

ODP 1082 SW Pacific MDLi 2.2 3.31 4 Turchyn et 
al. (2006) 

ODP 1086 SW Pacific MDg 10.73 7.01 3 Turchyn et 
al. (2006) 

OPD 1225 Peru Margin MDg 4.53 1.37 9 

Böttcher et 
al. (2006); 
Black et al. 

(2006) 

ODP 1226 Peru Margin MDg 0.96 0.47 4 

Böttcher et 
al. (2006); 
Black et al. 

(2006) 

ODP 1123 West Africa MDg 1.4 0.24 5 Turchyn et 
al. (2006) 

ODP 1052 NW Atlantic MDg 1.69 0.18 8 Antler et al. 
(2013) 

 
[a] The number of analyses that were used for the linear regression. 
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[b] ‘Black patch’ in figure 1a. 
[c] ‘Gas seeps’ in figure 1a. 
[d] ‘Estuary’ in figure 1a. 
[e] ‘SMTZ’  in figure 1a. 
[f]  MiE- methane-in-excess 
[g]  MD- methane-devoid 
[h]  N.D- methane was not measured 
[i]  MDL- methane-diffusion-limited 
!
!


