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We study the pricing and capacity allocation problem of a service provider who serves two distinct customer

classes. Customers within each class are inherently heterogeneous in their willingness to pay for service,

but their utilities are also affected by the presence of other customers in the system. Specifically, customer

utilities depend on how many customers are in the system at the time of service as well as who these other

customers are. We find that if the service provider can price discriminate between customer classes, pricing

out a class, i.e., operating an exclusive system, can sometimes be optimal and that depends only on classes’

perceptions of each other. If the provider must charge a single price, an exclusive system is even more likely.

We extend our analysis to a service provider who can prevent class interaction by allocating separate capacity

segments to the two customer classes. Under price discrimination, allocating capacity is optimal if the “net

appreciation” between classes, as defined in the paper, is negative. However, under a single–price policy,

allocating capacity can be optimal even if this net appreciation is positive. We describe in detail how the

nature of asymmetry in classes’ perception of each other determines the optimal strategy.

Key words : customer mix, crowding, pricing, capacity allocation

1. Introduction

In many service systems, service is simultaneously delivered to many customers who share the

same physical environment. For example, members of a gym workout in the same space and share

the equipment, passengers on a cruise ship share the common areas on the ship, and customers of

a nightclub enjoy the dancefloor together. In such facilities, an individual customer’s perception

of the service quality is highly influenced by the composition of the clientele. For example, some

female gym members do not enjoy sharing the same facility with males, and in nightclubs and

bars, males typically have strong preferences for other customers being female (Skinner et al. 2005,

Kubacki et al. 2007). Other service settings where customer satisfaction is influenced by the others’

characteristics (such as age, socioeconomic status, intellectual capabilities, etc.) include social clubs,
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health clubs, schools (Buchanan 1965, Basu 1989, Sandler and Tschirhart 1997), beauty salons

(Moore et al. 2005), recreational parks, adventure sports (Thakor et al. 2008), restaurants (Huang

2008), and professional conferences (Gruen et al. 2007).

Demand management for such service establishments, where each customer’s satisfaction depends

on who the fellow customers are, can be particularly challenging. The service provider who is facing

this challenge has two powerful tools: pricing and capacity allocation, which, in its more extreme

form, might even mean choosing to serve only certain segments of the population. Restricting access

to certain customer segments may seem like a radical solution, but in practice it is more prevalent

than expected. Such restriction could be direct or a result of a “forced” self-selection. Gyms and

health clubs employ direct restriction when they choose to become women–only establishments or

allocate certain times of the week for the exclusive use of families with kids. On the other hand, some

firms design the service experience so as to appeal to a particular segment and let the customers

self–select. This is the idea behind theme cruises and nightclubs catering to different types of

clientele on different floors of the venue or at different nights of the week by carefully choosing the

music and decoration. If such capacity allocation or restriction options are not available, or as a

complementary tool, firms also use pricing as a means to manage their capacity and composition of

their clientele, and maximize their profits. For example, nightclubs use various pricing promotions

(e.g., “ladies’ nights”) to attract the “right” mix of customers.

Such practices are prevalent but that does not mean that they are devoid of controversy. “Ladies’

nights” have long been criticized by some as being discriminatory against men and this led to a

number of lawsuits being filed over the years (Rank 2011). Recently some gyms have been the

center of attention due to similar policies. In 2007, a complaint against the Las Vegas Athletic Club

(Friess (2007), Friess (2008)) led Nevada to pass a law in 2011 making gender-based pricing legal

when used for promotional purposes (Schoenmann 2011). A more recent controversy was caused

by Fitness USA, which abruptly decided to make two of its locations in Michigan women-only. The

company preferred to offer its services exclusively to females and charge them a higher price, even

if that meant angering several, male and female, customers (Komer 2013). In general, even though

women-only health clubs have occasionally drawn ire, and some argue about their legality, they

are popular and common in and outside the U.S. It is also important to note that the revenues

associated with the leisure industry, where customer mix effects are prominent, are quite high. In

the UK, it generates over £200bn of revenue every year, provides 2.6m jobs and represents 9% of

the workforce (Wyman 2012). Similarly, in the US, the health club industry has annual revenues of

$27bn (IBISWorld 2014b) and the nightlife industry of $24bn (IBISWorld 2014a). All these figures

point to the importance of investigating the optimal pricing and capacity allocation strategies in

these contexts.
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In the establishments described above, the two fundamental questions the service provider needs

to answer are: given the available capacity, what is the “optimal” customer mix and how should

this mix be achieved? The objective of this paper is to provide insights into these two questions,

which are inextricably linked. The optimal mix could be so that the system is an exclusive one,

where service is offered to one segment of the population or an inclusive one where customers from

different segments interact. Alternatively, the provider may also choose to allocate capacity for the

exclusive use of each segment. Another interesting dimension is whether or not and how firm’s

pricing policy affects such decisions. Our analysis sheds light on these questions, helps identify

conditions that would lead firms to choose one strategy over the other, and explains some of the

existing practices we observe in the service industry.

The main challenge in investigating these questions is that no prior work can serve as the

foundation for our modeling effort. Despite the fact that the operations management literature is

rich in articles that deal with pricing, demand management, and capacity control in the context of

service operations, the focus is not on the service process itself. Specifically, the “service” experience

in these articles is typically not influenced by the characteristics of the others with whom they

share the service experience (or service is simply not a shared experience), whereas delays in access

to service is the important dimension of the problem. As a consequence, most papers consider

queueing-based formulations. In contrast, for the service settings we are interested in, capturing

the delivery of the service process (specifically, who the other customers are and how many of them

there are)—as opposed to delays in access to service—is far more important. Thus, one of the main

contributions of this paper is the development of a novel stylized formulation that permits detailed

analysis of pricing and capacity allocation decisions for such settings.

Our model assumes that the service provider serves two classes of customers. Customers of one

class have stochastically larger intrinsic valuations for the received service. Each customer knows

the distribution of service valuations for both customer classes and uses this information along

with the price to decide whether or not to purchase service. We focus first on the pricing decision

and assume that the provider does not have the option to allocate different capacity segments to

different customer classes, but can deny service to one of the two classes altogether. We consider

two different settings; in §4.1, the firm has the flexibility to charge different prices to different

classes, and in §4.2, the firm has to charge everyone the same price. When price discrimination is

allowed, the firm might choose to exclude a particular class from service only due to the classes’

perceptions of each other, i.e. the customer mix effects. Additionally, increasing the capacity might

increase utilization. This surprising phenomenon is observed when customers are symmetric in

their inherent willingness to pay for service and the customer mix effects are mild but disappears

as the asymmetry increases. When the firm is forced to choose a single price, a strong asymmetry
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in the feelings of the two classes about each other urges the provider to restrict access to a single

class in order to be profitable. (Interestingly, this is not true when there is mutual dislike.) This

suggests that attempts to achieve price “fairness” by disallowing price discrimination might lead

the service provider to deny service to one class.

In §4.3 and §4.4 of the paper, assuming that the firm can allocate capacity to different customer

classes, we study the optimal allocation and pricing policy. In Section 5, we compare the different

strategies to shed light into the design of such a service system and we find that if the firm can

price discriminate, whether or not the firm chooses to allocate capacity depends purely on classes’

perceptions of each other, not on any potential willingness–to–pay asymmetry between classes.

However, this choice is more complicated if the firm has to charge the same price to both classes.

In most cases, a firm that cannot price discriminate is more likely to prefer capacity allocation;

however, this is not always true if customer classes are asymmetric in their inherent willingness

to pay for service. In Section 6, we gain further insights via numerical examples and discuss the

robustness of our results through a sensitivity analysis.

2. Literature Review

Prior work in the operations management literature has mostly investigated questions related to

pricing and capacity control in service establishments where queueing prior to service is a critical

aspect of the service experience. Thus, this body of work typically considers models that capture

congestion effects and delay-sensitive customers (e.g., Naor 1969, Mendelson 1985, Mendelson and

Whang 1990, Afèche 2013, Afèche and Pavlin 2015) and/or queue lengths provide signals of

the service quality (e.g., see Debo and Veeraraghavan 2009, Veeraraghavan and Debo 2009, 2011).

This is unlike our formulation which captures the service process during delivery but not the

delays in access to service. Specifically, we focus on the consumption of a service good where class

heterogeneity and the total number of customers has an impact on the customers’ utility. To the

best of our knowledge, the effects of this customer-to-customer interactions and their influence on

the firms’ pricing and capacity allocation decisions, has not been analytically studied before.

One paper that is relatively closer to our work is Johari and Kumar (2010), which considers

positive-only network effects together with congestion effects. It is motivated by online services

and these two effects are formulated in a way that is more general than our approach in that the

effects not only depend on the number of active users in the system but also on the load these users

generate. However, unlike the case in our model, Johari and Kumar ignore possible asymmetry in

how customers from different segments feel about each other. Furthermore, their focus is completely

different from ours. The authors are not interested in pricing and capacity allocation decisions for

a profit–maximizing firm, but rather focus on the optimal number of users from the users’ and the

manager’s perspectives. The gap between the two optima is discussed along with its implications.
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In the economics literature, there are some articles related to our paper. A significant portion of

these articles belong to a stream of work on “club theory,” which originated from the seminal papers

by Tiebout (1956) and Buchanan (1965). (For an extensive review of this literature, see Cornes

and Sandler 1996 and Sandler and Tschirhart 1997.) However, this literature typically investigates

questions that are completely different from ours. Specifically, except for a few papers (Hearne

1988, Basu 1989) that we discuss further below, the traditional club theory has not focused on

pricing and/or capacity allocation considerations of a profit–maximizing firm. Moreover, again

except for a few papers (e.g., Basu 1989, Brueckner and Lee 1989, Scotchmer 1997, Becker and

Murphy 2000), the club theory literature has typically assumed that customers are homogeneous

and their utilities do not depend on the characteristics of the other individuals in the facility.

Hearne (1988) focuses on the optimal pricing mechanisms of a monopolistic club and apart from

the focus, the paper is different from ours in that the customers are assumed to be homogeneous.

Basu (1989) is generally interested in contexts where recipients of a service are automatically

associated with a certain status. In the schools context, for instance, rich students are willing to pay

more than poor students and (rich or poor) students’ willingness to pay depends on what fraction

of the school population is clever. This work is purely interested in whether the schools should be

allowed to charge different prices. Similarly, Brueckner and Lee (1989) are motivated by schools

with two groups in the population. The paper characterizes the Pareto–efficient club configurations

and carries out an equilibrium analysis for a competition model. Scotchmer (1997) defines a new

notion of approximate competitive equilibrium in a setting where the utility of each customer

type depends on the number of customers from each type. She shows that there exists such an

equilibrium when the economy is sufficiently large. Note that none of Basu (1989), Brueckner and

Lee (1989) and Scotchmer (1997) develop insights into the optimal pricing and capacity allocation

decisions from an individual club’s perspective. The model of Chapter 5 in Becker and Murphy

(2000) is the most relevant to our work because it also assumes that the utility of a customer

depends on the ratio of customers from one class. Despite this similarity, however, they assume that

prices are determined through a competitive bidding process and there exists no service provider

who sets prices to maximize profits.

Outside the club theory literature, another stream of articles within the economics literature

deals with systems where customers experience positive network effects. Armstrong (2006) and

Rochet and Tirole (2003) study two-sided markets where the two groups of agents interact via

a, not necessarily physical, platform and the focus is on pricing mechanisms to attract the right

mix of agents from both groups and achieve a “good” balance. Since the focus is not restricted

to physical platforms, there is no consideration of capacity allocation nor crowding effects and

the main attention is driven to mechanisms to gain market share in a competitive environment.
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There is also some literature that refers to the “network effect” as the effect that other users in

the network have on the utility of an individual user. For example, see Oren and Smith (1981),

and more recently Candogan et al. (2012). These articles ignore the possibility that network effects

across different groups within the population could be different. To the best of our knowledge,

the only exception to this is Katz and Spiegel (1996) that uses a similar demand formulation but

with no capacity considerations. There is also a large body of work that focuses on congestion

effects leaving out positive network externalities. For examples of such work, we refer the reader

to MacKie-Mason and Varian (1995), Wang and Schulzrinne (2006), and references therein.

Finally, there are many articles in the marketing literature that investigate customer-to-customer

interactions (CCI) in services (see Nicholls 2010 for an extensive review). A number of articles

empirically study CCI in various service environments including nightclubs (Skinner et al. 2005,

Kubacki et al. 2007), professional conferences (Gruen et al. 2007), adventure sports (Thakor et al.

2008), beauty salons (Moore et al. 2005), cruise ships (Huang and Hsu 2010), and organized tours

(Wu 2007), and find that customers can have strong preferences regarding who they share their

service experience with. Moreover, some articles discuss the importance of the management of

CCI in the service industry and point to various strategies the providers might employ. Among

these, Martin (1996) and Grove and Fisk (1997) discuss operational issues including the effective

use of capacity, which we also address in this paper. In particular, Martin (1996) investigates

customers’ perceptions of and reactions to the others’ behavior. He suggests improving service

experience through capacity allocation via physical separation or time allocation for the use of

different segments who might not enjoy the interaction. This is a practice widely used and we

also investigate it. In the same spirit, Grove and Fisk (1997) establish conditions under which the

system’s capacity is fully utilized or underutilized due to the presence or behavior of others and

call for more research into identifying the optimal capacity for systems that serve many customers

simultaneously.

3. Model

We consider a service system associated with a leisure facility with capacity K > 0 and serves two

distinct customer classes, each one with the same finite size Λ> 0. We later consider different class

sizes in a numerical study. Class membership of a customer is observable to the service provider and

to all the other customers. Customers enjoy the leisure facility and their utilities consist of three

different components. In the absence of other customers, the service value of class–1 customers is

uniformly distributed on the line segment [0,1]. Likewise, the service value of class–2 customers is

uniformly distributed on the line segment [a,1+a], a≥ 0. Thus, on average, class–2 customers have

the same or larger inherent willingness to pay for service than class–1 customers. In the presence of

other customers, however, there are two components that may affect customer utility and depend
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on λ1 and λ2, the number of customers in the system belonging to class 1 and 2, respectively. To

facilitate game theoretic treatment we treat customers as non-atomic (infinitesimal) and therefore,

λ1 and λ2 as continuous parameters. Customers of a particular class might like or dislike sharing

the same service environment with the other class. Moreover, their satisfaction can be dependent

on the overall crowd size. In mathematical terms, the gross utilities U1 and U2 of a customer x in

class 1 and 2, respectively, are given by

U1(x,λ1, λ2) = x+ b1λ2/(λ1 +λ2)+ c ((λ1 +λ2)/K)) , 0≤ x≤ 1,

U2(x,λ2, λ1) = x+ b2λ1/(λ1 +λ2)+ c ((λ1 +λ2)/K)) , a≤ x≤ 1+ a. (1)

The terms b1λ2/(λ1+λ2) and b2λ1/(λ1+λ2) in (1) captures the customer-mix effect on class–1 and

class–2 customer utilities, respectively. We assume that customers of each class are homogenous in

their perception of the customer mix and this is represented by the parameters b1 and b2. If b1 > 0

(b1 < 0), customers of class 1 prefer a customer mix with more (fewer) class–2 customers and if

b2 > 0 (b2 < 0), customers of class 2 prefer a customer mix with more (fewer) class–2 customers.

We also define b ≡ b1 + b2 as the “net appreciation” between the two customer classes and will

be useful in presenting our results. The reader should note that this net appreciation term has a

very specific meaning in our stylized formulation and one should be careful when interpreting the

practical implications of our results particularly in regards to how customers’ perceptions of each

other affect the optimal policy decisions.

Customers’ experience might also be affected by the crowding level, which is defined as (λ1 +

λ2)/K. Depending on the leisure activity, an undercrowded system or/and an overcrowded system

might not be desirable for an enjoyable experience, which in turn reduces customer utility. The

continuously differentiable function c : [0,1]→R in (1) captures these effects on customer utilities.

We assume that c′′(·)< 0, thereby guaranteeing a uniquely optimal crowding level for an arbitrary

customer. To avoid an empty system in equilibrium, we also assume that c(0)>−1. It is important

to note that we impose no further restrictions on c(·); it can take positive or negative values, it can

be monotone or unimodal. In fact, there are some service experiences where the overall crowding

level in the system may not influence customers’ utilities, i.e. c≡ 0, or service experiences where the

customers’ utilities are affected only for certain crowding levels. In both cases, our results still hold.

However, we assume that whatever the crowding effects are, they are symmetric across classes.

We consider a game in which the leisure facility first chooses the prices (p1, p2) simultane-

ously and commits to them. The customers arrive to the service facility, observe the price pi,

if from the class i, and decide whether to join the system or not. A customer with service

value xi has a strategy space si(xi) = 1 (customer joins the system) or si(xi) = 0 (customer

does not join the system). A Nash Equilibrium (s1(x1), s2(x2)) of this game will be such that
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s1(x1) = 1 if and only if U1(x1,Λ

∫ 1

0

s1(y)dy,Λ

∫ 1+a

a

s2(y)dy) ≥ p1 and s2(x2) = 1 if and only if

U2(x2,Λ

∫ 1+a

a

s2(y)dy,Λ

∫ 1

0

s1(y)dy)≥ p2 using (1).

Proposition 1. For a continuously differentiable function c : [0,1]→R such that c′′(·)< 0, there

exists a unique Nash Equilibrium (NE) such that a customer xi from class i will pay pi and join

the system, if xi ≥ x∗
i , i= 1,2 where x∗

1, x
∗
2 satisfy

x∗
1 + b1

a+1−x∗
2

a+2−x∗
1 −x∗

2

+ c

(
Λ(a+2−x∗

1 −x∗
2)

K

)
= p1,

x∗
2 + b2

1−x∗
1

a+2−x∗
1 −x∗

2

+ c

(
Λ(a+2−x∗

1 −x∗
2)

K

)
= p2.

Since there is a unique mapping between the NE (x∗
1, x

∗
2) and (λ1, λ2), with λ1 =Λ

∫ 1

x∗1

s1(x1)dx1 =

Λ(1−x∗
1), λ2 =Λ

∫ a+1

x∗2

s2(x2)dx2 =Λ(a+1−x∗
2), the NE can be equivalently expressed in terms of

(λ1, λ2) and the equilibrium prices will be derived as follows

p1(λ1, λ2) = 1−λ1/Λ+ b1λ2/(λ1 +λ2)+ c ((λ1 +λ2)/K) , (2)

p2(λ2, λ1) = 1+ a−λ2/Λ+ b2λ1/(λ1 +λ2)+ c ((λ1 +λ2)/K) . (3)

The structure of the solution is provided separately for the different cases in the next sections.

Because customer utilities depend on λ1 and λ2, which are equilibrium quantities, a potential

customer must construct beliefs about their equilibrium values when deciding to join the system.

In turn, these beliefs must be confirmed in equilibrium, that is, customers should act rationally

with respect to information and be able to correctly predict the equilibrium values, as a result. As

in all definitions of equilibrium, customers’ choices and beliefs are determined simultaneously.

Before moving on to the analysis, we briefly comment on the case in which classes are identical

and customer-mix effects do not exist or are ignored, i.e., a = 0 and b1 = b2 = 0. In that case, it

is easy to show that the service provider 1) always prefers to have both classes in the system to

sustain higher prices; 2) charges both classes the same price even when price discrimination is

allowed. Therefore, if classes are identical and the customer mix does not affect customer utilities,

neither capacity allocation nor price discrimination are of any value to a service provider. As

we demonstrate in this paper, asymmetry in the willingness to pay for service and/or customer-

mix effects make both price discrimination and capacity allocation effective tools to the service

providers, and explain to a great extent what is observed in practice.

To help with the exposition in the rest of the paper, we introduce the following terminology; we

call a system exclusive, if no interaction between the two classes is allowed and inclusive otherwise.

Exclusivity can be a result of restricting access to a single class or allocating capacity for the

exclusive use of each class. We call a system full if its crowding level is equal to one; we call a
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system not full if its crowding level is strictly less than one. Also, we refer to the case a = 0 as

symmetric and to the case a > 0 as asymmetric with classes described as being symmetric and

asymmetric respectively. Notice in equation (1) that the two customer classes are possibly different

in two dimensions: their feelings about each other and their (inherent) willingness to pay for service

and therefore, our definition of symmetry is with a slight abuse of the terminology1.

4. Optimal pricing and capacity allocation decisions

We start our analysis in §4.1 with a leisure facility where the two classes share the whole capacity

and the service provider is allowed to charge them differently. We call this scenario price discrimi-

nation without capacity allocation (CS-DP). We continue in §4.2 with the more restrictive pricing

policy, where the provider must charge the same price to all customers and we will call this scenario

single price without capacity allocation (CS-SP). In both CS-DP and CS-SP, however, the provider

can choose to restrict access to one class only, i.e., run an exclusive system.

If the service provider is better off running an exclusive system, she might, in fact, choose

to allocate separate capacity segments for the exclusive use of each customer class. The service

provider might be able to divert customers to the “right” location depending on their class identities

or she can design the service and the service environment for different segments to induce customers

to self–select. In a nightclub, this usually happens by hosting theme nights on different days of the

week so as to appeal to customers with particular tastes. Nightclubs with adequate space might

also provide a private area for members who are willing to pay a premium so as not to socialize

with the rest of the clientele. In §4.3, we study the service provider’s problem under the assumption

that she exercises her option to allocate capacity to each customer class and price discriminate

and we call this scenario price discrimination with capacity allocation (CA-DP). We then restrict

the problem to the single price case in §4.4 and we call this scenario single price with capacity

allocation (CA-SP). We use (P1), (P2), (P3), and (P4) to represent the mathematical formulations

of the optimization problems that correspond to CS-DP, CS-SP, CA-DP and CA-SP, respectively.

4.1. Price discrimination without capacity allocation

We start our analysis with a leisure facility, a nightclub for instance, where the two classes, the

male and the female customers, share the whole capacity and the service provider is allowed to

charge them differently. In that setting, typically male customers are willing to pay more, not

for the service per se, but because they are considered to gain more from the interaction with

female customers, than female customers do (Armstrong 2006). The service provider’s objective is

to charge prices so as to maximize the total profit. Hence, an individually rational provider who

can charge a different price to each class maximizes revenue by solving the following problem:

maxλ1,λ2
R(λ1, λ2) = λ1p1(λ1, λ2)+λ2p2(λ2, λ1)

s.t. λ1 +λ2 ≤K, 0≤ λ1 ≤Λ, 0≤ λ2 ≤Λ.
(P1)

1 Classes are truly symmetric only if a= 0 and b1 = b2.
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We first establish some basic properties of the optimal solution (λ∗
1, λ

∗
2) to problem (P1).

Lemma 1. (i) If a= 0, then λ∗
1λ

∗
2 > 0 if and only if λ∗

1 = λ∗
2.

(ii) If a= 0, a feasible solution to (P1) at which λ1 = λ > 0, λ2 = 0, is revenue–equivalent to a

feasible solution to (P1) at which λ1 = 0, λ2 = λ> 0.

(iii) If a> 0, then λ∗
2 >λ∗

1.

The properties described in Lemma 1 suggest that the customer mix effects play no role. Accord-

ing to the lemma, even if class-1 customers are very fond of class-2 customers but the latter despise

the former, the provider will admit the same number of customers from each class if a= 0, and will

admit more customers from class 2 if a > 0. This may seem to suggest that when it comes to the

customer mix in equilibrium, the customer-mix effects are irrelevant. However, the customer mix

effects implicitly play a role when the provider has to determine if she will operate an exclusive or

an inclusive leisure facility (λ∗
1λ

∗
2 > 0 or λ∗

1λ
∗
2 = 0), as we will see in Proposition 2 below. Neverthe-

less, it is true that if it is optimal for the provider to admit both classes, most customers will be

from the class that has the higher willingness to pay for service regardless of any asymmetry in how

classes feel about being around each other. This result is due to the provider’s ability to internalize

any asymmetry in the linear customer-mix effects by charging different prices. For example, the

male customers of a nightclub might end up paying a much higher price than the female customers;

in fact, the price differential will be so large that the same number of customers from both classes

will eventually choose to join the system.

The next proposition characterizes the general structure of the NE, i.e., the structure of the

optimal solution to (P1).

Proposition 2. If customers from different classes are allowed to share the same space and the

service provider can price discriminate, the optimal solution to the revenue maximization problem

has the following properties:

(i) There exists threshold b∗(K) such that λ∗
1 = 0, λ∗

2 > 0 if b ≤ b∗(K), and λ∗
2 ≥ λ∗

1 > 0 if b >

b∗(K).

(ii) If K ≤min{Λ(1+ a+ c(1))/2,2(1+ c(1))Λ/3}, then λ∗
1 +λ∗

2 =K.

(iii) If K is sufficiently large, then λ∗
1 +λ∗

2 <K.

(iv) If b is sufficiently positive so that λ∗
1 > 0 ∀K, or if b is sufficiently negative so that λ∗

1 = 0

∀K, then there exists K∗(b) such that λ∗
1 +λ∗

2 =K if K ≤K∗(b), and λ∗
1 +λ∗

2 <K if K >K∗(b).

Before we discuss the implications of Proposition 2 in detail, we should highlight an important

point. The reader might note that the structural properties as stated in the proposition depend on

b1 and b2 only through the term b= b1+ b2. This is in fact not surprising as one can show that the
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Figure 1 Structure of the optimal policy under price discrimination without capacity allocation when Λ= 100.

optimization problem (P1) can equivalently be expressed in terms of b alone. As we will see later

in the paper, however, this is not the case when the service provider cannot price discriminate and

thus the optimal solution has a more complex relationship with the interaction terms b1 and b2.

Proposition 2 characterizes the basic structure of the NE and provides insights into the two key

decisions the service provider needs to make. First, she needs to decide whether to admit customers

from both classes (inclusive system) or to restrict access to the customers with higher willingness-

to-pay (exclusive system). Second, she needs to decide whether the existing capacity should be

fully utilized or intentionally kept underutilized at profit-maximizing prices. Figure 1 illustrates the

different system types that arise in equilibrium if classes are symmetric (a) or asymmetric (b). In

what follows, we first discuss the most important insights in the case of symmetric classes and then

we highlight the differences that arise if classes are asymmetric. When following this discussion,

the reader would likely find it helpful to refer to the graphs in Figure 1. In symmetric classes,

Proposition 2-(i) states that although the system capacity is a factor in deciding whether or not

the system should be inclusive or exclusive, only the net appreciation term b is relevant. More

specifically, if the net appreciation between classes is sufficiently negative, the provider is better

off leaving one class out of the system. Although it is possible that one class likes the other (e.g.,

b1 > 0), if the feelings of the other class are opposite and much more intense (i.e., b2 <<−b1), then

an exclusive system helps prevent customer-mix effects from hurting revenues. For example, some

female customers of gyms and health clubs are not willing to share the same workout space with

male customers. If this disutility of female customers is strong, the service provider might find it

more profitable to run an exclusive system. This might be the motivation behind Fitness USA’s

decision to go women-only.
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Parts (ii), (iii), and (iv) of Proposition 2 characterize how the choice regarding the number of

customers in the system should be made to fill in the capacity. Not surprisingly, if the capacity

is sufficiently small, there are enough customers who would be willing to pay a high price and

the system will be fully utilized regardless of an exclusive or inclusive system. On the other hand,

if capacity is very large, running a full system is suboptimal as it would necessitate charging

unjustifiably low prices or would be outright impossible.

Part (iv) of Proposition 2 strengthens these structural properties further. When customer-mix

effects are so powerful that a system is either always inclusive or always exclusive regardless of

its capacity, then progressively larger capacities can only imply transitions from full to not full

systems. However, if the customer-mix effects are relatively weak, which is possibly the most

common scenario in a leisure facility, then we have some interesting and unexpected changes in

the preference for exclusivity and crowding level (Figure 1(a)). We use a numerical example to

illustrate this. Consider a small absolute value of the net appreciation effect, b=−1.1, and Λ= 100,

a= 0. We will consider three different capacity levels of K = 45,50,60. (See the dashed line and

squares on Figure 1(a) to follow the rest of the paragraph.) If K = 45, the system is in the regime

of part (ii) of Proposition 2, i.e., a full exclusive system is optimal and the corresponding revenue

is R(0,45) = 24.75. On the other hand, the highest revenue an inclusive system could yield is

R(22.5,22.5) = 22.5. In this case, the limited capacity does not allow the provider to adequately

counter the negative customer-mix effects by admitting more customers from both classes. Suppose

that capacity increases to K = 51. Now, the most profitable system is still exclusive but not full,

with 50 customers and revenue R(0,50) = 25, whereas the highest revenue an inclusive system

could yield is R(25.5,25.5) = 23.97. In this case, again, capacity is not sufficient to result in enough

revenue for an inclusive system to be optimal. Finally, suppose that capacity increases even further

to K = 60. The optimal system now is full and inclusive, with 30 customers from each class and

revenue R(30,30) = 25.5. On the other hand, the highest revenue an exclusive system could yield

remains at R(0,50) = 25. At this capacity level, the provider can admit enough customers from both

classes to make up for the revenue she loses due to negative customer-mix effects. It is the negative

customer interaction effects that hurt revenues of inclusive systems, thus making it difficult to make

a general statement about the effect of capacity changes based on intuition alone. In the absence

of such effects, admitting customers from both classes would raise the average price customers pay

compared to an exclusive system with the same number of customers.

In asymmetric classes, the asymmetry in the willingness to pay for service does not change

substantially the structure of the equilibrium (Figure 1(b)). However, there are two noteworthy

differences. First, the net appreciation between classes needs to be higher for inclusivity to be the

optimal choice because the provider can simply find more customers in class–2 than in class–1 to
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pay a good price for service. Second, when the two classes are strongly asymmetric, as in the case

of Figure 1(b), an increase in the system capacity can never result in the optimal crowding level

changing from “not full” to “full.” This is in contrast to the symmetric and weakly asymmetric

cases (Figure 1(a)), where a capacity increase can switch the optimal policy from “exclusive, not

full” to “inclusive, full.” This difference is due to the fact that class-1 customers’ low willingness-

to-pay combined with sufficiently strong negative customer effects between the two classes does

not justify admitting class-1 customers in the more asymmetric cases. Thus, the system remains

exclusive as capacity increases and operating a full system does not become a better alternative.

We conclude this section with a comparison of the prices that classes pay when they coexist. The

revenue achieved by the service provider depends on the overall asymmetry of the classes (b, a) that

determines the proportion of the customers that will join the facility (λ1, λ2). The extra flexibility

that she possesses, she uses it by charging prices that reflect the classes’ feelings; higher bi implies

higher pi. Equations (8) and (9) imply that p∗2 − p∗1 = a+ (λ∗
1 − λ∗

2)/Λ+ (b2λ
∗
1 − b1λ

∗
2)/(λ

∗
1 + λ∗

2).

Wherefore, if classes are symmetric and the provider runs an inclusive system, the class that

likes (dislikes) the other the most (the least) pays a higher price for service and in particular,

p∗2−p∗1 = (b2− b1)/2. This might explain why “ladies” are offered discounts to compensate for their

weaker utility of having “gentlemen” around in in nightclubs or why some colleges offer reduced

tuition to students of high caliber.

With asymmetric classes (a> 0), the price comparison is not straightforward. In this case, λ∗
1 <λ∗

2

and class–2 customers might end up paying less than class–1 customers, although they can afford

a higher price for service. The reason is that if class–1 customers value the presence of class 2 much

more than class–2 customers value them in return (b1 >> b2), the former will end up paying more

than the latter although they are not as wealthy on average. This result partially explains why

famous and wealthy individuals enjoy a free ride at certain social events; the strong desire of less

wealthy and less famous people to be around them might give rise to this phenomenon.

4.2. Single price without capacity allocation

As discussed in Section 1, price discrimination is a sensitive issue and can be illegal, or not ethical,

when it is based on a demographic factor. Whether or not it is implemented depends on a com-

bination of factors including what the law says about the practice, whether the law is enforced,

customers’ attitude, and the provider’s ability to manage customer perceptions. When the manager

is constrained to charging a single price, she has to either charge the optimal unique price to both

classes or she may offer the service to only one of the two classes.

Using (8) and (9), the constraint p1 = p2 implies

[b1/(λ1 +λ2)+ 1/Λ]λ2 = [b2/(λ1 +λ2)+ 1/Λ]λ1 + a. (4)
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Because a≥ 0, a NE in which the provider charges a single price and λ∗
1λ

∗
2 > 0 is possible only if

b1 < 0 and b2 <−a, or if b2 >−K/Λ and b1 >a−K/Λ. Hence, without proof, the following lemma.

Lemma 2. The service provider can charge a single price in a NE in which λ∗
1λ

∗
2 > 0 only if

b1 < 0 and b2 <−a, or if b2 >−K/Λ and b1 >a−K/Λ.

The necessary conditions of Lemma 2 essentially say that there is a limit to how differently the

two customer classes can feel about each other and still allow a profitable single–price policy with

both classes being admitted. Interestingly, if the dislike between customer classes is mutual, this is

not sufficient for the provider to deny service to one of the classes. In that case, there are always

customers who are willing to pay the asking price and bear with the customers from the other class

due to the inherent heterogeneity within customer classes. The intensity of the customer feelings

determines the ratio of the two classes in the facility and as a result, when there is strong asymmetry

in the two classes’ mutual appreciation, it is not profitable to maintain an inclusive facility using a

single price. Although Lemma 2 identifies conditions under which an inclusive system with single

price might be profitable, the provider might be better off running an exclusive system (Figure 2).

To solve the optimization problem (P2), the service provider first solves the following problem

(P2′), which enforces the single–price constraint and ignores the possibility that the service can

be limited to only one class. Problem (P2′) is essentially problem (P1) with the addition of the

single–price constraint (4).

maxλ1,λ2
R(λ1, λ2) = λ1p1(λ1, λ2)+λ2p2(λ2, λ1)

s.t. λ1 +λ2 ≤K
[b1/(λ1 +λ2)+ 1/Λ]λ2 = [b2/(λ1 +λ2)+ 1/Λ]λ1 + a
0≤ λ1 ≤Λ,0≤ λ2 ≤Λ.

(P2′)

The solution to (P2) is then obtained by comparing the optimal solution to (P2′) with the optimal

solution under which the service is restricted to class–2 customers. (There is no need to consider

the case where service is restricted to class–1 customers because such a solution is guaranteed to

not lead to higher revenue. Restriction to either class leads to the same revenue only if a= 0.)

We first establish some basic properties of the optimal solution (λ∗
1, λ

∗
2) to problem (P2).

Lemma 3. (i) If a= 0 and b1 ≥ b2, then either λ∗
1λ

∗
2 = 0 or λ∗

1 ≥ λ∗
2. Similarly, if a= 0 and

b2 ≥ b1, then either λ∗
1λ

∗
2 = 0 or λ2∗ ≥ λ∗

1

(ii) If a= 0, a feasible solution to (P2) at which λ1 = λ > 0, λ2 = 0, is revenue–equivalent to a

feasible solution to (P2) at which λ1 = 0, λ2 = λ> 0.

According to Lemma 3, if classes are symmetric, the provider either admits only one customer

class, or she runs an inclusive system with more customers from the class that likes (dislikes) the

other more (less). Since the classes are not truly symmetric, when a= 0 but b1 ̸= b2, the single-price

constraint does not permit a customer mix with an equal number of customers from both classes.
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Figure 2 Structure of the optimal policy under single-price policy without capacity allocation when Λ = 100,

b2 = 0.

For example, if b1 > b2 and the provider charges a single price, there will be more class–1 than

class-2 customers who are willing to pay that price and the optimal customer mix will have more

customers from class–1.

The next proposition characterizes the overall structure of the NE in the case of single price,

i.e., the structure of the optimal solution to (P2). (We slightly abuse notation by using the same

symbols, b∗(K) and K∗(b), in both propositions, although they might correspond to different

values.)

Proposition 3. If customers from both classes are allowed to share the same space and the

service provider cannot price discriminate, the optimal solution has the following properties, where

we let ∆b≡ |b1 − b2|.

(i) There exists a threshold b∗(K) such that λ∗
1 = 0 if b≤ b∗(K), and λ∗

1 > 0 if b > b∗(K). Fur-

thermore, if a= 0 and there exists a net appreciation value b̃ such that b1 + b2 = b̃ and λ∗
1λ

∗
2 > 0 if

∆b̃= 0, then there exists threshold ∆b∗(K)> 0 such that λ∗
1λ

∗
2 > 0 if ∆b≤∆b∗(K), and λ∗

1λ
∗
2 = 0

if ∆b >∆b∗(K).

(ii) If K ≤min{Λ(1+ a+ c(1))/2,Λ(1+ c(1))}, then λ∗
1 +λ∗

2 =K.

(iii) If K is sufficiently large, then λ∗
1 +λ∗

2 <K.

(iv) If b is sufficiently positive so that λ∗
1 > 0 ∀K, or if b is sufficiently negative so that λ∗

1 = 0

∀K, then there exists K∗(b) such that λ∗
1 +λ∗

2 =K if K ≤K∗(b), and λ∗
1 +λ∗

2 <K if K >K∗(b).

A quick read of Proposition 3 reveals that each of its statements corresponds to an analogous state-

ment in Proposition 2, which is also evident by comparing Figures 1 and 2. There is, however, one
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important difference. The second part of Proposition 3-(i) states that, for a given net appreciation

term, unless the two individual terms b1 and b2 are sufficiently close to each other, service will

be restricted to one class. In other words, a single-price policy leads to an exclusive system when

this asymmetry is sufficiently large unlike in the price discrimination case where the asymmetric

customer-mix effects are absorbed by the differential pricing (Figures 1 and 2). The revenue is

tightly constrained by the single–price condition. As we explained in the discussion of Lemma 2,

this condition critically depends on how different terms b1 and b2 are from each other. Thus, when

the provider charges a single price, not only the net appreciation term, but also the individual

terms b1 and b2 are important. In other words, the customer mix effects on revenue, which are

symmetric across classes under price discrimination, become asymmetric under the single–price

clause. This result practically implies that when regulators attempt to achieve “price fairness”

by disallowing price discrimination, they might inadvertently be forcing the service provider to

exclude an entire class of customers from service if that is practically feasible. Although there is

no evidence to conclude that this is the reason why gyms like Fitness USA, convert some of their

locations to women-only establishments, they are very likely to be affected by similar underlying

dynamics. By restricting access to females, these gyms not only become more appealing to women

and increase their willingness to pay for the experience, but also bypass any possible restriction

(legal or otherwise) to charge the same price to both men and women. It is also interesting that, due

to this phenomenon, the optimal price may have a non-monotonic relationship with the capacity.

Specifically, one might expect that the optimal price would decrease with an increase in system

capacity but as it turns out, a larger capacity might mean the optimality of an inclusive system

with a higher price.

4.3. Price discrimination with capacity allocation

Capacity allocation with or without price discrimination is a prevalent practice. For example, theme

cruises typically occupy part of a cruise ship while the rest is filled with passengers on a regular

tour. Similarly, some health clubs, or public swimming pools allocate their capacity to different

customer classes through space separation or time allocation.

If the service provider can allocate capacity, she needs to decide the capacity to allocate to each

class as well as the optimal number of customers to admit. In the subsequent analysis, (1− x)K

denotes the fraction of capacity allocated to class–1 customers and xK denotes the fraction of

capacity allocated to class–2 customers. The equilibrium prices are modified as follows

p1(λ1) = 1−λ1/Λ+ c (λ1/((1−x)K)) , (5)

p2(λ2) = 1−λ2/Λ+ a+ c (λ2/(xK)) , (6)
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where the customer mix effects disappear since the two classes do not coexist. As previously, we

study first the price discrimination policy (CA-DP) and in §4.4, we focus on the single–price policy

(CA-SP).

Given the choices of capacity allocation and price discrimination, the service provider is faced

with the following revenue maximization problem:

maxλ1,λ2,x R(λ1, λ2, x) = λ1p1(λ1)+λ2p2(λ2)
s.t. 0≤ λ1 ≤ (1−x)K, 0≤ λ2 ≤ xK

0≤ x≤ 1.
(P3)

We first establish the uniqueness of the optimal solution to problem (P3), as well as some important

properties of x∗, the optimal fraction of capacity allocated to class 2.

Lemma 4. (i) There exists a unique optimal solution to (P3).

(ii) If λ∗
1λ

∗
2 > 0, crowding levels are the same in both capacity segments, i.e.,

λ∗
1

(1−x∗)K =
λ∗
2

x∗K .

(iii) The optimal allocation fraction for class 2, x∗, equals λ∗
2/(λ

∗
1 +λ∗

2).

(iv) If a= 0, x∗ = 1/2. In addition, x∗ is increasing in a.

Lemma 4 is a key result for the remainder of our analysis. The fact that the classes are identical in

their sensitivity towards crowding and that the crowding disutility function c is (strictly) concave

explains the identical crowding levels in both segments. Furthermore, they are inextricably linked

to each other because the two capacity segments share the same total capacity. Hence, there is a

unique capacity allocation that results in equal crowding levels in the two segments. In the absence

of customer mix effects, the capacity will be equally split when the two classes are symmetric but

in the asymmetric case, more capacity will be allocated to the class that values the service more.

4.4. Single price with capacity allocation

In this section, we describe the optimization problem of the service provider when capacity alloca-

tion is an option but prices need to be the same for both classes. First, note that the single–price

constraint is relevant only when 0<x< 1. In that case, enforcing p1 = p2 in (5) and (6) yields,

λ2/Λ− c (λ2/(xK)) = λ1/Λ− c (λ1/((1−x)K))+ a. (7)

As in the case of capacity sharing with single–price restriction, the single–price constraint dis-

appears when x= 0 or x= 1, and the problem is solved in two stages. First, the service provider

solves the following optimization problem:

maxλ1,λ2,x R(λ1, λ2, x) = λ1p1(λ1)+λ2p2(λ2)
s.t. 0≤ λ1 ≤ (1−x)K, 0≤ λ2 ≤ xK

0<x< 1
λ2/Λ− c(λ2/(xK)) = λ1/Λ− c(λ1/[(1−x)K])+ a.

(P4′)

The solution to optimization problem (P4) is then obtained by comparing the optimal solution to

(P4′) with the optimal solution under which the whole capacity is reserved for class–2 customers.

In section 5, we use the optimization problem (P4) to prove a number of results on how the policies

compare with each other with respect to their optimal revenues.
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5. Policy Comparison

In this section, we focus on the most important aspect of the service provider’s decision; the policy

to adopt depending on the attributes of the customer base. We compare the revenues under the

different scenarios and provide valuable analytical results for the design of such a service system.

We start with the case where the manager has the flexibility to charge different prices to the two

customer classes and we establish a useful link between the optimal solution to problem (P1) and

the optimal solution to problem (P3) in the next corollary.

Corollary 1. If the service provider can price discriminate and b= 0, the optimal revenue and

customer mix are the same with or without capacity allocation.

Corollary 1 essentially says that if the net appreciation term is zero, the ability to allocate capacity

does not change anything: the provider makes the same revenue with or without capacity allocation,

and the resulting customer mix is the same. The linear customer mix effects allow the provider to

absorb any significant asymmetry in how the two classes feel about each other (e.g., b1 >> 0 and

b2 << 0) through price discrimination. If these asymmetric customer-mix effects are roughly the

same in absolute value, then there is not much to gain from separation. Corollary 1 might leave

one with the impression that prices with and without capacity allocation are the same. That is not

true in general. Unless b1 = b2 = 0, a simple pairwise comparison of equations (8)–(9) and (5)–(6)

reveals that the provider charges different prices when she allocates capacity and when she does

not. For example, if b1 > 0, b2 < 0, b1+b2 = 0, class–1 customers pay a lower price when the provider

allocates capacity than when she does not because they lose the benefit of interacting with class–2

customers that they like. The opposite is true for class–2 customers. This price difference leaves the

net customer utility unaffected but points to an important implication of an operational decision:

depending on whether or not the service provider uses capacity allocation, customers from both

classes can end up enjoying different service values and paying significantly different prices without

affecting the service provider’s revenue. We illustrate this in detail in Table 1 later.

In general, when b ̸= 0, the service provider has to choose between capacity allocation and sharing.

The next theorem provides sufficient conditions for the optimality of each strategy.2

Theorem 1. If the service provider can allocate capacity and can price discriminate, the capacity

allocation decision is as follows:

(i) If b≤ 0, it is optimal to allocate capacity.

(ii) If b≥ 0, it is optimal to not allocate capacity.

2 In the statements of Theorems 1-2, note that the optimality of not allocating capacity does not necessarily imply
an inclusive system; it implies that the provider cannot achieve strictly higher revenue by allocating capacity.
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Theorem 1 confirms the reality of many service systems, in which providers allocate capacity to

mitigate negative interactions between different customer classes. An interesting observation in

Theorem 1 is that any asymmetry in the classes’ willingness to pay for service (i.e., the value of

a) does not affect the sufficient conditions. Although one might expect larger asymmetry to favor

capacity allocation, the capacity allocation only aims to prevent customer interactions that hurt

the overall customer experience and has nothing to do with customers’ willingness to pay. The

provider takes into account any asymmetry in the willingness to pay for service by letting more

class–2 customers in the optimal customer mix through pricing or by allocating more capacity

to them (when classes use different capacity segments). The flexibility of charging different prices

allows the service provider to deal with the asymmetry in the willingness-to-pay through pricing.

As a result, parameter a plays no role in the service provider’s decision on capacity allocation. This

is not the case when both classes have to be charged the same price and as a result the asymmetry

parameter a becomes a significant factor, as the following theorem indicates.

Theorem 2. Suppose that the service provider cannot discriminate but has the flexibility to

allocate capacity for the exclusive use of each class. Then, there exists b∗(a) such that

(i) If b1 ≤ 0, b2 ≤ 0, it is optimal to allocate capacity.

(ii) If b2 > 0> b1, then

(a) If b1 ≤ a−K/Λ, it is optimal to allocate capacity.

(b) If b1 >a−K/Λ and b≤ b∗(a) (with b∗(a)≥ 0), it is optimal to allocate capacity.

(c) If b1 >a−K/Λ and b≥ b∗(a) (with b∗(a)≥ 0), it is optimal to not allocate capacity.

(iii) If b1 > 0> b2, then

(a) If b2 ≤−K/Λ, or b1 ≤ a−K/Λ and b2 >−K/Λ, it is optimal to allocate capacity.

(b) If b1 >a−K/Λ, b2 >−K/Λ and λ∗
1 = 0 in (P2), it is optimal to allocate capacity.

(c) If b= 0, a
2
≥ b1 >a− K

Λ
, b2 ≥−a

2
and λ∗

1 > 0 in (P2), it is optimal to not allocate capacity.

(iv) If b1 ≥ 0, b2 ≥ 0, it is optimal to not allocate capacity.

Furthermore, if b = b∗(a), allocating and not allocating capacity yield the same revenue to the

provider.

As Theorem 2 shows, the provider’s decision regarding capacity allocation is more complicated if

she cannot price discriminate. There are two important observations we can make by comparing

Theorems 1 and 2. First, a single–price policy leads to capacity allocation in more cases than

price discrimination does. Second, when deciding on the capacity allocation, the ability to price

discriminate allows the service provider to determine the optimal choice with less information on

customer-mix effects. Nonetheless, notice that parts (i) and (iv) of Theorem 2 are analogous to

parts (i) and (ii) of Theorem 1, respectively. If classes dislike each other, it is better to separate
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S1: b1 = b2 = 0 S2: b1 = 0.3, b2 =−0.3 S3: b1 = 0.6, b2 =−0.6

Capacity Capacity Capacity Capacity Capacity Capacity
Allocation Sharing Allocation Sharing Allocation Sharing

p∗
1 = 0.73 p∗

1 = 0.73 p∗
1 = 0.92 p∗

1 = 0.73 p∗
1 = 1.12

Double p∗
2 = 0.98 p∗

2 = 0.98 p∗
2 = 0.87 p∗

2 = 0.98 p∗
2 = 0.77

Price
R(27.5,52.5) = 71.125

Single p∗ = 0.85 p∗ = 0.85 p∗ = 0.89 p∗ = 0.85 p∗ = 0.81
Price

R(15,65) = 68 R(15,65) = 68 R(30,50) = 71 R(15,65) = 68 R(45,35) = 65

Table 1 Optimal Revenue (evaluated at the optimal arrival rates) and Prices under Capacity Allocation and

Capacity Sharing under the price discrimination and the single price policy for three different scenarios (S1-S3)

with zero net appreciation when Λ= 100,K = 80, a= 0.5

them. If there is mutual appeal, it is more profitable to refrain from capacity allocation. Thus, if

class feelings are mutual, neither the pricing policy nor the asymmetry in the willingness to pay

for service have an impact on the capacity allocation decision.

The provider’s choice is less straightforward if class perceptions go in opposite directions. When

a= 0, the two cases are completely symmetric and parts (ii) and (iii) of Theorem 2 are identical.

If b2 > 0> b1, the sufficient conditions of Theorem 2-(ii) confirm that the single–price constraint

results in capacity allocation in more cases than price discrimination does. If b1 > 0 > b2, and

classes’ feelings toward each other are so different that the provider’s best choice without capacity

allocation is an exclusive system as outlined in Lemma 2, then she is better off allocating capacity

when there is such a flexibility (parts (iii)-a and (iii)-b of Theorem 2). What is more interesting is

the case when conditions are such that the provider’s optimal choice is to run an inclusive system,

i.e., not allocating capacity, and price discrimination is not an option (Theorem 2(ii)-c,(iii)-c and

(iv)) and we investigate that in more detail in Section 6 using some numerical examples.

6. Numerical Examples and Sensitivity Analysis

In this section, we first expand on our discussion of Theorems 1 and 2 via a numerical study. Then,

we investigate the importance of the customer mix effects in service systems and the sensitivity of

the different policies to various parameters. Finally, we study the validity of our results when we

relax the same class size assumption for the two customer classes.

Comparison of the different policies for asymmetric classes

We use three different sets of parameters with zero net appreciation (b= 0) to gain insights into

how the provider’s revenues change depending on the capacity allocation decision and the pricing

policy followed. We set Λ= 100, K = 80 and a= 0.5. The optimal solutions are provided in Table
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1. As discussed earlier, when the manager can price discriminate, she will attract the same mix

of customers, independently of the capacity decision, by charging different prices, and yield the

same revenue (λ∗
1 = 27.5, λ∗

2 = 52.5 and R(27.5,52.5) = 71.125). However, in the single price policy,

mixing the customers or allocating capacity yields the same revenue only when b1 = b2 = 0 (S1). The

revenues might be the same, but prices can be different for the two capacity allocation decisions.

Suppose now that b1 = 0.3 and b2 =−0.3 so that b1 > 0> b2. These changes do not affect the revenue

under capacity allocation (because different classes do not interact), but they change the revenue of

an inclusive system. Specifically, the new solution yields higher revenue than before, R(30,50) = 71,

and thus operating an inclusive system with both classes sharing the whole capacity is strictly

better than allocating capacity for the exclusive use of each class. There are two interesting points to

highlight using this example. First, although asymmetry in customer-mix effects hurts revenue when

classes are ex ante symmetric (a= 0), that may not be the case when classes are ex ante asymmetric

(a > 0). Second, when customers are no longer indifferent about the presence of customers from

the other class, it is strictly preferable to have a system where both classes share the facility. As

we explain below, both are consequences of the same price constraint.

If classes are ex ante asymmetric and b1 = b2 = 0, class 2 would pay more for service than class

1 if the provider could price discriminate. However, the single–price constraint requires that class–

1(–2) customers pay more(less) than what they would have had under price discrimination, thereby

resulting in inefficient pricing. Suppose now that b= 0 but b1 > 0> b2. In that case, all else being

equal, class–1 customers are willing to pay more than class–2 customers to be around customers

of the other type; in other words, the effect of the asymmetry in class feelings is in line with the

single–price mandate. What does this mean for the revenue of an inclusive system? Compared to

the case where each class is indifferent about the other’s presence (b1 = b2 = 0), it is better to

have a small asymmetry in perceptions, with class–1 customers having slight preference for having

class–2 customers around while class–2 customers having slight preference for not having class–

1 customers around. As a result, in S2, price discrimination has little benefit. However, if this

asymmetry in perceptions is strong (S3), it becomes critical in implementing a single–price policy

and will force the provider to separate the classes or admit one class only. Also, if the asymmetry

is in the opposite direction, with class–2 customers enjoying the presence of class–1 customers,

class feelings are no longer in line with the single–price mandate and an inclusive system is not the

preferred choice of the service provider.

Part (iii)-c of Theorem 2 states some particularly interesting conditions that guarantee the

optimality of capacity sharing; as long as the net appreciation term is zero, a small asymmetry in

classes’ feelings about each other increases the revenue of a system when classes are not separated,

and this can also be observed in Table 1 (S2). Because it is strictly better to not separate classes if b1
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and b2 are sufficiently small in absolute value and b= 0, the provider would also be better off doing

so for small yet negative values of b. This means that in some cases, a single–price policy makes

capacity allocation less likely than price discrimination does. This might appear to be contradicting

one of the insights we have obtained so far, i.e., that single–price policies lead to more exclusivity.

It is true that if the provider’s choice is only between an inclusive but sharing system and an

exclusive system with only one class admitted, then a single–price mandate always leads to more

exclusivity because that mandate disappears in an exclusive system. However, exclusivity as a

result of separating the two customer classes by capacity allocation does not make the single–price

mandate disappear. In that case, there might be some benefit from keeping ex ante asymmetric

classes together and mitigating the pricing inefficiency that a single price causes, even if these

classes feel differently about being around each other and their net appreciation is negative.

Value of capturing customer mix effects

To further highlight the value of capturing the customer mix effects, we compare the optimal

revenues with the revenues we would have achieved had we ignored the parameters b1 and b2

by assuming b1 = b2 = 0. We will follow the examples in Table 1 to make this comparison and

use S1 as a benchmark. In S2, when customers can share the service facility and there is price

discrimination (CS-DP), the revenue would be R′(41.5,36.5) = 67.75 instead of R(27.5,52.5) =

71.125. When both classes pay the same price (CS-SP), that is p= 0.85, then the revenue would be

R′(32.7,47.3) = 68 instead of the optimal R(30,50) = 71. Similarly, for the set of parameters in S3,

under price discrimination (CS-DP), the revenue would drop to R′(0,52.5) = 51.19 compared to

R(27.5,52.5) = 71.125. In this case, ignoring the customer mix effects forces the system to become

an exclusive one due to the high price charged to class–1 customers. For the single price policy

(CS-SP), the revenue would be R′(40.4,31.4) = 60.95 instead of R(45,35) = 65. These examples

are indicative of how high the losses can be and also confirm the fact that a suboptimal capacity

allocation strategy might be followed. Taking into consideration that these losses become higher

and more discernible when b ̸= 0 further supports the operational importance of an appropriate

capacity allocation decision and pricing strategy.

Sensitivity analysis with respect to system capacity and the strength of customer
asymmetry and interaction effects

We have also conducted numerical studies to understand the impact of the parameters a, b, K on

the revenue under different policies. Some of the interesting examples are shown in Figure 3. When

the net appreciation is negative, capacity allocation is superior to mixing the customers and with

higher a, chances are higher to operate an exclusive system at least under low capacity (a small

facility can be filled up with high-paying customers). As b increases, mixing the customers becomes
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(a) a= 0, b=-0.5
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(b) a= 0.5, b=-0.5
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(c) a= 1, b=-0.5
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(d) a= 0, b=0
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(e) a= 0.5, b=0
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(f) a= 1, b=0
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(g) a= 0, b=0.5
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(h) a= 0.5, b=0.5
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(i) a= 1, b=0.5

Figure 3 Comparison of the revenues for the four different policies: capacity allocation (CA) with single price

(SP) or price discrimination (DP) and shared capacity (CS) as the capacity increases for different values

of the net appreciation and a when Λ= 100.

more profitable with b= 0 making the policies equivalent and b > 0 making capacity sharing the

preferred choice. Not surprisingly, price discrimination is at least as good as single price policy and

thus, the service provider has the incentive to price discriminate, even when illegal, and incur a

penalty up to a certain level. Using an example from the figure with a= 1 (when a= 0, the pricing

strategy does not matter) and b=−0.5, K = 150, the manager can achieve 25% more revenue if

she charges the two classes differently (Figure 3(c)). Finally, as one can observe from Figure 3,

investing in capacity can benefit the facility but only up to a certain point.
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Λ2 = 100
Λ1

CA-SP CA-DP CS-DP CS-SP

50 96 99 96 99
100 96 100.5 96 100.5
150 96 101.4 96 101.4

Λ1 = 100
Λ2

CA-SP CA-DP CS-DP CS-SP

50 50 72.3 50 72.33
100 96 100.5 96 100.5
150 117.3 117.4 117.3 117.4

Table 2 Optimal Revenue for the different policies as the class sizes change (K = 80, b= 0, a= 1).

Different class sizes

Heretofore, we focused on leisure facilities that attract two customer classes of the same size but

this might not be always the case. One interesting fact we observed from our numerical experiments

is that for high values of a the changes in the size of class 2 have a higher impact on the revenue

than changes in Λ1. This is due to the asymmetry of the two classes in terms of their willingness

to pay for the service (Table 2). Moreover, we observed that under price discrimination, as the size

of one class increases, while the other is constant or decreasing, the system tends to operate in an

exclusive manner more often than before (b∗(K) is higher). But if a is higher and class 2 is small,

i.e. the high value customers are few, then the facility is better off admitting a mix of customers.

In other words, the manager has to exhaust her options of attracting the high value customers

but might be limited by their class size. It is also important to note that our numerical analysis

suggests that the results of Theorem 1 continue to hold. Not surprisingly, however, the conditions

of Theorem 2 have to be modified to account for different class sizes.

7. Conclusions

This paper deals with a particular type of service setting, where service takes an extended period

of time and is shared by others so that what happens during service or more specifically who else is

there during service is a very important determinant of the customers’ utility. Despite the prevalence

of such services in practice, these features are sometimes ignored by the service managers and they

have received limited attention in the operations literature. One of the important contributions of

this paper is the development of a stylized framework that can be helpful in building new models to

investigate various research questions (e.g., effects of competition) regarding shared service systems.

We developed a framework to provide insights into the use of pricing and capacity allocation

as leverages to control the customer mix and crowding. Some of our findings conform to what

we observe in practice and our intuition (for example, the use of discounts if there is asymmetry

between how different classes feel about each other), whereas others are either counter–intuitive or

help us gain a deeper understanding of some of the issues for which intuition is nonexistent. For

example, we find that if the service provider is restricted to charge the same price to two highly

asymmetric (either with respect to mutual appreciation or willingness-to-pay) customer classes,
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the service provider can be profitable only by offering the service to only one class. Interestingly,

however, when there is mutual dislike between the two classes, the facility can profitably serve

both classes. In short, when faced with sufficiently asymmetric customer classes, the best action

for the service provider is to restrict access to a particular class of customers or to allocate different

portions of its capacity for the exclusive use of different customer classes. Thus, strong asymmetry

requires some sort of discrimination or capacity allocation for the survival of the firm.

For a service provider who can use price discrimination, the choice between allocating capacity

for the exclusive use of different classes and making the whole capacity available to all its customers

depends purely on the customer mix effects, not on crowding effects, capacity, or the degree of

asymmetry in the two customer classes’ willingness to pay. Specifically, capacity allocation is desir-

able if the net appreciation is negative. If price discrimination is not an option, capacity allocation

could be desirable even if the net appreciation is positive. Thus, in many cases, disallowing price

discrimination makes it more likely for firms to serve the different customer classes separately. It

is, however, possible that restriction to a single-price policy might lead the provider to switch to

an inclusive system with the whole capacity available to both classes. This can only happen if the

class with the lower willingness to pay for service likes the other class because only in this case,

inclusivity helps reduce the gap between the willingness-to-pay of the two classes.

Our results highlight the importance of having a deeper understanding of customer-mix effects

on the utilities of different customer classes, because they are highly relevant in choosing the pricing

and capacity allocation policies to be employed. Many articles in the marketing literature have

established the presence and importance of these effects, but we are not aware of any work that

has aimed to quantify them. To take advantage of the insights, a rough estimate of the parameters

might sometimes be sufficient to determine the right strategy. However, some quantification of

the customer mix effects, i.e. the sign of b and/or which effect is dominant could be critical in

maximizing profit. Thus, one avenue for future research is to develop a framework that can be

utilized in measuring customer-mix effects empirically in different service settings. Capturing the

valuation for the service is also challenging, yet necessary, to determine the optimal pricing policy. In

this direction, economists and marketing researchers have used surveys, experiments, transactions

data to infer the willingness to pay of the customers (Wertenbroch and Skiera 2002). Most of these

methods can be put into use when estimating customer mix effects.

In some of the service settings we have discussed, the service establishment can gain some pooling

benefit if it allows the two customer classes to share the facility (or possibly incur a cost to separate

the physical space). This is something we ignored in our formulation. If this benefit were to be

considered, our results would change accordingly; the threshold on the customer mix effects would

be negative for the capacity allocation to be optimal accounting for the pooling loss. As expected,
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the new threshold would depend on the actual cost savings from pooling resources; the higher the

saving, the lower the threshold would be. In other words, when the savings from pooling are higher,

the classes’ appreciation of each other would need to be stronger in the negative direction for

capacity allocation to be optimal. In some cases, changing the capacity allocation strategy might

be costly as it may require rebuilding the whole facility. In that case, the problem is more complex

and its analysis would require a formulation that is different from the one we considered in this

paper. If rebuilding the facility is an option to the provider, i.e. she is not restricted by the actual

size of the facility, then at the beginning of the time horizon, she has to take into consideration

several factors including the size of the investment, the competition, the market targeted etc., and

investigate how much profit the firm would make at different levels of capacity investment in order

to make an optimal decision.

Our model assumed that there is no demand uncertainty and customers make their joining deci-

sion simultaneously knowing the behavior of all the other customers. However, it would also be

interesting to consider a formulation with stochastic demand and sequential arrivals, so that the

manager can dynamically adjust the admission price to control demand. Another interesting direc-

tion would be to study multiple competing facilities, each offering different capacity arrangements

to their customers.
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