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Peroxiredoxin (PRDX) is a ubiquitous oxidoreductase protein with a conserved ionised thiol that permits
catalysis of hydrogen peroxide (H2O2) up to a million times faster than any thiol-containing signalling
protein. The increased production of H2O2 within active tissues during exercise is thought to oxidise
conserved cysteine thiols, which may in turn facilitate a wide variety of physiological adaptations. The
precise mechanisms linking H2O2 with the oxidation of signalling thiol proteins (phosphates, kinases and
transcription factors) are unclear due to these proteins' low reactivity with H2O2 relative to abundant
thiol peroxidases such as PRDX. Recent work has shown that following exposure to H2O2 in vitro, the
sulfenic acid of the PRDX cysteine can form mixed disulphides with transcription factors associated with
cell survival. This implicates PRDX as an ‘active’ redox relay in transmitting the oxidising equivalent of
H2O2 to downstream proteins. Furthermore, under oxidative stress, PRDX can form stable oxidised di-
mers that can be secreted into the extracellular space, potentially acting as an extracellular ‘stress’ signal.
There is extensive literature assessing non-specific markers of oxidative stress in response to exercise,
however the PRDX catalytic cycle may offer a more robust approach for measuring changes in redox
balance following exercise. This review discusses studies assessing PRDX-mediated cellular signalling and
integrates the recent advances in redox biology with investigations that have examined the role of PRDX
during exercise in humans and animals. Future studies should explore the role of PRDX as a key regulator
of peroxide mediated-signal transduction during exercise in humans.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Reactive oxygen and nitrogen species (RONS) are known to
mediate a range of signalling processes within mammalian tissues,
with their production, interaction and removal by antioxidants all
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critical to cell function. The acute production of RONS in response
to exercise has been an active area of research over the last 20
years. The oxidising properties of RONS have been implicated with
mediating skeletal muscle excitation-contraction coupling [1,2]
(via regulation of calcium signalling [3]), enzyme release [4,5], as
well as modulating post-exercise mitochondrial biogenesis [6] and
cytoprotective gene expression (e.g. heat shock [7,8] and anti-
oxidant proteins [8,9]). A range of cell types can produce RONS
during exercise, including skeletal muscle, immune and en-
dothelial cells [10,11]. The enzymes nicotinamide adenine dinu-
cleotide phosphate- (NADPH) oxidase and nitric oxide synthase
(NOS) [12,13] produce superoxide ( •−O2 ) and nitric oxide (NO�)
respectively [14,15], with secondary oxidants such as peroxynitrite
(ONOO�) formed from the favourable reaction between •−O2 and
NO� [16,17], and hydrogen peroxide (H2O2), by the conversion of

•−O2 to H2O2 by the antioxidant enzyme superoxide dismutase
(SOD) or spontaneous dismutation [18]. The role of RONS in redox-
mediated exercise adaptation are far from understood, but evi-
dence strongly implicates the reversible oxidation of conserved
cysteine residues within various proteins [19,20]. The aim of this
review is to discuss the role of H2O2 as a cellular signal, paying
particular attention to the role of Peroxiredoxin (PRDX) in trans-
mitting H2O2 signals via various thiol-mediated mechanisms. Gi-
ven the growing body of evidence that point to H2O2 in mediating
redox signalling pathways during exercise, we suggest that PRDX
may be an important transducer of exercise-induced H2O2 levels. A
combination of study models will be reviewed, ranging from
monolayer cell culture experiments to the few studies that have
investigated PRDX in response to exercise in humans.
2. Cysteine thiol groups

Cysteine is one of the least abundant amino acids within the
primary protein structure and contains a terminal sulphhydryl (–
SH) or ‘thiol’ group that is highly electronegative in nature. As a
result, the thiol group of many solvent accessible cysteines is a
prime target for RONS. Reversible oxidation of the cysteine thiol or
thiolate anion (–S�; deprotonated thiol) can form stable inter or
intra-molecular disulphides which can govern a broad range of
cellular events e.g. metabolism [21] and signal transduction [22].
In this context, 2-electron oxidants (H2O2 or ONOO�) in particular
have been shown to oxidise critical redox active proteins or low
molecular weight cellular thiols such as glutathione (GSH) [23]. In
many cases, cysteine oxidation can change the structure and/or
function of a redox active protein, evoking altered cellular and
physiological responses [24–26].

It is well established that H2O2 lends itself to cellular signalling
more so than the aforementioned RONS. The 1-electron oxidation
of thiols by NO� and •−O2 occurs at a fairly slow rate [23,27,28],
forming highly unstable thiyl radicals (–S�). Oxidants like ONOO�

can react directly with thiolates via a 2-electron mechanism [29],
however its rapid reaction rate with carbon dioxide yields
1-electron oxidant products (i.e. carbonate and nitrogen dioxide
radicals) that also form thiyl radicals [30,31]. Although the thiyl
radical pathway can form mixed disulphides, its mechanism
within a signalling cascade per se is questioned due to the lack of
specificity of both the oxidants in question (i.e. •−O2 , NO� and
ONOO�) and the thiyl radical itself [23]. Conversely, H2O2 is a
small, uncharged and membrane permeable RONS that can oxidise
protein thiolates to form the intermediate sulfenic acid (–SOH)
that then rapidly resolves with other reduced cysteine residues (–
SH or –S�), forming inter or intra-molecular disulphide bonds
[32]. H2O2 is highly oxidising due to the presence of a peroxide
bond (O–O), however its chemical reduction can be limited by its
high activation energy [33,34]. As a result, this gives H2O2
enormous selectivity over its reactions with protein thiol/thiolates
[33]. Redox sensitive protein targets such as phosphatases (i.e.
PTP1B [35,36] and PTEN [37,38]), kinases (i.e. ATM [39]) and
transcription factors (i.e. STAT3 [22], Nrf-2 [40] and NF-kB [41])
have cysteine thiols that can be specifically oxidised by H2O2,
implicating perturbations in H2O2 levels during exercise with
signal transduction.
3. Cysteine targets for hydrogen peroxide during exercise

Studies in animals have demonstrated that H2O2 can oxidise
critical cysteine thiols that facilitate muscle contraction [2,42,43].
In a study by Andrade et al., 1998, 4 min of H2O2 exposure
(300 mM) coupled to electrical stimulation (50 Hz, 350 ms dura-
tion) markedly increased the force output of isolated mouse ske-
letal muscle fibres, relative to a stimulation only trial [1]. Increased
force output was suggested to be mediated by the glutathionyla-
tion of critical thiols within skeletal muscle tissue that improved
calcium channel sensitivity [2]. Interestingly, exceeding a parti-
cular ‘H2O2 threshold’ (i.e. 8 min of H2O2 exposure) and also
quenching H2O2 with a potent reducing agent (e.g. 1 mM dithio-
threitol) both depressed force output significantly [1]. This high-
lights a critical balance of H2O2 required to optimally modulate
thiol oxidation in skeletal muscle, and how ‘oxidative’ and ‘re-
ductive’ stress may limit force output. H2O2 may also have a role in
controlling blood flow during exercise by altering NO production
via endothelial NOS (eNOS). There is evidence of H2O2-mediated
increases in eNOS activity and expression following acute [44] and
long term aerobic exercise in animals respectively [45]. In addi-
tion, there is some evidence for a role of H2O2 in mediating the
vasodilation of gluteal muscle microvasculature during resistance-
based leg press exercise in humans [46]. The effect of H2O2 on
vascular perfusion during exercise is likely via protein kinase G,
which is known to be redox-sensitive [47]. Finally, H2O2 may have
an important role in post-exercise metabolic adaptation by in-
creasing the expression of redox-sensitive and thiol-rich tran-
scription factors such as PGC-1α [48] and FOXO3a [49]. It must be
noted that relative to the spatio-temporal specificity of established
signalling pathways (calcium signalling, G-proteins and phos-
phorylation); it is unclear how a particular H2O2 molecule may
exert thiol specificity during and following exercise [22]. More-
over, the affinities of the many signalling proteins for H2O2 are
extremely low [33], despite clear changes in downstream tran-
scriptional activation that ultimately provide cross-resistance to
H2O2 following exercise [49].
4. Hydrogen Peroxide as a cellular signal: recent advances

A variety of hypotheses have been proposed to explain how
H2O2 can act as an intracellular signal. These have primarily fo-
cussed on mechanisms that might explain transient and localised
accumulation of H2O2 through the inactivation of glutathione
peroxidase (GPx), catalase and PRDX, or at sites where these
proteins are not present [32]. In this context, H2O2 generating
enzymes such as NADPH oxidase may co-localise with lower re-
acting thiols (i.e. kinases and phosphatases) to generate ‘hot spots’
of H2O2, that permits the proteins' oxidation and thus cellular
signalling (Fig. 1) [50,51]. The PRDX family of proteins in particular
have received a great deal of attention with regards to their high
abundance and catalytic turnover of H2O2 [33]. Briefly, post-
translational modifications (i.e. serine and threonine phosphor-
ylation [52], glutathionylation [53], tyrosine nitration [54], acet-
ylation [55] or s-nitrosylation [56]) on non-catalytic amino acids
sites of PRDX or over-oxidation of the active site thiol [57] can



Fig. 1. A theoretical model of how PRDX floodgate signalling may transduce exercise-induced H2O2 signals in skeletal muscle. NADPH oxidase translocation and subsequent
H2O2 production may generate ‘hotspots’ of H2O2 that facilitate the oxidation of thiol-containing signalling proteins (e.g. a phosphatase), alongside the simultaneous
inactivation of the PRDX thiolate. There is evidence that H2O2-mediated over oxidation as well as post-translational modifications such as acetylation, phosphorylation
(serine and threonine), glutathionylation, s-nitrosylation and tyrosine nitration of non-catalytic PRDX amino acids can prevent nucleophilic attack of the PRDX thiolate on
H2O2. In this context, the formation of stable PRDX dimers may facilitate extracellular redox-signalling. Notes: Thicker arrows represent the dominant pathway during
floodgate signalling; flat ended arrows indicate inhibition of the PRDX thiolate; dashed circle represents a ‘hot spot’ of hydrogen peroxide. S–S is a disulphide bond within the
oxidised PRDX dimer. Abbreviations: SOD: superoxide dismutase; •−O2 : superoxide; H2O2: hydrogen peroxide; PRDX: peroxiredoxin; H2O: water; –SOH: sulfenic acid: S�:
thiolate.
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drive the accumulation of H2O2 in specific cellular domains, de-
pending on the active PRDX isoform [58]. These modifications can
inactivate PRDX thiol activity and conceivably redirect the initial
H2O2 signal to elicit a change in cell function via oxidation of
signalling thiol proteins such as PTP1B, PTEN or ATM [26]. This
would render PRDX as a negative regulator of H2O2 signalling in a
mechanism known as the ‘floodgate model’ [59]. However, a re-
cent paper by Sobotta et al. [22] eloquently demonstrated that
PRDX has a ‘direct’ role in translating the oxidizing equivalent of
H2O2 to the cysteine rich transcription factor STAT3. Following
H2O2 exposure, the –SOH intermediate of PRDX-2 was shown to
form a mixed disulphide with STAT3 directly, initiating its trans-
location to the nucleus. This implies that PRDX may act as an active
‘redox relay’ with respect to increased cellular H2O2 levels. The
interplay between PRDX floodgate signalling and active redox re-
lays are unclear, however the mechanisms are likely not mutually
exclusive [60].
5. Peroxiredoxin: an abundant and highly active peroxidase

An array of factors can influence the capacity of a given redox
active cysteine to reduce H2O2 by nucleophilic attack (Fig. 2). Ac-
cessibility of H2O2 to the catalytic thiol/thiolate motif and struc-
tural factors (e.g. adjacent neighbouring amino acids on the
polypeptide chain) that affect electron density can alter the mid-
point potential (Em) of the thiol. Cysteine residues that have a
lower Em are more readily oxidised [24,61] and even alternative
isoforms of the same redox active protein may contain cysteine
residues with differing Em and thus alternative propensities for
oxidation [62]. The sensitivity of a redox active cysteine to oxi-
dation is also, in part, determined by pH, which relates to the
solution and microenvironment in which that cysteine resides.
Acid residues adjacent to a cysteine have been shown to alter
sensitivity of that cysteine to oxidation presumably via thiol pro-
tonation (–S� to –SH) [63]. Whether a redox cysteine is proto-
nated at physiological pH is determined by the pKa of the thiol
group [24]. All of these factors explain the broad range of sensi-
tivities exhibited by thiol-based proteins to fluctuations in H2O2

concentrations. In particular, PRDX has a turnover of H2O2 up to a
million times greater than protein phosphatases such as PTP1B
and cdc25b in vitro [23,33].

PRDX is a ubiquitously expressed oxidoreductase protein (160–
220 amino acids) located in the cytosolic (isoforms I, II and VI),
endoplasmic reticulum (isoform IV) and mitochondrial (isoforms
III and V) domains of the cell [64]. The nascent form of most
PRDX's is the decamer form (I–IV), with PRDX V and VI unable to
form oligomers. The ‘catalytic’ cysteine of all PRDXs (–S�) can
convert H2O2 [65], ONOO� [66] and other peroxide substrates [65]
to H2O via the oxidation of its conserved thiolate to a –SOH in-
termediate, before reacting with a ‘resolving’ cysteine thiol (–SH).
In this regard, the –S� form acts as the ‘redox-sensor’ via nu-
cleophilic attack and is the target for oxidation, whereas the –SH
form is resolving in nature [67,68]. The mechanism of –SOH re-
solution determines the sub-classes of the PRDX family. These
include typical-2 cysteine PRDX (I–IV), atypical-2 cysteine PRDX
(V) or 1-cysteine (VI) PRDX, whereby mixed disulphides are
formed through inter-molecular bonding with a neighbouring
thiol (PRDX molecule or thiol-based protein), intra-molecular
bonding with a native thiol or inter-molecular bonding with GSH
[69] respectively. These disulphide bonds are reduced by the an-
tioxidants TRX (I–IV), GSH-S-Transferase (V) and GSH (VI) in
bioenergetically favoured reactions [69,70].

Other antioxidant enzymes such as catalase, GSH and GPx have
prominent and defined roles in H2O2 catalysis [71]. Importantly,
these enzymes likely work in synergy with PRDX to modulate the
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overall peroxide signal [72]. Catalase is primarily located to per-
oxisomes where H2O2 is formed from the breakdown of various
substrates by flavoprotein oxidases [71], and therefore has no role
in the transfer of cytosolic to nucleic peroxide signals. GSH is a low
molecular weight antioxidant with a relatively low turnover of
H2O2 [33], and unlikely acts a direct ‘sensor’ for translating the
peroxide signal for transcriptional activation.1 GPx has a compar-
able rate constant to PRDX for H2O2 catalysis [33]; however the
transient and highly reductive selenenic acid (Se�) intermediate
that is formed following GPx reaction with H2O2 rapidly resolves
with a native amide group to form an intramolecular sulfenamide
[73]. Therefore GPx does not act as a dimerising peroxide ‘sensor’
protein. It is the structure and high affinity that PRDX has for H2O2

to favourably form –SOH intermediates and resolving dimers that
may give this antioxidant protein a unique role in actively trans-
ducing peroxide signals into a dynamic biological response. Ubi-
quitous PRDX expression has been estimated to be far more
abundant than both GPx and catalase [74] and the decamer con-
formation of typical 2-cysteine PRDXs can stabilise the active site
and increase peroxidase activity [75]. Further, structural analysis of
PRDX has revealed a hydrogen-bonding network surrounding the
active site that favours peroxide substrate binding and catalysis
[76,77]. A deprotonated catalytic thiolate (due to a low pKa value)
1 It is important to note that glutathionylation is an important post-transla-
tional modification whereby GSH resolves with protein –SOH or S� directly (e.g.
following oxidation by RONS) to modify protein function and thus cell signalling.
coupled with favoured polarisation of the peroxide bond (O–O)
has led to estimates that PRDX reacts with up to 99% of cytosolic
H2O2 [78,79].
6. Is PRDX a peroxide sensing protein during and following
exercise?

The available evidence suggests that H2O2 plays a crucial role in
mediating tissue function during exercise [2], as well as mod-
ulating post-exercise metabolic adaption [49] via redox-sensitive
pathways. Despite this, the direct reactivity of H2O2 with signalling
protein thiols is known to be very low. Given PRDXs high abun-
dance and turnover of cytosolic H2O2, PRDX would likely favour
the formation of –SOH intermediates in response to heightened
H2O2 production during exercise. Indeed, accumulating evidence
suggests that cytosolic, rather than mitochondrial sources of RONS
predominate during exercise [80,81]. Oxidation of PRDX may
therefore act as a physiologically conserved mechanism for
translating contractile signals from exercise-induced oxidants to
downstream transcription factors, thus facilitating the adaptive
response to exercise.

The targets of PRDX –SOH intermediates are to date, largely
unclear, with no studies exploring this in the context of exercise. It
has been demonstrated in vitro that transcription factors asso-
ciated with exercise adaptation, namely, STAT3 [22] and p38 [82]
are responsive to this signalling pathway. Following H2O2
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exposure, PRDX-2 can form mixed disulphides with STAT3 directly
[22], whereas PRDX-1 resolves with ASK-1, subsequently increas-
ing p38 phosphorylation [82]. It is well documented that STAT3
[83] and p38 [84] activation are linked with increased muscle
anabolism and mitochondrial biogenesis following exercise re-
spectively. It is important to note that PRDX has been shown to
interact with various other signalling complexes (e.g. platelet-de-
rived growth factors [85], receptor tyrosine kinases [52] and lipid
phosphatases [37]) that are undoubtedly involved with signalling
pathways following exercise. The translocation of PRDX to these
receptors has been previously regarded as a mechanism to prevent
localised protein oxidation via its reduced thiolate. However, ad-
vances in our understanding of how PRDX –SOH resolve with
signalling proteins may question this viewpoint. Given that there
is no known receptor for H2O2 binding, highly reactive and specific
cysteine targets such as PRDX may offer a control point for
managing H2O2 gradients with targeted precision in response to a
bout of exercise.

Increased levels of oxidised PRDX (I–IV) dimers [86] and over-
oxidised monomers [70,87,88] have been reported in immune
cells and erythrocytes following exercise. Under cellular oxidative
stress, the PRDX decamer can expose an oxidised cysteine that
resolves with a neighbouring PRDX thiol to form a stable oxidised
dimer. This state is known to be favoured following PRDX oxida-
tion [89] and levels have been shown to increase following a single
bout of ultra-endurance exercise (174 km, 30–44 h) in isolated
PBMCs from well-trained male participants [87]. Recent work by
Salzano et al. [53] has indicated that glutathionylation of non-
catalytic cysteine residues may facilitate extracellular secretion of
dimerised PRDX from immune cells, suggesting that this may act
as an extracellular ‘stress’ signal. Interestingly, there is also evi-
dence that skeletal muscle cells can also increase their secretion of
PRDX in response to injury [90]. In this regard, extracellular PRDX
may act in a paracrine or hormonal manner between cells under
redox stress during exercise. Furthermore, PRDX-2 has been
shown to bind to toll-like receptor-4 in immune cells, increasing
inflammatory cytokine transcription via NF-kB (i.e. IL-1beta) [91].
This indicates an additional aspect of extracellular communication
under cellular redox stress, with immune cells known to target,
infiltrate and repair skeletal muscle following exercise.

A unique feature of the PRDX catalytic cysteine is the capacity
of the thiolate to react with a second and third H2O2 molecule,
leading to sulfinic (–SO2H) and sulfonic (SO3H) acid oxidation
states [92]. This ‘over-oxidation’ occurs at a rate too quickly for
thiol ‘resolution’ and leads to the formation of over-oxidised
monomers. Over-oxidised PRDX monomers have been reported
during and following exercise in human peripheral blood mono-
nuclear cells (PBMCs) [93,87] and erythrocytes respectively [88].
Formation of over-oxidised PRDX in PBMCs (I–IV isoforms) has
been shown to be dependent on the intensity of exercise, with
heightened peroxide concentrations during high intensity exercise
(80% maximal oxygen consumption [ ̇VO2max] vs. 60% ̇VO2max)
likely exceeding the reduction power of TRX, the exclusive re-
ductant of the PRDX (I–IV) disulphide [93]. As well as increased
peroxide levels during exercise, these changes may also relate, in
part, to reductions in cellular pH that might reduce the sensitivity
of the TRX cysteine to oxidation. As introduced earlier, this
‘floodgate model’ mechanism (Fig. 1) may allow accumulation of
H2O2 that permits oxidation of other signalling thiol proteins, for
example PTP1B, which has a much lower pKa value than TRX [33].
Moreover, in vitro evidence suggests that TRX may then redirect
its reducing power to transcription factors such as NF-kB [94] and
AP-1 [57], eliciting changes in cell function in a different micro-
environment (i.e. higher pH).

The research assessing the interplay between H2O2 and PRDX
in response to acute exercise in humans is extremely limited, with
descriptive changes in PRDX expression and oxidation only pre-
viously monitored [93,87,95]. Mechanistic approaches in knockout
mouse models have highlighted a clear and prominent role for
mitochondrial PRDX-3 in controlling skeletal muscle force pro-
duction [96] and mitochondrial homeostasis [97]. For example,
absence of PRDX-3 caused deregulation of mitochondrial mem-
brane potential and a faster rate of muscle fatigue in the extensor
digitorum longus and soleus muscles of mice, possibly as a result
of elevated peroxide concentrations [96]. A study by Kil et al., 2012
provided evidence to suggest that PRDX-III hyperoxidation has an
important role in modulating steroid hormone production fol-
lowing physiological stress in mice [26], which will undoubtedly
be important in an exercise context whereby steroidogenesis is
elevated post-exercise [98]. These studies do not provide insight
into the specific sources of RONS that mediate PRDX cysteine
oxidation, nor the associated downstream signalling mechanisms.
The only study to assess changes in PRDX following regular ex-
ercise in humans, reported an increase in erythrocyte PRDX-2
expression in overweight males after 3-months of aerobic exercise
training (3 sessions per week at 75% of maximum heart rate;
progressive increase in session duration (25–50 min) over the
3 month period) [95]. Increased PRDX expression following ex-
ercise indicates an important role for PRDX in cellular remodelling
following exercise training, which likely occurs via the redox-
sensitive transcription factor NF-kB (as recently demonstrated in
vitro [72]). Interestingly, in a non-exercise context, PRDX has also
been shown to have an active role in the progression of mitosis
through selective phosphorylation of PRDX-1 during anaphase
[99]. Phosphorylated and inactivated PRDX-1 allows the transient
and localised accumulation of H2O2 that oxidises centrosome-
bound phosphates, thus permitting cell proliferation. This high-
lights a complex interplay between thiol modifications and cel-
lular phosphorylation in mediating cell growth, which may have
applications to tissue remodelling (i.e. skeletal muscle) in response
to exercise.
7. Future Perspectives

The redox environment within cells is a complex network of
highly transient RONS that work in strict cooperation with cellular
and dietary antioxidants. Despite rapid progression in our under-
standing of many aspects of redox signalling, it is clear that the
analytical techniques currently available to monitor thiol mod-
ifications following exercise in humans are limited. Technologies
for the evaluation of –SOH formation in vitro and in vivo have
been developed, which include dimedone based reagents and
conjugates [100]. These reagents ‘trap’ –SOH formation in real
time, which can successfully be detected by mass-spectrometry
[101,102]. The use of such reagents has real potential in the field of
exercise physiology, particularly regarding the delineation of redox
sensing and/or signalling pathways where PRDX and H2O2 are
implicated. The evidence presented in this article highlights three
primary functions of PRDX in managing H2O2 gradients: (1) an
antioxidant with a very high affinity for H2O2, (2) an intracellular
signal that transfers the oxidising equivalent of H2O2 to cysteine
rich target proteins via its –SOH intermediate and (3) an extra-
cellularly secreted protein that may permit local signalling. These
signalling properties may well underpin a fundamental aspect of
redox communication in response to exercise (Fig. 3).

At present, it is unclear how H2O2 acts as an intracellular signal
in vivo and importantly, how widespread H2O2 ‘sensor’ proteins
are within cells. A recent review by Cobley et al., [103] suggested
that H2O2 contained to the cellular domain of production during
exercise (by proteins such as PRDX) likely permits its actions as an
intracellular signal, whereas distal diffusion permits non-specific
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oxidation of biomolecules through reactions with free iron. At this
stage, we cannot be certain that H2O2 acts solely as an intracellular
signal. Indeed, H2O2 is a freely diffusible, uncharged molecule that
may signal in an autocrine, panacrine or hormonal manner be-
tween cells during exercise [104]. This may also be spatially fa-
voured given that membrane-bound NADPH oxidases are likely a
source of •−O2 during exercise [105]. Similarly, the function of
decamer PRDX, a product of high levels of peroxides such as H2O2,
needs further exploration as a possible extracellular redox signal.

The role of other 2-electron oxidants (i.e. ONOO�) and even
free radical species (i.e. 1-electron oxidants such as •−O2 and NO�)
in thiol-mediated redox signalling following exercise must not be
discounted; particularly if the source of RONS is localised to the
target protein [23]. Furthermore, other thiol modifications (i.e.
s-nitrosylation and s-glutathionylation) may be responsible for
mediating the adaptive response to exercise, with the role of re-
active sulphur species (i.e. H2S/S�) in forming mixed persulphides
emerging as a post-translational modification likely governing
physiological effects [106].
8. Conclusion

PRDX is an abundant cellular protein with a diverse range of
functions in mammalian cells, above and beyond its fundamental
function as a thiol peroxidase. This review has drawn on a series of
excellent advances in redox biology research to highlight the need
to dissect the molecular mechanisms underpinning redox-medi-
ated signal transduction in response to exercise. Future studies
need to elucidate the precise role of PRDX and other peroxide
sensors in transmitting H2O2 signals into dynamic biological re-
sponses during and following exercise.
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