
Common Environment for Undergraduate
Computer Programming

Colin Price
University College Worcester

Worcester WR2 6AJ
United Kingdom
44-1905-855316

c.price@worc.ac.uk

John Price
University College Worcester

Worcester WR2 6AJ
United Kingdom

44-1905-8555060

j.price@worc.ac.uk

ABSTRACT
We present an Integrated Environment suitable for learning and
teaching computer programming which is designed for both
students of specialised Computer Science courses, and also non-
specialist students such as those following Liberal Arts. The
environment is rich enough to allow exploration of concepts from
robotics, artificial intelligence, social science, and philosophy as
well as the specialist areas of operating systems and the various
computer programming paradigms.
Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education.
General Terms: Design, Experimentation.

1. INTRODUCTION
Various environments are usually employed with computer
science students to support learning of core elements such as
Operating Systems, Artificial Intelligence and Programming.
Often the environment used to support each of these areas is
distinct. Students may be required to program in Lisp, Java or C
and work with many Development Environments all within a
short period of time. This entails spending a lot of time learning
application details which could be better given to fundamental
concepts.
We are have developed a unified learning environment, a
combination of hardware and software which supports learning
and teaching in Robotics, Artificial Intelligence, Programming,
and Operating Systems. The environment is based upon the
programming of autonomous robots (in-house developed Lego
robots in “C”) and Java multirobot simulations (also using “C”-
code). The robot electronics uses an industry-standard 8051
microcontroller derivative. Students combine the controller board
with Lego components and a selection of sensors. The robots are
programmed in ‘C’ using an industry standard IDE, supplied by
Keil. The emphasis has been to devise a minimalist robot which
can satisfy many educational goals with a premium cost while
using industry-standard components. Students find the use of
industry-standard components highly motivating, these systems
are “real-world” and learned skills are transferrable. The dual use
of physical robots and Java simulation is a second keystone of our
architecture.
The programming tasks are behaviour-based and include FSMs,
subsumption, Arkin’s schemas and neural net paradigms.

Copyright is held by the author/owner(s).
ITICSE’04, June 28-30,2004, Leeds, United Kingdom.
ACM 1-58113-836-9/04/006.

We have written a tiny operating system that supports
multitasking within 4kB of microcontroller RAM. Each behaviour
runs as a separate thread within the operating system.
Working with these small robots, students individually learn
concepts of programming, multi-tasking operating systems and
behaviour-based control. They also come together as teams and
investigate interactions and cooperation between multiple
autonomous robots. Students develop team (and project
management) skills.
The simulation environment for these robots also supports single
or multiple entities. This is written as a Java application, but
allows the students to use almost identical C-code in the Java
application to program the simulated robot. This reduces the
complexity for courses where programming is not the main
consideration. The simulation runs each individual robot’s
behaviour as a separate Java thread, each entire robot is run as a
thread group. The current simulation also supports direct
programming in Java and a table-based Finite State Machine
language. The underlying use of Java follows from our adoption
of the Stein’s concurrent process view of computation, as well as
being the modern Web language.
One key objective of our development was to facilitate Operating
Systems courses where learning traditionally is either done by
limited experimentation with a real OS such as UNIX, or else via
simulations such as MOSS. Both have their limitations. The
embedded RTOS we have developed provides a richer learning
experience, allowing exposure to most operating system concepts
in a live system. Student experimentation is highly rewarding,
since the behaviour of the robots immediately reflects the changes
made by the students to the OS structure or parameters.
This research project has been running for almost one year. The
experience of first year undergraduates is now being used to
refine the learning approaches as well as system hardware and
software. We have also carried out (and continue to conduct)
trials with school children of ages 13-18. The educational
objectives of this project are simple. We believe in a
constructivist educational paradigm, but one which is grounded or
embodied in the real world. Simulations must coexist with
physical robots. Students observe robot behaviour and directly
observe the effects of their programming experiments. They are
learning to be creative via synthesising behaviour, and their
hypothesis-testing skills are being exercised in this problem-based
environment. Moreover, through programming behaviour, they
are coming into contact with concepts in AI, cognitive
psychology and have shown the ability to question the nature of
the Self.

248

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Worcester Research and Publications

https://core.ac.uk/display/76977866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

