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AbstractIn this work we address several theoretical and computational issues which are related9

to the thermomechanical modeling of shape memory alloy materials. More specifically, in this10

paper we revisit a non-isothermal version of the theory of large deformation generalized11

plasticity which is suitable for describing the multiple and complex mechanisms occurring in12

these materials during phase transformations. We also discuss the computational13

implementation of a generalized plasticity based constitutive model and we demonstrate the14

ability of the theory in simulating the basic patterns of the experimentally observed behavior by15

a set of representative numerical examples.16
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1 Introduction25

26

Shape Memory Alloys (SMAs) are an intriguing class of metal alloys with the ability to27

undergo severe deformations and then recover their original shape. This can occur either28

under the action of a thermomechanical cycle, with the corresponding response termed29

as shape memory effect or a stress cycle within some appropriate temperature limits30

(pseudoelasticity). Two are the fundamental mechanisms underlying this recovery. The31

first one is a diffusionless transformation between the high ordered austenite phase32

(parent phase) and the less ordered martensite (product) phase. The second evolves33

through the reorientation (detwinning) of the martensite variants. These transformations34

are termed as martensitic and may be met also in other metallic materials such as carbon35

steels and invar alloys.36

Due to these properties SMAs are being increasingly used in several innovating37

applications which are met at almost all engineering fields. Thus, there is a pressing need38

for simulation tools that can accurately describe their experimentally observed behavior,39

especially under complex states of stress and temperature.40

For the past three decades there has been substantial activity to model martensitic41

transformations in shape memory alloys within a fully coupled thermomechanical42

framework. This approach relies on the use of the so-called non-equilibrium (or43

irreversible) thermodynamics. Within this approach, among others, Muller [28], Raniecki44

et al. [43], Huo and Muller [15], Raniecki and Lexcellent [44], Leclercq and Lexcellent45

[18], Boyd and Lagoudas [8], Lagoudas et al. [17], Peyroux et al. [40], Raniecki and46

Lexcellent [45], M ü ller and Bruhns [29], Zio kowski [57] Christ and Reese [9],47
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Thamburaja [52], Morin et al. [27], Yu et al. [55] have proposed models based on the use48

of a set of thermomechanical equations describing thekinematics of the martensitic49

transformations. The constitutive equations are developed in a non-linear manner on the50

basis of a free energy driving force and the laws of thermodynamics.51

An alternative approach is the employment of plastic flow theories. Such an approach52

is thermodynamically consistent and may furnish a concrete micromechanical53

justification - see, e.g., the ideas exposed in the book by Smallman and Bishop ([50, pp.54

278-280]); see also the concise discussion given in Panoskaltsis et al. [36]. On the basis55

of this idea, Anand and Gurtin [2], by following the equilibrium theory of austenite -56

martensite phase transitions of Ball and James [6], proposed a three-dimensional crystal57

model which was able to reproduce the pseudoelastic response of SMAs under isothermal58

and non-isothermal conditions. Related is the thermomechanical model by Lu and Weng59

[20] - see also Yin and Weng [54] - where a set of explicit constitutive equations which60

provide a direct link between the applied stress and the evolution of the product phase61

during martensitic transformations, and between the stress and the overall strain of the62

transforming system, is discussed.63

Nevertheless, modeling a polycrystalline body remains a challenging task. Even in the64

single crystal there exist 192 transformation systems (see Ball and James [6]; Anand and65

Gurtin [2]; Yin and Weng [54]) and accordingly the number of active transformation66

systems can be immense. Thus, a macroscopic approach within the context of plasticity67

theories seems also attractive. Moreover, the macroscopic approach offers several68

computational advantages since, as it is noted by Thamburaja [52], the numerical69
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implementation of macroscopic models is easier than that of crystal models, while the70

numerical simulations involving macroscopic models are computationally more efficient.71

An interesting approach within the context of macroscopic theories of plasticity is the72

one suggested by Lubliner and Auricchio [22] - see also the related work by Panoskaltsis73

[32]; Panoskaltsis et al. [33 - 39] who developed a three-dimensional thermomechanical74

constitutive model, based on non-isothermal generalized plasticity theory (Lubliner [21]).75

Generalized plasticity is a general theory of rate-independent inelastic behavior which is76

physically motivated by loading-unloading irreversibility and is mathematically founded77

on set theory and topology. This general mathematical foundation provides the theory78

- -connected elastic domains,79

which is exactly the challenge in modeling SMAs.80

The basic objective of this work is to revisit the previous work by Lubliner and Auricchio81

[22] and Panoskaltsis et al. [36] - see also [33, 34] and to provide a general82

thermomechanical framework, which in turn may constitute a basis for the derivation of83

constitutive models for SMAs. Further to the aforementioned endeavors, the present84

approach establishes the theory in a covariant setting and utilizes the modern invariance85

(symmetry) principles for the derivation of the thermomechanical state equations. On the86

computational side, novel aspects include: (1) The derivation of a (local) time integration87

algorithm within the context of an isothermal operator split and (2) the numerical88

simulation of non-conventional patterns of material response, where phase transformations89

may be retarded or even inhibited due to self-heating/cooling effects.90

This paper is organized as follows: In Section 2, we revisit the general multi-surface91

formulation of non-isothermal generalized plasticity developed in Panoskaltsis et al. [33]92
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and we extend it in a covariant setting; we also render the theory fully covariant - see, e.g.,93

Marsden and Hughes [23, pp. 202-203]- upon studying the invariance properties of the94

local balance of energy under general spatial transformations. In Section 3, as an95

application we present a material model; this model constitutes a straight forward extension96

to the non-isothermal regime of a model which has been recently discussed by the authors97

in [36]. The extension is based on some basic results underlying the thermomechanical98

response of an SMA material developed in Raniecki et al. [43], Raniecki and Lexcellent99

[44] and Muller and Bruhns [29]. Finally, in Section 4 we discuss the computational100

aspects which are related to the numerical implementation of the model and we present a101

set of representative numerical examples.102

103

104

2 Constitutive theory105

106

2.1 Review of the basic equations107

108

Similar to our previous work [36], a homogeneous body is considered, undergoing phase109

transformations and occupying a region in the ambient space 3,S R with points X110

labeled by 1 2 3, , .X X X The region is identified by the body material (reference)111

configuration. A motion of the body within the ambient space Sis defined accordingly as112

the time dependent mapping x:113

: , ( , )S ttx x x x X (1)114
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which maps the points X of the material configuration onto the points x of the spatial115

(current) configuration. Then the deformation gradient is defined as the tangent map of116

(1), i.e.117

,
,

t
T

x X
F x

X
118

and the material (Green-St. Venant) strain tensor is defined as:119

1
( ),

2
E C I120

where C is the right Cauchy-Green deformation tensor defined as TC F F and I is the121

unit rank-2 tensor. Following [36], we assume that the basic kinematic assumption is based122

on an additive decomposition of the strain tensor E into elastic eE and inelastic123

(transformation induced) TrE parts, i.e.124

,e TrE E E (2)125

where TrE represents inelastic deformation induced by generation, growth and annihilation126

of the austenitic - martensitic fine structure (see, e.g., [6]) and defines an inelastically127

deformed (intermediate) configuration and eE represents elastic deformation due to128

stretching and rotation of the crystal lattice.129

Since we deal with an internal variable theory, it is assumed that the local130

thermomechanical state in a body - see, e.g., [21, 22] - is determined uniquely by the131

couple (G,Q) where G - belonging to a space G - stands for the vector of the controllable132

state variables and Q -belonging to a space Q - stands for the vector of the internal133

variables. According to the ideas presented in the review paper of Naghdi [30] the present134

work is based on a referential (material) approach within a strain-space formulation.135
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Accordingly, G may be identified by the couple (E,T), where T is the (absolute)136

temperature. In view of the additive decomposition (2), the internal variable vector may137

be assumed to be composed by the transformation strain tensor TrE and an additional138

internal variable vector .139

The mathematical foundations of generalized plasticity - see Lubliner [21] - rely140

crucially on a shift of emphasis from the yield surface concept to that of the elastic range.141

This is defined at any material state as the region in the strain-temperature space142

comprising the values of 'sG that can be attained elastically - i.e. with no change in the143

internal variables ( , )TrE Z - from the current strain-temperature point. The boundary of144

this set may be defined as a loading surface (see further [21]). In turn a material state may145

be defined as elastic if it is an interior point of its elastic range and inelastic if it is a146

boundary point of its elastic range. It should be added that the notion of process is147

introduced implicitly here. In a recent paper Panoskaltsis et al. [34] - see also [33] - argued148

that for a material undergoing phase transformations the loading surface may be assumed149

to be defined by a set of n smooth surfaces which are defined by expressions of the form150

( ,T, , ) 0, =1,2,..., .F nTrE E151

Each of these surfaces is associated with a particular transformation mechanism - denoted152

here symbolically by - which may be active at the current state. It is further assumed153

that each equation ( ,T, , ) 0F TrE E defines independent (non-redundant) active154

surfaces at the current value of (E,T) and that the elastic range is a convex set. Then, on155

the basis of the defining property of an inelastic state and the irreversibility of an inelastic156

process from such a state it can be shown (see [21]; see also [33, 34] for the case of SMAs)157

that the rate equations underlying the evolution of the internal variables may be stated as158
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=1

=1

( ,T, , ) ( ,T, , ) ,

( ,T, , ) ( ,T, , )

n

n

H L

H L

Tr Tr Tr

Tr Tr

E E E Z L E E Z

Z E E Z M E E Z

(3)159

where <·> stands for the Macaulay bracket which is defined as160

if 0
,

0 if 0

x x
x

x
161

and the 'sH stand for scalar functions which enforce the defining property of an inelastic162

state. Accordingly, the values of 'sH must be positive at any inelastic state and zero at163

any elastic one. Finally, L and M represent non-vanishing functions, which are164

associated with the properties of the phase transformation connected with the part of the165

loading surface defined by 0,F while the 'sL stand for the non-isothermal loading166

rates which are defined to be167

: T.
T

F F
L E

E
168

From Eqs. (3), one can deduce directly the loading-unloading criteria for the proposed169

formulation, which may be systematically formulated as [34], in terms of the sets170

admJ { {1,2,..., }/ 0}n H >171

and172

act admJ { J / 0},L >173

as follows174
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adm

adm act

adm

If J : elastic state.

If J and J :

i. If 0 for all J : elastic unloading,

ii. If 0

L

L

<

adm

adm act

for at least one J : neutral loading,

If J and J : inelastic loading.

(4)175

An equivalent assessment of the governing equations in the spatial configuration can be176

done on the basis of a push-forward operation (see, e.g., Marsden and Hughes [23, pp.67-177

68]; Stumpf and Hoppe [51]; Holzapfel [14, pp. 82-84]) to the basic equations. For178

instance, by performing a push-forward operation onto Eq. (2) the latter can be written in179

the form180

,e Tre e e181

where e is the spatial (Almansi) strain tensor, defined as the push-forward of E, that is182

1,Te F EF and ,ee Tre are the corresponding elastic and transformation induced parts. In183

a similar manner the rate equations for the evolution of the internal variables in the spatial184

configuration read185

=1

=1

L ( ,T, , , ) ( ,T, , , ) ,

L ( ,T, , , ) ( ,T, , , ) ,

n

n

h l

h l

V Tr Tr Tr

V Tr Tr

e e e z F l e e z F

z e e z F m e e z F

(5)186

where z stands for the push-forward of the internal variable vector, and L ( )V stands for187

the Lie derivative (see further [23, pp.93-104]; [51]; [14, pp. 106-108]), defined as the188

convected derivative relative to the spatial configuration. Finally, the 'sh stand for the189

expression of the (scalar invariant) functions H in terms of the spatial variables190

( ,T, , )Tre e z and the deformation gradient F, l and m stand for the push-forward of the191
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functions L and M respectively and the 'sl stand for the (scalar invariant) loading192

rates which in the spatial configuration are given as193

:L T.
T

f f
l Ve

e
194

In this equation f is the expression for the loading surface associated with the index in195

terms of the spatial variables. The (spatial) loading-unloading criteria follow naturally from196

Eqs. (5) as197

adm

adm act

adm

If j : elastic state.

If j and j :

i. If 0 for all j : elastic unloading,

ii. If

l <

adm

adm act

0 for at least one j : neutral loading,

If j and j : inelastic loading.

l

198

where the sets admj and actj are now defined in terms of the spatial variables as199

admj { {1,2,...,n}/ 0}h > and act admj { J / 0}.l >200

201

202

2.2 Covariant constitutive theory203

204

In the classical literature of the thermomechanical modeling of SMAs it is common to use205

approaches which are based on the second law of thermodynamics for the derivation of the206

thermomechanical state equations. An alternative formulation may be established on the207

basis of an invariance (symmetry) principle (see, e.g., Marsden and Hughes [23, pp. 154-208

176, 199-204, 275-288]; Yavari et al. [53]; see also the philosophical reflections given in209

Earman [10] and the recent account by Ganghoffer [12]). Such an approach is based on the210
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exploitation of the invariance properties of a quantity underlying the response of a211

dynamical system under the action of some group of transformations. For instance,212

Marsden and Hughes in [23, pp. 199-204], derived the classical stress-deformation and213

entropy-temperature relations for an elastic material by postulating the invariance of the214

local form of the referential energy balance equation under the superposition of a group of215

spatial transformations.216

The basic objective of this Section is to revisit the approach of Marsden and Hughes in217

[23] and introduce it within a shape memory alloy behavior setting. In particular, the218

derivation of both the stress tensor and the specific entropy from the Helmholtz free energy219

is demonstrated, when the local form of the material balance of energy equation is220

invariant under superposition of a special group of transformations. This group consists of221

arbitrary spatial diffeomorphisms, that is transformations of the ambient space which may222

change the spatial strain tensor ( ).e It is noted that in order to change the local223

thermomechanical state such a group of transformations is not enough since this will224

change the mechanical state, but not the thermomechanical one. Therefore, in addition we225

need also a transformation of the temperature, that is a diffeomorphism of R+ (see the226

footnote in p. 202 in Marsden and Hughes [23]). The simplest case for such a227

diffeomorphism is a temperature rescaling.228

It is noted that, unlike the original approach by Marsden and Hughes [23] where the229

ambient space is considered to be a Riemannian manifold, within the present approach this230

space is the (rigid) Euclidean space. In this case the basic axioms of Marsden and Hughes231

[23, pp. 202-203], for the material which obeys the rate Eqs. (3) (or equivalently Eqs. (5))232

in the course of phase transformations, can be stated as follows:233
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Axiom 1: At the material point X and a given thermomechanical process G there exists a234

scalar function E of the state variables ( ( ,T, , ))E E TrE E Z such as the energy balance235

equation holds, that is236

: ,ref refE DIV RH S E237

where ref is the mass density in the material configuration, S is the second Piola-Kirchhoff238

stress tensor, H is the heat flux vector and R is the heat supply per unit mass. By introducing239

the Helmholtz free energy function , which is obtained by the usual Legendre240

transformation T,E N where N is the specific entropy ( ( ,T, , ))N N TrE E Z , the241

local form of the energy balance can be written in the form242

( T T) : ,ref refN N DIV RH S E (6)243

where ( )DIV stands for the divergence operator in the material description.244

Axiom 2: We denote by g and q the spaces of the control variables in the spatial245

configuration - that is the spaces G and Q, configuration - and by246

the set of the SC scalar fields in the spatial configuration, and we assume the existence247

of a map : ( , , , )S g q R such that for any diffeomorphism ( , ): ( , ) ( , ),S R S R248

( , ,T, , )= ( , , T, ( , T), ( , T), ).Tr Trx e e z249

Axiom 3: For curves : S St and ( ) ,x Rt assume that t t tx x , T = Tt t t satisfy250

the balance of energy, that is251

( T T ) : .ref refN N DIV RH S E (7)252
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where it has been further assumed that , ,ref N and the 'sF are transformed as scalars,253

the heat flux vector is transformed as *t t t tH254

entropy production tT ,R Nt t is transformed as T ( T ).R N R Nt t t t t t t255

In this case the internal variables tre and z, under the application of the spatial256

diffeomorphism and the temperature rescaling, do not follow their own mode of evolution257

since are always related to the spatial strain tensor e and the temperature T by Eqs. (5).258

Moreover, and more importantly it is noted that for both tx and ,t t tx x the balance of259

energy equation is written at the same material point X. Accordingly, the transformed260

values of the strain and temperature rates in the primed system- see also [53] - will be given261

as262

,

T T T .

T
t

t

t t t t

t t t

E E E

(8)263

The invariance properties of the balance of energy equation are exploited as in Marsden264

and Hughes [23] by evaluating Eq. (7) at time 0 ,t when
t to

(identity),
t tt

0

w and265

1,
t t0

t t

u
t

0

where u is the velocity of at 0 .t266

The time derivative of the transformed Helmholtz free energy in this case reads267

0 0 0
0

: : T : : .
Tt t t t t t t tt t0

Tr

Tr

E E Z
E E Z

(9)268

By means of Eqs. (8) the time derivatives
0t t

E and
0

T
t t

are found to be269
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0

0

,

T T+ T.

t t

t t
u

E E w E
(10)270

The time derivatives
0t tTrE and

0t t
Z are evaluated by means of the transformation271

formula of the loading rates, which in view of Eq. (10) reads272

0 0

( : T ) =
T

= : : ( ) T+ ( T).
T T

t t t t

F F
L

F F F F
u

E
E

E w E
E E

273

Accordingly, the rate
0t tTrE is evaluated as274

0

0

n

=1

n n

=1 =1

n

=1

( ,T , , )

( ,T, , ) ( ,T, , )[ : ( ) ( T)]
T

( ,T, , )[ : ( ) ( T)].
T

t t
t t

H L

F F
H L H u

F F
H u

Tr Tr

Tr Tr

Tr Tr

E L E E Z

L E E Z L E E Z w E
E

E L E E Z w E
E

275

In a similar manner for
0t t

Z we derive276

0

n

=1

( ,T, , )[( : ( ) ( T)],
Tt t

F F
H uTrZ Z M E E Z w E

E
277

so that the transformed Helmholtz free energy reads278

n

=1

n

=1

: ( ) : ( T)
T

: ( ,T, , )[ : ( ) ( T)]+
T

: ( ,T, , )[ : ( ) ( T)].
T

t t
u

F F
H u

F F
H u

0

Tr

Tr

Tr

w E
E

L E E Z w E
E E

M E E Z w E
Z E

(11)279

Furthermore,280
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' : : : ( ),
t t0

S E S E S w E (12)281

In light of Eqs. (9), (11) and (12) the transformed balance of energy equation (at 0)t t282

can be written as283

n

=1

n

=1

{ : ( ) : ( T)
T

: ( ,T, , )[ : ( ) ( T)]+
T

: ( ,T, , )[ : ( ) ( T)]}+ T+ ( T)+
T

: : ( ) ( T ).

ref

ref ref

ref

u

F F
H u

F F
H u N N u DIV

R N

Tr

Tr

Tr

w E
E

L E E Z w E
E E

M E E Z w E H
Z E

S E S w E

284

(13)285

By subtracting Eq. (6) from Eq. (13) and by involving the transformation formulae for the286

heat flux vector and the apparent heat supply (recall Axiom 3) we can derive the following287

identity288

n n

=1 =1

n n

=1 =1

: ( ) ( T)+
T

[ : ( ,T, , ) : ( ,T, , ) ]( )

[ : ( ,T, , ) : ( ,T, , ) ]( T)+
T T

( T) : ( ) 0

ref ref

ref

ref

ref

u

F F
H H

F F
H H u

N u

Tr Tr

Tr

Tr Tr

Tr

w E
E

L E E Z M E E Z w E
E E Z E

L E E Z M E E Z
E Z

S w E ,

289

or equivalently290

n

=1

n

=1

n

=1

n

=1

{ [ : ( ,T, , )

: ( ,T, , ) ] }: ( )}

[ : ( ,T, , )
T T

: ( ,T, , ) ]( T)=0.
T

ref

ref

F
H

F
H

F
H

F
H N u

Tr

Tr

Tr

Tr

Tr

Tr

L E E Z
E E E

M E E Z S w E
Z E

L E E Z
E

M E E Z
Z

(14)291
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from which by noting that w and u can be arbitrarily specified, we can derive292

n

=1

n

=1

n

=1

n

=1

[ : ( ,T, , )

: ( ,T, , ) ],

[ : ( ,T, , )
T T

: ( ,T, , ) ].
T

ref

F
H

F
H

F
N H

F
H

Tr

Tr

Tr

Tr

Tr

Tr

S L E E Z
E E E

M E E Z
Z E

L E E Z
E

M E E Z
Z

(15)293

i.e., unlike the classical elastic case discussed in Marsden and Hughes [23, pp. 202-203],294

for the material undergoing phase transformations, the covariance of the local form of the295

energy balance, does not yield the standard thermomechanical relations296

ref , ,
T

NS
E

(16)297

unless a further assumption is made, namely that there exists a spatial diffeomorphism298

( , ) which results in an unloading process from an inelastic state (i.e. a process with299

admJ and actJ ) which is quasi-reversible (see Fosdick and Serrinin [11]). This300

means that in such a process the inelastic (transformation) work ,Win defined as301

n

=1

n

=1

n

=1

n

=1

[ : ( ,T, , )

: ( ,T, , ) ] : ( )

[ : ( ,T, , )
T

: ( ,T, , ) ](uT)
T

ref

F
W H

F
H

F
H

F
H

in Tr

Tr

Tr

Tr

Tr

Tr

L E E Z
E E

M E E Z w E
Z E

L E E Z
E

M E E Z
Z
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that is, the work performed by the internal variables during the action of ( , ) vanishes.303

Then, in this case the standard thermomechanical relations follow directly from Eq. (14)304

for 0.Win It is noted that the expressions305

n

=1

n

=1

n

=1

n

=1

[ : ( ,T, , )

: ( ,T, , ) ] : ( ),

[ : ( ,T, , )
T

: ( ,T, , ) ]( T),
T

mech ref

thermal

F
W H

F
H

F
W H

F
H u

in Tr

Tr

Tr t

in Tr

Tr

Tr t

L E E Z
E E

M E E Z w E
Z E

L E E Z
E

M E E Z
Z

306

stand for the mechanical and thermal work produced by the superposed spatial307

diffeomorphism and the temperature rescaling, respectively.308

Note that the result derived herein is in absolute accordance with the one derived on the309

basis of the second law of thermodynamics by Lubliner and Auricchio in [22]. More310

information on this point is provided by Panoskaltsis in [32].311

312

REMARK 1 The concept of the covariant energy balance has been also exploited by313

Panoskaltsis in [32], but unlike the present case where we consider the covariance of the314

referential balance of energy equation, Panoskaltsis considers covariance of the spatial315

energy balance. Contrary to the present formulation, Panoskaltsis in [32] derives the stress-316

strain relations in a spatial setting in terms of the Cauchy stress tensor and the Almansi317

strain e. More specifically, Panoskaltsis in [32] derives the standard stress-strain relations318

,
e

319
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where and stand for the mass density and the Helmholtz free energy in the spatial320

configuration.321

322
REMARK 2 Eqs. (15) constitute the covariance conditions for the energy balance equation323

(6) i.e. the necessary conditions, so that this equation is invariant under the superposition324

of arbitrary diffeomorphisms acting on the Euclidean space, DiffS, which include also a325

temperature rescaling .R Moreover, it can be proved that the conditions (15) are also326

sufficient. This means that if we do not consider the assumption related to the existence of327

quasi-reversible processes, the invariance (symmetry) group of the balance of energy328

equation is329

n

=1

n

=1

n

=1

n

=1

{( , ) /

[ : ( ,T, , )

: ( ,T, , ) ] and

[ : ( ,T, , )
T T

: ( ,T, , ) ]}.
T

ref

G DiffS R

F
H

F
H

F
N H

F
H

Tr

Tr

Tr

Tr

Tr

Tr

S L E E Z
E E E

M E E Z
Z E

L E E Z
E

M E E Z
Z

330

In this case it can be proved - see Panoskaltsis and Soldatos in [35] - that the material331

response is elastic (non-dissipative). Upon the consideration of elastic-inelastic response,332

the covariance group G is restricted to the group333

ref{( , ) / , , 0 and 0},
T

mech hermalG DiffS R N W Win inS
E

334

In this sense, the present approach and its basic conclusions are consistent with the modern335

approach to symmetries in physics, as emphasized for instance by Earman [10]:336
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The symmetries are in the laws of the phenomena, not in the phenomena337

themselves338

The phenomena break the symmetries of laws.339

340

REMARK 3 An alternative approach to the concept of invariance could be provided by noting341

the natural connection which exists between conservation laws and the symmetries of the342

(dynamical) system in question. In particular, if the Euler-Lagrange equations of the system343

are satisfied and the Lagrangian is invariant under the action of some group of344

345

corresponding conserved quantities. Such an approach has been favored, among others by346

Rahuadjet al.[41, 42] and Romero [46] (see also [12, 53]).347

348

349

2.3 The temperature evolution equation350

351

As a final step we derive a general equation for the temperature evolution which occurs in352

the course of phase transformations. This is done on the basis of the energy balance353

equation (recall Eq. (6)). In this case, the time derivative of the Helmholtz free energy354

yields355

ref ref ref ref( : : + T)+ T+ T+ R+ : ,
T

N N DIVTr

Tr

E E Z H S E
E E Z

(17)356

which in turn upon substitution of the thermomechanical state Eqs. (16) yields357

ref ref ref( : : )+ T+ R.N DIVTrTr
E Z H

E Z
(18)358
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The time derivative of the entropy density is determined by the second of Eqs. (16) as359

2 2 2 2

2
: : : T,

T T T T
N Tr

Tr

E E Z
E E Z

(19)360

which upon defining the specific heat c at constant deformation and internal variables as361

2

2
T,

T
c (20)362

and upon substitution of Eqs. (19) and (20), reads363

2 2 2

ref

1
T ( : : )+( : : : )T+(R ),

T T T
c DIVTr Tr

Tr Tr

E Z E E Z H
E Z E E Z

364

which constitutes the temperature evolution equation in a non-isothermal process. This365

equation upon defining the elastic contribution to heating as366

2 2 2

2 2

T( : : ) T[ : ( )]
T T T

T[ : ( )] T : ,
( ) T T

Q Tr
e Tr

Tr

Tr e

Tr e

E E E E
E E E

E E E
E E E

367

and the inelastic (transformation) one as368

2

( : : )+T : ,
T

QTr Tr

Tr

E Z Z
E Z Z

369

takes the following remarkably simple form (see Rosakis et al. in [47])370

ref

1
T +(R ).c Q Q DIVe Tr H (21)371

which has the obvious advantage of decoupling the elastic and inelastic contributions to372

material heating and is well suited for computational use.373

374

REMARK 4 Upon defining, the inelastic dissipation D as375
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( : : ),D Tr

Tr

E Z
E Z

376

and the elastic-inelastic structural heating H as377

T ( : ),
T

H DS E378

the temperature evolution equation takes the alternative form379

ref

1
T ( ) ( R).c D H DIVH (22)380

In this equation H is associated to the non-dissipative (latent) elastic-plastic changes due381

to thermal phenomena. This term as it will be clear in the foregoing - see Section 4.3.1 -382

plays a very important role in thermo-mechanically coupled problems in SMAs.383

384

REMARK 5 An equivalent equation for the temperature evolution equation can be also385

derived in the spatial configuration by either working in a similar manner in terms of the386

spatial variables or by means of a push-forward operation to Eq. (22). The resulting387

expression in is388

1
T ( ) ( ),c d h div rh (23)389

where390

( : : ), T ( : ).
T

L L dhd v Tr v

Tr

e z e
e z

(23)391

are the expressions for the plastic dissipation d and the structural heating structural h392

nfiguration. Further, in Eq. (23), ( ,T, , )Tre e z is the393

Helmholtz free energy in terms of the spatial variables, while , ( ),div h and r, stand394

for the mass density, the divergence operator, the heat flux vector and the heat supply395
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in the spatial configuration. Such a form of the temperature evolution equation has been396

favored by Simo and Miehe [48] and may be implemented in cases where a spatial397

formulation of a material model is simpler than the material one (see e.g. Panoskaltsis398

et al. in [39]).399

400

401

3 A model problem402

403

In the preceding Sections, the proposed formulation is presented largely in an abstract404

manner by leaving the number and the nature of the internal variables, underlying the phase405

transformations, unspecified. To clarify the application of generalized plasticity within a406

thermomechanical modelling setting for phase transformations, a material model is407

presented in this Section.408

Without loss of generality, we confine our attention to phase transformations between the409

austenite and a single (favorably) oriented martensite variant. The internal variable vector410

Z, as it is common with this class of the models for SMAs (see, e.g., [43, 8, 22, 29, 33, 38,411

52]) is assumed to be composed by a single scalar internal variable - say -the phase412

fraction of martensite within the continuum. The (forward)austenite to martensite413

transformation will be denoted symbolically as the (M) transformation, while the (reverse)414

martensite to austenite transformation will be denoted as the (A) one.415

In view of the additive decomposition of the strain tensor (2), the Helmholtz free energy416

can be additively decomposed in a part e which corresponds to elastic and thermal417

expansion behavior and an inelastic (due to phase transformations) part Tr , as follows418

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



23

= ( ( ),T, )+ ( ,T).ref ref refe Tr TrE E (24)419

It is emphasized that this is not the conventional decomposition of the free energy function420

performed within the classical inelastic theories (e.g. plasticity, viscoelasticity,421

viscoplasticity), since the elastic part e depends on the internal variable . In this sense422

the decomposition (24) resembles the decompositions employed within the423

thermomechanical treatment of damage (see [33]). The elastic part of the Helmholtz free424

energy, under the valid assumption that elastic thermal effects are negligible in comparison425

to transformation induced thermal effects, may be assumed to be given by the expression426

of the stored energy function of a St. Venant-Kirchhoff material (see, e.g., [23, pp. 223,427

225]; [13, pp. 250-251]), that is428

2 2( )
( ( ),T) ( ( )) { [ ( )} ( ) [( ( )] ,

2
tr tre Tr e Tr Tr TrE E E E E E E E429

where and are the Lame parameters ( 0, >0), which are defined in terms of the430

standard elastic constants E , as431

, .
(1 )(1 2 ) 2(1 )

E E
432

These are assumed to be dependent on the martensite fraction of the SMA, according to433

the standard law of mixtures434

( ) ( ), ( ) ( ),A M A A M A435

where A , A are the Lame parameters when the material is fully austenite, and M , M436

are these when the material is fully martensite. For the transformation part of the Helmholtz437

free energy, by following Raniecki et al. in [42] - see also [44], [29] - we consider an438

expression of the form439
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(1 ) + ,A M AM
Tr Chem Chem440

where
A
Chem and

M
Chem are the chemical energies of the austenite and martensite phases441

respectively, and AM results from the interaction between these phases. For these442

energies we assume the following expressions (see also [29])443

0 0 0

0

0 0 0

0

0 0

T
( T ) [(T T ) Tln ]

T

T
( T ) [(T T ) Tln ],

T

Z(1 Z)( Ts ),

u s c

u s c

u

A A A
Chem

M M M
Chem

AM

444

where 0T is the reference temperature and 0u A
, 0s A

, 0u M
, 0s M

, 0u and 0s are the thermal445

parameters of the model.446

Then in light of the first of Eqs. (16) the second Piola-Kirchhoff stress tensor is found to447

be448

( ) 2 ( ),tr Tr TrS E E 1 E E (25)449

where 1 is the unit rank-2 tensor, and the dependence of the involved quantities on has450

been dropped for convenience.451

As in Panoskaltsis et al. [36], the loading surfaces are assumed to be given in the stress-452

space as a two parameter family of von-Mises type surfaces, that is453

F( ,T) = T = 0,DEV C RS S (26)454

where stands for the Euclidean norm, ( )DEV stands for the deviatoric part of the stress455

tensor in the reference configuration and C R are the family parameters. On substituting456

from Eq. (25) into equation (26) the equivalent expression for the loading surfaces in strain-457

space may be derived as458
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( , ,T) =2 ( ) T = 0.F DEV C RTr TrE E E E459

For the rate equation for the evolution of the transformation strain we assume a normality460

rule in the strain-space which is given as461

3
2 = ,

2

F
Tr LE

E
(27)462

where L is a material constant, which is defined as the maximum inelastic strain (see, e.g.,463

[7,22]), which is attained in the case of one-dimensional unloading in simple tension when464

the material is fully martensite.465

In order to close the model, as in our previous work in [36] - see also Auricchio et al. [5]466

-, we consider a linear expression for the evolution of , which within the present467

formulation can be expressed as468

1
,

2 (1 ) 2

F F M T F F
L L

F F T M F F F F
Mf Ms d Af As

M A

Mf Ms d Mf L Af As Af L

469

(28)470

where471

2
( , ,T) =2 ( ) (T ),

3
F DEV C MMf Tr Tr M fE E E E472

2
( , ,T) =2 ( ) (T ),

3
F DEV C MMs Tr Tr M sE E E E473

2
( , ,T) =2 ( ) (T ),

3
F DEV C AAs Tr Tr A sE E E E474

2
( , ,T) =2 ( ) (T ),

3
F DEV C AAf Tr Tr A fE E E E475

: T,
T

F F
L LM A E

E
476
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in which , , , , AC C M MM A f s s and Af are (standard) material parameters which can be477

determined by means of the well-known (see, e.g., [22]) critical stress-temperature diagram478

for the SMAs transformations; the geometrical interpretation of Eqs.479

0, 0, 0F F FMf Ms As and 0FAf can be determined also by means of the480

aforementioned critical diagram (see also [22]). Finally, Md is a critical temperature value481

above which the austenite is stable and the forward ( )M transformation cannot be482

activated (see McKelvey and Ritchie in [24]).483

The formulation is supplemented by a constitutive law for the heat flux vector (see Eqs.484

(21), (22)) w [48, 29])485

as per486

T,kGRADH (29)487

where ( )GRAD is the gradient operator and k is the material conductivity.488

489

490

491

492

493

494

495

4 Numerical simulations496

497

In this Section we implement numerically the material model introduced in Section 3andwe498

present a set of comprehensive numerical examples in order to show its ability in499
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simulating several patterns of the extremely complex behavior of SMAs under non-500

isothermal conditions.501

The numerical implementation of the proposed model can be performed by means of the502

so-called isothermal split, suggested in the pioneering work of Simo and Miehe [48]. The503

basic idea is to solve the governing equations of the coupled thermomechanical problem504

(equations of motion, constitutive equations, energy balance equation and appropriate505

boundary conditions) by performing a natural split into a non-linear inelastic problem with506

frozen thermal variables (step 1), followed by a heat conduction problem at fixed507

configuration (step 2). These two steps are coupled via the elastic ( )Qe and the inelastic508

( )QTr contributions to heating. The inelastic problem (step 1), can be pursued by means509

of a predictor-corrector algorithm. Nevertheless, since the theory of plasticity employed510

herein is not a conventional one, the proposed algorithmic scheme - see [33, 38] - differs511

vastly from the standard return mapping algorithm employed within the context of classical512

plasticity theories.513

514

4.1 Basic computational aspects515

516

The basic point for the numerical implementation of the model relies crucially on realizing517

that when the deformation gradient F and the heat flux H are known at the material point518

X, the rate equations for the evolution of the internal variables (Eqs. (27) and (28)), the519

balance of energy equation (21) and the stress-strain relations (25), form, at the local level,520

a system of four equations in the four unknowns S, T TrE and . Thus the implementation521
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problem is just reduced to the problem of solving numerically the aforementioned system.522

The details of the solution procedure follow.523

Let J [0, ]T be the time interval of interest. It is assumed that at time n Jt , the524

configuration of the body of interest n n ( ),x i.e. n n n{ ( ) / },x x x X X along525

with the state variables526

n n n n n n{ T , , , },TrE E H S527

are known.528

Assume a time increment ,t which drives529

the time to n+1,t530

the body configuration to531

n+1 n+1 n+1{ ( ) / },x x x X X532

where533

n+1 n n( ) ( ) ( ( )),x X x X u x X534

and u is the given incremental displacement field,535

the temperature to n+1T .536

Then the algorithmic problem at hand is to update the internal variable vector ,TrE
and537

the stress tensor S to the time step n+1t in a manner consistent with the (time continuous)538

Eqs. (27), (28), (21) and (25). Note that the heat flux vector n+1H is a function of the539

temperature at time n+1t s law (29). The solution of this problem is540

pursued by a two-step algorithm - see further [48]-, which comprises an isothermal elastic-541

inelastic problem followed by a heat conduction problem as follows542

543
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Step 1: Isothermal elastic-inelastic problem544

As a first step we assume an isothermal problem n+1 n(T T ) defined at the configuration545

n+1.x The material strain tensor n+1E is determined by means of the corresponding546

deformation gradient n+1F and the right Cauchy-Green tensor n+1C as547

n+1
n+1 n+1 n+1 n+1 n+1 n+1 n+1

1
( ) , , ( ).

2
Tx

F X F C F F E C I
X

548

The application of the backward-Euler difference scheme for fixed temperature n+1T leads549

to the following problem of evolution550

n+1
n+1 n n+1 n

n+1

3
2 ( ) = ( )

2

F
Tr Tr LE E

E
(30)551

n+1 n+1 n+1 n+1
n+1 n+1

n+1 n+1n+1 n+1 n+1

n+1 n+1 n+1
n+1

n+1 n+1n+1 n+1

T 1

2 (1 )T

2

n

F F M
L

FF F M

F F
L

FF F

Mf Ms d

M

M LMf Ms d

Af As

A

Af LAf As

(31)552

553

where the 'sF stand for the time discrete expressions of the loading surfaces in terms of554

the basic variables; for instance n+1FMs reads555

n+1 n+1 n+1 n+1 n+1 n+1 n+1

2
( , ,T ) =2 ( ) (T ),

3
F DEV C MMs Tr Tr M sE E E E556

while the 'sL stand for the isothermal loading rates, e.g.,557

n+1
n+1 n+1

n+1

: .
F

L M
M E

E
558

Note that within the context of the present strain-temperature space formulation the stress559

tensor n+1,S does not appear in Eqs. (30) and (31), so that the (isothermal) problem is560
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reduced to solving these equations for the unknowns n+1

n+1

.
TrE

This problem can be solved561

by means of a three-step predictor-corrector algorithm. The computational details562

underlying the solution of the isothermal problem can be found in our previous work in563

Panoskaltsis et al. [36] (see Section 4.1).564

This provides the initial update of the internal variables, i.e.565

n n+1

n n+1 n+1 n

1n n+1

, for T =T .
Tr Tr

E E
566

567

Step 2: Non-isothermal inelastic problem at fixed configuration568

At this step, the total configuration, mediated herein by n+1F - or equivalently by n+1E -569

remains fixed, while the solution of the isothermal problem is considered as an initial570

condition, that is the known data at the beginning of this step are the elements of the set571

n+1 n+1 n n{ T , },TrE E572

while the application of the backward Euler scheme yields the following algorithm573

n+1
n+1 n n+1 n

n+1

3
2 ( ) = ( )

2

F
Tr Tr LE E

E
(32)574

n+1 n+1 n+1
n+1 n n+1

n+1 n+1 n+1 n+1

n+1 n+1 n+1
n+1

n+1 n+1 n+1 n+1

1

2 (1 )

2

F F
L

F F F

F F
L

F F F

Mf Ms
M

Mf Ms M L

Af As
A

Af As Af L

(33)575

n+1 n+1 n+1 n+1 n+1

ref

1
(T T ) ,c Q Q DIVe Tr H (34)576

where577
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2

n+1 n+1 n+1 n n+1 n

n+1

T [ :[( ) ( )],
T

Qe Tr TrE E E E
E

578

2

n+1 n+1 n n+1 n n+1 n+1 n

n+1 n+1n+1

( : ( ) ( )+T ( ),
T

QTr Tr Tr

Tr

E E
E

579

the 'sF stand for the time discrete expressions of the loading surfaces at time strep n+1t580

and the 'sL stand now for the non-isothermal loading rates, e.g.581

n+1 n+1
n+1 n+1 n n+1 n+1

n+1 n+1

: ( )+ (T T ).
T

F F
L M M

M E E
E

582

The solution of this algorithmic problem yields the values of the basic variables
n+1

n+1

n+1

T ,

TrE

583

so that the second Piola-Kirchhoff stress tensor S can be determined by means of the584

thermomechanical state equation585

n+1 n+1 n+1 n+1 n+1( ) 2 ( ),tr Tr TrS E E 1 E E (35)586

Note that Eqs. (31) and (33) can be reduced further, depending on whether the (M) or587

the (A) transformation is active (see [33, 36] for further details).588

589

REMARK 6 The proposed isothermal split has the disadvantage of not being590

unconditionally stable. An alternative numerical treatment relies on the isentropic split -591

see Armero and Simo [4]; see also Agelet de Saracibar et al. [1] - where unlike the present592

case, the coupled problem is divided into an isentropic mechanical phase in which the total593

entropy is held constant, followed by a thermal phase at a fixed configuration, which leads594

to an unconditionally stable algorithm. In the present case and since we deal with595

homogeneous problems, where the coupling between the governing equations is relatively596
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small, the stability problem is not an issue; as a result, the isothermal split seems to be597

adequate.598

599

4.2 Numerical simulations600

4.2.1 Simple shear601

The first problem we study is a standard one within the context of finite inelasticity and602

is that of simple shear which is defined as603

1 1 2 2 2 3 3, , ,x X X x X x X604

where is the shearing parameter. In order to show the computational versatility enjoyed605

by the model we work with three set of parameters. The first set is that reported in Boyd606

and Lagoudas [7] for a generic SMA, that is607

M A

f s f

M A L

s

13,000 MPa, 30,000 MPa, =0.3,

M 5 C, M 23 C, A 29 C, A 51 C,

C 11.3 MPa/ C, C 4.5 MPa/ C, =0.0635.

E E
o o o o

o o

608

The second set of parameters is that reported in Auricchio et al. [5], for a commercial NiTi,609

i.e.,610

M A

f s f

M A L

s

24,600 MPa, 31,000 MPa, =0.33,

M 250

C 10.50 MPa/

E E
o o o o

o o

611

while the third set of parameters is that given in Speicher et al. [49] for a 50.8 49.2Ni Ti SMA,612

that is613

M A

f s f

L

s

38,200 MPa, 48,500 MPa, =0.42,

M 218.5

=0.0475,

E E
o o o o614
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For this SMA, the remaining parameters MC and AC are considered to be equal to those615

of the alloy discussed by Boyd and Lagoudas in [7].616

The parameters of the non-isothermal part of the model are set equal for all SMAs to those617

used in Muller and Bruhns [29], that is:618

3 2 6 o o
ref t

* * o
0 0 0 0

o
0 0

6.45 10 k/m mm , 8.8 10 1/ K, c 837.36 J/kg K

16800.0 J/kg, 64.50 J/kg K,

4264.5 J/kg, 11.5 J/kg K.

u u u s s s

u s

A M A M619

Within this simulation we examine the ability of the model in predicting pseudoelastic620

phenomena under non-isothermal conditions. For this purpose, an adiabatic testis621

considered. We further assume that due to the dynamic rates resulting in adiabatic response,622

heat exchanges due to conduction, convection and radiation can be neglected in comparison623

to the material heating/cooling induced by the inelastic (transformation) contribution to the624

heating ( ),QTr a fact which leads to thermomechanical processes that can be considered as625

homogeneous (see Rosakis et al. [47]). Accordingly, within this simulation the temperature626

evolution equation reads627

2

T ( : )+T .
T

c Tr

Tr

E
E

628

Our purpose in this example is to discuss a complete stress-induced transformation cycle629

at a temperature 0T 60 C A ,f where the SMA material exhibits pseudoelastic response.630

The stress-deformation curves for this finite shear problem are shown in Figs. 1, 2 and 3631

while the corresponding temperature-deformation curves are depicted in Fig. 4. Consistent632

with the adiabatic response of an SMA material at temperature 0T A f (see, e.g., Grabe633

and Bruhns [13]), the model predicts heat generation during the forward (M) transformation634
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and heat absorption during the reverse (A) transformation. Moreover, we note that at the635

end of the forward (M) the model predicts that the temperature increase is the same for the636

three alloys in question. This response is consistent with the experimentally observed one637

(see, e.g., Peyroux et al. in [39]), and relies on the fact that, unlike the case of metals, in638

SMAs the dissipated mechanical work ( : ),Tr

Tr

E
E

remains very small639

compared to the latent heat
2

T
T

due to phase changes; note that within the context of640

present problem the latent heat is dominated by the non-isothermal part of the model which641

has been considered the same for the three alloys.642

A comparison between the corresponding isothermal and adiabatic responses for the643

alloy discussed by Auricchio et al. in [5] is illustrated in Figs. 5 and 6. By referring to these644

results we note that, under adiabatic conditions the forward (M) transformation occurs at645

higher levels of stress, than the isothermal one. This fact has its origins to the temperature646

increase which tries to stabilize the austenite and inhibit the transformation. As a result, a647

higher level of stress is required to induce the forward (M) transformation. Moreover, by648

referring to Fig. 6 we note that in general temperature changes retard both the forward (M)649

and the reverse (A) transformations. In the latter case, this result has to be attributed to the650

temperature decrease during the reverse transformation which now tries to stabilize the651

martensite phase.652

653

4.2.2 Uniaxial tension: validation of the model against actual experimental data654
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In order to verify further the ability of the proposed framework for simulating isothermal655

(quasi-static) and adiabatic (dynamic) responses we consider a uniaxial tension problem.656

This problem is defined as657

1 1 2 2 3 3(1 ) , (1 ) ,x X x X x X ,658

where 1+ are the straining parameters (principal stretches) along the axial and659

660

the corresponding principal normal strains 11 and 22. Our purpose here is to compare the661

predictions of the proposed model with the experimental results reported by Auricchio et662

al. in [5]; see also Fig. 3 in [26]. The basic (isothermal) parameters are those used in the663

simple shear problem, while the remaining parameters underlying the dynamic response664

are set equal to665

* *
L

0 0

0.038, 5800.0 J/kg, 64.50 J/kgK,

265 J/kg, 10.0 J/kgK.

u s

u s
666

As in the simple shear problem the material is subjected to a stress (loading-unloading)667

cycle a temperature o
0 fT 295 K( A ). The results are shown in Fig. 7. By referring to668

these results, we observe that the proposed model can capture adequately both the change669

in slope and the change of the hysteresis loop both in the case of quasi-static ( = 1000 sec,670

where = is time of a loading-unloading cycle) and dynamic loading ( = 1 sec - see also671

Fig. 3 in [26]). We also observe that the simple linear expression for the evolution of the672

material martensite fraction used herein cannot capture precisely the shape of the673

transformation branches. Nevertheless, this does not consist a serious drawback, since this674

expression - recall section 2.1 - can be replaced adequately by a more sophisticated (e.g.675
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polynomial, exponential, hyperbolic) one; further details on the selection of the evolution676

function for a two-shape memory alloy can be found in [39].677

As a further illustration, in Figs 8 and 9, we show the effect of the (basic) thermal678

parameters of the model in the stress-deformation curve. It is observed that, while the effect679

of 0u is practically negligible, the thermal parameter *u plays an eminent role in the680

predicted behavior upon controlling the slope of the stress-deformation curve.681

682

4.2.3 Shape memory effect683

As a next simulation we will evaluate the ability of the model in predicting the shape684

memory effect. For this purpose, we revisit the uniaxial tension test. For this problem the685

basic material parameters are set equal to those given in [5], while the material stiffness is686

assumed to be constant A( 30,000Mpa).E E687

The isothermal stress-strain curves for three different material temperatures688

0 f(T 55 C=A ,o
f 0 sA T 40 C A ,o> > s 0A T 28 Co> ) are shown in Fig. 10. By referring689

to this figure for 0 fT =A , the ability of the model in predicting pseudoelastic phenomena690

under isothermal conditions is verified; note that since the temperature has been set exactly691

equal to fA , the reverse transformation ends at zero stress. The isothermal tests for692

f 0 sA T A> > and s 0A T> are conducted in order to show the ability of the model in693

predicting the shape memory effect. In the first of them, upon loading the (M)694

transformation is activated. Upon unloading and since the temperature is less than the695

temperature required for the complete reverse transformation at zero stress, the two phases696

coexist and permanent deformations appear. However, as it will be clear in the subsequent,697

these deformations can be recovered after increasing the temperature. In the last test, since698
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the temperature has been set at a value less than the austenite start temperature at zero699

stress, at the end of the stress cycle the material is completely in the martensite phase. This700

results in the appearance of large permanent deformations, which are manifested by the701

maximum inelastic strain L . Nevertheless, like the previous test this deformation may be702

eliminated upon heating.703

For the material heating problem, we assume thermal boundary conditions corresponding704

to convective heat exchange between the specimen and the surrounding medium on the free705

faces (with area A) of the specimen; each face is assumed to have a unit area. In this case706

the normal heat flux ,uH e.g., [48]) as707

0(T T ),hAuH708

where h stands for the convection coefficient which is chosen to be709

3 o20 . 10 N/mm Kh , and T is the surrounding medium temperature. By assuming710

that the size of the material tested is small, the contribution to the material heating due to711

the heat conduction can be neglected; a similar assumption has been also made by712

Auricchio et al. [5]. As a result, in the absence of phase transformations the material713

behaves as a rigid body hear convector; the corresponding temperature evolution714

equation reads715

ref

1
T .c QTr uH716

The results of this test are illustrated in Fig. 11 where the strain along 1X axis is plotted717

versus the surrounding medium temperature.718

719

4.2.4 Thermally induced martensitic transformations at zero stress720
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As a further simulation we show the ability of the model in predicting pseudoelastic721

response under a thermal cycle. As in the simple shear problem, all numerical tests are722

performed with the specimen being initially in the austenite phase, while the temperature723

is set equal to 333.0 C,o that is 0T A .f Our purpose here is to discuss a complete724

thermally-induced transformation cycle at zero stress. The results, for this cycle are725

shown in Figs. 12 and 13. On cooling, initially the material remains in the austenite phase.726

As cooling is continuing and the temperature attains M ,s that is the material point reaches727

the initial loading surface for the forward transformation at zero stress ( 0),FMs the728

phase transformation starts and is continued by a sudden burst of strain at the maximum729

inelastic one L( ). Nevertheless, as in the previous case, this strain can be recovered upon730

heating the material back to its initial temperature.731

732

4.2.5 Thermomechanical response under a strain cycle733

Another interesting example arises in the case where a SMA material is subjected to a734

strain cycle. For this purpose, we revisit a problem discussed within an isothermal setting735

in Panoskaltsis et al. [36]; (see also [39]). This problem is suggested in Meyers et al. [25]736

and deals with a square element of size ,H H which is imposed into a strain cycle by737

rotating both upper corners along a cycle of radius r (see Fig. 1 in [25]). Accordingly, the738

element even though is submitted to both an extension along the 2X axis, and 1 2 shear,739

it preserves its original (parallelogram) shape. This problem is defined as follows:740
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1 1 2

2 2

3 3

sin
,

1 (1 cos )

1 (1 cos ) ,

.

r
Hx X X

r
H

rx X
H

x X

741

For this problem the material parameters are set equal to those given in Auricchio et al.742

[3], while as in the shape memory effect problem, the material stiffness is assumed to be743

constant and equal to the austenite stiffness. The corresponding stress-angle of rotation744

curves for 0.02r
H

are plotted in Fig. 14, while the temperature evolution is plotted in745

Fig. 15. By referring to these figures, we realize that at the end of the strain cycle, the746

stresses go back to zero and the material, by obtaining its original stress-free state, is giving747

the false impression that is elastic. However, this recovery has its origins in the martensitic748

transformations, since as it is clear from Fig. 16, where the variation of material martensite749

fraction is plotted versus , both (M) and (A) transformations have been (partially)750

activated during this strain cycle. This response is dubbed in Panoskaltsis et al. [36] as non-751

conventional pseudoelastic, in the sense that, unlike the previous (conventional)752

simulations where the material was subjected to stress cycles, the material is now subjected753

to a strain cycle; however, the exhibited response is identical.754

Comparing this response to the isothermal one, which is also depicted in Fig. 16, we note755

the inhibition of the forward transformation due to the temperature increase. In this case -756

compare with Figs. 5 and 6 - the total strain applied, even though is adequate to induce the757

full isothermal phase transformation, due to material heating becomes inadequate to758

introduce the non-isothermal one before unloading begins. This pattern of non-759
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conventional response is better illustrated in Fig. 17, where the isothermal, as well as the760

non-isothermal cases, are considered for three different values of the ratio .r
H

761

762

4.2.6 Inhibition of the forward transformation at high temperatures763

As an additional pattern of non-conventional response, we consider a case where the764

forward (M) transformation is inhibited due to the material heating (see, e.g., Olson and765

Cohen [31]; McKelvey and Ritchie [24]). This case may appear when the material is766

stressed at a relatively high temperature 0T ,which is near the limit Md for the existence767

of stress induced martensite. In order to make this matter more precise, we revisit the768

simple shear problem and we consider the case where the material discussed in [5] is769

stressed at three relatively high temperatures, that is 0 0T 70 C, T 90 Co o
and770

0T 110 C.o
The results are illustrated in Figs. 18, 19 and 20. By comparing these results771

with those of Fig. 5 and 6 and since the austenite is more stable at high temperatures, we772

verify that a higher level of stress is required to induce the forward transformation; more773

importantly, we note that the temperature increase during the transformation may inhibit774

the phase transformation if the critical temperature Md is reached. More specifically, we775

observe that unlike the first case 0(T 70 C),o
where the material temperature remains776

always below Md and the full forward transformation is activated, in the remaining cases777

0 0(T 90 C; T 110 C),o o
the material temperature in the course of the transformation778

exceeds Md and the austenite suddenly becomes stable, so that the transformation stops.779

If this is the case, the two phases coexist (0 1)< < and the material upon further stressing780

behaves elastically.781
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782

783

4.3 Thermomechanical response of an SMA wire under uniaxial extension784

785

As a final simulation we discuss the thermomechanical response of a SMA wire under786

uniaxial extension, which in general constitutes a very active area of research within the787

SMAs literature (see, e.g., Zakiet al. [56]; Mirzaeifar et al. [26]; Andani et al. [3]; see also788

Leo et al. [19]). More specifically we place special emphasis in the heat equation (diffusion789

equation) initial boundary value problem (IBVP), which underlies the temperature790

evolution in an SMA wire in the course of phase transformations. The same problem has791

been also discussed within the context of classical non-isothermal metal plasticity by792

Kamlah and Haupt [16].793

Accordingly, we assume an SMA wire of length L, which is subjected in uniaxial tension;794

we restrict our attention to small temperature deviations 0T TT from the reference795

temperature. We assume also that the lateral surface of the wire is adiabatically isolated so796

that heats flow along 1X direction only. Then by denoting by k the thermal conductivity797

coefficient and by ( )u t the heat source (sink density), the temperature evolution equation798

can be written in the (standard) heat equation form, as799

1 1
2

2
1

( , ) ( , )
( ),

T X t X t
m u t

t X
800

where 2 ,
ref

k
m

c
stands for the thermal diffusivity of the material. In order to formulate801

the corresponding IBVP, at the beginning the temperature is set equal to 0T , while we802
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assume that the heat transfer from the testing machine to the wire is being done without803

any resistance, which means that we can consider that the temperature in the surfaces of804

the wire remains equal to 0T . In this case, the heat source term ( )u t is equal to .ref QTr On805

the basis of these assumptions, the non-homogeneous heat equation IBVP can be stated as806

1 1
2

2
1

1

( , ) ( , )
= ( ),

Boundary conditions: (0, ) 0, (L, ) 0,

Initial condition: ( ,0) 0.

ref

T X t X t
m Q t

t x

T t T t

T x

Tr

807

The solution of this problem can be pursued by a semi-analytical method (see also Kamlah808

and Haupt in [16]) by noting that at the isothermal step (step 1) the equilibrium equation is809

trivially satisfied and the stress field within the wire is homogeneous. Then, the heat810

conduction problem (step 2) can be solved by a separation of variables method, which leads811

to the following expression for the thermal field812

1 1
1

( , ) ( ) ( ),n n
n

T X t T t X X813

where814

2 2

0

( ) ( ) ,n n

t
m t m t

n nT t e a e dt815

in which n and nX are the eigenvalues and the eigen-functions of the associated Sturm -816

Liouville problem, obtained as817

2
1, sin ,n n

n n X
X

L L
818

and819
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1 1

0

2
1 1

0

( )

( ) ( ) .

( )

L

n

n L

n

X X dx

a u t

X X dx

820

The parameters used for this problem are those reported in [7], while the reference821

temperature is set equal 0 fT 60 C A .o > The length L of the wire is assumed to be 10 cm822

and the thermal conductivity coefficient k is set equal to
o

W
20 .

m K
823

The basic results are shown in Figs. 21 and 22. In particular Fig. 21 depicts the time824

evolution of the heat source term ( )u t as derived from the inelastic problem under frozen825

thermal field, while Fig. 22 shows the time evolution of the temperature field along the826

length of the wire, as derived by considering the heat source as an input for the heat827

conduction problem. By referring to the results of Fig.22, we note that the temperature828

distribution along the length of the wire has the shape of the half of a sinus function. Further829

it is noted that the temperature-time curve has the same qualitative characteristics, with830

those of the (local) simple shear problem. As a further illustration, in Figs. 23 and 24, we831

show the effect of the (basic) thermal parameters *u and 0u of the model, by plotting the832

temperature evolution versus time at the mid-point 1( )
2

L
X of the wire. As expected833

recall the analysis provided in Section 4.2.2 - while the effect of 0u is negligible, this is not834

the case for parameter *u . The latter, affects the temperature evolution (see Fig. 23) and835

eventually the stress developed during transformations (see also Fig. 8).836

837

5 Closure838
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839

The basic impact of this paper lies on the development of a general inelastic framework840

which accounts for the development of sound constitutive models describing the complex841

response of shape memory alloys under general states of deformation and temperature842

conditions. More specifically and from a theoretical standpoint in this paper:843

(i) We have revisited the multi-surface formulation of generalized plasticity and844

we have extended it to a covariant one, that is, we have presented it in a setting845

where the basic equations have an identical form in both the reference and the846

spatial configurations.847

(ii) We have implemented - possibly for first time in the literature of shape memory848

alloys - an invariance (symmetry) principle, namely that of the covariance of849

the referential energy balance equation, for the derivation of the850

thermomechanical state equations.851

(iii) Furthermore, on studying the local balance of energy equation, we have derived852

several expressions for the temperature changes which occur in the course of853

phase transformations.854

Therefore, the present formulation is more general and more powerful than the previous855

ones developed in [33, 38].856

Moreover, from a computational standpoint in this paper:857

(i) On the basis of an isothermal split we have discussed a (local) time858

integration scheme for the numerical implementation of a generalized859

plasticity based model. The scheme is rather general and can account for860

almost all thermomechanically coupled problems.861
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(ii) We have demonstrated the ability of the framework in describing the862

response of SMAs during phase transformations by a set of representative863

These examples are ranging from a standard simple shear problem to full864

scale three-dimensional simulations where the material exhibits non-865

conventional pseudoelastic response. We have paid special attention to cases866

where phase transformations may be retarded of even inhibited due to867

material self-heating/cooling effects.868

(iii) We have also studied a non-local problem, namely the one of the869

heating/cooling of an SMA wire under uniaxial tension.870

Finally, it is emphasized, that since the present formulation considers the additive871

decomposition of the finite strain tensor into elastic and inelastic (transformation induced)872

parts, besides being conceptually simple, provides a framework within which plethora of873

constitutive models developed within the context of infinitesimal theory and met874

- see, e.g., [40, 18, 33, 27] - can be extended to the875

finite deformation regime in a straight forward manner.876

877
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Figure 1: Finite Shear: Shear stress 12S vs. shear strain .1045

1046

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



50

1047
Figure 2: Finite Shear: Normal stress 11S vs. shear strain .1048

1049
Figure 3: Finite Shear: Normal stress 22S vs. shear strain .1050
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1051
Figure 4: Finite Shear: Temperature T vs. shear strain .1052

1053
1054
1055

1056

Figure 5: Finite Shear: Comparison of isothermal and adiabatic responses.1057
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Shear stress 12S vs. shear strain .1058

1059

1060
Figure 6: Finite Shear: Comparison of isothermal and adiabatic responses.1061
Martensite fraction vs. shear s1062

1063

1064
Figure 7: Comparison to experimental results: normal stress vs normal strain response1065
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1066
Figure 8: Effect of parameter u*: normal stress vs normal strain response.1067

1068

1069
Figure 9: Effect of parameter u0: normal stress vs normal strain response.1070
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1072
Figure 10: Uniaxial tension: Loading-unloading at different temperatures1073

Normal stress 11S vs. Normal strain .1074

1075
Figure 11: Shape memory effect: Normal strain vs. Surrounding medium temperature.1076
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1079
Figure 12: Temperature induced phase transformations: Normal strain vs. Surrounding1080
medium temperature1081

1082

1083
Figure 13: Temperature induced phase transformations:1084
Martensite fraction vs. Surrounding medium temperature1085
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1087
Figure 14: Response under a strain cycle: Stresses 11 12 22S , S , S vs. rotation angle .1088

1089

1090
Figure 15: Response under a strain cycle: Temperature T vs. rotation angle .1091
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1092
Figure 16: Response under a strain cycle: Martensite fraction vs. rotation angle .1093

1094

1095

1096
Figure 17: Response under a strain cycle: Comparison of isothermal and adiabatic1097

responses. Martensite fraction vs. rotation angle .1098
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1099

Figure 18: Finite Shear: Loadingat high values of the ambient temperature;1100

Shear stress 12S vs. shear strain .1101
1102

1103

Figure 19: Finite Shear: Loadingat high values of the ambient temperature;1104
Temperature T vs. shear strain .1105
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1106
Figure 20: Finite Shear: Pseudoelastic behavior at high values of the material1107
Martensite fraction vs. shear strain .1108

1109

1110
Figure 21: Thermomechanical response of a wire in uniaxial tension:1111

Thermomechanical heat source ( )u t vs. time1112
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1113

Figure 22: Thermomechanical response of a wire in uniaxial tension:1114
Temperature evolution vs. time along the length of the wire1115

1116

1117

Figure 23: Thermomechanical response of a wire in uniaxial tension:1118
Temperature evolution vs. time at the mid point of the wire (Effect of the1119
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thermal parameter *)u1120

1121

1122
Figure 24: Thermomechanical response of a wire in uniaxial tension:1123

Temperature evolution vs. time at the mid-point of the wire (Effect of the1124

thermal parameter 0 )u1125
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