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When controlling an emerging outbreak of an infectious disease, it is essential

to know the key epidemiological parameters, such as the basic reproduction

number R0 and the control effort required to prevent a large outbreak.

These parameters are estimated from the observed incidence of new cases

and information about the infectious contact structures of the population in

which the disease spreads. However, the relevant infectious contact structures

for new, emerging infections are often unknown or hard to obtain. Here, we

show that, for many common true underlying heterogeneous contact struc-

tures, the simplification to neglect such structures and instead assume that

all contacts are made homogeneously in the whole population results in con-

servative estimates for R0 and the required control effort. This means that

robust control policies can be planned during the early stages of an outbreak,

using such conservative estimates of the required control effort.
1. Introduction
An important area of infectious disease epidemiology is concerned with the

planning for mitigation and control of new emerging epidemics. The impor-

tance of such planning has been highlighted during epidemics over recent

decades, such as human immunodeficiency virus (HIV) around 1980 [1],

severe acute respiratory syndrome (SARS) in 2002/2003 [2], the influenza A

H1N1 pandemic in 2009 [3] and the Ebola outbreak in West Africa, which

started in 2014 [4]. A key priority is the early and rapid assessment of the

transmission potential of the emerging infection. This transmission potential

is often summarized by the expected number of new infections caused by a

typical infected individual during the early phase of the outbreak, and is

usually denoted by the basic reproduction number, R0. Another key priority

is estimation of the proportion of infected individuals we should isolate

before they become infectious, and thus completely prevent them from spread-

ing the disease to any other individuals in order to break the chain of

transmission. This quantity is denoted as the required control effort, vc. From

a modelling perspective, vc is equivalent to the critical vaccination coverage:

if a vaccine is available, then the required control effort is equal to the pro-

portion of the population that needs to be immunized in order to stop the

outbreak, if the immunized people are chosen uniformly at random. These

key quantities are inferred from available observations on symptom onset

dates of cases and the generation times, i.e. the typical duration between time

of infection of a case and infection of its infector [5,6]. The inference procedure
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(a) (b) (c) (d)

Figure 1. The four contact structures considered: individuals are represented by circles and possible contacts are denoted by lines between them. (a) A homo-
geneously mixing population, in which all individuals have the same frequency of contacting each other. (b) A network-structured population, in which, if contact
between two individuals is possible, the contacts occur at the same frequency. (c) A multi-type structure with three types of individuals, in which individuals of the
same type have the same colour and lines of different colour and width represent different contact frequencies. (d ) A population partitioned into three households,
in which members of the same households have the same colour and household contacts, represented by solid lines, have higher frequency than global contacts,
represented by dotted lines.
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for R0 and vc requires information on the infectious

contact structure (‘who contacts whom’), information that

is typically not available or hard to obtain quickly for

emerging infections.

The novelty of this paper lies in that we assess the estima-

tors for the basic reproduction number R0 and required

control effort vc, which are based on usually available obser-

vations, over a wide range of assumptions about the

underlying infectious contact structure. We find that most

plausible contact structures result in only slightly different

estimates of R0 and vc. Furthermore, we find that ignoring

the infectious contact pattern, thus effectively assuming that

individuals mix homogeneously, will in many cases result

in a slight overestimation of these key epidemiological

quantities, even if the actual contact structure is far from

homogeneous. This is important good news for planning

for mitigation and control of emerging infections, because

the relevant contact structure is typically unknown: ignoring

the contact structures results in slightly conservative esti-

mates for R0 and vc. This is a significant justification for

basing infection control policies on estimates of R0 derived

for the Ebola outbreak in West Africa in [4], for which,

although we know that transmission is mainly due to close

and intimate contact with bodily fluids, it is hard to obtain

data on who regularly has such contact with whom. There-

fore, the data are stratified by region, without further

assumptions on contact structure.

We focus on communicable diseases in a closed population

(i.e. a population without births, migration and non-disease-

related deaths) that follow an infection cycle where the end

of the infectious period is followed by long-lasting immunity

or death. In such an infection cycle, individuals are either

susceptible, exposed (latently infected), infectious or removed,

which means either recovered and permanently immune

(or immune for the duration of the epidemic) or dead.

Those dynamics can be described by the so-called stochastic

SEIR epidemic model [7, ch. 3]. For ease of presentation, we

use the Markov SIR epidemic as a leading example. In this

special case, there is no latent period (so an individual is

able to infect other individuals as soon as they are infected),

the infectious period is exponentially distributed with

expected length 1/g, and infected individuals make close

contacts at a constant rate l. While infectious, an individual

infects all susceptible individuals with whom he or she has

close contact. The rate at which an infectious individual
makes contact with other individuals depends on the contact

structure in the community but it does not change over

time in the Markov SIR model. The more general results

for the full SEIR epidemic model are given and derived in

the electronic supplementary material.

We cover a wide range of possible contact structures.

For each of these, we derive estimators of the basic repro-

duction number and the required control effort. We start

with the absence of structure, when the individuals mix

homogeneously [8, ch. 1] (figure 1a). We examine three differ-

ent kinds of heterogeneities in contacts: the first kind,

network structure [9–12] (figure 1b), emphasizes that indi-

viduals have regular contacts with only a limited number

of other individuals; the second kind, multi-type structure

(figure 1c), emphasizes that individuals can be categorized

into different types, such as age classes, where differences

in contact behaviour with respect to disease transmission

are pronounced among individuals of different type but

negligible among individuals of the same type [7,13]; and

the third kind, household structure [14,15] (figure 1d ),

emphasizes that individuals tend to make most contacts in

small social circles, such as households, school classes or

workplaces. Finally, we compare the performance of the esti-

mators for R0 and vc against the simulated spread of an

epidemic on an empirical contact network.
2. Estimation of R0 and required control efforts
for various contact structures

2.1. Homogeneous mixing
Many results for epidemics in large homogeneously mixing

populations can be obtained, because the initial phase of

the epidemic is well approximated by a branching process

[16–18], for which an extensive body of theory is available.

In particular, an outbreak can become large only if R0 . 1.

Note that if R0 . 1, then it is still possible that the epidemic

will go extinct quickly. The probability for this to happen

can be computed [7, eqn 3.10] and is less than 1. Another

result is that if R0 . 1 and the epidemic grows large

(which we assume from now on), then the number of

infectious individuals grows roughly proportional to eat

during the initial phase of the epidemic. Here, t is the time

since the start of the epidemic and the epidemic growth

http://rsif.royalsocietypublishing.org/
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rate a is a positive constant, which depends on the par-

ameters of the model, through the equation

1 ¼
ð1

0

e�atbðtÞdt: ð2:1Þ

Here, b(t) is the expected rate at which an infected individual

infects other individuals t time units after they were infected.

For the Markov SIR model, with expected duration of the

infectious period 1/g, b(t) is given by le�gt. This can be

understood by observing that l is the rate at which an

infected individual makes contacts if he or she is still infec-

tious, whereas e�gt is the probability that the individual is

still infectious t time units after he or she became infected.

The epidemic growth rate a corresponds to the Malthusian

parameter for population growth. Note that the expected

number of newly infected individuals caused by a given

infected individual is

R0 ¼
ð1

0

bðtÞdt: ð2:2Þ

For the Markov SIR model, (2.1) and (2.2) translate to

1 ¼ l

gþ a
and R0 ¼

l

g
: ð2:3Þ

Because we usually have observations on symptom-onset

dates of cases for a new, emerging epidemic, as was the

case for the Ebola epidemic in West Africa, it is often possible

to estimate a from observations. In addition, we often have

observations (albeit often only for a subset of the infected

cases) on the typical duration between time of infection of a

case and infection of its infector, which allow us to estimate,

assuming a Markov SIR model, the average duration of the

infectious period, 1/g [5]. Using (2.3), this provides us with

an estimator of R0 in a homogeneously mixing Markov

SIR model

R0 ¼ 1þ a

g
, ð2:4Þ

which, as desired, does not depend on l. In the electronic

supplementary material, we deduce expressions for a and

R0, in terms of the model parameters for the more general

SEIR epidemic, and relate these quantities.

The required control effort for the SEIR epidemic in a

homogeneously mixing population is known to depend

solely on R0 through the relation [7, p. 69]

vc ¼ 1� 1

R0
: ð2:5Þ

Thus, we obtain an estimator of the required control effort in

terms of observable growth rate and duration of the infec-

tious period

vc ¼
a

aþ g
: ð2:6Þ

We compare the estimators (2.4) and (2.6) with other estima-

tors that we obtain for different infectious contact structures,

using the same values for the epidemic growth rate and dur-

ation of the infectious period. Throughout the comparison,

we assume that the initial stage of an epidemic shows expo-

nential growth, which is a reasonable assumption for many

diseases, including the Ebola epidemic in West Africa.
2.2. Network structure
One kind of infectious contact structure is network structure.

We consider the so-called configuration model ([19], [20,

ch. 3]) in which each individual may contact only a limited

number (which varies between individuals) of other acquain-

tances, with mean m and variance s2. In such a network, the

mean number of different individuals (acquaintances) a typi-

cal newly infected individual can contact (other than his or

her infector) is referred to as the mean excess degree [19],

which is given by

k ¼ s2

m
þ m� 1

(see the electronic supplementary material or [19] for the deri-

vation of k). This quantity is hard to observe for a new

emerging infection, but we know the value must be finite

and strictly greater than 1 if the epidemic grows exponen-

tially fast. For the Markov SIR model for which the

constant rate at which close contacts per pair of acquaintances

occur is denoted by l(net), we obtain b(t) ¼ kl(net)e�(l(net)þg)t.

This can be seen by noting that k is the expected number of

susceptible acquaintances a typical newly infected individual

has in the early stages of the epidemic, whereas e�l
(net)t is the

probability that a given susceptible individual is not con-

tacted by the infective over a period of t time units, and

e�gt is the probability that the infectious individual is still

infectious t time units after he or she became infected. In

the electronic supplementary material, we deduce an estima-

tor of R0 in terms of the observable epidemic growth rate, the

average duration of the infectious period and the unobserva-

ble mean excess degree: R0 ¼ (gþ a)=(gþ a=k) (cf. [21]). We

find that the estimator obtained assuming homogeneous

mixing (2.4) overestimates R0 by a factor 1þ a=gk:

We know that this factor is strictly greater than 1, because

the exponential growth rate a, the recovery rate g and the

mean excess degree k (which is often hard to observe) are

all strictly positive. Furthermore, the factor tends to 1 as k

tends to infinity.

In the electronic supplementary material, we also con-

sider more general SEIR models. We conclude that

estimates of R0 obtained by assuming homogeneous mixing

are always larger than the corresponding estimates if the

contact structure follows the configuration network model.

In the electronic supplementary material, we also show, by

example, that if we allow for even more general random

infection cycle profiles, then it is possible that assuming

homogeneous mixing might lead to a non-conservative esti-

mate of R0. However, for virtually all standard models

studied in the literature, assuming homogeneous mixing

leads to conservative estimates.

As is the case for the homogeneously mixing contact

structure, the required control effort for epidemics on the net-

work structures under consideration is known to depend

solely on R0 through equation (2.5) [22]. This provides us

with an estimator of vc in terms of observable a and duration

of infectious period and the unobservable mean excess

degree k: vc ¼ ((k� 1)=k) a=aþ g. We find that the estimator

obtained assuming homogeneous mixing overestimates vc by

a factor 1þ (1=(k� 1)): This factor is always strictly greater

than 1, because the mean excess degree k is strictly greater

than 1, and again tends to 1 as k tends to infinity. Thus, vc

obtained by assuming homogeneous mixing is always

http://rsif.royalsocietypublishing.org/
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Figure 2. The factor by which estimators based on homogeneous mixing will overestimate (a) the basic reproduction number R0 and (b) the required control effort
vc for the network case. Here, the epidemic growth rate a is measured in multiples of the mean infectious period 1/g. The mean excess degree k ¼ 20. The
infectious periods are assumed to follow a gamma distribution with mean 1 and standard deviation s ¼ 1.5, s ¼ 1, s ¼ 1/2 and s ¼ 0, as displayed from top
to bottom. Note that the estimate of R0 based on homogeneous mixing is 1 þ a. Furthermore, note that s ¼ 1 corresponds to the special case of an
exponentially distributed infectious period, whereas if s ¼ 0 the duration of the infectious period is not random. (Online version in colour.)
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larger than that of the configuration network model.

Consequently, we conclude that, if the actual infectious con-

tact structure is made up of a configuration network and a

perfect vaccine is available, we need to vaccinate a smaller

proportion of the population than predicted assuming

homogeneous mixing.

The overestimation of R0 is small whenever R0 is not much

larger than 1 or when k is large. The same conclusion applies to

the required control effort vc. The observation that the R0 and vc

for the homogeneously mixing model exceed the correspond-

ing values for the network model extends to the full

epidemic model allowing for an arbitrarily distributed latent

period followed by an arbitrarily distributed independent

infectious period, during which the infectivity profile (the

rate of close contacts) may vary over time but depends only

on the time since the start of the infectious period (see the

electronic supplementary material for the corresponding

equations). Figure 2a shows that, for SIR epidemics with

gamma-distributed infectious periods, the factor by which

the homogeneous mixing estimator overestimates the actual

R0 increases with increasing epidemic growth rate a, and

suggests that this factor increases with increasing standard

deviation of the infectious period. Figure 2b shows that

the factor by which the homogeneous mixing estimator over-

estimates the actual vc decreases with increasing a and

increases with increasing standard deviation of the infectious

period. When the standard deviation of the infectious period

is low, which is a realistic assumption for most emerging infec-

tious diseases [23], and R0 is not much larger than 1, then

ignoring the contact structure in the network model and

using the simpler estimates based on homogeneous mixing

results in a slight overestimation of R0 and vc.

2.3. Multi-type structure
A second kind of infectious contact structure reflects that

often a community contains different types of individuals

that display specific roles in contact behaviour. Types

might be related to age groups, social behaviour or occu-

pation. It may be hard to classify all individuals into types

and sometimes data on the types of individuals are missing.

Furthermore, the number of parameters required to describe

the contact rates between the types is large. We assume that

there are K types of individuals, labelled 1,2, . . . ,K, and that

for i ¼ 1, . . . ,K a fraction pi of the n individuals in the
population is of type i. For the Markov SIR epidemic, we

assume that the rate of close contacts from a given type i indi-

vidual to a given type j individual is lij/n. Note that here

close contacts are not necessarily symmetric, i.e. if individual

x makes a close contact with individual y, then it is not

necessarily the case that y makes a close contact with x. We

assume again that individuals stay infected for an exponen-

tially distributed time with expectation 1/g. The expected

rate at which a given type i individual infects type j individ-

uals at time t since infection is aij(t) ¼ lijpje
�gt. Here, lij/n is

the rate at which the type i individual contacts a given type j
individual, npj is the number of type j individuals and e�gt

is the probability that the type i individual is still infec-

tious t time units after being infected. It is well known

[7,13,24,25] that the basic reproduction number R0 ¼ rM is

the largest eigenvalue of the matrix M, which has elements

mij ¼
Ð1

0 aij(t)dt, and the epidemic growth rate a is such that

1 ¼
Ð1

0 e�atrA(t)dt, where rA(t) is the largest eigenvalue of

the matrix A(t) with elements aij(t). Let r be the largest eigen-

value of the matrix with elements lijpj and note that

rA(t) ¼ re�gt. Therefore,

1 ¼ r

ð1

0

e�ðaþgÞtdt and R0 ¼ r

ð1

0

e�gtdt:

These equalities imply that

R0 ¼
Ð1

0 e�gtdtÐ1

0 e�ðaþgÞtdt
¼ 1þ a

g
,

which shows that the relation between R0 and a for this class

of multi-type Markov SIR epidemics is the same as for

such an epidemic in a homogeneously mixing population

(cf. equation (2.4)).

It is readily seen that if for every type of individual a frac-

tion 1 2 vc is immunized, then the expected number of

individuals infected by one infectious individual decreases

by a factor 1 2 vc, for all types of individuals. This implies

that, for epidemics in a multi-type population structure, the

relation vc ¼ 1� 1=R0 still holds. In the electronic supplemen-

tary material, we derive that estimators for R0 and (if control

measures are independent of the types of individuals) vc are

exactly the same as for homogeneous mixing in a broad class

of SEIR epidemic models. This class includes the full epidemic

model allowing for arbitrarily distributed latent and infectious

periods and models in which the rates of contacts between

http://rsif.royalsocietypublishing.org/
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Figure 3. The factor by which estimators based on homogeneous mixing overestimate key epidemiological variables in a population structured by households. The
basic reproduction number R0 for Markov SIR epidemics with expected infectious period equal to 1 (a,d), critical vaccination coverage vc for Markov SIR epidemics
(b,e) and vc for Reed – Frost epidemics (c,f ), as a function of the relative influence of within-household transmission, in a population partitioned into households. For
(a – c), the household size distribution is taken from a 2003 health survey in Nigeria [29] and is given by m1 ¼ 0:117, m2 ¼ 0:120, m3 ¼ 0:141, m4 ¼ 0:132,
m5 ¼ 0:121, m6 ¼ 0:108, m7 ¼ 0:084, m8 ¼ 0:051, m9 ¼ 0:126; for i ¼ 1,2, � � � ,9, mi is the fraction of the households with size i. For (d – f ), the Swedish
household size distribution in 2013 taken from [30] is used and is given by m1 ¼ 0:482, m2 ¼ 0:2640, m3 ¼ 0:102, m4 ¼ 0:109, m5 ¼ 0:01. The global
infectivity is chosen, so that the epidemic growth rate a is kept constant while the within-household transmission varies. Homogeneous mixing corresponds
to lH ¼ pH ¼ 0, in which case R0 ¼ 1þ a. Note that the order of the graphs is different in (b) and (e) from that in (a,c,d,f ).
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different types keep the same proportion all of the time,

although the rates themselves may vary over time (cf. [24]).

We illustrate our findings on multi-type structures

through simulations of SEIR epidemics in §3.1.
2.4. Household structure
A third kind of infectious contact structure is household

structure. This partitions a population into many relatively

small social groups or households, which reflect actual

households, school classes or workplaces. This contact struc-

ture is different from the multi-type structure, because, in the

latter, the population is partitioned into a limited number of

large groups of individuals having the same type. The contact

rate between pairs of individuals from different households is

small and the contact rate between pairs of individuals in the

same household is much larger. This model was first ana-

lysed in detail in [15]. It is possible to define several

different measures for the reproduction numbers for this

model [14,26], but the best suited for our purpose is given

in [27,28]. For this model, it is hard to find explicit

expressions for R0 and required control effort in terms of

the observable epidemic growth rate. Numerical compu-

tations described in [28] suggest that the difference between

the estimated R0 based on a and the real R0 might be con-

siderable, but it is theoretically shown that the estimate is

conservative for the most commonly studied models. It is

also argued that the required control effort vc � 1� 1=R0

(with equality if and only if all households have size less

than or equal to 3) for this model, which implies that, if we

know R0 and we base our control effort on this knowledge,
we might fail to stop an outbreak. However, we usually do

not have direct estimates for R0, and even though it is not

true in general that using R0 leads to conservative estima-

tes for vc [28] numerical computations suggest that the

approximation of vc using a and the homogeneous mixing

assumption is often conservative. This is illustrated in

figure 3, which shows the factors by which the homogeneous

mixing estimators overestimate the true R0s and vcs over a

range of values for the relative contribution of the within-

household spread. We use two types of epidemics: in (a)

and (b), the Markov SIR epidemic is used, whereas in (c),

the so-called Reed–Frost model is used, which can be inter-

preted as an epidemic in which infectious individuals have

a long latent period of non-random length, after which they

are infectious for a very short period of time. We note that

for the Reed–Frost model the relationship between a and

R0 does not depend on the household structure (cf. [28])

and therefore, for this model, only the dependence of vc on

the relative contribution of the within-household spread is

shown in figure 3. The household size distributions are

taken from a 2003 health survey in Nigeria [29] and from

data on the Swedish household size distribution in [30]. For

Markov SIR epidemics, as the within-household infection

rate lH is varied, the global infection rate is varied in such

a way that the computed epidemic growth rate a is kept

fixed. For this model, a is calculated using the matrix

method described in §4.1 of [31]. In figure 3a,b,d,e, we observe

that the overestimation factor for R0 increases with a,
whereas that for vc decreases with a. For the Reed–Frost epi-

demic model, the probability that an infectious individual

infects a given susceptible household member during its

http://rsif.royalsocietypublishing.org/


Table 1. The epidemic growth rate a, the basic reproduction number R0 and required control effort vc for a Markov SIR epidemic model as functions of the
model parameters in the homogeneously mixing, network and multi-type models and their relationships to each other.
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infectious period, pH, is varied, whereas the corresponding

probability for individuals in the general population varies

with pH, so that a is kept constant. For this model, assuming

that the unit of time is the length of the latent period, R0

coincides with the initial geometrical rate of growth of infec-

tion, so a ¼ log(R0). From figure 3, we see that estimates of vc

assuming homogeneous mixing are reliable for Reed–Frost-

type epidemics, although, as opposed to all other analysed

models and structures, the estimates are not conservative.

We see also that, for the Markov SIR epidemic, estimating

R0 and vc based on the homogeneous mixing assumption

might lead to conservative estimates which are up to 80%

higher than the real R0 and vc.

The results obtained for Markov SIR epidemics in

the homogeneously mixing, network and multi-type popu-

lation structures are summarized in table 1. The results

from household models are not in the table, because deter-

mining a, R0 and vc requires solutions of nonlinear

equations, which themselves are rather complex and defined

only recursively.
3. Simulation studies
3.1. Simulation of an epidemic in a multi-type

population structure
We illustrate our findings on multi-type structures through

simulations of SEIR epidemics in an age-stratified population

with known contact structure. As a population, we took the

Dutch population in 1987 (approx. 14.6 million people) as

used in [32], for which extensive data on contact structure

are available. The population is subdivided into six age

groups, and contact intensities are based on questionnaire

data. Further details on the population, their types and
contact intensities can be found in the electronic supplemen-

tary material. We use values of the average infectious period

1/g and the average latent period 1/d close to the estimates

for the 2014 Ebola epidemic in West Africa [4]. The simu-

lation and estimation methods are described in detail in the

electronic supplementary material. We use two estimators

for R0. The first of these estimators is based on the average

number of infections among the people who were infected

early in the epidemic. This procedure leads to a good estimate

of R0 if the spread of the disease is observed completely. The

second estimator for R0 is based on â , an estimate of the epi-

demic growth rate a, and known expected infectious period

1/g and expected latent period 1/d, and is given by

(1þ â=d)(1þ â=g). We calculate estimates of R0 using these

two estimators for 250 simulation runs. As predicted by the

theory, the simulation results show that for each run the esti-

mates are close to the actual value without a systematic bias

(figure 4 and electronic supplementary material, figure S1).

Note that in figure 4 we compare two estimators of R0,

which are each based on a finite number of observations

and hence not exact. We do not compare the estimates of

R0 with the computed value of R0 based on the model

parameters.
3.2. Estimation of R0 and required control efforts for
empirical network structure

The three kinds of infectious contact structure studied are car-

icatures of actual social structures. Those actual structures

may contain features of all three caricatures, and reflect

small social groups such as school classes and households

in which individuals interact frequently, as well as distinct

social roles such as those based on age and gender, and fre-

quently repeated contacts among those acquaintances. This

leads us to expect that estimators based on ignoring contact

http://rsif.royalsocietypublishing.org/
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Figure 4. The estimated basic reproduction number, R0, for a Markov SEIR model in a multi-type population as described in [32], based on the real infection process
(who infected whom) plotted against the computed R0, assuming homogeneous mixing, based on the estimated epidemic growth rate, a, and given expected infec-
tious period (5 days) and expected latent period (10 days). The infectivity is chosen at random, such that the theoretical R0 is uniform between 1.5 and 3. The estimate of
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Figure 5. Estimates for the basic reproduction number R0 of an SEIR epidemic on the collaboration network in condensed matter physics [33] based on 1000
simulated outbreaks. Each epidemic is started by 10 individuals chosen uniformly at random from the 23 133 individuals in the population. The infection rate
is chosen such that R0 � 2. In (a), the black solid line provides the density of estimates based on full observation of who infected whom, the blue dashed
line denotes the density of estimates based on the estimated epidemic growth rate a and the assumption that the network is a configuration model with
known k, whereas the red dotted line denotes the density of estimates based on a and the homogeneous mixing assumption. (The modes of these three densities
are in increasing order.) The orange vertical line segment denotes the estimate of R0 based only on the infection parameters and k, assuming that the network is a
configuration model (see equation (2.12) in the electronic supplementary material). We excluded the 50 simulations with highest estimated a and the 50 simu-
lations with lowest estimated a. In (b), a box plot of the ratios of the two R0 estimates (the estimate based on the homogeneous mixing assumption divided by the
estimate based on the real infection process for each of the 250 simulation runs) is provided. (Online version in colour.)
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structure will in general result in a slight overestimation of R0

and required control effort.

We test this hypothesis further on some empirical net-

works taken from the Stanford Large Network Dataset

Collection [33]. In this report, we present a network of collab-

orations in condensed matter physics, where the individuals

are authors of papers and authors are ‘acquaintances’ if they

were co-authors of a paper posted on the e-print service arXiv

in the condensed matter physics section between January

1993 and April 2004. In the electronic supplementary

material, we also analyse SEIR epidemics on two other net-

works from [33]. The ‘condensed matter physics’ network is

built up of many (overlapping) groups that represent

papers. It was chosen since it is relatively large (23 133 indi-

viduals and 93 497 links), with over 92% of the individuals

in the largest component. The mean excess degree, k, for

this network is approximately 21 and small groups in
which everybody is acquainted with everybody else are

also present. In figure 5, we show the densities of estimates

of R0, based on 1000 simulations of an SEIR epidemic on

this network, using parameters close to estimates for the

spread of Ebola virus in West Africa [4]. The estimates are

based on who infected whom in the real infection process

(black line), the estimated epidemic growth rate and the con-

figuration network assumption with k � 21 (blue dashed

line) and the estimated epidemic growth rate and the homo-

geneous mixing assumption (red dotted line). In most of the

cases (886 out of 1000), the estimate of R0 based on homo-

geneous mixing is larger than the estimate based on who

infected whom. In only 21 out of 1000 cases, the estimate of

R0 based on homogeneous mixing is less than 90% of the esti-

mate of R0 based on who infected whom. Half of the

estimates of R0 based on the epidemic growth rate and the

homogeneous mixing assumption are between 12% and

http://rsif.royalsocietypublishing.org/
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45% larger than the estimate based on who infected whom.

The difference in estimates might be explained through the

relatively small average number of acquaintances per individ-

ual and the structure of small groups in which all individuals

are acquaintances with all other individuals in the group. As

in figure 4, we note that in figure 5 we compare two estima-

tors of R0. It is hard, if not impossible, to define, let alone

compute, R0 for epidemics on empirical networks.

In order to check the sensitivity of our results to the par-

ameter values, we also performed simulations on the

‘condensed matter physics’ network with two alternative

infection rates (70% and 200% of the value used in the main

simulation). The qualitative results are the same as for the orig-

inal simulations. We note, however, that if the infection rate is

increasing the overestimation factor also shows an increasing

trend. This is consistent with our observations in §§2.2 and 2.4.
 e
13:20160288
4. Discussion and conclusion
In calculating the required control effort vc, we have assumed

that vaccinations, or other interventions against the spread of

the emerging infection, are distributed uniformly at random

in the population. For new, emerging infections, this makes

sense when we have little idea about the contact structure,

and we do not know who is at high risk and who is at low

risk of infection. When considering control measures that

are targeted at specific subgroups, such as vaccination of

the individuals at highest risk, closure of schools or travel

restrictions, more information on infectious contact structure

becomes essential to determine which intervention strategies

are best. We note that for non-targeted control strategies the

overestimation of R0 seems to be less for network-structured

and multi-type populations than for populations structured

in households, especially for high values of R0. Because, for

epidemics among households, better strategies than non-

targeted control efforts are available [15,34,35], household

(and workplace) structure is the first contact structure that

should be taken into account.

Overestimation of the required control effort leads to

additional costs, both monetary and societal. These costs

can be viewed as the value of information on the detailed

contact structure of the population, because they would

have been avoided had the correct details on the contact

structure been incorporated into the epidemic model. This

implies that obtaining the detailed contact structure could

become a relevant policy option when the additional costs

for infection control are sufficiently high. However, an impor-

tant concern for most policy-makers is the cost of getting the

decision wrong. This would require good estimates on the

probabilities of extreme values of R0 (given the observed
data). Even though this is clearly beyond the scope of this

study, obtaining more information on such extreme values

is a worthwhile objective for future work.

When the objective is to assess R0 and vc from the

observed epidemic growth rate of a new emerging infectious

disease such as Ebola, ignoring contact structure leads to a

positive bias in the estimated value. For both SIR epidemics

and SEIR epidemics (see electronic supplementary material),

this bias is small when the standard deviation of the infec-

tious period is small enough compared with the mean, as is

the case for the Markov SEIR epidemic and even more so

for the Reed–Frost model. For Ebola in West Africa, we

know that the standard deviation of the time between onset

of symptoms (which is a good indication of the start of the

infectious period) and the time until hospitalization or

death is of the same order as the mean. The same holds for

the time between infection and onset of symptoms [4].

These ratios of mean and standard deviation are well

captured by the Markov SEIR epidemic.

Our findings are important for prioritizing data collection

during an emerging epidemic, when assessing the control

effort is a priority: it is most crucial to obtain accurate esti-

mates for the epidemic growth rate from times of symptom

onset of cases, and duration of the infectious and latent

periods from data on who acquires infection from whom

[36–38]. This is consistent with current practice [4,39]. Data

about the contact structure will be welcome to add precision,

but will have little effect on the estimated non-targeted

required control effort in an emerging epidemic.

Throughout the manuscript, we assume that we have

enough data for reliable estimates of a. Further research on

evaluating the behaviour of the estimators themselves in

finite structured populations is needed, but beyond the

scope of the present research.
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2010 Some model based considerations on
observing generation times for communicable
diseases. Math. Biosci. 223, 24 – 31. (doi:10.1016/j.
mbs.2009.10.004)

7. Diekmann O, Heesterbeek H, Britton T. 2013
Mathematical tools for understanding infectious
disease dynamics. Princeton, NJ: Princeton
University Press.

8. Anderson RM, May RM. 1992 Infectious diseases of
humans: dynamics and control. Oxford, UK: Oxford
Science Publications.

9. Andersson H. 1998 Limit theorems for a random
graph epidemic model. Ann. Appl. Probab. 8,
1331 – 1349. (doi:10.1214/aoap/1028903384)

10. Barbour AD, Reinert G. 2013 Approximating the
epidemic curve. Electron J. Probab. 18, 1 – 30.
(doi:10.1214/EJP.v18-2557)

11. Decreusefond L, Dhersin JS, Moyal P, Tran VC. 2012
Large graph limit for an SIR process in random
network with heterogeneous connectivity. Ann.
Appl. Probab. 22, 541 – 575. (doi:10.1214/11-
AAP773)

12. Newman MEJ. 2002 Spread of epidemic disease on
networks. Phys. Rev. E 66, 016128. (doi:10.1103/
PhysRevE.66.016128)

13. Ball F, Clancy D. 1993 The final size and severity of
a generalised stochastic multitype epidemic model.
Adv. Appl. Probab. 25, 721 – 736. (doi:10.2307/
1427788)

14. Becker NG, Dietz K. 1995 The effect of
household distribution on transmission and
control of highly infectious diseases. Math.
Biosci. 127, 207 – 219. (doi:10.1016/0025-
5564(94)00055-5)

15. Ball F, Mollison D, Scalia-Tomba G. 1997 Epidemics
with two levels of mixing. Ann. Appl. Probab. 7,
46 – 89. (doi:10.1214/aoap/1034625252)

16. Ball F, Donnelly P. 1995 Strong approximations
for epidemic models. Stochastic Process Appl. 55,
1 – 21. (doi:10.1016/0304-4149(94)00034-Q)

17. Jagers P. 1975 Branching processes with biological
applications. New York, NY: Wiley.

18. Haccou P, Jagers P, Vatutin VA. 2005 Branching
processes: variation, growth, and extinction of
populations. Cambridge, UK: Cambridge University
Press.

19. Newman MEJ. 2003 The structure and function of
complex networks. SIAM Rev. 45, 167 – 256.
(doi:10.1137/S003614450342480)

20. Durrett R. 2006 Random graph dynamics.
Cambridge, UK: Cambridge University Press.

21. Pellis L, Spencer SE, House T. 2015 Real-time
growth rate for general stochastic SIR epidemics on
unclustered networks. Math. Biosci. 265, 65 – 81.
(doi:10.1016/j.mbs.2015.04.006)

22. Britton T, Janson S, Martin-Löf A. 2007 Graphs
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