
Zhou, Lian and Zhang, Lian-Hui and Cámara, Miguel 
and He, Ya-Wen (2017) The DSF family of quorum 
sensing signals: diversity, biosynthesis, and turnover. 
Trends in Microbiology, 25 (4). pp. 293-303. ISSN 1878-
4380 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/40486/1/MCDSF%20review-TIM-7-FULL.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may 
be reused according to the conditions of the licence.  For more details see: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/76975619?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk


1 
 



Title: The DSF Family of Quorum Sensing Signals: Diversity, Biosynthesis and 2 

Turnover 3 

Authors: Lian Zhou1，Lian-Hui Zhang2, Miguel Cámara3,Ya-Wen He1, 4 

1State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, 5 

Shanghai Jiao Tong University, Shanghai 200240, China; 6 

2 Guangdong Province Key Laboratory of Microbial Signals and Disease Control, State 7 

Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South 8 

China Agricultural University, Guangzhou 510642, China;  9 

3 School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, 10 

Nottingham NG7 2RD, United Kingdom 11 

* Correspondence: yawenhe@sjtu.edu.cn (Y.W. He). 12 

Keywords: quorum sensing, DSF, biosynthesis, naturally occurring signal turnover, 13 

Xanthomonas. 14 

Abstract 15 

The diffusible signaling factor (DSF)-based quorum sensing (QS) system has emerged 16 

as a widely conserved cell-cell communication mechanism in Gram-negative bacteria. 17 

Typically, signals from the DSF family are cis-2-unsaturated fatty acids which regulate 18 

diverse biological functions. Recently, substantial progress has been made on the 19 

characterization of new members of this family of signals. There have also been new 20 

developments in the understanding of the biosynthesis of these molecules where dual 21 

enzymatic activities of the DSF synthase and the use of various substrates have been 22 

described. The recent discovery of a naturally occurring DSF turnover mechanism and its 23 

regulation provides a new dimension in our understanding of how DSF-dependent 24 

microorganisms modulate virulence gene expression in response to changes in the 25 

surrounding environment.  26 

  27 

 28 

 29 

mailto:yawenhe@sjtu.edu.cn


2 
 

DSF-Dependent QS Signaling System in Diverse Gram-Negative Bacteria 30 

Bacterial cells are capable of sensing and responding to changes in their populations 31 

through communication using small signal molecules, a mechanism known as quorum 32 

sensing (QS). Over the past few decades, several groups of QS signals have been 33 

identified, paving the way for the dissection of signaling networks and significantly 34 

advancing our understanding on the remarkable ability of microorganisms to modulate a 35 

wide range of biological functions [1,2]. The diffusible signal factor (DSF) family 36 

represents an intriguing type of QS signal molecules found in diverse Gram-negative 37 

bacterial pathogens [3-5]. DSF type-based QS systems can be generally grouped into three 38 

categories according to their genomic context. The first category, represented by the 39 

crucifer pathogen Xanthomonas campestris pv. campestris (Xcc), typically shows 40 

colocalization of the genes encoding key signaling components such as RpfF, RpfC, and 41 

RpfG in the rpf gene cluster [3,4]. RpfF encodes a key enzyme required for DSF 42 

biosynthesis whereas RpfC and RpfG constitute a two-component system involved in 43 

signal perception and transduction [6, 7]. The activated HD-GYP domain of RpfG has 44 

phosphodiesterase activity and is able to degrade cyclic di-GMP (c-di-GMP), an inhibitory 45 

ligand of the global transcription factor Clp. Consequently, derepressed Clp drives the 46 

expression of several hundred of genes including those encoding virulence factor 47 

production [8-10]. This type of QS system has been functionally verified in Xanthomonas 48 

sp., Xylella fastidiosa, Lysobacter enzymogenes, and Stenotrophomonas maltophilia [3, 11]. 49 

The second category, represented by the opportunistic pathogens Burkholderia 50 

cenocepacia and Cronobacter turicensis, does not contain a typical rpf cluster, having only 51 

rpfF and a novel sensor gene rpfR in the same locus [12, 13]. Similarly the RpfF/RpfR 52 

system modulates intracellular c-di-GMP level in B. cenocepacia. The third category is 53 

represented by the opportunistic human pathogen Pseudomonas aeruginosa. In this 54 

organism the biosynthesis of the DSF type molecule cis-2-decenoic acid has been 55 

attributed to the putative enoyl-coenzyme A hydratase DspI although the mechanism of 56 

perception of this molecule remains to be elucidated [14, 15]. Recently, a cluster of five 57 

genes (PA4978 - PA4983) has also been proposed to be involved in cis-2-decenoic acid 58 

synthesis and perception in P. aeruginosa [16]. 59 
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  60 

With the improvement of DSF detection methods, significant progress has been made in 61 

our understanding of the QS systems driven by the DSF family of signal. This includes the 62 

discovery of several new members of the DSF family of signals as well as the elucidation 63 

of some new DSF-dependent biological functions. Biochemical and genetic analyses have 64 

also unveiled the biosynthetic pathways and the various substrates for these signal 65 

molecules. Furthermore, a naturally occurring DSF turnover mechanism has recently been 66 

identified in Xcc and the rice bacterial blight pathogen, X. oryzae pv. oryzae (Xoo). 67 

Through this system, DSF signaling in the post-quorum growth phase can be effectively 68 

terminated. These findings together with previous research, have placed the DSF-type 69 

signaling system as one of the best-studied QS systems in bacteria. This review will 70 

provide an update on these new developments with the aim to build a more comprehensive 71 

picture of the QS systems driven by the DSF family of signals. More detailed background 72 

on the DSF family signals can be found in previous reviews [3-5, 17].  73 

 74 

Diversity of the DSF Signal Family and DSF-Regulated Biological Functions  75 

Previously, cis-11-methyl-dodecenoic acid (DSF), cis-2-dodecenoic acid (BDSF), and 76 

cis,cis-11-methyldodeca-2,5-dienoic acid (CDSF) were identified in cultures of Xcc, Xoo 77 

and the B. cepacia complex (Figure 1) [3,18,19]. Similarly, cis-2-decenoic acid and 78 

trans-2-decenoic acid (SDSF) were found to be produced by P. aeruginosa and 79 

Streptococcus mutans respectively (Figure 1) [14, 20]. Recently, three biologically active 80 

new members of the DSF family of signals, cis-10-methyl-2-dodecenoic acid (IDSF or 81 

DSF-II), cis-9-methyl-2-decenoic acid, and cis-2-undecenoic acid have been characterized 82 

in Xcc (Figure 1) [21, 22]. A variety of both saturated and unsaturated free fatty acids were 83 

identified in the cultures of the phytopathogen X. fastidiosa, with 2-cis-unsaturated fatty 84 

acids XfDSF1 (2-tetradecenoic acid) and XfDSF2 (2-cis-hexadecanoic acid) being 85 

biologically active (Figure 1) [23,24]. Furthermore, a DSF-like signal (LeDSF3) was 86 

characterized as 13-methyltetradecanoic acid in the biocontrol agent strain Lysobacter 87 

enzymogenes (Figure 1) [25]. Surprisingly, LeDSF3, unlike other members of the DSF 88 

family, does not contain the cis double bond, which has been shown to be essential for its 89 
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biological activity in Xcc [19]. Whether LeDSF3 is the true QS signal produced by L. 90 

enzymogenes remains to be determined. These findings show a much broader spread of the 91 

DSF family of signals amongst bacteria than initially anticipated. 92 

 93 

RpfF-dependent signaling has been associated with the regulation of motility, biofilm 94 

formation, iron uptake, EPS and extracellular enzyme production, and virulence [3]. 95 

Recent evidence indicates that the DSF signal family provides a fitness advantage to Xcc 96 

during interspecies competition in mixed cultures. DSF type signals from Xcc interfered 97 

with morphological transition and sporulation in Bacillus thuringiensis through modulation 98 

of the expression of ftsZ, which encodes a key protein involved in bacteria cell division 99 

[21].  DSF also elicited innate immunity in plants, an effect that was suppressed through 100 

the secretion of xanthan, the main exopolysaccharide component in Xcc [26]. In L. 101 

enzymogenes OH11, LeDSF3 positively regulates the biosynthesis of an antifungal 102 

antibiotic known as the heat-stable antifungal factor [25]. Recently, BDSF from 103 

Burkholderia species has been shown to cause biofilm dispersion, increased levels of relA 104 

and (p)ppGpp production and an upregulation of iron uptake mechanisms through 105 

induction of siderophore production in Francisella novicida, a model organism for 106 

Francisella tularensis [27]. The XfDSF synthase gene rpfF from X. fastidiosa was 107 

expressed ectopically in ‘Freedom’ grape which is susceptible to Pierce’s disease caused by 108 

X. fastidiosa. DSF activity could be detected in xylem sap of transgenic grape 109 

overexpressing rpfF [28]. Production of DSF family signals in transgenic grape may cause 110 

pathogen confusion, thereby reducing the severity of Pierce’s Disease in grape [28]. These 111 

new findings illustrate the increasing expansion of the spectrum of the biological functions 112 

attributed to the DSF signal family, particularly in the areas of interspecies and 113 

inter-kingdom communication.  114 

 115 

Biosynthetic Pathways Leading to the Production of the DSF Family of Signals 116 

Biosynthesis of DSF family of signals in Xcc is dependent on the synthase RpfF [29]. RpfC 117 

negatively controls DSF biosynthesis via a post-translational mechanism involving 118 

RpfC-RpfF interactions [30]. Recently, the enzymatic activity of RpfF, corresponding 119 
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substrates, reaction products and biosynthetic pathway of DSF family of signals, have been 120 

elucidated in Xcc. These genes have been identified in diverse bacterial species, suggesting 121 

that biosynthesis of DSF family of signals appears to be widely conserved. 122 

RpfF Has Both Dehydratase and Thioesterase Activities  123 

The DSF synthase RpfF is the key enzyme involved in the synthesis of signals from the 124 

DSF family in a wide range of bacterial species. Bcam0581 shares about 37% identity with 125 

Xcc RpfF and is responsible for BDSF biosynthesis in B. cenocepacia [31]. Bcam0581 is a 126 

bifunctional enzyme that has been shown not only to dehydrate 3-hydroxydodecanoyl-acyl 127 

carrier protein (ACP) to yield cis-2-dodecenoyl-ACP, and but also cleaves its thioester 128 

bond to generate the final product cis-2-dodecenoyl acid (BDSF) [32]. The dehydratase 129 

and thioesterase activities of the Xcc DSF synthase RpfF have also been experimentally 130 

verified recently [22]. This RpfF firstly cleaves the thioester bonds of acyl-ACPs, 131 

including 3-hydroxydodecanoyl-ACP to release holo-ACP, indicating the presence of 132 

thioesterase activity. Then, RpfF converts 3-hydroxyacyl-ACP substrates into 133 

cis-2-acyl-ACP, supporting a further activity for this enzyme as dehydratase. BDSF was 134 

detected in in vitro reaction mixtures containing 3-hydroxydodecanoyl-ACP and RpfF [22]. 135 

In vivo these two enzymatic activities from RpfF and Bcam0581 may be coupled, although 136 

the underlying mechanistic details remain unclear.  137 

 138 

Using in vitro assays, RpfF from Xcc showed thioesterase activity towards acyl-ACP 139 

substrates with carbon chains ranging from 8 to 14, suggesting a broad substrate specificity 140 

for this enzyme. This probably explains why a single bacterial species is able to produce 141 

multiple DSF family signals in rich medium [21, 22]. However, among all of the five 142 

acyl-ACP substrates tested, RpfF showed the highest activity on decanoyl-ACP, 143 

dodecanoyl-ACP and 3-hydroxydodecanoyl-ACP, suggesting that RpfF might have a 144 

preference for substrates with 10-12 carbons.  145 

 146 

The Biosynthetic Pathway of the DSF Family of Signals Probably Branches from the 147 

Classic Fatty Acid Synthesis Pathway 148 

In bacteria, fatty acid synthesis is catalyzed via a set of distinct monofunctional enzymes 149 
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(type II) [33]. Fatty acid synthesis is best understood in Escherichia coli where acetyl 150 

coenzyme A (acetyl-CoA) is the primer and malonyl-CoA is the chain extender. A range of 151 

enzymes, including ACC (acetyl-CoA carboxylase), FabD (malonyl-CoA:ACP 152 

transacylase), FabH (-ketoacyl-ACP synthase III), FabG(-ketoacyl-ACP reductase), 153 

FabA/FabZ (-hydroxyacyl-ACP dehydratase), FabI (enoyl-ACP reductase), and 154 

FabB/FabF (-ketoacyl-ACP synthase I or II) are involved in fatty acid synthesis [33]. The 155 

Xcc genome contains almost all the genes required for bacterial fatty acid synthesis, 156 

including the gene cluster Xcc0581-Xcc0582 (encoding FabB and FabA), a fab cluster 157 

(Xcc1016-Xcc1020 encoding FabH, FabD, FabG, AcpP and FabF), Xcc1362 (FabZ) and 158 

Xcc0115 which encodes a newly identified enoyl-ACP reductase (FabV) [22,34]. Analysis 159 

of deletion mutants showed that Xcc0581-Xcc0582 and the fab clusters are essential for 160 

bacterial growth in Xcc [22]. The Xcc biosynthetic pathway for the DSF family of signals 161 

probably branches off from the classic fatty acid synthesis pathway. First, intermediate 162 

3-hydroxyacyl ACPs are usually generated during elongation, and -ketoacyl-ACP 163 

reductase (FabG) is directly responsible for 3-hydroxyacyl ACPs production in bacteria. In 164 

an rpfC mutant strain, overexpression of Xcc1018, which encodes FabG, led to a 165 

significant increase in the production of DSF, BDSF, CDSF and IDSF [22]. Second, the 166 

addition of cerulenin, an antibiotic that binds to long chain 3-keto-acyl-ACP synthases 167 

(FabF and FabB) and blocks fatty acid synthesis [35], to cultures of the Xcc rpfC mutant 168 

had only a slight effect on bacterial growth but significantly inhibited the biosynthesis of 169 

DSF family signals [22]. Finally, FabH encoded by Xcc1016 was shown to be required for 170 

the biosynthesis of DSF family of signals in Xcc [36].  171 

 172 

Carbohydrates and Non-Branched Amino Acids Promote BDSF Biosynthesis  173 

The composition and ratio of the diverse DSF type signals produced by cultures of Xcc and 174 

Xoo are influenced by the composition of the growth media [18, 22]. In rich media, DSF is 175 

the main signal being produced. In contrast, in nutrient limiting media, BDSF appears to be 176 

the dominant signal [18, 22]. To gain a further insight on how medium composition 177 

influences the production of DSF type signals in Xcc, media XY containing XOLN salts 178 

and 0.2 g/L of yeast extract was developed as a base medium [22]. Since carbohydrates and 179 
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amino acids are two major nutrients present in the xylem fluids of plants [37,38], the effect 180 

of sucrose, glucose, starch and fructose as well as and non-branched amino acids on the 181 

biosynthesis of different types of DSF signal molecules was tested. In XY medium with 182 

these carbon sources, BDSF represented more than 80% of the DSF type signals produced 183 

[22]. Deng et al. [39] showed that exogenous addition of host plant juice or ethanol extract 184 

to the growth medium of Xcc could significantly boost the biosynthesis of DSF type 185 

molecules. Further 13C-labeling experiments demonstrated that glucose acts as a substrate 186 

providing the carbon element for the biosynthesis of the DSF family of signals. 187 

 188 

Methyl Substitutions in DSF and IDSF Originate from Branched-Chain Amino Acids 189 

In bacteria, branched-chain fatty acids are synthesized from branched-chain acyl-CoA 190 

primers with malonyl-CoA as the chain extender [40]. The branched-chain acyl-CoA 191 

primer can be synthesized from the α-ketoacids, α-ketoisocaproic acid, α-ketoisovaleric 192 

acid, and α-keto-b-methylvaleric acid. These α-ketoacids are derived from the catabolism 193 

of the branched-chain amino acids leucine, valine, and isoleucine [41]. Xanthomonas 194 

typically has many branched and hydroxyl-branched fatty acids [42]. Using XYS medium 195 

(XY supplemented with 2.0 g/L sucrose) as a base medium, the effect of branched-chained 196 

amino acids on the production of different DSF type signals was investigated. The addition 197 

of leucine significantly promoted DSF biosynthesis, suggesting that the 11-methyl 198 

substitution is derived from leucine [22]. Although valine has one carbon less than leucine, 199 

the addition of high concentrations of valine to cultures of Xcc rpfC mutant also resulted 200 

in an increase in DSF biosynthesis [22]. This is probably because in vivo valine is 201 

converted into -ketoisovalerate, which can be further used for leucine biosynthesis [35]. 202 

The addition of isoleucine significantly promoted IDSF biosynthesis, suggesting that the 203 

10-methyl substitution is derived from isoleucine. The metabolic origin of different 204 

members of the DSF family of signals explains why Xcc and Xoo produce multiple DSF 205 

type of signals in rich media. These media contain sucrose and a high concentration of 206 

tryptone, peptone or yeast extract, which provide a rich source of amino acids including 207 

branched-chain amino acids [22]. 208 

 209 



8 
 

Considering all of the above, a general biosynthetic pathway for DSF, BDSF and IDSF is 210 

shown in Figure 2 [22]. The relative concentrations of the acyl-ACP intermediates and 211 

their affinities for RpfF lead to differential production of DSF, BDSF and IDSF [22].  212 

 213 

Control of DSF Biosynthesis Through RpfF and RpfC Interactions  214 

One of the remarkable features of QS systems is that the QS signals are capable of 215 

autoregulating their own biosynthesis. This simple yet sophisticated QS signal 216 

autoinduction mechanism enables bacteria to sense their population density and effectively 217 

synchronize the expression of QS-regulon within the community [43]. The mechanism also 218 

allows resetting of the whole QS circuit when a portion of bacterial cells are transferred to 219 

a new environment [44]. Increasing evidence suggests that Xcc is able to autoregulate the 220 

biosynthesis of the DSF family of QS signals [3-5]. Previous results revealed that RpfC, a 221 

DSF sensor, can also bind to RpfF via its REC domain to negatively control DSF 222 

biosynthesis [3-5]. This was further verified with the resolution of the crystal structure of a 223 

complex containing RpfF and the REC domain of RpfC [45]. Recent work with X. 224 

fastidiosa has provided further insights into the role of the RpfF–RpfC interactions [46]. 225 

XfDSF-dependent signaling in Xylella requires both RpfC and RpfF. RpfF represses RpfC 226 

signaling activity, which in turn is derepressed by XfDSF. Enzymatically inactive variants 227 

of RpfF can also support DSF signal transduction. Intriguingly, two populations of RpfF 228 

(RpfF-1 and RpfF-2) and RpfC (RpfC-1 and RpfC-2) with differences in their amino acid 229 

sequences were found in a panel of clinical isolates of S. maltophilia. Each RpfF variant 230 

was associated with a specific RpfC variant (RpfF-1 with RpfC-1 and RpfF-2 with RpfC-2) 231 

[47]. These findings further support the role of RpfC–RpfF interactions in the control of 232 

DSF biosynthesis. However, the detailed mechanism behind this control remains to be 233 

elucidated. 234 

 235 

Turnover of the DSF Family of Signals 236 

It is now widely accepted that bacterial cells need to exit the highly energy-demanding QS 237 

maximal activation phase during the post-quorum phase. The QS signal turnover systems 238 

are one of the QS exit mechanisms most frequently identified in bacteria [48]. Several 239 
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bacterial strains belonging to the genera Bacillus, Paenibacillus, Microbacterium, 240 

Staphylococcus, and Pseudomonas are capable of rapidly breaking down DSF [49]. The 241 

genes carAB, which encodes enzymes responsible for the synthesis of carbamoylphosphate 242 

in Pseudomonas spp strain G, were identified to be required for DSF inactivation [49]. 243 

However, the mechanism by which bacteria degrade or inactivate DSF remains unclear. 244 

The naturally occurring turnover systems have been less studied for the DSF family of 245 

signaling molecules [50].  246 

 247 

RpfB is a Fatty Acyl-CoA Ligase Involved in the Turnover of the DSF Family of Signals 248 

in Xanthomonas  249 

Previous results in Xcc and Xoo showed that the DSF family of signals accumulate in the 250 

early stationary phase of growth, and their levels subsequently decline sharply [18, 19, 29]. 251 

This suggested the existence of a naturally occurring DSF signal turnover system which 252 

might be responsible for this decline in DSF signal levels during the stationary phase of 253 

growth. In Xcc, the rpfB gene located immediately upstream of rpfF was initially predicted 254 

to be involved in DSF biosynthesis [29]. However, the defects in DSF production observed 255 

in rpfB mutants in the Xcc 8004 strain were caused by a polar effect on the downstream 256 

rpfF gene [51] despite the fact that a previous finding revealed that rpfF also has its own 257 

promoter which would enable its expression independently of rpfB [6]. Hence, instead of 258 

participating in DSF biosynthesis, it was suggested that rpfB may be involved in DSF 259 

processing in Xcc and X. fastidiosa, affecting the profile of DSF-like fatty acids as 260 

observed by thin-layer chromatography in an rpfB mutant [51]. Subsequent detailed 261 

biochemical and genetic analysis revealed that in Xcc RpfB could functionally replace the 262 

archetypal bacterial fatty acyl-CoA ligase (FCL) FadD, a key enzyme involved in the 263 

-oxidation pathway in E. coli [52]. In vitro, RpfB was found to activate a wide range of 264 

fatty acids to their CoA esters [52]. The authors suggested that these fatty acyl-CoAs 265 

activated by RpfB could be further catabolized by the fatty acid β-oxidation pathway. 266 

Alternatively, they could also be utilized to restore membrane lipid synthesis in vivo [52]. 267 

Surprisingly, although RpfB utilizes different fatty acids of variable chain lengths, in vitro 268 

enzymatic activity assays have shown that RpfB has little apparent effect on the QS signals 269 
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DSF and BDSF [52]. Therefore, the authors proposed that RpfB plays a more important 270 

role in pathogenesis by counteracting the thioesterase activity of the DSF synthase RpfF 271 

[52].  272 

 273 

To improve the detection sensitivity of the DSF family of signals, a quantitative detection 274 

method using liquid chromatography-mass spectrometry (LC-MS) was developed [53]. 275 

This resulted a reduction of the threshold levels of detection of DSF and BDSF to 1µM, 276 

enabling a fast and more accurate determination of the levels of these molecules in Xcc 277 

cultures and reaction mixtures [53]. The in vitro assay as described by Bi et al. [52] was 278 

then repeated to test the effect of purified RpfB on DSF and BDSF levels. The purified 279 

RpfB was shown to have little effect on BDSF and DSF in vitro, but to rapidly inactivate 280 

sodium oleate. Deletion of rpfB in Xcc or Xoo significantly boosted DSF and BDSF 281 

production during growth, while over-expression of rpfB or its homolog fadD completely 282 

abolished DSF signal production. In addition, expression of rpfB in E. coli also efficiently 283 

scavenged exogenous BDSF and DSF [53]. Finally, RpfB functionally complemented the 284 

E. coli fadD mutant strain for growth on fatty acids as a sole carbon source, and the key 285 

residue E-365, required for the enzymatic activity, was shown to be critical for the catalytic 286 

activity of the RpfB FCL, suggesting that FCL activity is required for signal turnover in 287 

Xcc [52, 53].  288 

 289 

The reasons behind the different activity of RpfB on DSF type signals under in vitro and in 290 

vivo conditions remain unknown. However, there are two potential explanations that may 291 

explain this discrepancy. One is that RpfB-dependent DSF and BDSF turnover may require 292 

additional factors such as co-factors, metals, or salts, which are only present in vivo. 293 

Another possibility is that RpfB may adopt different conformations in vivo and in vitro. 294 

Nevertheless, further research is required to explain these differences. 295 

 296 

Regulation of rpfB Expression in Xanthomonas  297 

rpfB expression is growth phase-dependent in Xcc and Xoo [53, 54]. RpfB transcript levels 298 

are low in mid-exponential stage, slightly increase during the late exponential stage, are 299 
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maximal at early stationary phase, and subsequently decline [53]. This very much matches 300 

the pattern of DSF production during growth [18, 19, 29], further supporting the idea that 301 

RpfB might be responsible for DSF turnover. Analysis of rpfB expression in an rpfF 302 

mutant strain in the presence of different concentrations of DSF also showed that RpfB 303 

expression is regulated by the DSF signal in a concentration-dependent manner. Exogenous 304 

addition of DSF (0.5 M to 2.5 M) maintained rpfB expression at wild-type levels, 305 

whereas further increases of DSF concentrations (10.0 M to 50.0 M) significantly 306 

enhanced rpfB expression [53].  307 

 308 

As outlined above, DSF signaling in Xanthomonas involves the two-component system 309 

RpfC/RpfG, the second messenger c-di-GMP, and the global regulator Clp [3, 4]. 310 

Previously, S1 nuclease protection assays revealed that rpfB expression was upregulated by 311 

RpfC [6]. Recent findings demonstrated that mutation of rpfC, rpfG, or clp in Xcc and Xoo 312 

led to an increase in expression of rpfB at the transcriptional and translational levels [53, 313 

54]. Furthermore, in vitro studies showed that the global transcriptional factor Clp 314 

represses rpfB expression through direct interaction with the conserved DNA motif 315 

AATGC-tgctgc-GCATC on the rpfB promoters of Xcc and Xoo [50]. The second 316 

messenger c-di-GMP, which is the ligand of Clp, effectively reverses the interaction 317 

between Clp and the rpfB promoters [53].  318 

 319 

Taken together, these findings clearly show that RpfB represents a naturally occurring 320 

DSF-family QS signal turnover system in the phytopathogen Xanthomonas. Although 321 

more detailed regulatory mechanisms remain to be experimentally verified, a general 322 

working model for the regulation of the RpfB-dependent DSF type signal turnover in 323 

Xanthomonas is proposed (Figure 3).  324 

 325 

Biological Significance of the Turnover System for DSF Type Signals in Xanthomonas 326 

In Xcc strains XC1 and 8004, the DSF family of signals positively regulate EPS and 327 

extracellular enzyme production, but negatively regulate biofilm formation in [3-5]. In line 328 

with this observation, deletions of rpfB in Xcc strains marginally increased the production 329 
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of extracellular protease, amylase, cellulase, and EPS, and consequently led to enhanced 330 

virulence on Chinese radish in a leaf clipping virulence assay [53]. On the other hand, 331 

over-expression of rpfB in Xcc significantly reduced the production of extracellular 332 

enzymes and EPS, and attenuated bacterial virulence on plants [53]. In contrast to what 333 

was found in Xcc, rpfB deletion in Xoo strain PXO99A significantly reduced EPS and 334 

extracellular amylase production, and resulted in reduced virulence on rice cultivars 335 

IRBB3 and IR24 [54]. The rpfB deletion mutant of PXO99A also displayed reduced EPS 336 

production [54]. Further analysis showed that simply deleting rpfB in PXO99A did not 337 

affect xanthomonadin production, however, a double deletion of rpfB and rpfC affected the 338 

level of xanthomonadin (yellow pigment) production in Xoo PXO99A [54]. 339 

 340 

The discrepancies in bacterial virulence-associated traits between the rpfB mutants of Xcc 341 

and Xoo are proposed to be at least partially due to the different levels of the DSF family of 342 

signals produced by these two Xanthomonas species [54]. The Xoo wild-type strain 343 

PXO99A produces approximately 10 times more DSF and BDSF than the Xcc strain XC1 344 

[52, 53]. The biosynthesis of the DSF family of signals, EPS and xanthomonadin demands 345 

a high level of common metabolic precursors, carbohydrates and amino acids in 346 

Xanthomonas [22, 39]. Over-production of the DSF type signals by PXO99A ΔrpfBΔrpfC 347 

probably drains the pool of carbohydrates and amino acids needed for EPS and 348 

xanthomonadin biosynthesis, which in turn affects EPS production.  349 

 350 

The RpfB-Dependent Signal Turnover System Is Present in a Wide Range of Bacterial 351 

Species 352 

Searches against the Nr database in NCBI revealed that rpfB homologs are widely present 353 

in all the bacterial species containing the three categories of DSF-based QS systems. In the 354 

first category, all the bacterial species habour homologs of rpfB, rpfF, rpfC, rpfG and clp 355 

[4]. The putative Clp binding site was also found in the promoter regions of the rpfB 356 

homologs in some of these bacteria such as Xanthomonas axonopodis pv. citri, 357 

Xanthomonas fuscans subsp. fuscans and Xanthomonas hortorum pv. carotae [53]. Thus, it 358 

is likely that these bacteria also rely on RpfB to turnover DSF type QS signals. In the other 359 
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two categories of DSF-based QS systems represented by P. aeruginosa and B. cenocepacia, 360 

RpfB homologs are also present, however, their roles in signal degradation and their 361 

regulation remain to be investigated. 362 

 363 

Concluding Remarks and Future Perspectives 364 

We have provided an update on current state of knowledge for the DSF family of signaling 365 

systems including the increasing diversity of the DSF family of signals, the functions they 366 

regulate, their biosynthetic pathway and a naturally occurring turnover system for these 367 

signal in Xanthomonas. These exciting findings have shown that the signaling cascade and 368 

signal turnover system for the DSF family of signals play an important role in the 369 

regulation of virulence in a wide range of Xanthomonas species. However, many questions 370 

on the regulation of these systems remain to be answered (see Outstanding Questions). 371 

First, the mechanism underlying the broad substrate specificity of RpfF and how both 372 

dehydratase and thioesterase activities found in RpfF are coupled deserves further 373 

investigation. The roles of branched-chain amino acid aminotransferase and -keto acid 374 

dehydrogenase in the proposed biosynthetic pathways of the DSF family of signal 375 

molecules also needs to be studied. Second, in the in vitro enzymatic assay, RpfB 376 

efficiently activates a group of free fatty acids exclusive to DSF and BDSF. The 377 

mechanism behind this phenomenon and the existence of any potential cofactors working 378 

together with RpfB in vivo needs to be elucidated. Moreover, it will be interesting to 379 

understand how the inactivated DSF signals are recycled by Xanthomonas and whether 380 

RpfB is required for -oxidation of other fatty acids in Xanthomonas. Whether other 381 

signaling pathways or c-di-GMP effectors have a role in regulating rpfB expression or 382 

other Clp-regulated functions, which may be involved in controlling DSF turnover, deserve 383 

further investigation. Finally, cis-2-decenoic acid synthesis and perception in P. aeruginosa 384 

and BDSF signaling in B. cenocepacia deserve further investigation. Addressing these 385 

questions will be key to gain a more detailed understanding on the signaling and regulatory 386 

mechanisms of this family of cell-cell communication signals. These findings could pave 387 

the way to develop new tools to fight against crop losses resulting from diseases caused by 388 

pathogens using these signaling systems to control the production of virulence traits. 389 
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 533 

Figure legends 534 

Figure 1. The Chemical Structures of the DSF-Family of Quorum Sensing Signals. This 535 

family comprises cis-2-unsaturated fatty acids of different chain lengths and branching. 536 

The archetype cis-11-methyl–dodecenoic acid designated DSF was first described in 537 

Xanthomonas campestris. DSF, BDSF, CDSF, IDSF, cis-9-methyl-2-decenoic acid, 538 

cis-2-undecenoic acid were then identified from X. campestris and X. oryzae. These family 539 
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of molecules were also found to be produced by Burkholderia cenocepacia (BDSF, CDSF, 540 

DSF), Pseudomonas aeruginosa (cis-2-decenoic acid), and Xylella fastidiosa (XfDSF1, 541 

XfDSF2). The related molecules are produced by Lysobacter enzymogenes (LeDSF3) and 542 

Streptococcus mutans (SDSF).  543 

Figure 2. Schematic Model for the Biosynthesis of DSF, BDSF and IDSF [22]. When there 544 

are carbohydrates, acetyl-CoA is produced and converted into malonyl-CoA by acetyl-CoA 545 

carboxylase (ACC). FabD synthesizes malonyl-ACP from ACP and malonyl-CoA, and 546 

malonyl-ACP is condensed with acetyl-CoA by FabH to form 3-keto-butyl-ACP for the 547 

initial step of the fatty acid synthesis elongation cycle. The elongation cycle results in the 548 

intermediate 3-hydroxydodecanoyl-ACP. RpfF catalyzes the synthesis of BDSF using 549 

3-hydroxydodecanoyl-ACP. In the presence of carbohydrates, leucine and isoleucine, the 550 

branched-chain amino acid aminotransferase IlvE catalyzes the deamination of leucine and 551 

isoleucine to form 2-keto-isocaproic acid (KIC) and 2-keto--methylvaleric acid (KMV) 552 

respectively, which the -ketoacid dehydrogenase (BCKA) uses to form iso-butyryl-CoA 553 

and 2-methylbutyryl-CoA respectively. Malonyl-ACP is then condensed with these 554 

acyl-CoAs to form 3-keto-butyl-ACP, iso-3-keto-hexanoyl-ACP and 555 

anteiso-3-keto-hexanoyl-ACP for the initial step of the fatty acid synthesis cycle. The 556 

intermediates 3-hydroxydodecanoyl-ACP, 11-methyl-3-hydroxydodecanoyl-ACP and 557 

10-methyl-3-hydroxydodecanoyl-ACP are formed via the fatty acid elongation cycle. RpfF 558 

converts these acyl-ACP intermediates to DSF (11-methy-cis-2-dodecenoic acid), BDSF 559 

(cis-2-dodecenoic acid) and IDSF/DSF-II (10-methy-cis-2-dodecenoic acid).  560 

Figure 3. Proposed Model for Cell Density-Dependent Turnover of DSF Type Signals in 561 

Xanthomonas [53]. At the pre-quorum sensing (QS) phase, the DSF sensor RpfC forms a 562 

complex with the DSF synthase RpfF through its receiver domain, which limits DSF 563 

biosynthesis at a basal level. High intracellular levels of c-di-GMP bind to the transcription 564 

factor Clp. The Clp complex then binds to rpfB promoter region to inhibit its transcription. 565 

The bound Clp fails to bind to the promoter region of the virulence genes engXCA. At the 566 

QS phase, RpfC undergoes autophosphorylation upon sensing high levels of extracellular 567 

DSF signals. Through the conserved phosphorelay mechanism, RpfG is then 568 

phosphorylated leading to activation of its c-di-GMP phosphodiesterase activity. Clp is 569 
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freed from c-di-GMP and can then bind to the promoter region of the virulence genes 570 

engXCA to initiate their transcription. Clp is also released from the promoter region of rpfB 571 

enabling its transcription. At the post-QS phase, the extracellular levels of the DSF family 572 

of signal molecules returns to a low level and the dephosphorylated RpfC and RpfF 573 

reforms a complex. Dephosphorylation of RpfG leads to inactivation of its c-di-GMP 574 

phosphodiesterase activity. The intracellular levels of c-di-GMP return to a high level 575 

enabling c-di-GMP-bound Clp to bind to the promoter region of rpfB therefore repressing 576 

the transcription of this gene.  577 
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