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Abstract

High-power DC-DC converter will be one of the essential
technologies for the future DC grids. Especially, a three-phase
dual-active bridge DC-DC (3DAB) Converter is highly
suitable for high-power DC systems. Key component within
this converter is the high power transformer operated at a
medium frequency (MF) range. The design and optimization
of this key component is presented in this paper. The
transformer provides galvanic isolation from low voltage
level to medium level or high voltage level and provides
stepping up or down of the output (secondary) voltage. At
first, a design of three-phase medium frequency transformer
is developed. The designed transformer is then validated
using two-dimensional (2D) transient finite element analysis
(FEA) and performance under the non-sinusoidal excitation is
determined. After that, the optimization is carried out, for the
set of selected design variables, in order to enhance the power
density and efficiency of the targeted transformer. Finally, the
performance of the full system, 3DAB converter, is
determined using the parameters of optimized transformer.
Also, two different rated input voltages for 4MW/1kHz three-
phase transformer are considered and analysed in this paper.

1 Introduction

DC grids for offshore wind energy have been receiving
special research attention. Most important advantages of DC
grids for offshore wind farm are low power losses and small
size cable for carrying large amounts of power over long
distances [1, 2]. Using 3DAB conversion system,
furthermore, a bulky 50/60Hz transformer can be replaced by
MF transformer operating at the kilo-hertz range, resulting in
considerable reduction in transformer weight/size. Two
possible configurations, one with V1 = 690V and another with
V1 = 3.3kV, are considered for the DC grid for offshore wind
farm and is shown in Fig. 1. Considering the maximum
voltage obtainable from space vector modulation scheme for
the maximum modulation index of 0.9, the maximum V2’s for
the respective V1’s are 1.1kVand 5.2kV. The DC grid include,
a PWM rectifier that converts the output voltage of wind
turbine into Low-Voltage (LV) DC, a Medium-Voltage (MV)
DC-DC converter located in the wind turbine platform that
boost’s the LV DC to MV DC and an HV DC-DC platform
that again boost’s up the MV DC to HVDC transmission

level. Additional wind turbines can be connected to the
MVDC grid for power collection.
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Wind turbine

5.2kV

PWM
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MV DC-DC
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MVDC Grid MVDC
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Fig. 1 DC grid for offshore wind farm

In this work, a 4MW wind turbine (WT) system is considered
to analyse and validate the proposed systems. Most generators
are developed for rated voltage of 690V but to improve the
efficiency at higher power levels, an alternative solution for
rated voltage of 3.3kV is considered. ABB [3] and GE [4]
have recently developed high power generators for rated
voltage of 3.3kV.
3DAB Converter which is suitable for high-power application
has been studied in [5, 6]. The 3DAB Converter offers a
higher power capability and smaller passive filtering parts
compared to single-phase dual active bridge (1DAB). One
key component of 3DAB Converter is a high-power galvanic
transformer enabling isolation with MV line for a safety
operation and also enabling a soft-switching control which
can reduces the switching losses. Design of conventional
transformers operating at 50/60Hz has been presented in [7-
10]. For high power application, transformers operating at
medium or high frequencies are considered because increase
in operating frequency provides significant reduction in the
transformer’s size and weight leading to reduced
manufacturing cost and overall volume of the system. Design
of medium/high frequency transformer is presented in [11-
16], however, they only consider the design procedure of
single-phase transformer. More recently, design of three-
phase transformer for 3DAB converter topology with the
focus on losses has been developed [6, 16]. The work
presented here not only considers power loss analysis but also
carries out optimization, for maximizing the efficiency, of
three-phase MF transformer operating at 1kHz. Moreover,
comparison between the two voltage levels, 690V and 3.3kV,
is carried out to determine which is the optimal configuration
for the MVDC grid.

2 3DAB Converter

A 3DAB converter topology is depicted in Fig. 2. The 3DAB

Converter contains two active voltage source bridges that are

connected to a MF transformer which is connected in Y-Y

V1 V2
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type to reduce the circulating current and reduce the

unbalanced currents. The primary side bridge converts the dc

input voltage into the MF ac voltage that is applied the MF

transformer and then the voltage at the secondary terminals of

the transformer is rectified by the secondary side bridge.

Fig. 2 A 3DAB converter topology

The MF transformer is providing the galvanic isolation. The

average output power (Po) can be calculated as
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The transformer size and reactive power are determined by

apparent power of Y-Y transformer which can be calculated

as

prmspnT IVS  3 (3)

RMS values of phase current at primary side of the

transformer can be computed from the following
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Substituting Equation (4), Equation (5) and
inpn VV

3

2
 into

Equation (3), the apparent power of the transformer can be

calculated as
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3 Transformer Design and Optimization

The proposed design procedure for the 3DAB MF transformer

is shown in Fig. 3. In the pre-design phase, the 3DAB

converter system is analysed and the basic specifications

(turns ratio, non-sinusoidal converter current waveform,

apparent power, expected efficiency and Bm) for the design of

transformer are determined.

Fig. 3 Design flow-chart of the 3DAB transformer

3.1 Design of Core

Using the peak flux density equation in [8], the core cross

sectional area, Ac can be calculated as
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Where, kf is waveform coefficient which equal to 4.0 for

square waveform. Considering the assumed value for d/a, the

values of a and d can be calculated from Equation 8.

The diagram of the three-phase transformer along with the

cross sectional view of the limb and with detailed dimension

is shown in Fig. 4.

Fig. 4 Detailed dimensions of three-phase transformer

3.2 Design of Window

From current density for the given cooling system, the

primary and secondary conductor cross section areas can be

calculated. In order to keep the skin effect to the minimum,

the conductor diameter is kept smaller than twice the skin
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depth of the operating frequency. If the required diameter is

larger than twice the skin depth, parallel strands are added to

satisfy the condition. Knowing primary and secondary

conductor areas and number of primary and secondary turns,

the total primary and secondary copper areas can be

determined. Total copper area (Aw_cu) is the sum of primary

and secondary copper areas. Initially, the value of window

utilization factor ku is assumed and the window area (Aa) is

calculated as

u

cuw

a
k

A
A

_
2  (9)

Again, considering the assumed value for w/h, the values of w

and h can be calculated from Equation 9.

Using the core cross section area and the window dimensions,

the total core volume (volcore in m3) can be determined as

follows

   92 10643  dawhAvol ccore
(10)

The insulation level must meet with international standards.

Partial discharge (PD) has to be considered at medium

voltage level above 3kV. The insulation design is carried out

using DUPONT™ NOMEX PAPER TYPE insulation with

continuous dielectric stress level not exceeding 1.6kV/mm. A

safety factor of 5 is used in the insulation design. Insulation

thickness for turns, between layers, between windings and

between winding and core is calculated depending upon the

potential difference between them. Using this, total insulation

cross section area (Aw_ins) can be calculated. A new value of

ku, with 10% increased for safety, is calculated using the

Equation 11.

 inswcuw

cuw

u
AA

A
k

__

_

1.1 
 (11)

The calculated value of ku should be greater than the assumed

value, if not, the calculated value is taken as the initial value

and design is repeated. If the no value of ku (greater than 0.3)

satisfies the condition than the design is discarded.

3.3 Calculating Magnetizing Current

Material selected for the core is M-19 29 Gauge. Using the

BH curve of the material and knowing the peak flux density

(Bm) in the yoke and limb, the MMF of the yoke (MMFy) and

MMF of limb (MMFl) can be calculated. The magnetizing

current required to saturate the transformer core to Bm is then

given as
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10% increase in the value of MMF is considered in order to

consider the flux concentration at the corners of the window.

3.4 Calculating Power Loss

With the defined geometric parameters, the resistance of the

primary and secondary are computed in the conventional

manner, and are used to determine the total copper losses

(Pcu).
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where, Rp is primary winding phase resistance, Rs is

secondary winding phase, Iprms is primary winding rms current

and Isrms is secondary winding rms current.

In the present work, the core losses are estimated using a

modified Steinmetz equation given as
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(14)

where kh is coefficient for hysteresis losses, ke is the

coefficient for the eddy current losses, f is the fundamental

frequency.

Ps0 is core loss in W/kg and hence, the total core loss (Ps) is

calculated using the weight of core (weightcore) as

coresscorescore volPweightPP  00 (15)

where, s is mass density of core material.

It is possible to calculate efficiency of the transformer using

the power losses. The resulting efficiency must be higher than

the expected design value. If this performance is not fulfilled,

the design is discarded.

3.5 Optimizing Stray Inductance

In order to ensure soft switching of the 3DAB converter, a

certain series inductance is required. Therefore, the selection

of the stray inductance ( L ) has great impact on the

performance of the 3DAB converter. The smaller L offers a

wide range of soft-switching control for different operating

voltages.  is decreased by decrease in L and hence, the

turn off current on the switches is decreased resulting in

minimizing the switching losses. The maximum value of L

that ensures soft switching of 3DAB converter can be

calculated as
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L can be analytically calculated from the using geometric

dimensions and is given as
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where, MLTP is the mean length of the primary winding, wcu_p

is the width of the primary copper in the window, dins_ps is the

thickness of insulation between primary and secondary; and

wcu_s is the width of the secondary copper in the window.

The resulting transformer L must be smaller than or equal to

the 3DAB converter L . If the condition is not satisfied the

design is discarded. For a 4MVA rated transformer for a

3DAB having 1.1kVDC input rating and 5.2kVDC input

rating, the allowed maximum value of L is calculated as

H2.25 and H563 respectively.

3.6 Design Optimization

In this design optimization, a set of five design variables is

selected to be optimised for the transformer design. The

design variables enlisted below.

1. N1 is the number of turns of primary winding. The

number of turns of secondary winding (N2) can be

calculated using turns ratio.

2. Jp is current density [A/m2] for primary windings.

3. Js is current density [A/m2] for secondary windings.

4. w/h is the ratio of window width to window height.

5. d/a is the ratio of window width to window height.

Window area ratio w/h and core cross sectional area ratio d/a

are required to considered as design variables in order to

optimise the transformer geometry.

Fig. 5 Design Optimization Flowchart

Fig. 5 shows the flowchart showing the transformer design

optimization algorithm. At first, the transformer specifications

are determined from 3DAB converter in pre-design phase. A

given set of design variable is selected and design of

transformer is carried out as described in sections 3.1 to 3.5.

Design that does not satisfy all the conditions specified in

section 3.1 to 3.5 is discarded. The accepted design is

validated using 2D transient FEA for sine excitation. 3DAB

converter simulation is carried out using the stray inductance

of the designed transformer and actual non-sine excitation

waveforms are generated. Using this non-sine excitation

waveform, again a 2D transient FEA is performed to compute

the losses for non-sine excitation. Finally the efficiency is

calculated and if it is greater the desired value the design is

kept or else discarded. This procedure is repeated by varying

the design variables until the full design space is spanned.

Once, the design space is spanned completely, the generated

designs are arranged according to the value of objective

function and an optimal design is selected.

3.7 Objective Function

Most important parameters of designed transformer for 3DAB

are efficiency, magnetizing current, copper losses, core losses

and total weight. Efficiency is required to be maximized

while magnetizing current, copper losses, core losses and total

weight are required to be minimized. So, an objective

function that satisfies this condition is selected for the

optimization procedure and is given by Equation [19].

emax and),,,min(   totmagcucore WIPP (18)

totmagcucore WIPP
obj


 e

fun


(19)

4 Optimized Transformer Designs

Optimal design of transformer is generated for 1.1kVDC and

5.2kVDC rated input voltage using the optimization algorithm

discussed in section 3.6. Fig. 6 shows the variation of the

efficiency with respect to total weight and stray inductance

for both the 1.1kVDC and 5.2kVDC rated input voltage. Pink

squares show the selected designs for each voltage rating.

Fig. 6 Plot of various design scenarios
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Design details of these transformers, for 1.1kVDC and

5.2kVDC, are given in Table 1.

Input rating

1.1kVDC 5.2kVDC

Winding

Jp[A/mm²] 6 6

Js[A/mm²] 6 6

N1:N2 20:727 70:538

Geometry

[mm]

d/a 0.5 0.5
w/h 2.5 2.5

a [mm] 103.9376 120.7936

d [mm] 51.9688 60.3968

w [mm] 214.7704 192.2856

h [mm] 536.9261 480.7140

Wtr [mm] 741.3536 746.9520

Htr [mm] 744.8013 722.3012

Dtr [mm] 51.9688 60.3968

 HL 10.79 178.71

Volume [m³] 0.0167 0.02142
Total [kg] 412.33 415.23

Table 1: Design Details of Optimal Transformers

The designed transformers are validated using 2D transient

FEA. Table 2 shows the comparison between the results

obtained analytically and obtained by 2D transient FEA.

Input rating

1.1kVDC 5.2kVDC

Losses

Core[kW]
Analytical 12.85 16.53

FEM 11.81 14.99

Winding
[kW]

Analytical 27.30 21.66

FEM 27.24 21.69

Imag[A]
Analytical 226.54 60.17

FEM 234.73 46.34

η[%]
Analytical 98.90 98.92

FEM 98.95 99.01

Bm [T]
Assumed 1.2 1.2

FEM 1.1829 1.1565

Table 2: Performance Comparison of Optimal Transformers

The performance comparison presented here shows a good

match between the analytical and the FEA.

The stray inductances of the optimized transformer are used

for the 3DAB converter simulation. The resulting waveforms

are shown in the Fig. 7 for both 1.1kVDC and 5.2kVDC rated

input voltages.

The non-sinusoidal excitation waveforms, generated from

3DAB converter simulation, are then used to perform a 2D

transient FEA to determine the performance of the designed

transformer for the actual (non-sinusoidal) excitation. The

plot of time average total losses of the transformer designed

for 1.1kVDC and 5.2kVDC under sine wave excitation and

non-sine wave excitation are shown in Fig. 8 and Fig. 9

respectively.

Fig.7. 3DAB simulation for the optimized transformer (a)

1.1kVDC rated voltage and (b) 5.2kVDC rated voltage

(a) (b)

Fig. 8 Average total losses of (a) sinusoidal and (b) non-

sinusoidal excitations for a 1.1kVDC rated input voltage

(a) (b)

Fig. 9 Average total losses of (a) sinusoidal and (b) non-

sinusoidal excitations for a 5.2kVDC rated input voltage

The comparison of losses for the sinusoidal and non-

sinusoidal excitation for the optimized transformer designed

for 1.1kVDC and 5.2kVDC rated input voltage are shown in

Table 3 and Table 4 respectively.

4MVA, N1=20 Non-sinusoidal Sinusoidal

Core loss [kW] 13.159 11.811

Cu loss

[kW]

Primary 9.376 7.813

Secondary 17.861 14.887

Table 3: Comparison of losses between sinusoidal and non-

sinusoidal for 1.1kVDC rated input voltage



6

4MVA, N1=70 Non-sinusoidal Sinusoidal

Core loss [kW] 16.654 14.993

Cu loss

[kW]

Primary 6.982 5.818

Secondary 14.706 12.207

Table 4: Comparison of losses between sinusoidal and non-

sinusoidal for 5.2kVDC rated input voltage

5 Conclusions

Isolation transformer is a key component of 3DAB DC-DC

converter which is again an important part of DC-DC

conversion (DC grid). Transformer is used for not only

providing the galvanic isolation but also to change the voltage

levels i.e. step up or step down (essential for power

transmission). The work presented deals with the design and

optimization of the transformer for 3DAB converter under the

actual (non-sine) excitation for a 4MVA transformer of

3DAB converter, having 1.1kV and 5.2kVDC rated input

voltages respectively. The results obtained from the analytical

design are compared with the 2D transient FEA and shows a

good match. The analytical results are always overestimating

and hence, the final design would always perform better than

the expectation. Targeted efficiency was 98.5% and the

designed transformers for the 1.1kVDC and 5.2kVDC were

able to achieve 98.95% and 99.01% efficiency respectively.

There is increase in the core losses, from sinusoidal to non-

sinusoidal excitation, by approximately 15%, and hence, it is

essential to carry out the performance analysis for the actual

3DAB converter waveforms. The design optimization takes in

to the account the non-sinusoidal excitation generated by

simulation inside the optimization algorithm for the

performance calculation of the designed transformer.

Nomenclature

anV Phase voltage on primary side [V]

swf Switching frequency [Hz]

 Phase shift angle [rad]

sw Switching frequency [rad/s]

a Width of core sectional area [mm]

d Length of core sectional area [mm]

e Estimated efficiency [%]

magI Magnetizing Current [A]

totW Total weight of transformer [kg]

References

[1] D. Jovcic and N. Strachan, "Offshore Wind Farm with
Centralised Power Conversion and DC Interconnection,"
IET Generation Transmission & Distribution, volume 3,
pp. 586-595, (2009).

[2] D. V. H. D. Jovcic, K. Linden, J.-P. Taisne, and G.
Wolfgang, "Feasibility of DC Transmission Networks,"
2nd IEEE PES International Conference and Exhibition,
pp. 1-8, (2011).

[3] [Online]. Available: http://new.abb.com/motors-
generators

[4] [Online]. Available: http://www.ge-energy.com/
[5] R. Dedoncker, D. M. Divan, and M. H. Kheraluwala, "A

3-Phase Soft-Switched High-Power-Density DC-DC
Converter for High-Power Applications," IEEE
Transactions on Industry Applications, volume 27, pp.
63-73, (1991).

[6] N. Soltau, D. Eggers, K. Hameyer, and R. W. De
Doncker, "Iron Losses in a Medium-Frequency
Transformer Operated in a High-Power DC-DC
Converter," IEEE Transactions on Magnetics, volume
50, (2014).

[7] A. J. Moses and B. Thomas, "Problems in Design of
Power Transformers," IEEE Transactions on Magnetics,
volume 10, pp. 148-150, (1974).

[8] M. G. Say, Alternating Current Machines, Fifth Edition
ed.: Longman Scientific & Technical, (1983).

[9] J. W. Nims, R. E. Smith, and A. A. ElKeib, "Application
of a genetic algorithm to power transformer design,"
Electric Machines and Power Systems, volume 24, pp.
669-680, (1996).

[10] P. S. Georgilakis, "Transformer Design Optimization,"
Spotlight on Modern Transformer Design, pp. 331-376,
(2009).

[11] G. Ortiz, J. Biela, and J. W. Kolar, "Optimized Design
of Medium Frequency Transformers with High Isolation
Requirements," 36th Annual Conference of the IEEE
Industrial Electronics Society, pp. 631-638, (2010).

[12] D. Vinnikov, J. Laugis, and I. Galkin, "Middle-
Frequency Isolation Transformer Design Issues for the
High-Voltage DC/DC Converter," IEEE Power
Electronics Specialists Conference, pp. 1930-1936,
(2008).

[13] S. Meier, T. Kjellqvist, S. Norrga, and H.-P. Nee,
"Design Considerations for Medium-Frequency Power
Transformers in Offshore Wind Farms," 13th European
Conference on Power Electronics and Applications,
pp.1-12, (2009).

[14] K. D. Hoang and J. Wang "Design Optimization of High
Frequency Transformer for Dual Active Bridge DC-DC
Converter," Xxth International Conference on Electrical
Machines (ICEM), pp. 2311-2317, (2012).

[15] J. Zhang, Y. Du, Z. Li, and P. Wang, "Design of a
Medium Frequency, High Voltage Transformer for
Power Electronic Transformer," IEEE Transportation
Electrification Conference and Expo (ITEC) Asia-
Pacific, pp. 1-5, (2014).

[16] C. Meyer, "Key Components for Future Offshore DC
Grids," PhD. dissertation, Institute for Power Electronics
and Electrical Drives, RWTH Achen University, (2007).


