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1. Abstract

Problems that result into locally non-differentiable and hence non-smooth

state-space equations are often encountered in engineering. Examples include

problems involving material laws pertaining to plasticity, impact and highly

non-linear phenomena. Estimating the parameters of such systems poses a

challenge, particularly since the majority of system identification algorithms5

are formulated on the basis of smooth systems under the assumption of observ-

ability, identifiability and time invariance. For a smooth system, an observable

state remains observable throughout the system evolution with the exception of

few selected realizations of the state vector. However, for a non-smooth system

the observable set of states and parameters may vary during the evolution of the10

system throughout a dynamic analysis. This may cause standard identification

(ID) methods, such as the Extended Kalman Filter, to temporarily diverge and

ultimately fail in accurately identifying the parameters of the system. In this

work, the influence of observability of non-smooth systems to the performance

of the Extended and Unscented Kalman Filters is discussed and a novel algo-15

rithm particularly suited for this purpose, termed the Discontinuous Extended

Kalman Filter (DEKF), is proposed.
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2. Introduction

Systems with pronounced non-linearities are often encountered in engineer-

ing. The task of accurately identifying the parameters of such systems is often20

challenging. For one, it is well known that the convergence of commonly em-

ployed methods, such as the Extended Kalman Filter, i.e., the most widely

employed extension of the Kalman Filter ([1]) to non-linear systems, depends

on the initial values assumed for the states, the parameters and the covariance

matrix. An improvement of the EKF , namely the Unscented Kalman Filter,25

was suggested by Julier and Uhlmann in [2]. This variant achieves rapid con-

vergence by additionally alleviating the need to evaluate derivative quantities

and Jacobians.

An implied assumption of any system identification method is however that

the dynamic states of the system and the time-invariant parameters are observ-30

able ([1, 3]) and identifiable ([4, 5]) respectively. In other words, the augmented

state vector created by the underlying dynamic states and the parameters is

observable ([6, 7]). While a non-linear system with smooth state-space and

measurement equations may either be observable or unobservable for a specific

measurement setup, the same does not apply for systems with non-differentiable35

state-space equations. In fact, it was shown in [8] that non-smooth systems that

can be separated into smooth branches may result into some of the parameters

being identifiable within some branches and unidentifiable in others. This work

also demonstrated how, despite the local unidentifiability of certain parame-

ters at a given time interval, the parameters of the overall system may still be40

identified.

However, as noted in [9], the Kalman-Filter is expected to diverge for un-

observable states or parameters and the same would apply for its non-linear

alternatives, the EKF and UKF , for the case of unobservable non-linear prob-

lems. Modifications of the Kalman filter that may allow for the simultaneous45

identification of the input force ([10]) and methods based on observers of similar

nature ([11, 12]) are also liable to such effects. In the case of non-smooth sys-
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tems in particular, the fact that a parameter may be unidentifiable over some

time interval, may also result in the divergence of the predicted values when

employing these methods during this interval. Since these methods have been50

developed under the assumption of observability for all states and hence identifi-

ability of the parameters, the overall convergence of the algorithms is inevitably

adversely affected. It is further noted that within the context of engineering,

non-smooth systems are often associated with plastic response, impact or slid-

ing and phenomena pertaining to damage propagation and failure. Identifying55

the latter is the topic of interest of several recent works, e.g., [13, 14, 15].

In this work, the effect of the observability properties of non-smooth systems

in the convergence of the EKF and UKF is studied. Moreover, a modified

version of the EKF is suggested, which is able to take the piecewise notion of

observability of these systems into consideration. Based on this approach, the60

filter operates exclusively on observable states within respective intervals, while

the parameters that are unidentifiable during these intervals are maintained

time invariant. The method is termed the Discontinuous Extended Kalman

Filter, DEKF .

The proposed method is compared against the EKF and UKF for selected65

non-smooth problems that involve material plasticity and impact. The examples

demonstrate that the suggested approach substantially outperforms the stan-

dard EKF in such problems, further illustrating the key role of observability

for non-smooth problems. Useful conclusions on why standard methods, such

as the EKF and UKF may diverge in such problems are drawn.70

3. Non-Smooth Dynamical Systems

A non-linear system with state variables xt, time-invariant parameters θ,

known input vector u, and measurement vector y can in general be described

by the following system of equations:

ẋt = E(xt,θ,u), θ̇ = 0, y = G(xt,θ,u) (1)
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where E and G designate the non-linear state-space and measurement functions75

respectively. For the purposes of System Identification, the state-space and

measurement equations shown in equation (1) can be written in an augmented

form by introducing the state vector x = [xt,θ]:

ẋ = e(x,u), y = g(x,u) (2)

In the latter representation one treats both the dynamic states and the param-

eters of the system as states of the augmented system. A dynamical system is80

further characterized as analytic, or smooth, when the state-space equations (2)

are continuous and infinitely differentiable. Very often however the state-space

equations of physical models may not be analytic, either due to discontinuities in

the state-space equation or in their derivatives. In this paper, we deal with mod-

els for which the state-space equations are continuous, but not differentiable,85

and whose state-space equations can be separated into smooth, i.e., continuous

and infinitely differentiable, branches of the form:

ẋ = e1(x), when x ∈ Rn1
...

ẋ = el(x), when x ∈ Rnl

(3)

where ei(x) is an analytic set of functions within Rni . It should be noted that

at a specific time instance the state has a given realization corresponding to a

single branch of equation (3). As the system evolves dynamically over time, it90

is expected to shift between the individual branches. This transition between

branches will be referred to as a dynamic event, and the corresponding time

instance as the time of the event.

3.1. Observability of Non-Smooth Dynamical Systems

The augmented representation of equation (2) admits the implementation of95

observability assessment tools ([3, 16]) on the augmented system ([17, 7, 6]) in
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order to deduce the observability of both the dynamic state xt and parameter

vector θ. As discussed in [8], for a smooth system that is observable all the

states are observable and the time-invariant parameters in θ are identifiable.

On the other hand, if a parameter is unobservable, it is unidentifiable, and may100

not be identified via a system identification procedure. It is reminded that the

terms observability and identifiability refer to the states and parameters being

at least locally observable and identifiable, while the term unobservability and

unidentifiability signify that the states or parameters do not have the corre-

sponding properties locally, as more thoroughly explained in [8]. Furthermore,105

the property of identifiability considered in this paper guarantees finiteness of

solutions for that parameter, but not uniqueness (i.e., global identifiability) and

does not attempt to enumerate the number of finite solutions, as for example is

performed in the work of [18, 19].

The previous remarks however are directly applicable to the case where the110

state-space and measurement equations of the system are at least analytical,

i.e., infinitely differentiable. For the systems examined herein this condition is

not satisfied. The observability of such systems has been discussed in [8]. The

method proposed in that work, involves the study of the observability of each of

the smooth subsystems. Since each subsystem is analytic within that branch,115

geometric observability algorithms can be used to deduce their observability,

as for example the Observability Rank Condition (ORC [3]). The algorithm

results into characterizing the system corresponding to each branch either as

observable, for which all the states are observable, and hence the parameters are

identifiable, or as unobservable, which means that not all states are observable,120

and hence not all parameters are necessarily identifiable. In general, separating

the states of an analytic system into observable and unobservable sets requires

a non-linear transformation ([20]). However, for the systems examined herein

it is further assumed that for each of the subsystems i, we can further separate

the state vector x into observable and unobservable components, denoted as xoi125

and xui, in a straightforward manner.

If the union of the observable components from all subsystems is a strict sub-
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set of the state vector x (∪li=1x
oi ⊂ x), i.e., does not contain at least one of the

components of x, then it may be concluded that these uncontained components

of x are unobservable and cannot be identified via a System Identification algo-130

rithm. If on the other hand the union of the observable components is the state

vector x, ∪li=1x
oi = x, then each component of the state vector x could poten-

tially be identified within the corresponding smooth branch within which it is

observable. Hence, if the response of the system includes at least one branch for

which a parameter is identifiable, then a system identification algorithm could135

potentially succeed in identifying the value of that parameter. In this paper,

the latter case of systems is studied, i.e., systems for which the parameters of

the model may be inferred via an appropriate system identification method.

4. Extended Kalman Filter

The Extended Kalman Filter, EKF , algorithm is an extension of the stan-140

dard Kalman Filter ([1]) to non-linear systems. Let us assume a dynamical

system whose discrete state-space and measurement equations are written as:

xk = f(xk−1,uk−1) + wk−1, yk = h(xk,uk) + vk (4)

where wk is the process noise and vk is the observation noise, both of which

are considered to be white Gaussian noise processes with covariance matrices Q

and P respectively. The filter then involves the steps included in Table 1.145

As discussed in [2], the EKF algorithm propagates the mean value and

covariance of the Gaussian random vector x by linearizing the system around

the mean at a specific time step. Thus, at a specific step of the algorithm, the

time and measurement update steps are based on a single realization of the

state vector, i.e., the estimated mean value of the distribution x̂k. The real150

realization of the state vector at that step, xk, lies in a specific subspace Rni ,

of Rn, and hence the corresponding smooth state-space equations are the ones

corresponding to subsystem i of equation (3). It is now assumed that x ∈ Rni for
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Table 1: The steps of the EKF algorithm.
EKF

Initialization at time t0: x̂0 = E[x0]

• Time-Update:

1. Predicted mean and covariance:

x̂k|k−1 = f(x̂k−1|k−1,uk−1)

Pk|k−1 = Fk−1 Pk−1|k−1 F
T
k−1 +Q

(5)

where Fk−1 = ∂f
∂x
|(x̂k|k−1,uk−1) and Q is the process noise matrix

• Measurement Update:

2. Calculation of Kalman Gain:

Sk = HkPk|k−1H
T
k +R

Kk = Pk|k−1H
T
k (Sk)

−1

where Hk = ∂h
∂x
|(x̂k|k−1,uk−1) and R is the observation noise matrix

3. Improve predictions of the state and covariance using the latest observations:

x̂k|k = x̂k|k−1 +Kk (zk − h(xk|k−1))

Pk|k = (I−KkHk)Pk|k−1

(6)

a series of consecutive time steps defined in the time window [t1, t2]. During this

time interval, the states can be separated into the observable and unobservable155

part xoi and xui. Moreover, during this interval the EKF cannot be expected

to converge towards an accurate estimation of the xui. This has already been

noticed in [9] for the case of smooth unobservable systems. Hence, during such

intervals we can at best expect for the observable part of the state, xoi, to

converge.160

This however raises the question of how to efficiently treat the unobservable

part during such an interval. The focus of this paper is on systems for which

the unobservable states are a subset of the model parameters, which hence

are unidentifiable, and it is argued that the best option is to update only the

identifiable parameters via the EKF , while retaining the estimates for the mean165

values of xui constant. This calls for the implementation of a modified version

of the EKF for the non-smooth systems examined here.
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5. Unscented Kalman Filter

The UKF succeeds in simulating non-linear behavior by approximating the

state as a Gaussian random variable (GRV), represented by a set of carefully170

chosen deterministic points known as the Sigma Points. This section only pro-

vides a basic overview of the filter equations; more details can be found in [2, 21]

and previous work of the authors ([22, 23, 24]).

Consider the general dynamical system described by equations (4). Given

the state vector at step k−1 and assuming that this has a mean value of x̂k−1 and175

covariance Pk−1, we can calculate the statistics of xk by using the Unscented

Transformation, or in other words by computing the set of 2L+ 1 sigma points

χik with associated weights Wi. The steps of the method are summarized in

Table 5

At this point it should be noted that in comparison to the EKF , the UKF180

calculates the mean and standard deviation without the need to linearize the

state-space or measurement equations. This results in a more accurate propaga-

tion of these properties and usually in a faster convergence rate of the method

in comparison to the EKF . However, the unobservable states xui may still

diverge during the corresponding intervals. Unlike the EKF , the sigma points185

used by the UKF do not necessarily lie in a single system branch at a given

time step and hence the observability properties might differ for the subsystem

corresponding to each sigma point. However, it should be reminded that the

real dynamic system lies at that time within a single smooth branch i of cor-

responding unobservable states xoi. The overall convergence of the method is190

ensured only when a parameter converges faster during identifiable time steps,

than it diverges during unidentifiable steps.

6. The Discontinuous Extended Kalman Filter

As noted in the previous sections, during a specific time instance only part of

the state vector may be observable and therefore the EKF algorithm is expected195

to converge only for that observable part xoi. The predictions furnished during
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UKF

Initialization at time t0: x̂0 = E[x0]

• The Unscented Transform

1. Augment the state vector to include the noise parameters:

xαk−1 = [xTk−1 w
T
k−1 vTk−1]

T

2. Formulation of the Sigma Point vector:

χαk−1 = [x̂αk−1 x̂αk−1 +
√

(L+ λ)Pα
k x̂αk−1 −

√
(L+ λ)Pα

k ]

where λ is a UKF parameter,

L is the dimension of the state vector x and Pα = diag(P,Q,R)

• Time-Update:

3. Propagation of the Sigma points through the system model:

χik|k−1 = f(χik−1,χ
w,i
k−1), i = 0, .., 2L

4. Predicted mean and covariance:

x̂k|k−1 =
∑2L
i=0W

m
i χ

i
k|k−1 and

Pk|k−1 =
∑2L
i=0W

c
i [χ

i
k|k−1 − x̂k|k−1][χ

i
k|k−1 − x̂k|k−1]

T

• Measurement Update:

5. Measurement Mean:

ŷk|k−1 =
∑2L
i=0W

m
i Y i

k|k−1 and Yk|k−1 = h(χik|k−1,χ
η,i
k−1)

6. Calculation of Kalman Gain:

Kk = Pxy
k (Pyy

k )−1

where:

Pyy
k =

∑2L
i=0W

c
i [Y

i
k|k−1 − ŷk|k−1][Y

i
k|k−1 − ŷk|k−1]

T and

Pxy
k =

∑2L
i=0W

c
i [χ

i
k|k−1 − x̂k|k−1][Y

i
k|k−1 − ŷk|k−1]

T

7. Improve predictions of the state and covariance using the latest observations:

x̂k = x̂k|k−1 +Kk(yk − ŷk|k−1)

Pk = Pk|k−1 −KkP
yy
k KT

k

Table 2: The steps of the UKF algorithm.

this interval by the EKF for the unobservable part xui, which in this work is

assumed to be the unidentifiable parameters, are non-optimal and it is also quite

likely that during these time intervals the values of xui may very well diverge

from the real solutions. In fact, these are expected to be less optimal than the200

initial value of that parameter in the beginning of the interval. Hence, during

such intervals it is argued that the optimal choice would be to update only the

observable part of the state. To do so, equation (3) is rewritten as:

M1 : ẋo1 = e1(xo1,u) y1 = h1(xo1,u)

...

Ml : ẋol = el(x
ol,u) yl = hl(x

ol,u)

(7)
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where models M1, · · · , Ml are the smooth observable models that occur using

only the observable states xoi for each branch in (3). Each of these models205

are hence observable and the original state vector comprises of the union x =

∪li=1x
oi. It should be noted that the size of these state vectors for different

models is not the same and that the dimension of the states of model Mi,

dim(Mi) will in general be equal to dim(x)− dim(xui).

Each model is then accompanied by an event condition, i.e., an equation for210

the states that defines the transition from model Mi to one of the neighboring

models Mj defined as gi→j(x) = 0⇒ gi→j(x
oi,xui) = 0. It should also be noted

that while the unobservable states xui do not appear in equations (7) they might

appear in the transition equations between the models. As mentioned earlier,

transitions between models are herein denoted as events.215

The following modified version of the EKF algorithm, termed the Discon-

tinuous Extended Kalman Filter, DEKF , is now formulated for such systems:

Let us assume that at a given time instance ts the estimated value for the

states is x̂, and that according to that mean realization for the states, the

corresponding model that describes the behavior of the body is Mi. The ob-220

servable part of the states then has a realization x̂oi and the unobservable part

x̂ui. Hence, the covariance matrix of the states x may be brought in the form

P =

 Poo (Puo)T

Puo Puu

.

The state-space equations of (7) are rewritten in discrete form:

Mi : xoik = fi(x
oi
k−1, uk−1) + wk−1 yk = hi(x

oi
k ,uk) + vk (8)

It is also assumed that model Mi is the observable model in the interval225

[ts, tf ], which generally comprises a subset of the the sampling interval [tk, tk−1].

The equations for the time and measurement updates of the observable compo-

nents are obtained by applying the EKF :

Time Update of the observable components:

10



x̂oikf |k−1 = fi(x̂
oi
ks|k−1,uks)

Pookf |k−1 = Fk−1 P
oo
ks|k−1 F

T
k−1 + Qkf |ks

(9)

where Fk−1 = ∂fi
∂xoi |(x̂oi

ks|k−1
,uks )

and Qkf |ks is the process noise having taking230

into account the time increment ts − tf . The time update (9) is applied until

tf becomes equal to tk, at which point the measurement update is applied.

Assuming that at that time instance, tk, the observable model is Mi this step

becomes:

Measurement Update of the observable components:235

Sk = HkP
oo
k|k−1H

T
k + R

Kk = Pook|k−1H
T
k (Sk)−1

x̂oik|k = x̂oik|k−1 + Kk (zk − h(xoik|k−1))

Pook|k = (I−KkHk)Pook|k−1

(10)

where Hk = ∂hi

∂xoi |(x̂oi
k|k−1

,uk−1).

During the interval [ts, tf ] the estimates of the unobservable states x̂ui are

maintained unaltered, since in this work these correspond to the unidentifi-

able subset of the parameters θ. The corresponding terms in the covariance

[Puu] will also remain constant. However, the cross-covariance terms [Puo] will240

change, due to the change of the observable variables xoi. In order to evaluate

this cross-covariance matrix the Schmidt-Kalman Filter is applied ([25, 26]).

The Schmidt-Kalman Filter provisions for the presence of parameters that are

purposely maintained unaltered during both the time and measurement update

steps. While this is done in the original method ([25]) so as not to increase245

the computational intensity of the problem, in the suggested method this aims

at preventing the divergence of the unobservable parameters. Further noting

that the measurement equations for any model Mi in (8) do not include the

unobservable terms, it is apparent that these terms do not affect x̂oi and Poo

but only Puo, which evolves according to the equations:250

Time-Update of Puo:
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Puokf |k−1 = Puoks|k−1Fk−1 (11)

Measurement-Update of Puo:

Puok|k = ((Puok|k−1)T −KkHk (Puok|k−1)T )T (12)

using the definitions of Fk−1, Hk and Kk from equation (10). Hence, during

any time interval [ts, tf ] all components of x̂ and P may be defined. Following

the assumption that model Mi is valid until time instance tf , the value of x̂ at255

that time instance will define a transition from Mi to Mj (event). Two different

cases may be distinguished:

1. The event occurs during the Time Update step (9).

This corresponds to a dynamic event, describing a transition between models

due to the predicted dynamics of the system. The time of this event is deter-260

mined herein using the event function of the Matlab ode solvers ([27, 28]). The

event function is able to accurately determine the time instance tf at which

the zero crossing of the event function gi→j(x̂) = 0 occurs. In this paper the

Runge-Kutta 4-5 pair solver (ode 45 [29]) is employed. When such an event

is detected, the modified EKF solver temporarily halts at that time instance265

tf , so that the model is switched. The time-update equations (9) and (11) are

employed, without applying the measurement-update equations (10) and (12),

since the measurement becomes available in the future time tk. The temporary

output of the algorithm is hence: x̂kf |k−1 and Pkf |k−1.

2. The event occurs during the Measurement Update step (10).270

This implies that a transition from model Mi to Mj occurred when applying

the measurement-update equation (10), indicating that this event occurred at

a sampling step (tf = tk). The DEKF temporarily halts at that instance in

order to perform a model switch. The output of the algorithm is x̂ = x̂k|k and

the covariance is evaluated after the measurement update, i.e., using Pook|k and275

Puok|k.
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In both previous cases, the algorithm will subsequently need to switch from

model Mi to model Mj and to re-enter the DEKF after setting ts = tf . Re-

gardless of the nature of the event, i.e., whether it occurred during the time-

or measurement-update step, a switch from one model to another does occur.280

It is assumed again that a switch is performed from Mi to Mj and hence the

observable and unobservable states switch from xoi and xui to xoj and xuj re-

spectively. Hence, one needs to select the elements of x̂ and P that correspond

to the observable components, which will be updated according to equations

(9) and (10). The unobservable states and corresponding covariance terms are285

held constant, while the Puo terms are updated according to equations (11) and

(12). Table 3 summarizes the method used for the unobservable and observable

parts of x̂ and P. A schematic representation of the DEKF is presented in

Figure 1.

Mi ts Time Event

Time update to
next sampling

step tk

Change Model
ts = tf

Measurement
Update

Measurement
Event

ts = tk

Change Model

Time update to
tf

ts →tk

Y
es

No

Y
es

No

Figure 1: Schematic representation of the DEKF .
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Algorithm Used Time Update/Measurement Update Equation

x̂oi, Poo EKF (9) & (10)

x̂ui, Puu Retain Invariant -

Puo Schmidt-Kalman (11)& (12)

Table 3: Equations used to update observable and unobservable parts of x̂ and P.

6.1. Switching Condition290

At any given time the real dynamics of the system lay within a specific

smooth branch and are hence fully described by the corresponding observable

model Mi. Since the switching condition of the DEKF gi→j(x̂) = 0 is a function

of the estimated value of the state vector x̂, the model used at a given time by

the DEKF is also an estimate M̂i of the actual model Mi. Hence, the following295

two cases should be distinguished:

1. Mi ≡ M̂i. In this case the DEKF is optimal, as the estimated model uses

the smooth branch that generated the data at that time instance.

2. Mi 6= M̂i. Since the real and estimated models are different the estimated

as observable states x̂oi will not converge during such intervals towards300

their real values. This is owed to the use of a smooth subsystem, which

is different to the one generating the data. This is however a problem for

both the DEKF and EKF , as in both methods the subsystem which is

used is based on the estimated values of x̂. The effective difference in the

two approaches lies in the treatment of the unidentifiable parameters x̂ui.305

However, in the case of the EKF although taken into account, these do

not affect the measurement equation (6). Therefore, even though some of

them would be identifiable, if the estimated state vector where to lie within

the correct smooth branch, their estimation would still not converge even

when employing the whole state-vector as in the original EKF . Hence,310

during such intervals although sub-optimal, the DEKF does not perform

inferior to the original EKF method.

The suggested DEKF method can also be related to switching Kalman

Filters ([30]) for which the the effect of choosing an estimated model M̂i has

14



been investigated in greater depth. For the purposes of this paper, it should be315

kept in mind that the DEKF is still an improvement over the EKF regardless

of the estimated model M̂i as explained previously.

7. Applications

7.1. The Impact Problem

The first example investigates a drop weight problem. The ground is simu-320

lated by means of vertical springs and dampers, with mass normalized stiffness

and damping k and c respectively, which are active only when the body is in

contact with the ground, i.e., when the relative position of the body with re-

spect to the undeformed surface of the ground, as defined in Figure 2 is positive.

It is also assumed that the ground and its undeformed surface have a common325

vertical acceleration ẍg and that gravity g = 9.81m/sec2 acts on the body.

g

Figure 2: A body of mass m falling on a ground simulated via springs k and damper elements

c that are only active during contact.

Defining x1 to be the relative position of the body with respect to the unde-

formed ground surface, the state-space and measurement equations describing

this problem become:
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ẋ1 = x2

ẋ2 =

 −(k x1 + c x2) + g − ẍg , when x1 >= 0

g − ẍg , when x1 < 0

k̇ = 0

ċ = 0

y = x1

(13)

The resulting system for k = 1000 [1/sec2] and c = 10 [1/sec], is modeled for a330

ground acceleration input and part of the input and simulated output is then

employed for identification of the system properties, as indicated in the following

Figure 3. Note that while in the beginning of the simulation the system lies at

rest, for the used segment of the measured data the actual initial-conditions are

in fact non-zero. The input and measurement vectors are contaminated with335

zero mean Gaussian white noise vectors. The noise to signal rms ratio for the

input is 1%. The measurement noise rms corresponds to 1.2% of the rms of

the positive part of the measurement signal. The negative part of the signal,

corresponding to the free-flight response of the body, is several times larger

than the response of the body when the springs and dampers are active and is340

therefore not accounted for in the rms calculation.
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Figure 3: (a) Ground acceleration ẍg and (b) relative displacement x1. Red color denotes the

part of the input and output vectors that were considered as measured for the identification

algorithms.
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The state-space equations (13) are not smooth and can be separated into two

smooth branches ([8]) depending on the value of x1 . When, x1 >= 0, i.e., when

there is contact between the body and the deformable ground, it can be shown,

using the ORC, that all states and parameters (x1, x2, k, c) are observable. On345

the other hand, when x1 < 0, i.e., when the body experiences free-flight, (x1, x2)

are observable and (k, c) are unobservable and hence unidentifiable. This, not

unexpectedly, implies that one cannot obtain useful information regarding the

spring and the damper when the body experiences free-flight. For use with the

DEKF two models are determined:350

M1 :

ẋ1 = x2

ẋ2 = −ẍg + g

y = x1

M1 →M2 : x1 = 0 (− → +)

(14)

M2 :

ẋ1 = x2

ẋ2 = −(k x1 + c x2)− ẍg + g

k̇ = 0

ċ = 0

y = x1

M2 →M1 : x1 = 0(+→ −)

(15)

Hence, xo1 = [x1, x2], xu1 = [k, c], xo2 = x and xu2 = ∅. The system will

be identified using the normal EKF , the UKF and the DEKF . All three

algorithms operate under the assumption of the correct process and observation

noise, although this is not a requirement of any of the three methods. The

following initial conditions are assumed: x1(0) = 9.81/2000, x2(0) = 0, k(0) =355

2000, c(0) = 20 and P(0) = 2×D(x(0))+10−8 I, where D(x(0)) is the diagonal

matrix created by the initial realization of vector x.
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Figure 4: Identified displacement x1 from the three methods versus measured signal.
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Figure 5: Identified k and c from the three methods.
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As observed in Figures 4 and 5 the traditional EKF method fails to pro-

vide a reasonable result. This is expected since in the first time steps, during

which in reality the body experiences free-flight, the algorithm delivers a diver-360

gent prediction for parameters k and c. Even when contact with the ground is

re-engaged the algorithm, which during this interval could potentially start con-

verging towards the correct solution, fails to do so. This behavior is generally

expected for the EKF , firstly because convergence during the observable time

steps is not guaranteed to be faster than divergence during the unobservable365

steps, and secondly because even during an observable step the convergence of

the EKF depends on the initial guess adopted for both x̂ and P.

On the other hand, as observed in Figures 4 and 5 the DEKF converges

towards the true solution. Unlike the EKF , the algorithm does not shift the

values of k and c when the body experiences uplift, but only when contact is370

estimated to occur between the body and the ground according to the values

of x̂. At this point, it should be reminded that a model is chosen according to

the values of x̂, hence there are time instances during which the body might

experience uplift while the model used is that for contact and vice versa. While

these periods of miss-match between the real dynamics and the DEKF estimate375

are not contributing towards the convergence of the algorithm, it should be noted

that these are generally short and hence do not lead to divergence. Finally, when

comparing the DEKF to the traditional EKF , the former is able to ‘correct’

the values of k and c for a longer period than the EKF and hence benefits from

more time intervals during which these parameters are observable.380

Finally, it need be mentioned that the UKF algorithm also succeeds in iden-

tifying the correct solution. It is reminded here that the unidentifiable parame-

ters xui may also diverge during the corresponding intervals when employing the

UKF . Moreover, both the EKF and UKF algorithms are designed on the basis

of observability for all states. Hence, the rate of divergence of the unidentifiable385

parameters is not a known or well-studied property of the methods. On the

other hand, the rate of convergence of the identifiable parameters is commonly

faster for the UKF as opposed to the EKF . The fact that the UKF converges
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overall for the specific problem studied and the input and measurements used,

indicates that the rate of convergence for the parameters during identifiable in-390

tervals happens to be faster than the corresponding rate of divergence during

unidentifiable intervals.

This first example demonstrates one of the main points of this paper, which is

the potentially suboptimal performance of the EKF in non-smooth problems due

to its divergence during unobservable intervals. The proposed method DEKF395

remedies this by switching between observable models and achieves an accurate

estimate for all the parameters. This point will be further illustrated in the

following examples.

7.2. Non-linear hysteretic Bouc-Wen model

In this example the hysteretic system illustrated in Figure 6 comprising a400

Bouc-Wen spring of mass normalized stiffness k and linear damping c is exam-

ined.

Figure 6: Mass on a Bouc-Wen Spring.

The relative displacement x of the body with respect to the ground is consid-

ered as the measured quantity. The observability of this system was examined
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in [8]. The equations of motion are formulated as:405

ẍ+ k r + cẋ = −ẍg

ṙ = ẋ− β |ẋ| |r|ν−1 r − γ ẋ |r|ν
(16)

where k is the stiffness of the spring, c the damping coefficient, and β, γ and

ν are the parameters of the Bouc-Wen model. The term ṙ can be re-written as

ṙ = ẋ− ẋs, where xs is the displacement of the slider and ẋs = β |ẋ| |r|ν−1 r−
γ ẋ |r|ν . Hence, r can be thought of as the displacement of the elastic spring.

As stated in that paper the dynamic equations of motion of the system can be410

separated into four smooth branches:

(A) : ṙ = ẋ− β ẋ rν − γ ẋ rν , for ẋ > 0 & r > 0

(B) : ṙ = ẋ+ β ẋ rν − γ ẋ rν , for ẋ < 0 & r > 0

(C) : ṙ = ẋ+ β ẋ (−r)ν − γ ẋ (−r)ν , for ẋ > 0 & r < 0

(D) : ṙ = ẋ− β ẋ (−r)ν − γ ẋ (−r)ν , for ẋ < 0 & r < 0

(17)

within these branches the system is not fully observable but can be rewritten in

the form:

(A) : ṙ = ẋ−∆1 ẋ r
ν , for ẋ > 0 & r > 0

(B) : ṙ = ẋ+ ∆2 ẋ r
ν , for ẋ < 0 & r > 0

(C) : ṙ = ẋ+ ∆2 ẋ (−r)ν , for ẋ > 0 & r < 0

(D) : ṙ = ẋ−∆1 ẋ (−r)ν , for ẋ < 0 & r < 0

(18)

where ∆1 = β+γ and ∆2 = β−γ. In this new representation, within each branch

all of the appearing states (x, ẋ, r, k, c) and either ∆1 or ∆2 are observable and415

hence the parameters are identifiable. Two models are defined for use in the

DEKF :

M1 :
ṙ = ẋ−∆1 ẋ |r|ν

M1 →M2 : sign(ẋ r) = 0 (+→ −)
(19)
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M2 :
ṙ = ẋ+ ∆2 ẋ |r|ν

M2 →M1 : sign(ẋ r) = 0 (− → +)
(20)

where of course the models are presented only in terms of the ṙ equation, as

equation ẍ + k r + cẋ = −ẍg is common for both of them. It should also be

noted that for each of the two models M1 and M2 all corresponding states are420

observable, as shown when these are separated into the corresponding smooth

branches in terms of the sign of r as in equation (18). In implementing the

DEKF , smoothness of the models does not pose a requirement, as long as the

models themselves are observable within all of the implied smooth sub-systems.

To completely define the models in terms of the DEKF it is further noted that:425

xo1 = [x, ẋ, k, c, ν,∆1], xu1 = ∆2, xo2 = [x, ẋ, k, c, ν,∆2] and xu2 = ∆1.

A system with mass normalized stiffness and damping terms k = 9 1
sec2

and c = 0.25 1
sec , respectively and Bouc-Wen parameters ∆1 = 3, ∆2 = 1 (or

equivalently β = 2, γ = 1) and ν = 2 initially at rest is subjected to the input

ground motion shown in Figure 7. The measured signal is assumed to be the430

displacement of the system x. Both the measurement and input signals are

contaminated with a zero mean Gaussian White noise each having a noise to

signal rms ratio of 1%.
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Figure 7: (a) Ground acceleration (b) Relative displacement.

Initially the EKF method is used. The state vector to be identified is:
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[x, ẋ, k, c, ν,∆1,∆2]. The initial estimates of the parameters are k0 = 18 1
sec2 ,435

c0 = 0.5 1
sec , ∆10 = 5, ∆20 = 2, ν0 = 2.8. It should be noted that the model is

not fully observable. In fact at any single time instance one of the parameters

∆1 or ∆2 is unidentifiable. The results are presented in the following Figure 8:
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Figure 8: Predictions of the EKF model for the corresponding parameters of the Bouc-Wen.

It is apparent from Figure 8 that the EKF fails to converge to the correct

solution for the parameters. The final predictions of the method for the param-440

eters correspond to: ∆1 = 45, ∆2 = 10 and ν = 5, in severe contrast to the real

values ∆1 = 3, ∆2 = 1 and ν = 2.

Next the UKF is compared against the DEKF using models M1 and M2

defined in equations (19) and (20) respectively.

A comparison of Figures 8 and 9 reveals that the DEKF and UKF methods445

do not diverge. In fact, the DEKF identifies the values of the parameters very

efficiently. Hence, unlike the original EKF method, the DEKF is not affected

by the unidentifiability of either ∆1 or ∆2 at a given interval. Additionally, it

indicates that the EKF divergence may be attributed not only to the ill-posing

of the Jacobian at the transition points, as noticed in [22], but primarily to the450

divergence of the unobservable parameters xui. By retaining the unobservable

parameters invariant during the corresponding intervals, the DEKF remedies
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Figure 9: Predictions of DEKF and UKF for the corresponding parameters of the Bouc-Wen

model.

this problem and demonstrates robustness in these non-smooth problems often

related to material plasticity models. It should be highlighted that the initial

estimates of the parameters used for the DEKF in Figure 14(a) (∆10 = 5,455

∆20 = 3, ν0 = 4) are less favorable than those used for the EKF and UKF

(∆10 = 5, ∆20 = 2, ν0 = 2.8), yet the method provides a better final estimate

of the parameters in this studied case.

Regarding the UKF , it can be noted that while it clearly performs better

than the EKF , more favorable initial estimates than those used for the DEKF460

have to be used to allow for its convergence. However, it should be noted

that this convergence is dependent on a number of factors including, the initial

conditions used, the input and the measured response signal due to the non-

linear nature of the problem. This is again linked to the parameter convergence

rate versus the corresponding rate of divergence during time intervals at which465

it is unidentifiable. These rates inevitably depend on the initial conditions used.

This example demonstrates that the proposed DEKF method comprises

a viable option for identification tasks involving material plasticity performing

on par with, if not better for some cases to the very robust UKF method.

It also provides an explanation of what is often noted in the literature, i.e.,470

the fact that the EKF ([31, 32]) may encounter difficulties in determining the

values of parameters β and γ (or ∆1 and ∆2). This is herein attributed to their
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identifiability properties, which may in turn affect the successful identification

of parameters that are always identifiable like ν.

7.3. Elasto-plastic system475

In this third example the identification of a mass on a perfect elasto-plastic

spring is examined. The displacement of the mass is assumed as the measured

quantity. The mass normalized elastic stiffness and yield limit of the spring are

k = 1000sec−2 and Fy = 50(msec2). The mass is also connected to a mass

normalized linear damper with c = 2
√

1000 0.05sec−1. The behavior of the480

spring is shown in Figure 10.

Figure 10: Behavior of elasto-plastic spring.

Denoting x1 = x and x2 = ẋ, The equations of motion of this system for the

elastic branch are written as:

ẋ1 = x2, ẋ2 = −k xel − c x2 − ẍg

ẋel = x2, k̇ = 0

ċ = 0, Ḟy = 0

switch to plastic: k |xel| = Fy

(21)

while the equations describing the plastic branch are as follows:
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ẋ1 = x2, ẋ2 = −Fy sign(x2)− c x2 − ẍg

ẋel = 0, k̇ = 0

ċ = 0, Ḟy = 0

switch to elastic: x2 = 0

(22)

where xel is the elastic deformation of the spring. Note that, in the elastic485

branch Fy is unobservable. In the plastic branch k and xel are both constants,

and in fact an implied constraint automatically satisfiable in forward simula-

tions is k |xel| = Fy. Hence, during the plastic branch all states are observable

with the exception of k, xel for which only their non-linear product k xel would

have been observable. It is also worth noting that equations (21) and (22)490

require detection of the transition event even in forward simulation, since oth-

erwise the states could shift in a region lying outside the elasto-plastic curve,

in which case a return-mapping scheme would be required. Moreover, a second

implied constraint satisfied exactly at the transition to the plastic branch is:

sign(xel) = sign(x2). While this is automatically satisfied in a forward simula-495

tion, it is not necessarily satisfied herein due to the measurement-update step

of the identification algorithms. Hence, the transition from the elastic branch

to the plastic branch is re-written as:

if k |xel| = Fy, then if:

xel x2 ≥ 0 → switch to plastic

xel x2 < 0 → remain in the elastic branch

(23)

After the measurement update, the constraint k |xel| ≤ Fy = 0 has to be

imposed, if violated. For the case of the EKF this is carried out by linearizing500

this constraint and imposing it after the measurement-update ([33]):
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D x = d

D = [ 0 0 k sign(xel) |xel| 0 −1 ]

d = −k |xel|+ Fy +D x

x̂k|k = x̂k|k −Pk|kD
T (DPk|kD

T )−1 (D x− d)

Y = Pk|kD
T (DPk|kD

T )−1

Pk|k = (I − Y D)Pk|k (I − Y D)T

(24)

For the UKF the following modification is applied to each sigma point that

violates the constraint:

xel = Fy/k ∗ sign(xel) (25)

This leads to the setup of the necessary equations for the UKF and EKF

algorithms. In order to set up the models for the DEKF method the state505

vector used is defined as: X = [x1, x2, c, kxel, k], where a new state kxel is

introduced as the product k × xel. The two observable models used for the

DEKF then result as:

M1 :

ẋ1 = x2

ẋ2 = −kxel − c x2 − ẍg

k̇xel = k x2

k̇ = 0

ċ = 0

M1 →M2 : switch to plastic as in equation (23)

(26)
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M2 :

ẋ1 = x2

ẋ2 = −kxel − c x2 − ẍg

k̇xel = 0

ċ = 0

M2 →M1 : x2 = 0

(27)

where M1 is the elastic loading and unloading model and M2 is the plastic

model. It should be noted that all of the states in X are observable for M1,510

i.e., xo1 = X and xu1 = ∅, while for M2, xo2 = x1, x2, c, kxel, and xu2 = k. It

should be observed that the assumption of retaining the unobservable variable

k invariable for M2 is equivalent to the assumption that as the values of kxel

change, that change would only affect the values of xel. Moreover, it should be

noted that Fy does not appear as an observable or unobservable state for any515

of the two models. The parameter Fy appears in the switching equation from

M1 →M2 and is updated only during the intervals for which M2 is applicable,

through the equation Fy = kxel sign(x2).

Having defined the models used for the EKF , UKF and DEKF the iden-

tification of the system via each method is presented next. The used input and520

measured displacement of the system are shown in Figure 11.
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Figure 11: Used input and measured displacement.

In all ID methods the initial guess is X0 = [0, 0, 2000, 2
√

(1000) 10/100, 0]

and Fy = 15. The noise to signal rms ratio for the input and measurement noise
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vectors is 1%. The results are presented first for the EKF method in Figure

12.525
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Figure 12: EKF , ratio of estimated to real parameters and estimated x versus measured.

As observed in Figure 12, the EKF fails to converge to the true parameter

values and it practically fails to update the values of Fy at all. The EKF once

again under-performs, yielding diverging estimates for the parameters. The

identified parameters according to the DEKF and UKF are shown in Figure

13.530

0 5 10 15 20 25
0

1

2

3

4

5

6

7

t [sec]

Es
tim

at
ed

/R
ea

l P
ar

am
et

er
 V

al
ue

s

 

 

k
c
F y

(a) DEKF

0 5 10 15 20 25
0

2

4

6

8

10

t [sec]

Es
tim

at
ed

/R
ea

l P
ar

am
et

er
 V

al
ue

s

 

 

k
c
F y

(b) UKF

Figure 13: Predictions of DEKF and UKF for the corresponding parameters of the Elasto-

Plastic model.

As evidenced in Figure 13, the two methods do not diverge and succeed in

updating all the involved parameters. The UKF achieves an excellent estimate

of parameters due to the fact that convergence in observable intervals is faster
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than divergence in unobservable intervals. Once again however, it should be

reminded that in the standard UKF there is no control over this phenomenon,535

which depends on the underlying dynamics.

The DEKF also provides a very good estimate of k and Fy and but its

estimate of c is not optimal. This may be attributed to the fact that during the

last 12 seconds of the identification process the response of the body is mainly

elastic and, as a result, the method is practically not updating Fy. The small540

difference between the real and estimated value of Fy results into a lower loss of

energy which the method tries to compensate for using a higher value of c. This

sub-optimal convergence of the DEKF results also as a consequence of the fact

that the criterion for switching between models depends on the estimated values

for the state kxel and the indirect parameter Fy. In particular, it is observed545

that if the initial assumption for the value of Fy used is big enough to prevent

the constraint kxel < |Fy| from ever being violated, then the DEKF will never

switch to the plastic model unlike the real system dynamics.

Hence, this sub-optimal convergence depends on the initial estimate of X0

and Fy used. However, by using the method sequentially on the same set of550

data, i.e., using the DEKF on the data and then using the final estimates for

the parameters as initial conditions for the next run using again the same set of

data, then as can be shown in the following Figure 14, the algorithm converges

for a substantial range of initial values for Fy.

Despite the fact that for the specific example the DEKF is not as robust for555

online purposes as the UKF , it still provides an acceptable solution. The sub-

optimality of the method can be remedied at the price of its online nature, by

using the method sequentially. As suggested in Figure 14, this offline procedure

can provide an excellent estimate of the parameters even for assumed initial

values of the parameters that are far from the real values. This is an important560

feature delivered by the proposed DEKF approach.
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Figure 14: Using the DEKF sequentially on the same set of data. The figure shows the

initial values used for the parameters at each run. The last prediction of the method for the

parameters is used as initial condition for the next run.
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8. Discussion and Conclusions

In this paper a modified version of the EKF , termed the Discontinuous Ex-

tended Kalman Filter DEKF , is suggested for non-smooth dynamical systems

whose state-space equations can be separated into smooth branches. For each565

branch, the observability of the subsystem is deduced and the states are sep-

arated into observable and unobservable sets. Subsequently for each branch a

model containing only the observable states is formed together with so-called

event equations that describe the transition from one model to the other. The

method then applies the EKF updating steps only to the observable states of570

each model, retaining the unobservable part invariant during that time interval.

Additionally, it was shown that for this type of non-smooth problems, asso-

ciated with plasticity and impact problems, the time intervals during which a

parameter is unobservable may affect the results of methods that do not incor-

porate observability considerations into the analysis. Specifically, it was demon-575

strated that the divergence of unobservable parameters is the primary reason

for the failure of the EKF method in delivering a successful parameter estimate

in problems of this type. Although the UKF suffers from the same issue, its

faster convergence properties during observable intervals allow it to overcome

the divergence rate of the same parameters during unobservable intervals.580

This property is however not derived from the design of the method; it is

rather a bi-product of its algorithmic robustness. Hence it is not guaranteed

that this will indeed be true for any problem, and will greatly depend on factors

such as the initial state guess, or more the amount of noise in the input and

measurement signals. Indeed despite the overall very satisfactory performance585

of the UKF , the second example illustrates how the presence of locally uniden-

tifiable parameters can adversely affect the performance of the method for an

inappropriate initial guess for the values of the parameters. It should also be

noted that this is a novel justification for the superior behavior of the UKF

over the EKF for problems involving non-differentiable state-space equations.590

So far predominantly in the literature ([34]) this has been attributed to the
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inability of the EKF to accurately calculate the derivatives around the points

at which the state-space equations are non-differentiable .

Unlike the EKF and UKF , the DEKF takes into account the observabil-

ity properties of the system at each time instance. It thus ensures that the595

unidentifiable parameters will not deviate, maintaining these as invariant over

such intervals. The presented examples illustrate the superior performance of

the method compared to that of the EKF for non-smooth problems. In fact,

the method performs on par with or in some cases better than the UKF , as

shown in the second example. The third example illustrates the use of the600

method for a problem with a constraint equation originating from the law of

perfectly plastic behavior. For such a problem, the standard EKF is incapable

of producing results, however it is shown that the DEKF is able to furnish

accurate parameter estimates. It is further demonstrated that if the method is

used sequentially in an offline manner, a highly accurate parameter estimation605

is attained for an initial guess that is substantially far from the true parameter

value. This is often very useful in practice, in problems where a poor initial

estimate is inevitable due to lack of a-priori knowledge of the system.

This work introduces an enhanced version of the EKF method, capable

of handling problems of non-smooth dynamics. It additionally offers further610

insight, based on the concepts of observability and identifiability, as to the rea-

sons behind the divergence of the standard EKF method in such problems.

Via the proposed analysis, a better understanding regarding the good perfor-

mance of the UKF in these types of problems is attained. At the same time

it is highlighted that the convergence of the latter may depend on the under-615

lying dynamics, the initial estimates and the amount of noise in the input and

measurement signals. Hence, a next direction for this research would lie in cou-

pling the superior convergence properties of the UKF , together with the robust

handling of unobservable parameters proposed in this work.
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