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Abstract

The research on double diffusive convection in porous media is important to
deepen our insights into sustainable development and environment protection. A
lattice Boltzmann (LB) model for REV (representative elementary volume) scale
simulation of double diffusive convection in fluid-saturated porous media is proposed
in the present work. It can work well not only for porous media with uniform porosity
but also for non-uniform porous media. Several benchmark tests are adopted to
validate its capability. The good agreement with previous publications demonstrates
its applicability. It can provide an alternative numerical tool for modelling complex
heat and mass transfer in fluid-saturated porous media beyond double diffusive
convection, such as heat and moisture transfer in multi-layer building materials.

Key words: Lattice Boltzmann method; heat and mass transfer; porous media;
double diffusive convection; non-uniform porosity

1 Introduction

Double diffusive convection [1,2] in fluid-saturated porous media is commonly
found in nature, as well as in industry, such as pollution spreading in soil [3]
and solute cycles in solar collectors [4]. So far numerical methods have been

Preprint submitted to Elsevier 20 December 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/76975389?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


popularly adopted to deepen our insights into the fundamentals of heat and
mass transfer within fluid-saturated porous media. Bejan et al. [5] and Pop
et al. [6] perhaps are the pioneers in this field and they reviewed the progress
of the early stage of this field. As the public’s concern on sustainable de-
velopment and environment protection has been soaring, research on double
diffusive convection in fluid-saturated porous media has received increasing
attention again. The effects of the Rayleigh and Darcy numbers on double d-
iffusive convection in a porous cavity were discussed in Ref.[7]. Through their
numerical simulation one can observe that the behaviors of buoyant flow in a
cavity filled by porous media were quite different from its non-porous counter-
part [8]. Mondal and Sibanda [9] conducted a numerical study on influences
of buoyancy ratio on unsteady double diffusive natural convection in a porous
cavity. The authors claimed the patterns of heat and mass transfer in porous
media would change significantly. Double diffusive convection of nanofluid in a
porous enclosure was simulated in Ref.[10]. It was reported that heat transfer
was reduced by increasing the bulk volume fraction of nanoparticles. Turbulent
double diffusive convection in porous media was also investigated numerical-
ly[11]. The work implied new numerical models are desired to deeply reveal
the fundamentals of double diffusive convection in fluid-saturated porous me-
dia. The amount of publications on this topic is so huge and only a few can
be cited here. In almost all research on this topic, the REV (representative
elementary volume) scale mathematic description is adopted to model dou-
ble diffusive convection in fluid-saturated porous media as a REV scale model
can not only provide acceptable accuracy for engineering applications but also
save computational cost for industrial-scale simulation [12,13].

During the past three decades, the lattice Boltzmann (LB) method has at-
tracted increasing attention as an alternative simulation tool[14]. Originally,
the LB method was adopted as a powerful tool for pore-scale modelling of
porous media [15–17]. The first REV scale LB model for isothermal fluid-
saturated porous media was proposed by Guo and Zhao [18]. Soon, the same
authors designed a thermal LB model for simulation of heat transfer in porous
media [19]. Due to its simplicity and reliability, their REV scale LB model has
been widely used for research on heat transfer in porous media, such as phase
change in porous media [20,21], natural convection in porous media [22] and
convective heat transfer in a channel partially filled by porous media [23]. In
order to improve the numerical stability of Guo’s model, which is based on the
so-called single-relaxation-time (SRT) approximation, a multiple-relaxation-
time (MRT) counterpart has been constructed by Liu et al. [20,24]. Recently,
several LB models for non-equilibrium heat transfer in fluid-saturated porous
media were published [25,26]. Meanwhile, there have been numerous publi-
cations on modelling double diffusive convection by the LB method [27–33].
However, the effort to extend the LB method to model double diffusive con-
vection in fluid-saturated porous media at the REV scale is absent yet.
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As the macroscopic governing equation for concentration transfer (e.g. Eq.(4))
is a so-called advection-diffusion equation which is similar with that for heat
transfer (e.g. Eq.(3)), it seems straightforward to construct a LB model for
double diffusive convection in fluid-saturated porous media along the line pro-
posed by Guo et al. [19]. Unfortunately, as shown below, such way will suffer a
serious shortcoming that the porosity in the whole investigated domain should
be uniform. However, for many realistic scenarios, the porosity is non-uniform
[4,34–38]. In addition, by such way the effective mass diffusivity will depend
on the local porosity, which is non-physical.

The purpose of the present work is to bridge the above gap. The rest of the
present paper is organized as follows. In Section2, a LB model for double dif-
fusive convection in fluid-saturated porous media is presented, which can treat
non-uniform porosity easily. An analysis is presented to show the drawback to
extend the available LB models for simulation of double diffusive convection
in fluid-saturated porous media. Numerical validation for the present model
is conducted in Section 3, followed by a conclusion on this work.

2 LB model for double diffusive convection in fluid-saturated porous
media

In the present work, we take a SRT-based LB model as an example to show
how to construct a LB model for double diffusive convection in fluid-saturated
porous media. It is straightforward to establish its MRT-based counterpart in
the same way, for example, following the MRT-based porous media model
proposed by Liu et al. [20,24].

2.1 Macroscopic governing equations for double diffusive convection in fluid-
saturated porous media

The popularly used macroscopic governing equations for double diffusive con-
vection in fluid-saturated porous media read [4,39,40]:

∇αuα = 0, (1)

∂tuα + uα∇α
uβ

ε
= ∇αεp+∇ανe∇αuα + Fα, (2)

σ∂tT +∇αTuα = ∇ακe∇αT, (3)

ε∂tφ+∇αφuα = ∇αDe∇αφ. (4)

where uα (uβ), T and φ are the volume-averaged velocity, temperature of fluid
and concentration in the saturated porous media, respectively. The parameter
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σ denotes the ratio of heat capacitance (the product of density and specific
heat capacity) between saturated porous media and saturating fluid and ε is
the porosity of the porous media. In addition, νe, κe and De are the effective
kinematic viscosity, effective thermal diffusivity and effective mass diffusivity,
respectively. Usually, νe = ν where ν is the kinematic viscosity of saturating
fluid.

The force term Fα in Eq.(2) reads:

Fα = −εν

K
uα − 1.75√

150εK
| uα | uα + gαβT (T − T0) + gαβφ(φ− φ0). (5)

where gα is the gravity acceleration and K is the permeability of porous me-
dia. βT and βφ are the coefficient of thermal expansion and of concentration
expansion, respectively. In addition, T0 and φ0 are the reference values of tem-
perature and concentration, respectively. In our simulation we set T0 = φ0 = 0.
The former two terms of Fα represent the body force due to the presence of a
porous medium and the last two denote the buoyant force due to temperature
and concentration difference.

The thermal Rayleigh number (RaT ) is defined as

RaT = gαβT (T − T0)/νκ (6)

and the solute Rayleigh number (Raφ) is defined as

Raφ = gαβφ(φ− φ0)/νκ (7)

where κ is the thermal diffusivity of fluid. Accordingly, the buoyancy ratio is
defined as

N = RaT/Raφ (8)

The dimensionless formula of the above macroscopic governing equations read:

∇αuα = 0, (9)

∂tuα + uα∇α
uβ

ε
= ∇αεp+

Pr√
RaT

∇α∇αuα + F α, (10)

σ∂tT +∇αTuα =
1√
RaT

∇α∇αT , (11)

ε∂tφ+∇αφuα =
Le√
RaT

∇α∇αφ. (12)

F α = − εPr√
RaTDa

uα − 1.75√
150εDa

| uα | uα + Pr(T +Nφ)
gα

| gα | . (13)

The overbar in the above equations indicates dimensionless variables. The
normalization process please refer to Ref.[32]. In Eqs.(9)-(13), Pr, Da and Le
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are the Prandtl number, Darcy number and Lewis number, respectively.

2.2 Evolving equation

As the governing equations for flow and temperature field, namely Eqs.(1)-
(3), can be solved by Guo’s [19] or Guo’s-like [20,24] LB models, here we only
present the LB model for the concentration field (Eq.(4)).

The SRT-based LB evolving equation for concentration field reads:

gj(xα + cejαΔt, t+Δt)− gj(xα, t) = −τ−1
φ [gj(xα, t)− g

(eq)
j (xα, t)]. (14)

In Eq.(14) τφ is the dimensionless relaxation time for the pseudo-particle dis-
tribution gj(xα, t) at space xα and instant t. cejα denotes the discrete velocities
and Δt means the time interval in the LB evolving equation.

If we follow the way proposed by Guo et al. [19], the equilibrium distribution

function g
(eq)
j in Eq.(14) will read:

g
(eq)
j = ωjφ(ε+

cejαuα

c2s
), (15)

Unfortunately, as shown below, if the above equilibrium distribution function
Eq.(15) is adopted, we have to assume the porosity ε is a constant over the
whole domain and the effective mass diffusivity depends on the local porosity.

In order to remedy these shortcomings, in the present work the equilibrium
distribution function g

(eq)
j in Eq.(14) is defined as:

g
(eq)
j =

⎧⎪⎨
⎪⎩
φ(ε− ε0) + ωjφ(ε0 +

cejαuα

c2s
), j = 0

ωjφ(ε0 +
cejαuα

c2s
), j �= 0

(16)

where ωj represents the weight coefficient. ε0 is a reference value of porosity so
ε0 is a constant within the whole investigated domain. In order to guarantee
numerical stability, generally we chose the minimum value of porosity in the
investigated domain as ε0. The parameter cs satisfies c

2
sδαβ =

∑
j
ωjc

2ejαejβ [41].

In the present work, the same as Ref. [19], a D2Q5 lattice for two-dimensional
problems is used for modelling concentration field. For three-dimensional in-
vestigated domains, one can invoke a D3Q7 lattice [42]. Such choice can save
computational cost efficiently, which is crucial for industrial-level simulation,
as explained in our previous work [41].
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The concentration φ is obtained by

φ =

∑
j
gj

ε
. (17)

and the effective mass diffusivity De is given by

De = ε0(τφ − 1/2)c2sΔt. (18)

According to Eq.(18), it is clear that in the present model the effective mass
diffusivity De is independent of the local porosity ε and there is no restriction
that ε should be uniform.

2.3 Multiscale expansion and recovered macroscopic equation

Equation (14) can be expanded in Taylor series as [14]

Δt(∂t + cejα∇α)gj +
Δt2

2
(∂t + cejα∇α)

2gj +
1

τφ
[gj − g

(eq)
j ] = O(Δt3). (19)

Introducing the multiscale expansion ∂t = ε∂t1 + ε2∂t2, ∇α = ε∇α1 and gj =

g
(eq)
j + εg

(1)
j + ε2g

(2)
j +O(ε3), where ε is a slight quantity [19], we can sort Eq.

(19) in terms of ε and ε2 as

(∂t1 + cejα∇α1)g
(eq)
j = − g

(1)
j

Δtτφ
+O(ε). (20)

∂t2g
(eq)
j + (∂t1 + cejα∇α1)[(1− 1

2τφ
)g

(1)
j ] = − g

(2)
j

Δtτφ
+O(ε2). (21)

With the symmetry properties of the lattice
∑
j
ωjcejα = 0,

∑
j
ωjcejαcejβ =

c2sδαβ and the equilibrium distribution function g
(eq)
j defined by Eq.(16), we

can obtain ∑
j

g
(eq)
j = εφ, (22)

∑
j

cejαg
(eq)
j = φuα, (23)

∑
j

cejαcejβg
(eq)
j = ε0φc

2
sδαβ. (24)

With the aid of Eqs.(22)-(24), as well as
∑
j
g
(1)
j =

∑
j
g
(2)
j = 0, the summation
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of Eqs.(20)-(21) over the discrete direction ejα reads

∂t1εφ+∇α1φuα = 0 +O(ε), (25)

∂t2εφ+∇α1[c
2
s(
1

2
− τφ)Δt∇α1ε0φ] = 0 +O(ε2). (26)

Because ε0 is a constant across the whole investigated domain, ∇α1ε0φ =
ε0∇α1φ. Accordingly Eq.(26) can be re-written as

∂t2εφ+∇α1[ε0c
2
s(
1

2
− τφ)Δt∇α1φ] = 0 +O(ε2). (27)

Combining Eqs.(25) and (27), we can obtain the final recovered macroscopic
governing equation for the concentration field

∂tεφ+∇αφuα = ∇αDe∇αφ+O(ε2). (28)

whereDe = ε0c
2
s(τφ− 1

2
)Δt. It is obvious that Eq.(28) can match Eq.(4) exactly,

no matter whether ε is non-uniform.

However, if Guo’s-like equilibrium distribution function Eq.(15) is adopted,

the second moment of the equilibrium distribution g
(eq)
j will depend on ε,

namely ∑
j

cejαcejβg
(eq)
j = εφc2sδαβ. (29)

Please pay attention to the difference between Eq.(24) and Eq.(29). Accord-
ingly, through the multiscale expansion, it will generate

∂t2εφ+∇α1[c
2
s(
1

2
− τφ)Δt∇α1εφ] = 0 +O(ε2). (30)

In Eq.(30), to move ε outside from the spatial gradient operator ∇α1 (i.e.
∇α1εφ = ε∇α1φ), one has to assume ε to be uniform, namely ∇α1ε = 0.
Furthermore, the effective mass diffusivity De = εc2s(τφ − 1

2
)Δt, which is non-

physical as now De depends on the local porosity ε.

3 Numerical validation

In order to validate the present model, two types of benchmark tests are
adopted. The first one is double diffusive convection in a rectangular enclosure
filled by uniform fluid-saturated porous media and the second one is double
diffusive convection in a bi-layered heterogenous porous cavity.
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3.1 Double diffusive convection in a rectangular enclosure filled by uniform
fluid-saturated porous media

The configuration and boundary conditions of the uniform porous enclosure
are illustrated by Fig. 1, where H and L are the height and width of the
enclosure, respectively.

Firstly, we set H/L = 2, ε = 0.999, σ = 1, the Rayleigh number RaT = 105,
the Darcy number Da = 106, the Prandtl number Pr = 1 and the Lewis
number Le = 2. The buoyancy ratio N = −0.8 and −1.3, respectively. As ε is
very close to unity and Da � 1, the convective flow in the porous enclosure
should be almost the same as its counterpart without porous pack [43]. A grid
resolution 100× 200 is adopted, as shown in our previous work [43] such grid
resolution is fine enough to reproduce grid-independent solutions. Figures 2-3
plot the streamlines, isotherms and isoconcentrations for different N . When
N < −1, the flow is primarily dominated by thermal buoyancy effects, and
a large central clockwise thermal recirculation is predicted with horizontally
non-uniform isotherms in the core region within the enclosure. Furthermore,
the concentration contours are distorted in the core of the enclosure with a
stable stratification in the vertical direction except near the insulated walls
of the enclosure. A stagnant zone in the corners of the enclosure is also ob-
served. In contrast, for N > −1 the flow is mainly dominated by compositional
buoyancy effects. For example, when N = −1.3, a counterclockwise composi-
tional recirculation exists in the core region of the enclosure along with two
clockwise thermal recirculations occurring near the top right and bottom left
corners of the enclosure. The contours for temperature and concentration are
almost parallel to each other within the center of the enclosure away from the
walls. The observations agree well with those reported by Ref.[43] (c.f. Figs.
2-3 in Ref.[43]). Table 1 lists the calculated average Nusselt (Nu) and Sher-
wood (Sh) number on the hot wall, together with those published by Ref.[43].
The quantitative comparison demonstrates the reliability of the present mod-
el to predict double diffusive convection in fluid-saturated porous media with
different N . In the present work the average Nusselt number Nu is defined as

Nu = − 1

L

∫ L

0

∂T

∂x
dy (31)

where L is the height of the investigated domain.

Then we set H/L = 1, ε = 0.8, σ = 1, the modified Rayleigh number
RaM = Da×RaT = 100, Pr = 0.71, N = 1, Le = 10 while 10−1 ≤ Da ≤ 10−3.
A grid resolution 100× 100 is employed. The streamlines, isotherms and iso-
concentrations for various Da are depicted by Figs.4-6. A large clockwise re-
circulation is formed in the domain. With Da increasing, the recirculation
is stretched and convective heat transfer, replacing conductive heat transfer,
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becomes the predominant heat transfer mechanism. As Le � 1, the isoconcen-
trations are distorted more significantly than the isotherms. The observations
are consistent with that reported in Ref.[44] (c.f. Fig.3 in Ref.[44]). Table 2-3
present the calculated Nu and Sh, compared with those listed in Ref.[44].
The numerical predictions by the present model agree well with previous data
in Ref.[44], which shows the capability of the present model for simulation of
double diffusive convection within fluid-saturated porous media with different
Da. Although in Ref.[44] the investigated the domain is a cubic domain, we
find that for laminar double diffusive convection our two-dimensional results
are identical to their three-dimensional ones.

3.2 Double diffusive convection in a bi-layered heterogenous porous cavity

Double diffusive convection in a bi-layered heterogenous porous cavity, which
was investigated in Ref.[45], is adopted here to validate the reliability of the
present model for modelling heat and mass transfer in non-uniform porous
media where porosity is not identical. The configuration of the bi-layered het-
erogenous porous cavity is illustrated by Fig. 7. The parameters used in the
present work read: RaT = 106, Pr = 7, N = 2, σ = 1 and Le = 1, 10. The
Darcy number and the porosity of the bi-layers are Da1 = 10−4, ε1 = 0.4 (the
lower layer) and Da2 = 10−5, ε2 = 0.5 (the upper layer). A grid resolution
100× 100 is adopted.

Figures 8-9 plot the streamlines, isotherms and isoconcentrations. The flow
resistance is smaller in the lower layer as its permeability is larger than the
upper layer. Consequently, the streamlines within the lower layer are elliptical
extended. As the flow in the upper layer moves relatively slowly, the dom-
inant heat transfer mechanism is conductive heat transfer. Accordingly, the
isotherms within the upper layer are nearly vertical and parallel with each oth-
er. In the lower layer, benefitting from the smaller flow resistance, convective
heat transfer becomes predominant and accordingly the isotherms are distort-
ed obviously. When Le = 1, the distributions of isotherms and of isoconcen-
trations are identical. With Le increasing, the isoconcentrations are deformed
significantly, especially in the lower layer. A solute boundary layer is formed
in the vicinity of the left side of the lower porous layer. The isoconcentrations
are confined near the active walls of the cavity, which attributes to the high
Le and N [45]. These observations agree with those reported in Ref.[45]. Ta-
ble 4 lists the calculated Nu and Sh, compared with those in Ref.[45] (please
refer to Fig. 9 in Ref.[44]). The quantitative comparison demonstrates the ap-
plicability of the present model in Ref.[45] for simulation of double diffusive
convection in heterogenous porous media. However, if Guo’s-like equilibrium
distribution function Eq.(15) is adopted, the numerical results will diverge.
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4 Conclusion

Double diffusive convection in fluid-saturated porous media is an important
topic in many disciplines. So far numerical approaches have become an in-
dispensable tool to deepen our insights into its fundamentals. New numerical
techniques are desired to solve the problems more efficiently. In the present
work, a LB approach is proposed for this purpose. It can work well not only for
uniform porous media but also for non-uniform porous media as a new type
of equilibrium distribution function is proposed. Furthermore, an analysis is
given to explain why we can not establish the present model following the line
proposed in the available publications.

Although in the present study we only take a SRT LB model as an example to
show how to model double diffusive convection in fluid-saturated porous me-
dia, the extension to its MRT counterpart is straightforward as a MRT model
has better numerical stability for cases with high Le. It will be considered in
our future work.
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Fig. 1. Schematic configuration of the uniform porous enclosure.
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Fig. 2. (a) streamlines, (b)isotherms and (c) isoconcentrations for N = −0.8.
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Fig. 3. (a) streamlines, (b)isotherms and (c) isoconcentrations for N = −1.3.
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Fig. 4. (a) streamlines, (b)isotherms and (c) isoconcentrations for Da = 10−1.
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Fig. 5. (a) streamlines, (b)isotherms and (c) isoconcentrations for Da = 10−2.
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Fig. 6. (a) streamlines, (b)isotherms and (c) isoconcentrations for Da = 10−3.
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Fig. 7. Schematic configuration of the bi-layered heterogenous porous cavity.

21



(a)

0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

-0.05
-0.1
-0.15
-0.2
-0.25
-0.3
-0.35
-0.4
-0.45

(b)

0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

-0.05
-0.1
-0.15
-0.2
-0.25
-0.3
-0.35
-0.4
-0.45

(c)

Fig. 8. (a) streamlines, (b)isotherms and (c) isoconcentrations within the bi-layered
heterogenous porous cavity, Le = 1.
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Fig. 9. (a) streamlines, (b)isotherms and (c) isoconcentrations within the bi-layered
heterogenous porous cavity, Le = 10.
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Table 1
Average Nusselt and Sherwood number on the hot wall.

Nu Sh

Ref.[43] present Ref.[43] present

N = −0.8 3.6897 3.6706 4.9156 4.7576

N = −1.3 2.1255 2.1665 3.1615 3.1722
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Table 2
Average Nusselt number on the hot wall.

Da 10−1 10−2 10−3

present 1.094 1.730 2.567

Ref.[44] 1.086 1.687 2.529
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Table 3
Average Sherwood number on the hot wall.

Da 10−1 10−2 10−3

present 2.936 5.695 9.712

Ref.[44] 2.842 5.624 9.749
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Table 4
Average Nusselt and Sherwood number on the hot wall.

Nu Sh

Ref.[45] present Ref.[45] present

Le = 1 3.37 3.27 3.37 3.28

Le = 10 2.05 1.96 12.65 12.41
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