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Mitochondrial DNA and aging 

Osteoarthritis (OA) is the most common form of arthritis affecting more than 12% of people 

over the age of 60 (1). Although late-onset articular cartilage degeneration is common and 

age is one of the most important risk factors for the disease, the relationship between old 

age and OA is not fully understood (2). In the past it was believed that the link with age was 

due to “wear and tear” of articular cartilage by continuous mechanical stress; we now know, 

however, that OA involves an active response to injury comprising remodelling of articular 

cartilage and subchondral bone, in addition to synovial inflammation and damage to other 

joint structures such as ligaments and menisci (3).  

Biological aging is a complex process and it is now is widely accepted that aging starts with 

molecular damage, leading to cell, tissue, and, ultimately, organ dysfunction (4). Extensive 

evidence from animal models and in vitro studies indicates that mitochondria contribute to 

specific aspects of the aging process, including cellular senescence, chronic inflammation, 

and the age-dependent decline in stem cell activity (5). 

Perhaps the best known and most long-standing hypothesis to explain aging is the free 

radical theory, which proposes a central role for the mitochondrion as the principle source of 

intracellular reactive oxygen species (ROS) leading to mitochondrial DNA (mtDNA) 

mutations (4-5). Somatic (acquired) mtDNA mutations and their association with the decline 

in mitochondrial function during aging are well described, but  these observations do not 

necessarily imply a causal relationship between mitochondrial dysfunction and human aging.  

The maternally inherited mtDNA sequences encode the key proteins involved in energy 

production, although the relevance of high sequence variability of mtDNA had been 

considered of little functional relevance.  Latorre-Pellicer and co-authors showed recently 

that transferring mtDNA from a mouse strain to the nuclear DNA (nDNA) background of 

another strain results in huge differences in insulin signalling, obesity, and longevity 

throughout the life of the mouse (6). The two mtDNA sequences differ in genetic variants 

that confer 12 amino-acid substitutions and 12 changes in RNA molecules involved in 
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mitochondrial protein synthesis; this level of variation is enough to result in striking 

differences in the ROS generation, insulin signalling, obesity, and cell-senescence related 

parameters such as telomere shortening and mitochondrial dysfunction.  Showing the direct 

relevance of mtDNA in human aging and in age-related diseases such as OA is a big 

challenge and one which is, at least in part, addressed in this issue of the Annals of the 

Rheumatic Diseases (7). 

mtDNA in OA 

Over the past 10 years, the group led by Francisco Blanco and Ignacio Rego-Perez has 

shown that differences in mtDNA haplogroups correspond to variations in the prevalence 

and progression of cartilage loss in large joint OA (8). In a series of studies from Spanish OA 

cases and controls, the evidence has accumulated for an association between OA 

prevalence and the J haplogroup  (9-10) (Table 1). However, two studies in samples from 

the UK have failed to find an association with the J haplotype (9-11), whereas evidence of 

association of the T haplotype with lower disease risk was found in a small UK cohort (9) 

(Table 1). 

The mtDNA haplogroups J and T share the same phylogenetic origin and a set of common 

uncoupling mitochondrial polymorphisms (12). These uncoupling polymorphisms confer 

different metabolic characteristics compared to other mitochondrial lineages, particularly the 

most common and highly efficient mtDNA haplogroup H. (13) 

The jury is still out regarding the role of mtDNA T and J haplogroups with regard to genetic 

susceptibility in populations with large joint OA, particularly when compared to the evidence 

accumulated for nuclear genetic variants identified from GWAS or otherwise (14). To date, 8 

variants associated with knee OA have been reported with significance of p< 1 x 10-7 and 11 

variants with hip OA in Caucasians. At least three other variants have been reported at high 

significance levels in Asians (see ref 14 for details) 
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On the other hand, with the exception of variants mapping to GDF5 and FTO genes, the 

mechanisms underlying the risk conferred by variants linked to knee OA are yet to be 

unveiled (14). Importantly, as of today very few efforts have been made to identify genetic 

risk factors contributing to risk of progression or incidence of disease.  

The mtDNA haplotypes T, J, and the JT cluster, on the other hand, are significantly 

associated in populations from the US, the Netherlands, and Spain with radiographic 

incidence and progression of the disease (7, 15)  (Table 1). Fernandez-Moreno and co-

authors report that the mtDNA haplogroup J, the same haplogroup associated with lower OA 

prevalence, lower disease progression, and lower cartilage loss, is also associated with a 

significantly lower risk of incident knee OA in a population of 3124 individuals from two 

prospective cohorts from the Netherlands and the US (7). 

Functional analysis of mtDNA variants  

From previous studies it is known that the low OA risk haplogroup J is associated with lower 

serum levels of markers of collagen type II degradation and of matrix metalloproteinases, but 

all of these studies failed to address the key question arising from this large body of 

evidence: “What is the functional role of these mtDNA haplogroups?” 

To answer this question, Fernandez-Moreno and colleagues (7) used cytoplasmic hybrid 

(cybrid) cell lines. Cybrids incorporate mitochondria from human subjects and perpetuate the 

mitochondrial DNA (mtDNA)-encoded components while maintaining the nuclear 

background of different cybrid lines as constant (16). Thus, this technique allows 

investigators to assess the influence of mtDNA variation on cell function. To investigate the 

role of mtDNA haplogroups, they also created cybrids using osteosarcoma cell lines with the 

same nuclear background, one of them harbouring the haplogroup J (which protects against 

OA) and another harbouring the haplogroup H (linked to higher risk of OA). 

The cybrids carrying the haplogroup H produced higher ATP levels than those with the 

haplogroup J, but this higher energetic efficiency was accompanied by higher production of 
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ROS and the proportion of cells that survived in the presence of hydrogen peroxide was 

almost half the number of cybrids with haplogroup J.  In chondrocytes during OA, oxidative 

stress may act together with inflammatory and/or mechanical stress to accentuate catabolic 

processes by increasing the levels of ROS relative to antioxidants .(17-18) The increased 

levels of ROS also contribute to the senescence secretory phenotype, in which the age-

related decline in the responses of chondrocytes to anabolic growth factors are related to 

increased oxidative stress (19-20). The depletion of antioxidants promotes mitochondrial 

dysfunction in chondrocytes (21), which in turn can amplify the stress responses through 

increased production of nitric oxide and ROS and activation of NF-κB signalling (21-23). 

In the presence of staurosporine, which induces cell apoptosis, the cybrids with the 

haplogroup H had over 50% more apoptotic cells than the cybrids with the low OA risk 

haplogroup J (7). These data, therefore, prove the functional relevance of mtDNA variation 

linked to risk of OA on cell function and survival and is in agreement with recent work by the 

same group showing that OA cartilage exhibits signs of early molecular aging compared to 

healthy age-matched cartilage (2). 

Clinical relevance 

The data accumulated on the role mtDNA on cell function and on OA risk has potential 

clinical implications. On the one hand it may allow investigators in the future to define an 

“age-related OA” genetic type (haplogroup H) versus one which is protected from the effects 

of aging. This group with lower incidence and progression can be excluded from clinical 

studies that require rapidly progressing OA populations. At the same time, haplogroup J 

carriers are not fully protected from OA; therefore, studying risk factors in this haplogroup 

can help identify a group of individuals where other molecular mechanisms linked to OA, for 

example, those derived from bone changes or from inflammation, may be stronger predictors 

for progression. These data also raise the important question of the contribution of 

interactions between nuclear DNA and mtDNA haplogroups, which have yet to be 

investigated. Finally, OA is a disease that occurs together with cardiometabolic 
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comorbidities, which are known to be influenced by mitochondrial dysfunction. Haplogroup H 

carriers may therefore be the group of OA sufferers at higher risk of metabolic syndrome and 

cardiovascular disease and with the most chance to benefit from regenerative therapies 

targeting early cartilage damage or, at more advanced stages, early joint replacement. 
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Table 1. Selected associations between T, J and TJ cluster mitochondrial DNA and osteoarthritis prevalence, progression and incidence of OA 

Study Origin Haplogroup Trait studied Total N Effect (95% CI)  
p-value 

Reference 

Case-control Spain J OA prevalence 2557 OA, 1339 controls OR=0.57 (0.46, 0.71) p<0.00001 (10) 

Case-control UK J OA prevalence 7846 OA,  5402 controls OR= 1.19  (0.72- 1.95) n.s. (10) 

Case-control UK T OA prevalence 453 OA, 280 controls OR=0.57 (0.35-0.940 p<0.027 (9) 

CHECK cohort Netherlands T OA progression 431 OA HR= 0.645 (0.419 -0.978) p<0.05 (15) 

OAI USA T OA progression 891 OA HR=0.50 (0.28-0.88) p<0.05 (24) 

Spanish OA cohort Spain T OA progression 281 OA HR=0.69 (0.38, 1.28) n.s. (25) 

Meta analysis  T OA progression 1603 OA HR= 0.61 (0.45-0.82) p=0.001 (15) 

CHECK Netherlands JT OA progression 431 OA HR=0.71 (0.50-0.96) p<0.05 (15) 

OAI USA JT OA progression 891 OA HR=0.81 (0.59-1.11) ns. (15) 

Spanish OA cohort  Spain JT OA progression 281 OA HR=0.80 (0.50-1.26) n.s. (15) 

Meta-analysis  JT  1603 OA HR=0.77 (0.62-0.94) p=0.009 (15) 

CHECK Netherlands J OA incidence 635 HR=0.73 (0.47-1.00) p<0.05 (7) 

OAI USA J OA incidence 2579 HR=0.68 (0.47-0.97) p<0.05 (7) 

Meta-analysis  J OA incidence 3214 HR=0.70 (0.54-0.91) p=0.006 (7) 

 

* OR = odds ratio HR= hazards ratio 

 


