
Collis, Joe and Brown, D.L. and Hubbard, Matthew E. 
(2017) Effective equations governing an active 
poroelastic medium. Proceedings of the Royal Society 
A: Mathematical, Physical and Engineering Sciences, 
473 (2198). pp. 1-27. ISSN 1471-2946 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/39961/1/Collis%2020160755.full.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the Creative Commons Attribution licence and may be 
reused according to the conditions of the licence.  For more details see: 
http://creativecommons.org/licenses/by/2.5/

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/76975286?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk


rspa.royalsocietypublishing.org

Research
Cite this article: Collis J, Brown DL, Hubbard
ME, O’Dea RD. 2017 Effective equations
governing an active poroelastic medium. Proc.
R. Soc. A 473: 20160755.
http://dx.doi.org/10.1098/rspa.2016.0755

Received: 6 October 2016
Accepted: 16 January 2017

Subject Areas:
applied mathematics, mathematical
modelling, biomechanics

Keywords:
multiscale asymptotics, fluid–structure
interaction, poroelasticity, growing media

Author for correspondence:
R. D. O’Dea
e-mail: reuben.odea@nottingham.ac.uk

Effective equations governing
an active poroelastic medium
J. Collis, D. L. Brown, M. E. Hubbard and R. D. O’Dea

School of Mathematical Sciences, University of Nottingham,
University Park, Nottingham NG7 2RD, UK

JC, 0000-0001-8715-2813; DLB, 0000-0002-3421-1063;
MEH, 0000-0001-7471-1815; RDO, 0000-0002-1284-9103

In this work, we consider the spatial homogenization
of a coupled transport and fluid–structure interaction
model, to the end of deriving a system of effective
equations describing the flow, elastic deformation and
transport in an active poroelastic medium. The ‘active’
nature of the material results from a morphoelastic
response to a chemical stimulant, in which the growth
time scale is strongly separated from other elastic
time scales. The resulting effective model is broadly
relevant to the study of biological tissue growth,
geophysical flows (e.g. swelling in coals and clays)
and a wide range of industrial applications (e.g.
absorbant hygiene products). The key contribution of
this work is the derivation of a system of homogenized
partial differential equations describing macroscale
growth, coupled to transport of solute, that explicitly
incorporates details of the structure and dynamics
of the microscopic system, and, moreover, admits
finite growth and deformation at the pore scale. The
resulting macroscale model comprises a Biot-type
system, augmented with additional terms pertaining
to growth, coupled to an advection–reaction–diffusion
equation. The resultant system of effective equations
is then compared with other recent models under a
selection of appropriate simplifying asymptotic limits.

1. Introduction
Poroelasticity is concerned with the study of elastic
bodies that contain pore structures saturated with fluids.
The characterization of poroelastic media has garnered
much attention over the last 50 years across a wide
range of fields studied by applied mathematicians and
engineers. Of particular current importance is the study
of poroelasticity in biological materials (e.g. in modelling

2017 The Authors. Published by the Royal Society under the terms of the
Creative Commons Attribution License http://creativecommons.org/licenses/
by/4.0/, which permits unrestricted use, provided the original author and
source are credited.
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solid tumours [1,2] or tissue engineering applications [3]) and the subsurface (e.g. in oil reservoir
engineering, radioactive waste disposal, CO2 sequestration, hydraulic and thermal fracturing,
and cavity generation [4,5]). While there are well-known equations governing poroelasticity at
the so-called macroscopic lengthscale (i.e. a lengthscale much greater than that of the pores)
[6–9], these laws typically require ab initio a statement of the constitutive laws describing the bulk
properties of the solid and fluid components that are averaged volumetrically, irrespective of any
underlying structure. As a result, any effective coefficients are meaningful only at the macroscopic
scale and models must be parametrized via macroscopic experiments. Given these deficiencies,
a model that explicitly accounts for pore-scale physics provides numerous benefits. In
general, however, the underlying fluid–structure interaction (FSI) problems are highly complex,
multiphysical and nonlinear coupled processes, for which direct simulation on complicated
pore structures over multiple lengthscales is practically impossible. As such, effective models
that explicitly incorporate pore-scale physics into a macroscopic model provide theoretical and
computational benefits at the expense of a mathematically challenging homogenization process. It
is beyond the scope of this work to present a comprehensive review and comparison of upscaling
techniques that may be employed in the field of poroelasticity. However, in addition to multiscale
homogenization, we wish to highlight other applicable techniques such as effective medium
theory [10,11], mixture theory [12–14] and volume averaging [15,16]. For a more complete
discussion we refer the reader to review articles that discuss upscaling in the wider fields of
poroelasticity [17], flow in porous media [18,19] and solute transport [20].

In addition to the classical difficulties associated with poroelastic media, in many applications
the solid is ‘active’; that is to say, not only does the solid undergo elastic deformation, but it is also
growing/swelling (or equivalently shrinking)1 as a result of some physical, chemical or biological
process. For example, in the context of biological tissue growth, we may view the biological
material as a poroelastic medium that is subject to a nutrient-regulated growth law, whereby the
mass and volume of the solid material increases over time. For sufficiently large growth rates, this
will inevitably affect the macroscopic flow and passive transport of nutrient through the tissue.
Similar effects are present in geophysical applications such as swelling in porous clays and coal
[21], as well as in industrial media such as absorbent hygiene products, where electrochemical
processes dominate [21–23]. In this work, we present a general formulation by which a range of
such biologically or industrially motivated problems may be studied. In particular, we consider
the derivation of a system of effective macroscopic equations governing a growing poroelastic
medium together with passive transport of a solute which acts to regulate the growth dynamics of
the medium, by means of two-scale asymptotics. While the techniques employed here may apply
naturally to other formulations, here we forgo consideration of other forms of ‘active’ media, such
as those that are thermo- or electromechanically active. Moreover, the growth law considered in
the current work does not incorporate complex phase transition effects that would provide a more
complete description of the underlying systems in the aforementioned applications.

Multiple-scale asymptotics allows the derivation of effective models at the macroscale
that explicitly incorporate microstructural information. The application of these techniques is,
however, meaningful only for problems in which there are multiple lengthscales that are well
separated and there is sufficient uniformity (in the sense of periodicity) in the microscopic
structure; see, for example, [24]. In this framework, local problems are derived that relate
the microscopic and macroscopic structures, which may subsequently be employed in the
construction of effective coefficients. The resultant models can be made rigorous via two-scale
convergence, oscillatory test functions, etc. [25,26]. Though this is beyond the scope of this work,
examples employing such methods include computational frameworks such as the multiscale
finite element method [27,28] where the corrector estimates are utilized in error estimation.
A wide range of biological applications employing multiscale methods may be found in the
literature, including [29–34], for example.

1For notational convenience, we refer to the mass/volumetric changes of the solid material as growth for the remainder of this
article. While this is natural in the context of biological materials, it is less so in physical and chemical applications. However,
for the sake of brevity we employ this single term.
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Of particular relevance to this study are [35–37]. In [35], the authors present a rigorous
derivation of the Biot model of poroelasticity [6,7] via multiple-scales expansions. In a recent
work [36], an extension of the analysis in [35] is performed to consider a growing, elastic solid.
The multiscale model in [36] permits finite microscale growth via an accretion growth law, though
it makes the assumption of infinitesimal elastic deformation at the pore scale. Other recent works
that consider the multiscale analysis of growing materials are also highly pertinent; see, for
example, [38–40]. In [37], the authors consider the homogenization of an FSI system under finite
pore-scale deformation in a common reference frame. Such an approach has also been applied
successfully in homogenizing domains with evolving microstructure [41–43].

The study of growing material is of great importance in the biological sciences [44,45], and is a
field in which there remain many open mathematical questions. One of the earliest applications of
continuum mechanics in the study of growth of deformable biological materials was described in
[46]. Later significant studies in the field include [47,48], which study both volumetric growth and
accretion. However, the key reference in morphoelasticity (i.e. the study of growth in deformable
media) is [49], in which a general formulation for finite volumetric growth in elastic tissues is
proposed. Alternative proposals for growth models may also be found in [50,51]. While much of
the literature pertaining to growth in deformable media is biologically focused, there are many
applications in the physical sciences in which solid materials undergo volumetric changes as a
result of external drivers such as temperature or the presence of chemical species. In particular,
we highlight the similarity between biological growth, swelling in geological media such as clays
and shales, and absorbent thin porous media in industrial applications described earlier.

The analysis we present in this work represents a significant extension of classical
homogenization techniques of flow and transport in porous media. Here, we extend both
the extensive literature pertaining to the homogenization of flow and transport in standard
(i.e. not growing) porous media across the physical and biological sciences (see, for example
[26,35,52,53]); and the recent attempts to apply these ideas to growing material in [36,38,39]. These
studies typically place asymptotic restrictions on the underlying model to reduce the degree of
nonlinearity (e.g. the linear coupling between fluid and solid mechanics employed in [36]) and/or
enforce quasi-static conditions (e.g. the movement of the free interface as described in [38,39]). In
this article, we present a framework in which we consider the fully coupled, nonlinear system
of equations describing growth, transport and mechanics that results from finite growth and
deformation at the pore scale when employing a growth model which neglects effects associated
with complex phase transitions. The subsequent application of two-scale asymptotic techniques
to this system of equations is further complicated by the fact that the equations governing the
fluid and solid mechanics are most naturally written in different reference frames. As such, the
system of equations describing the FSI does not yield a coherent understanding of the relationship
between microscopic and macroscopic quantities because the periodicity assumption no longer
holds. We proceed following the techniques set out in [37], whereby the FSI problem is written in
a unified periodic domain, to which we apply asymptotic techniques. However, this work further
represents a significant extension of that presented in [37], as here we both consider a hyperelastic
solid material and employ a morphoelastic growth law along similar lines to that described in
[49,54], as opposed to the linearly elastic inactive solid material considered therein.

This article is organized as follows. In §2, we introduce the fine-scale FSI model for the
growing deformable medium. In §3, we rewrite all equations in a common periodic reference
geometry, derive a system of cell equations at the microscale and effective macroscale equations,
and summarize our new formulation. Then, in §4 we demonstrate the relationship between our
new model and other recent models by considering appropriate limiting cases. Finally, in §5 we
make concluding remarks and highlight ongoing and future work.

2. Model description
In this section, we first introduce the notation for the idealized representation of a poroelastic
medium at the microscale in an initial reference configuration. We then discuss the general form
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of the growth law we consider, following closely that presented in [49,54], after which we present
the equations governing the fluid motion, elastic deformation and solute transport. For the sake of
generality and clarity of presentation, the model presented here is intentionally generic. Biological
or physical motivation is therefore minimal, except where necessary for rationalizing specific
modelling choices. Given this generality, the analysis and resultant effective equations presented
here may prove applicable in many fields of study, though our primary motivations are biological
tissue growth and hydrogeology.

Throughout this work, we denote by ∇ξ , ∇ξ · and �ξ the gradient, divergence and Laplacian,
respectively, for differentiation with respect to the coordinate ξ . For a vector field Υ , rank 2 tensor
fields A and B, rank 3 tensor field A, and rank 4 tensor field A , we define

(∇ξΥ )ij = ∂Υi

∂ξj
, (∇ξA)ijk = ∂Aij

∂ξk
, (∇ξA)ijkl = ∂Aijk

∂ξl
and (∇ξ · A)i = ∂Aij

∂ξj
, (2.1)

and the contractions

A : B = AijBij, (A : B)i =AijkBjk and (A : B)ij = AijklBkl, (2.2)

where we employ the Einstein summation convention over repeated indices. Finally, for a scalar
function ψ(A), we define (

∂ψ(A)
∂A

)
ij

= ∂ψ(A)
∂Aij

. (2.3)

Given the large amount of mathematical notation employed in the remainder of this article, we
have included a brief summary of the nomenclature in table 1, given in appendix A.

(a) Idealized porous medium in the reference configuration
We consider an idealized porous medium in R

d, d = 2, 3. We model the medium as a highly
connected material (i.e. both fluid and solid portions of the material are connected) with a
(locally) spatially periodic microstructure comprising a growing, hyperelastic solid saturated
with a viscous Newtonian fluid. Further, we consider the growth dynamics of the solid to be
governed by the availability of a passive solute transported through the domain. We make
the assumption that the porous material may be characterized by two distinct lengthscales: the
lengthscale corresponding to the full extent of the material, denoted L and referred to as the
macroscale, and that corresponding to the periodic microstructure, denoted � and herein referred
to as the microscale or pore scale. We assume that there is a strong separation of lengthscales;
that is, the dimensionless parameter ε= �/L satisfies 0< ε� 1. For simplicity in what follows, we
shall scale the macroscopic parameter with unity, i.e. L = 1, and ε= �� 1.

We denote by Ωε the initial macroscale reference domain, which comprises the periodic
microstructure, and denote the homogenized macroscopic domain by Ω . Throughout this work,
we employ the subscript ε to signify dependence on the material’s microstructure. We further
partition Ωε into two macroscopic subdomains ΩF

ε and ΩS
ε such that Ω̄F

ε ∪ Ω̄S
ε = Ω̄ε and

ΩF
ε ∩ΩS

ε = ∅; where ΩF
ε and ΩS

ε correspond to the regions of Ωε containing fluid and solid
material, respectively, and the notation ¯ denotes the closure of a domain. In addition, we assume
that the fluid domain is sufficiently connected to obtain a non-trivial flow and the solid domain
is sufficiently connected to prevent pieces of solid being carried away by the fluid. Furthermore,
we denote by Γε the initial reference interface between ΩF

ε and ΩS
ε . Finally, we denote the unit

inward normal to ΩS
ε on Γε by nε , and the unit tangent(s) to Γε by τ ε .

We specify that the microstructure may be characterized such that the fluid and solid
subdomains may be decomposed into a set of unit cells {YS

i }i∈I and {YF
i }i∈I , respectively, for
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YS

YF∂Y

n

YG

t

Figure 1. Schematic of the reference cell,Y , decomposed into the fluid domainYF , the solid domainYS and the interface
YΓ . (Adapted from [39, fig. 1].)

some suitable index set I. Given the periodicity of the microstructure, each cell corresponds to a
translation of a single reference cell; that is,

YS
i = YS + ki and YF

i = YF + ki, where ki ∈ Z
d ∀i ∈ I. (2.4)

Under this notation we may decompose the solid and fluid domains as

ΩS
ε =

⋃
ki:i∈I

ε(YS + ki) ∩Ωε and ΩF
ε =

⋃
ki:i∈I

ε(YF + ki) ∩Ωε . (2.5)

We may further denote the reference cell by Y = YS ∪ YF and denote the fluid–solid interface in
the reference cell by YΓ = ȲS ∩ ȲF . Moreover, we denote the unit inward normal to YS on YΓ by
n and tangents on YΓ by τ . A schematic diagram of the reference cell Y is shown in figure 1.

(b) Morphoelastic growth law
We consider finite growth and deformation of the elastic body ΩS

ε , employing the theory of solid
mechanics to describe the deformations of the body under the load and stress induced through the
growth of the body and its interaction with the surrounding fluid. Following the decomposition
first described in [49] in the field of morphoelasticity, given an initial, residual stress-free reference
configuration the model of growth employed here may be described in two stages:

(i) We consider a geometric (stress-free) deformation of the body which characterizes
the physical/chemical/biological processes governing growth to obtain a virtual grown
configuration.

(ii) We then consider the elastic response of this grown body as a means of enforcing physical
compatibility and the physical constraints imposed on the elastic body via its interactions
with the surrounding fluid and geometry to obtain the current deformed configuration.

This second stage is of crucial importance as we make the assumption that the growth process
itself is entirely local at each point, that is, independent of the growth nearby. Given such an
assumption, it is possible that non-physical configurations may arise as a result of the initial
growth stage and, as such, the elastic response is necessary to obtain physically meaningful
results.

Extending the notation introduced in §2a, we denote the virtual grown configuration by
◦
Ω

S
ε

and the current deformed configuration by Ω̃
S
ε . We now specify that the deformation ΩS

ε →
Ω̃

S
ε may be characterized by the deformation gradient F . The key tenet of morphoelasticity,

introduced in [49], is that F may be decomposed into the composition of a tensor describing
growth, denoted Fg, and an elastic deformation, denoted Fe, i.e. F = Fe ◦ Fg. A schematic
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F

Fe

Fg

W° e   (t)

W
~

e  (t)

W  e

Figure 2. Schematic diagram of the decomposition into the growth and elastic response deformations. Where F, Fg and Fe
denote the total, growth and elastic deformations andΩε ,

◦
Ωε(t) and Ω̃ε(t) denote the initial reference, virtual grown and

current deformed configurations, respectively.

diagram demonstrating the decomposition of the deformation and the notation for the variously
transformed domains is given in figure 2. This approach has been adopted widely in the field
of biomedical engineering and we refer to the review articles [55,56] for discussion regarding its
application. We highlight, for example, the application to cardiac [57], arterial [45] and skin [58]
tissue growth models, and the comparisons against relevant clinical/experimental data therein,
in particular.

While, conceptually, this decomposition appears natural, there is a subtlety in its application
to time-dependent continuous growth, which we discuss briefly, following closely the exposition
given in [54]. In growth mechanics, there are typically four time scales of interest: corresponding
to elastic wave propagation (τe), viscoelastic relaxation (τv), external loading (τl) and growth (τg).
Implicit in the above is the assumption that the decomposition is instantaneous, insomuch as it
applies continuously in time and, as Fg evolves, Fe responds instantaneously. This requires strong
separation between the growth time scale and the elastic time scales. In the following analysis, we
neglect elastic wave propogation and viscoelastic effects and, as such, make no further reference
to τe and τv,2 and concentrate solely on effects occurring on time scales τl and τg in the remainder
of this article. While there may be regimes in which growth time scales become comparable to
others, we assume here that growth time scales are larger than the other pertinent time scale with

τl � τg, (2.6)

as in [54]. Under this ordering of the time scales, elastic responses of the material occur much
quicker than growth, so that for time smaller than τg the solid material is in a quasi-static elastic
equilibrium. As such, we consider that the only pertinent time variation is that associated with
the evolution of the growth tensor given by

dFg

dt
= H (Fe, Fg, . . . ; t). (2.7)

We now consider a time increment δt, such that τl � δt � τg, and apply a single time step of a
forward Euler method to (2.7) to obtain

Fg(t + δt) = Fg(t) + δtH (Fe, Fg, . . . ; t). (2.8)

This permits the definition of an incremental growth and elastic deformation associated with δt
by

Finc = Finc
e ◦ Finc

g , (2.9)

where Finc
g := δtH . In the following, we consider only incremental growth deformation

gradients and as such forgo the notation associated with incremental growth for presentational

2We mention these time scales here only to maintain consistency with the discussion in [54].
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reference 
configuration

t = t0 t = t1 t = t2 t = tn
Fg, 1 Fg, 2 Fg, 3 Fg, n

Fe, n
Fe, 1 Fe, 2

current configurations with growth and elastic responses

stress-free grown states

W  e W° e (t2)W° e
  (t1) W° e (tn)

W
~

e (tn)W
~

e (t1) W
~

e (t2)W
~

e (t1) W
~

e (t2) W
~

e (tnt )

Figure 3. Schematic diagramof the decomposition into the growth and elastic response deformations formultiple incremental
growth steps,whereFg,i andFe,i denote thegrowthandelastic deformations to

◦
Ωε(ti) andΩ̃ε(ti), respectively, associatedwith

transition from time ti−1 to ti .

convenience. The above definition of incremental growth and response provides a natural means
of considering many growth steps. A schematic diagram demonstrating the application of
multiple growth steps is given in figure 3. In the multiple-scales analysis presented in §3, we
consider a single time increment only for the sake of concision, though we remark that the
homogenization process generalizes naturally to any number of time steps.

As a means of modelling either nutrient-regulated growth in biological applications or
chemical-regulated degradation in industrial applications, we additionally specify that the
growth is coupled to transport. Under this assumption, Fg has a functional dependence on
the concentration of solute, denoted cε . For simplicity, we set Fg = Fg(cε) and do not consider
explicit stress or time dependencies on growth. Additionally, we consider the transport of solute
on the diffusive time scale τD. Whether there is a strong separation between τg and τD is
application specific and, therefore, in the following analysis we make no assumptions regarding
the separation between these two scales. Further restrictions on the constitutive assumption for
the underlying growth law are described in §2f.

In order for us to specify correctly the equations governing fluid and solid mechanics, and
transport of the passive solute, we must define appropriate coordinate systems in the reference,
virtual grown and deformed current configurations. As such, consider the mappings

◦
χε(t) :Ωε → ◦

Ωε(t) and χ̃ε(t) :
◦
Ωε(t) → Ω̃ε(t), (2.10)

whereby ◦
χε is obtained by appropriate constitutive assumptions on the growth dynamics, and

χ̃ε is obtained via solution of an elasticity problem. Under these definitions, a point P in Ωε with
coordinates x at time t has coordinates ◦x = ◦

χε(x, t) in
◦
Ωε(t) and x̃ = χ̃ε(

◦x, t) in Ω̃ε(t). Moreover, we
may naturally define the grown and deformed full domains, fluid domains and interface by

◦
Ωε(t) = { ◦

χε(x, t) : x ∈Ωε}, Ω̃ε(t) = {χ̃ε ◦ ◦
χε(x, t) : x ∈Ωε},

◦
Ω

F
ε (t) = { ◦

χε(x, t) : x ∈ΩF
ε }, Ω̃

F
ε (t) = {χ̃ε ◦ ◦

χε(x, t) : x ∈ΩF
ε },

◦
Γ ε(t) = { ◦

χε(x, t) : x ∈ Γε}, Γ̃ ε(t) = {χ̃ε ◦ ◦
χε(x, t) : x ∈ Γε}.

For clarity, in the following we further identify all dependent variables defined with respect to the

virtual grown configuration or the current deformed configuration by ◦ or ,̃ respectively. Finally,
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we remark that we defer explicit definition of the deformations ◦
χε and χ̃ε until the definition of

the constitutive assumption on the equations governing the elastic deformation in §2d and the
growth law given in §2f.

(c) Fluid equations
The motion of the fluid is governed by the incompressible Navier–Stokes equations; however,
following the arguments presented in [38,39,59] we assume that the microstructure and fluid
velocity are scaled such that the time derivative and inertial terms in the Navier–Stokes equations
are O(ε2). Further, we note that these equations are most naturally presented in the current
deformed configuration. Denoting the pressure, velocity and dynamic viscosity of the fluid by

p̃ε , ṽε and μ, respectively, the fluid in Ω̃
F
ε (t) is governed by the Stokes equations

−∇x̃p̃ε + μ∇x̃ · (∇x̃ṽε + (∇x̃ṽε)
T) = f̃

F
ε ∀x̃ ∈ Ω̃F

ε (t) (2.11)

and

∇x̃ · ṽε = 0 ∀x̃ ∈ Ω̃F
ε (t), (2.12)

where f̃Fε denotes an external force acting on the fluid. We note that, while the momentum
equation (2.11) is quasi-steady, p̃ε and ṽε have implicit time dependence due to the growth and
mechanics of the solid material.

It remains for us to specify the conditions governing the flow on the interface Γ̃ ε and the
remainder of the boundary ∂Ω̃ε . As this requires coupling with the solid equations (which are
described in the grown domain) and periodicity (which is applicable only in the initial reference
configuration), we defer their specification until §2g, once appropriate coordinate transformations
have been defined.

(d) Solid equations
We assume that the solid material is hyperelastic, i.e. the constitutive assumption on its stress may
be determined via an appropriate strain energy functional. We proceed now by specifying the
equations governing the deformation of the solid, presented in the current grown configuration
(see [60,61]). Recalling the notation introduced in §2b, we define the elastic deformation
gradient by

Fe := ∇◦x
χ̃ε , (2.13)

and the right Cauchy–Green deformation tensor by

Ce := FT
eFe. (2.14)

In view of the time-scale separation (2.6), the solid skeleton satisfies

− ∇◦x
· ◦
σ
S
ε = ◦

f
S
ε ∀ ◦x ∈ ◦

Ω
S
ε , (2.15)

where
◦
f
S
ε denotes a body force acting on the solid material and ◦

σ
S
ε denotes the Piola stress in the

body. As we consider a hyperelastic material, we define ◦
σ
S
ε constitutively by

◦
σ
S
ε := 2Fe

∂Ψ (Ce)
∂Ce

, (2.16)

where Ψ (Ce) denotes the strain energy functional for a given material. In the analysis presented
in §3b(ii), we require that the strain energy functional satisfies certain convexity requirements
and, as such, we restrict our attention to materials whose strain energy functionals are strictly
polyconvex (for a definition see, for example, [61]) such as Ogden [62] or Mooney–Rivlin [63,64]
solids (commonly employed when modelling rubbers, polymers and biological tissues). Once
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more, we defer the specification of suitable interface and boundary conditions to §2g, after the
definition of relevant coordinate transformation tensors.

(e) Solute transport
In addition to considering the motion of the fluid and solid materials, we further model the
transport of a passive solute whose concentration we denote cε . As we consider growth regulated
by the passive solute, the evolutions of the fluid and solid domains are coupled to cε as well as to

each other through the FSI. In the fluid and solid domains (Ω̃
F
ε and Ω̃

S
ε , respectively), we assume

that the solute is transported via advection and diffusion (in the latter, the advection arising
due to the growth and deformation of the solid material). In the solid, however, we consider
an additional consumption term associated with growth. Finally, we note that the equations
governing the transport of this solute in each sub-domain are most naturally posed in the current
deformed configuration as diffusive fluxes are associated with spatial concentration gradients, as
opposed to material gradients in the grown or initial configurations.

Given these assumptions, the equations governing the evolution of this transported species in

Ω̃
F
ε is given by

∂ c̃ε
∂t

+ ∇x̃ · (ṽε c̃ε) = DF�x̃c̃ε ∀x̃ ∈ Ω̃F
ε , (2.17)

where DF denotes the diffusivity of the solute in the fluid; and the evolution in Ω̃
S
ε is given by

∂ c̃ε
∂t

+ ∇x̃ ·
(
∂χ̃

∂t
c̃ε

)
= DS�x̃c̃ε − RS c̃ε ∀x̃ ∈ Ω̃S

ε , (2.18)

where DS denotes the diffusivity of the solute and RS is a constant that denotes the consumption
of solute in the solid material. We note that in general RS may have a complicated dependence
on a range of model variables which we neglect here for the sake of clarity of presentation.

(f) Assumption on the growth law
We now specify assumptions on growth that we employ in the following analysis. For the sake
of simplicity, we consider that the growth of the solid material is isotropic and a function of
the local concentration of solute only. Under these assumptions, the natural form of the growth
displacement is given by

◦
χε(x) = ◦

χε(x, cε), (2.19)

in which there is an implicit time dependence provided by the coupling to cε(x, t). The
deformation gradient associated with the growth deformation is then given by

Fg := ∇x
◦
χε(x, cε). (2.20)

We note that for simplicity, and as we wish to maintain a general formulation in this study,
the growth law employed here does not incorporate complicated phase transitions and stress
dependence that are often employed in the modelling of biological materials. We refer the reader
to, for example, [56] for further discussion on growth laws in a biological setting. In particular,
we highlight the lack of non-local terms corresponding to consumption of the fluid phase that
may occur in certain applications described previously under the assumption of a more complex
growth law.

(g) Interface conditions
In this section, we specify the interface conditions for the fluid–structure coupling, and the
transport of solute. Firstly, we introduce notation for the jump of a quantity across the interface.
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Recalling the definition of nε , we define the trace of a scalar quantity ψ (defined in ΩF
ε and ΩS

ε ),
on Γε by

ψ± := lim
ε→0

ψ(x ± εnε). (2.21)

Under this notation, we define the jump operator by

[[ψ]] =ψ+ − ψ−, (2.22)

where we extend to vector and tensor quantities componentwise according to this definition.

(i) Fluid–structure coupling

The natural conditions to impose in the current context of FSI are continuity of velocity and
continuity of total stress. However, a complication lies in the fact that the fluid and solid equations
are presented with respect to different configurations (i.e.

◦
Ωε(t) and Ω̃ε(t), respectively). We must

therefore consider appropriate transformations of the fluid stress, in view of which we defer the
definition of the interface conditions to §3a, wherein we describe the process of mapping the FSI
problem to a unified periodic domain.

(ii) Solute

Suitable conditions for the concentration of the passive solute are continuity of solute
concentration and flux across the interface, i.e.

[[D∇x̃c̃ε · ñε(t)]] = 0 ∀x̃ ∈ Γ̃ ε (2.23)

and

[[c̃ε]] = 0 ∀x̃ ∈ Γ̃ ε . (2.24)

As in the case of the fluid–structure coupling, we will subsequently be required to map these
conditions onto the interface in the initial reference configuration when we come to perform the
multiple-scale asymptotic analysis.

3. Homogenization in the Lagrangian frame
In this section, we describe the process of mapping the system of equations describing the FSI
in §2c,d, and the solute transport in §2e, to a periodic reference geometry on which we may
perform the two-scale asymptotic analysis. We then proceed by applying two-scale expansions
and spatially averaging to obtain cell problems on the microscale (i.e. problems posed on the
periodic cell Y ), and effective equations in the homogenized macroscale domain Ω .

(a) Coordinate transformations
In this section, we apply a coordinate transformation to the equations governing the FSI and
solute transport, together with the appropriate interface conditions, to yield a full system of
equations on the fixed reference configuration denoted Ωε . This process is analogous to the
so-called arbitrary Lagrangian–Eulerian (ALE) formulation widely employed in computational
studies; see [37,65].

Recalling from §2d,f the definitions of Fe and Fg, we observe that these tensors are well defined

only in
◦
Ω

S
ε . As we require both of these quantities to be defined throughout

◦
Ωε , we extend
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their definition to all of
◦
Ωε by means of a suitable harmonic extension. We now define the Piola

transformations, Gα , and Jacobians, Jα , by

Jα = det Fα and Gα = JαF−1
α for α ∈ {e, g}. (3.1)

Following [65], we are able to obtain the identities for the transformation of derivatives under a
generic mapping. Consider a general mapping χ̌ε defined by

χ̌ε : Ω̂ε → Ω̌ε

and x̂ �→ x̌.

}
(3.2)

We denote the associated gradient of the mapping by F# = ∇x̂χ̌ε , and define G# and J# according
to (3.1). Then, denoting a generic scalar field ξ , vector field Υ and tensor field A, and adopting
the convention of using ˆ and ˇ to denote evaluation in Ω̂ε and Ω̌ε , respectively, application of the
chain rule yields

∇x̌ξ̌ = F−T
# ∇x̂ξ̂ and ∇x̌Υ̌ = (∇x̂Υ̂ )F−1

# . (3.3)

Via the application of Nanson’s formula and the divergence theorem, we obtain

∇x̌ · Υ̌ = 1
J#

∇x̂ · (J#F−1
# Υ̂ ) and ∇x̌ · Ǎ = 1

J#
∇x̂ · (J#ÂF−T

# ). (3.4)

Lastly, the chain rule provides

∂ξ̌

∂t
= ∂ξ̂

∂t
−
(

F−1
#
∂χ̌ε

∂t
· ∇x̂

)
ξ̂ . (3.5)

By substituting the appropriate nomenclature associated with the mappings ◦
χε and χ̃ε into

(3.3)–(3.5), we are able to obtain expressions for mapping derivatives between the reference,
virtual grown and current deformed configurations.

We now proceed to write the coupled FSI, growth and transport problem in the initial reference
configuration employing (3.3)–(3.5). The first stage of this process is to rewrite these equations in
the virtual grown configuration, thus obtaining a system equivalent to that obtained in the ALE
frame in [37]. The second stage, which differentiates this work from [37], is to further map the
equations obtained in the grown configuration,

◦
Ωε , to the periodic reference configurationΩε . To

this end, and for the sake of concision, we introduce the following notation corresponding to the
combination of growth and elastic deformation:

F := FgFe, G := GgGe and J := JgJe. (3.6)

The equations governing the fluid are thus given by

−GT∇xpε + μ∇x · ((∇xvε)GF−T + GT(∇xvε)TF−T) = JfFε ∀x ∈ΩF
ε (3.7)

and

∇x · (Gvε) = 0 ∀x ∈ΩF
ε . (3.8)

The equations governing the elastic deformation are given by

− ∇x · (σS
ε GT

g) = JgfSε ∀x ∈ΩS
ε . (3.9)

The equations governing the transport in the fluid domain are

J

(
∂cε
∂t

− 2

(
F−1

g
∂

◦
χε

∂t
· ∇x

)
cε

)
+ ∇x · (cεGvε) = DF∇x · (GF−T∇xcε) ∀x ∈ΩF

ε , (3.10)

and in the solid domain

J

(
∂cε
∂t

−
(

F−1
g
∂

◦
χε

∂t
· ∇x

)
cε

)
+ ∇x ·

(
JF−1

g
∂

◦
χε

∂t

)
cε

= DS∇x · (GF−T∇xcε) + JRScε ∀x ∈ΩS
ε . (3.11)
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We note that, despite the elastic deformation affecting transport, the time derivative of the elastic
deformation does not appear in (3.11) explicitly due to our choice of temporal scalings. The
coupling of the fluid and solid problems is specified via the velocity condition

vε = gε ∀x ∈ Γε , (3.12)

where gε denotes the interfacial growth velocity defined by

gε := Fe
∂

◦
χε

∂t
, (3.13)

and the stress condition
σF
ε GTnε = σS

ε GT
gnε ∀x ∈ Γε , (3.14)

where σF
ε is the fluid stress, defined by

σF
ε := −pεI + μ((∇xvε)F−1 + F−T(∇xvε)T). (3.15)

Finally, the coupling between the concentration of solute is given by

[[cε]] = 0 and [[D∇xcε · nε]] = 0 ∀x ∈ Γε . (3.16)

(b) Multiscale homogenization
We now analyse the coupled system describing the FSI, growth and transport of the passive
solute in the fixed reference configuration derived in §3a, with the aim of obtaining a macroscopic
description in a manner analogous to that presented in [35–37]. Given the structure of the medium
introduced in §2, we naturally define

y := 1
ε

x (3.17)

to be the spatial coordinate associated with the microscale (or fast moving coordinate), where
x now corresponds to the spatial coordinate associated with the macroscale (or slow moving
coordinate). Under the assumption of strong separation of scales, we may expand each dependent
variable ψ in multiple-scales form via an expansion

ψ(x, y, t; ε) =
∞∑

i=0

εiψ (i)(x, y, t). (3.18)

Moreover, under this coordinate transformation the gradient operator ∇x is transformed as

∇x → ∇x + 1
ε
∇y, (3.19)

where ∇x and ∇y denote differentiation with respect to the macroscale and microscale spatial
variables, respectively. We proceed by writing expansions of the form (3.18) for the dependent
variables cε , χ̃ε and pε . Following [24,35–37], we then assume a standard scaling for Stokes flow
and expand vε according to

vε(x, y, t; ε) = ε2
∞∑

i=0

εiv(i)(x, y, t), (3.20)

and in order to maintain the correct scaling we follow [37,59] and scale the interfacial growth
velocity employed in (3.12) with

gε = ε2g. (3.21)

We emphasize that this scaling ensures that growth and flow are of equal importance, rather than
a simplifying relegation to lower order as commonly employed elsewhere. In particular, it implies
that, while growth is finite, it is slow, consistent with (3.20).

As in [37], we expand Fe, Je and Ge according to (3.18), and we further propose the expansion
of Fg, Jg and Gg in a similar manner. We note that in §3b(i) we are required to assume that the
proposed expansions for Fe, Je and Ge hold, i.e. the leading-order terms are O(1). However, we
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subsequently show, in §3b(ii), that under the assumption of strict polyconvexity of the strain
energy functional this assumption is indeed valid and independent of the analysis presented in
§3b(i). We constitutively specify Fg = Fg(cε) and subsequently show (see §3b(iii)) that at leading
order the solute concentration exhibits no microscale dependence (as is typical of similar models
[38,39]). Correspondingly, we may reasonably assume that ◦

χε is sufficiently smooth that the
growth deformation gradient may be expanded as

Fg = F(0)
g (x) + εF(1)

g (x, y) + O(ε2), (3.22)

where such an assumption permits the following analysis. Following this, we may expand the
Jacobian for the growth deformation as

Jg = J(0)
g (x) + εJ(1)

g (x, y) + O(ε2)

= det(F(0)
g (x)) + εJ(1)

g (x, y) + O(ε2). (3.23)

We note that it is straightforward to obtain expressions for J(1)
g in terms of the components of Fg;

however, a precise expression for this term is not required for the analysis that follows and so is
omitted for concision. For a generic tensor A, under the assumption that ε is sufficiently small
that ∥∥∥∥∥−

∞∑
i=1

εiA(i)(A(0))−1

∥∥∥∥∥
op

< 1,

we may obtain, by application of a Neumann series, the following expansion for its inverse, A−1,

A−1 =
∞∑

j=0

(
−

∞∑
i=1

εiA(i)(A(0))−1

)j

(A(0))−1

= (A(0))−1 − εA(1)(A(0))−2 + . . .

=
∑
i=0

εi(A−1)(i). (3.24)

Given this observation, we note that we may write the Piola transformation associated with
growth as

Gg = G(0)
g (x) + εG(1)

g (x, y) + O(ε2)

= det(F(0)
g (x))(F(0)

g (x))−1 + εG(1)
g (x, y) + O(ε2). (3.25)

As above, an explicit expression for G(1)
g is straightforward to obtain but is not included.

Remark 3.1. While we consider here a growth law that is dependent on the concentration of
a solute, the following analysis naturally generalizes to a growth law that is dependent on any
quantity that is microscale invariant to leading order.

Finally, we substitute each of these expansions, together with (3.19), into the system of
equations set out in §3a to obtain a system of PDEs at increasing orders of ε.

To obtain the homogenized macroscale equations in the following sections, we take spatial
averages of leading-order behaviour. To this end, we define the following integral averages
associated with the reference cell:

〈ψ〉YF = 1
|Y |

∫
YF

ψ dy, 〈ψ〉YS = 1
|Y |

∫
YS

ψ dy and 〈ψ〉YΓ = 1
|Y |

∫
YΓ

ψ ds, (3.26)

and the material porosity, φ, by

φ = |YF |
|Y | . (3.27)
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(i) Fluid flow

We now consider the equations governing the fluid flow in YF obtained at increasing orders of ε.
At O(ε−1) the equations are given by

(G(0))T∇yp(0) = 0 (3.28)

and
∇y · (G(0)v(0)) = 0. (3.29)

From (3.28), we observe that p(0) is locally constant in YF , i.e. p(0) = p(0)(x, t). At O(1), we obtain
the momentum equation

− (G(0))T(∇xp(0) + ∇yp(1)) + μ∇y · D(0)(v(0)) = J(0)fFε , (3.30)

where D(n)(·) denotes a modified rate of strain tensor defined by

D(n)(Υ ) := ((∇yΥ )G(n)(F(n))−T + (G(n))T(∇yΥ )T(F(n))−T). (3.31)

Equations (3.30) and (3.29) now provide the so-called cell problem in YF for the fluid.3 As such,
we propose the following ansatz for the leading-order velocity and first-order pressure:

v(0) = W1∇xp(0) + W2fFε (3.32)

and
p(1) = π1 · ∇xp(0) + π2 · fFε , (3.33)

where W i and π i (i = 1, 2) are rank 2 tensors and vectors, respectively, that satisfy a pair of
modified tensor Stokes problems, given by

− (G(0))T∇yπ1 + μ∇y · D(0)(W1) = (G(0))T ∀y ∈ YF ,

∇y · (G(0)W1) = 0 ∀y ∈ YF

⎫⎬
⎭ (3.34)

and
− (G(0))T∇yπ2 + μ∇y · D(0)(W2) = J(0)I ∀y ∈ YF ,

∇y · (G(0)W2) = 0 ∀y ∈ YF ,

⎫⎬
⎭ (3.35)

where W i and π i are y-periodic, W i = 0 on YΓ and π i are mean-free on YF for i = 1, 2.
The conservation of fluid mass at O(1) is given by

∇x · (G(0)v(0)) + ∇y · (G(1)v(0) + G(0)v(1)) = 0. (3.36)

To obtain the macroscopic equation governing the fluid, we substitute the ansätze given in (3.32)
and (3.33) into the conservation of fluid mass equation given at O(1) and average over the
reference cell. Application of the divergence theorem and y-periodicity then yields

∇x · (〈G(0)v(0)〉YF ) + 〈(G(1)v(0) + G(0)v(1)) · n〉YΓ = 0. (3.37)

On a further application of the divergence theorem (this time on YS ) and the substitution of the
velocity interface condition given in (3.12), we obtain

∇x · (〈G(0)v(0)〉YF ) + 〈∇y · (G(1)g(0) + G(0)g(1))〉YS = 0. (3.38)

Finally, substituting in the ansatz for v(0) and the definitions of g(0) and g(1) we obtain

∇x · (K∗∇xp(0) + J∗fF ) + g∗
100 + g∗

010 + g∗
001 = 0 (3.39)

in Ω , where

K∗ := 〈G(0)W1〉YF , J∗ := 〈G(0)W2〉YF , g∗
ijk :=

〈
∇y ·

⎛
⎝G(i)F(j)

e
∂

◦
χ

(k)

∂t

⎞
⎠〉

YS

. (3.40)

3Where we define a cell problem as a system defined on the periodic cell Y , which allows the determination of the microscopic
variation of non-leading-order quantities, so that we may specify effective macroscopic coefficients.
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Note that in (3.39) and (3.40) we are required to compute F(1)
e and G(1), and that these quantities

depend on ∇yχ̃
(2) and ∇y

◦
χ

(2)
, and hence the system is not closed. Therefore, we are required to

make appropriate closure assumptions. Here, we consider first order only correctors for χ̃ and ◦
χ

in the definition of F(1)
e and G(1), i.e. we replace these tensors in (3.39) and (3.40) with

F̂(1)
e := F̂(1)

e (χ̃ (0), χ̃ (1)) and Ĝ(1) := Ĝ(1)(χ̃ (0), χ̃ (1), ◦
χ

(0)
, ◦
χ

(1)
, c(0), c(1)). (3.41)

We note that the validity of such closure assumptions will depend on the constitutive assumptions
and parameter values employed in specific scientific and engineering applications. As such, we do
not comment here on the domain of their applicability, but rather highlight this for consideration
in future computational studies.

(ii) Elastic deformation

A corresponding macroscale description for the elasticity equations, parametrized by suitable
microscale cell problems, is obtained by an almost identical process to that outlined in §3b(i) (see
also [66] and the references cited therein). First, we define the Piola stress in the initial reference
geometry by

Te := σS
ε GT

g. (3.42)

We now propose the expansion of the Piola stress of the form

Te =
∞∑

i=−1

εiT(i)
e , (3.43)

which may be obtained by considering expansions for Gg and ∂Ψ (Ce)/∂Ce at increasing orders
of ε. We note that this expansion runs from i = −1 as there is a spatial derivative implicit in the
definition of σS

ε . At O(ε−2) in (3.9), we obtain

− ∇y · (T(−1)
e (χ̃ (0), c(0))) = 0 ∀y ∈ YS . (3.44)

As F(0)
g and G(0)

g exhibit no y-dependence and we have restricted our choice of material such that
the strain energy functional is strictly polyconvex, the resultant strong ellipticity of the operator
[61] yields that the leading-order elastic deformation exhibits no microscale dependence (see
[66–68] and associated literature discussing Γ -convergence [69–71]). From this observation, we
deduce that T(−1)

e ≡ 0 and that the proposed expansions for Fe, Je and Ge employed in [37] are
also correct here.

Collecting terms at O(ε−1), we obtain

− ∇y · (T(0)
e (χ̃ (1), χ̃ (0), c(0))) = 0 ∀y ∈ YS . (3.45)

The coupling between the fluid and solid domains is given by the stress interface condition (3.14),
from which we obtain

T(0)
e (χ̃ (1), χ̃ (0), c(0))n = −p(0)(G(0))Tn ∀y ∈ YΓ . (3.46)

Analogously to (3.32) and (3.33), we now propose the following ansatz for the first-order
displacement:

χ̃ (1) = N (x, y) : ∇xχ̃
(0), (3.47)

where N is a rank 3 tensor that satisfies the cell problem

− ∇y · (T(0)
e (N ; χ̃ (0), c(0))) = 0 ∀y ∈ YS , (3.48)

subject to y-periodicity and the interface condition

T(0)
e (N ; χ̃ (0), c(0))n = −p(0)(G(0))Tn ∀y ∈ YΓ . (3.49)
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Here, we consider (3.48) and (3.49) as the equations governing N , which is nonlinearly coupled to
the macroscale quantities p(0), ∇xu(0) and c(0) via the implicit dependence of the stress on F(0)

g and

G(0)
g . In (3.48) and (3.49), all microscale derivatives ∇y act on N only (both through divergence

and the definition of Fe, and hence Ce). As such, we adopt the notation T(0)
e (N ; ·) to clarify that

this problem determines N , parametrized by the quantities appearing after the semi-colon that
vary on the macroscale only.

At O(1), we then obtain

− ∇y · T(1)
e − ∇x · (T(0)

e (χ̃ (1), χ̃ (0), c(0))) = J(0)
g fSε . (3.50)

Substituting in the ansatz (3.47) and taking the y-average over YS we obtain

− 〈∇y · T(1)
e 〉YS − ∇x · (〈T(0)

e (χ̃ (0); N , c(0))〉YS ) = J(0)
g fSε , (3.51)

where we now view T(0)
e as a function of χ̃ (0), parametrized by N and c(0). Focusing on the first

term in (3.51) and utilizing the divergence theorem, we obtain

−〈∇y · T(1)
e 〉YS = − 1

|Y |
∫
YΓ

T(1)
e n ds

= 1
|Y |

∫
YΓ

(σF
ε GT)(1)n ds

= 〈∇y · ((σF
ε GT)(1))〉YF . (3.52)

In view of (3.52), and rewriting the fluid stress in terms of fluid pressure and velocity via
(3.15) (and exploiting the ansätze (3.32) and (3.33)), we obtain the general homogenized equation
governing solid mechanics given by

− ∇x · 〈T(0)
e (χ̃ (0); N , c(0))〉YS = J(0)

g fSε − (M∗
1 − α∗

1 I)∇xp(0) − (M∗
2 − α∗

2 I)fFε + β∗p(0) (3.53)

in Ω , where

M∗
i =μ〈∇y · ((∇yW i)G

(0)(F(0))−T + (G(0))T(∇yW i)(F
(0))−T)〉YF

and α∗
i = 〈∇y · ((G(0))Tπ i)〉YF , β∗ = 〈∇y · (G(1))T〉YF .

⎫⎬
⎭ (3.54)

(iii) Solute transport

In this section, we consider the homogenization of the solute transport equations ((3.10) and
(3.11)) in the periodic reference configuration. We proceed as in §3b(i),(ii) to obtain the equation
governing the transport of solute at O(ε−2)

D∇y · (G(0)(F(0))−T∇yc(0)) = 0 (3.55)

throughout Y , where we define

D =
{

DS in YS

DF in YF .
(3.56)

The interface condition at O(ε−1) is given by

[[c(0)]] = 0 and [[D∇yc(0) · n]] = 0. (3.57)

Under the assumption of periodicity of F(0)
e , F(0)

g , G(0)
e and G(0)

g , we conclude that c(0) is
independent of microscale variation, i.e. c(0) = c(0)(x, t).
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Collecting O(ε−1) terms, we obtain

D∇y · (G(0)(F(0))−T(∇xc(0) + ∇yc(1))) = 0 ∀y ∈ YF (3.58)

and

D∇y · (G(0)(F(0))−T(∇xc(0) + ∇yc(1))) = ∇y ·
(

J(0)(F(0)
g )−1 ∂χ̃

(0)

∂t

)
c(0) ∀y ∈ YS , (3.59)

subject to the interface conditions at O(1)

[[c(1)]] = 0 and [[D(∇xc(0) + ∇yc(1)) · n]] = 0. (3.60)

We propose the following ansatz for c(1):

c(1) = Q · ∇xc(0). (3.61)

Substituting (3.61) into (3.58)–(3.60), we obtain the cell problems for Q given by

D∇y · (G(0)(F(0))−T(I + (∇yQ)T)) = 0 ∀y ∈ YF (3.62)

and

D∇y · (G(0)(F(0))−T(I + (∇yQ)T)) = fQ ∀y ∈ YS , (3.63)

subject to the interface conditions

[[Q]] = 0 and [[D(I + (∇yQ)T)n]] = 0 ∀y ∈ YΓ (3.64)

and y-periodicity over Y , where the additional forcing in (3.63), fQ, is given by

fQ :=

⎧⎪⎪⎨
⎪⎪⎩

∇y · (J(0)(F(0)
g )−1(∂χ̃ (0)/∂t))c(0)∑d

i=1(∂c(0)/∂xi)
1 if c(0) �= 0,

0 if c(0) = 0,

(3.65)

where 1 denotes a vector of length d whose entries are all 1. Collecting terms at O(1),
substituting in the ansatz (3.61) and averaging over the reference cell Y , we obtain the macroscale
homogenized PDE governing the leading-order concentration of the solute c(0), given by

〈J(0)〉Y ∂c(0)

∂t
− V∗ · ∇xc(0) = ∇x · D∗∇xc(0) + R∗c(0) (3.66)

in Ω , where we define the effective advective velocity associated with growth by

V∗ = (1 + φ)(F(0)
g )−1

〈
J(0)(I + (∇yQ)T)

∂
◦
χ

(0)

∂t

〉
Y

, (3.67)

the effective diffusivity by

D∗ = D〈G(0)(F(0))−T(I + (∇yQ)T)〉Y , (3.68)

and the effective reaction by

R∗ = (φ − 1)

⎛
⎝RS〈J(0)〉YS +

〈
∇y ·

(
JF−1

g
∂

◦
χ

∂t

)(1)〉
YS

⎞
⎠ . (3.69)

We note that it may be possible to further rearrange (3.67)–(3.69) to precisely highlight which
terms exhibit micro- and macroscale dependencies. We do not complete this process here,
however, in order to maintain relatively compact expressions for the effective coefficients.
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(c) Summary of the model
To conclude this section, we briefly recall the equations that constitute the final coupled system.
The cell equations for the fluid are given by (3.34) and (3.35), and the effective macroscale equation
is given by (3.39). The cell equations for the solid are given by (3.48) and (3.49), and the effective
macroscale equation is given by (3.53). Finally, the cell equations for the solute are given by (3.62)–
(3.64), and the effective macroscale equation is given by (3.66).The flow, solid deformation and
solute transport problems presented here are fully coupled. Growth and elastic deformation terms
(Fe, Fg, ◦

χ , etc.) appear explicitly in the fluid and solute transport equations. Further, growth,
elastic deformation and fluid pressure terms occur in the solid mechanics equations.

4. Particular cases
In this section, we consider specific model reductions or parameter regimes so that we
may compare the model derived in §3 with models considered elsewhere in the asymptotic
homogenization literature. In particular, we consider comparison with the studies [35–38] and,
therefore, restrict our attention to linearly elastic solids. In the light of our consideration of

linear elasticity, we now introduce additional notation employed in this section. We define ◦
σ
S
ε

constitutively by
◦
σ
S
ε := C : E ◦x

( ◦uε), (4.1)

where C denotes the fourth-order stiffness tensor for the material, ◦uε denotes the displacement
associated with the elastic deformation, and E◦x

(ψ) denotes the symmetric strain tensor

E ◦x
(ψ) := 1

2 (∇◦x
ψ + (∇◦x

ψ)T). (4.2)

Given the displacement obtained via the solution of momentum equation (2.15), we define the
linear elastic deformation by

χ̃ε(
◦x) := ◦x + ◦uε ∀ ◦x ∈ ◦

Ω
S
ε . (4.3)

(a) No growth
We first consider the case for which there is no growth, while explicitly retaining the (O(ε))
coordinate transformations corresponding to the elastic deformation. This asymptotic regime
corresponds to physical situations in which the linear Biot model is applicable. As such, we
refer the reader to [5] for an in-depth discussion regarding the applicability of this model to
geomechanics. We note that under this assumption Fg = Gg = I and Jg = 1; as such, we further
observe that the quantities associated with the combined transformation become F = Fe, G = Ge

and J = Je. Finally, the interface condition coupling the fluid and solid velocities is given by

vε = ∂uε
∂t

. (4.4)

We observe that the system of equations governing flow and elasticity obtained under this regime
in the formulation described in §3 reduce identically to those presented in [37]. Moreover, as
remarked upon in [37], if we then consider the case of infinitesimal pore-scale deformation we
obtain the standard Biot model of poroelasticity [6,35].

(b) Finite growth, infinitesimal pore-scale deformation
We now consider the case of finite growth and infinitesimal pore-scale deformation as described
in [36]. A potential application for this asymptotic regime is vascularized tissue growth, in
which the solid material (a mixture of cells, interstitial fluid and extracellular matrix) undergoes
small deformations and the fluid (blood) flows slowly. In the light of the transport considered
here, we may further consider drug transport through the tissue and resulting cell death and
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tissue remodelling. Poroelastic frameworks have been employed in modelling solid tumours
[1] and to extract poroelastic model parameters in biological experiments [72]. Moreover, in
[73] a poroelastic model for cytoplasm of living cells is developed through experiment. Under
this assumption Fe = Ge = I and Je = 1, but Fg �= I, Gg �= I and Jg �= 1; as such, we are able to
simplify the elasticity cell equations. Instead of (3.47), we now propose the following ansatz for
the first-order displacement:

u(1) = N (x, y) : ∇xu(0) − p(0)R(x, y), (4.5)

where N and R are a rank 3 tensor and vector, respectively, that satisfy the cell problems

− 1
2 ∇y · ([C : ((I + ∇yN )(F(0)

g )−1 + (F(0)
g )−T(I + ∇yN )T)](G(0)

g )T) = 0 ∀y ∈ YS , (4.6)

with the interface condition

1
2 [C : ((I + ∇yN )(F(0)

g )−1 + (F(0)
g )−T(I + ∇yN )T)](G(0)

g )Tn = 0 ∀y ∈ YΓ ; (4.7)

and

− 1
2 ∇y · ([C : (∇yR(F(0)

g )−1 + (F(0)
g )−T(∇yR)T)](G(0)

g )T) = 0 ∀y ∈ YS , (4.8)

with the interface condition

1
2 [C : (∇yR(F(0)

g )−1 + (F(0)
g )−T(∇yR)T)](G(0)

g )Tn = (G(0)
g )Tn ∀y ∈ YΓ , (4.9)

together with y-periodicity on YS , where I is the rank 4 tensor whose components are given by
(I)ijkl = δikδjl.

We highlight that the macroscale dependence of N and R arises through c(0)(x) only, and
all other macroscale dependence has been eliminated (cf. the cell problem for N given in (3.48)
and (3.49)). Following an equivalent process to that described in §3b(ii), whereby we substitute
the ansatz (4.5) into (3.45) and (3.46) and compute spatial averages, we obtain the macroscale
elasticity equation

− 1
2 ∇x · ([C : (N∗∇xu(0)(F(0)

g )−1 + (F(0)
g )−T(N∗∇xu(0))T)](G(0)

g )T)

+ 1
2 ∇x · ([C : (R∗p(0)(F(0)

g )−1 + (F(0)
g )−T(R∗p(0))T)](G(0)

g )T)

= J(0)
g fSε + (α∗

1 I − M∗
1)∇xp(0) + (α∗

2 I − M∗
2)fFε + β∗p(0), (4.10)

where, for i = 1, 2,

M∗
i =μ〈∇y · ((∇yW i)G

(0)
g (F(0)

g )−T + (G(0)
g )T(∇yW i)(F

(0)
g )−T)〉YF ,

α∗
i = 〈∇y · ((G(0)

g )Tπ i)〉YF , β∗ = 〈∇y · (G(1)
g )T〉YF

and N∗ = I + 〈∇yN 〉YS , R∗ = 〈∇yR〉YS .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (4.11)

Additionally, we must now re-specify the interface condition coupling the fluid and solid
velocities as

vε = ∂
◦
χε

∂t
+ ∂uε

∂t
. (4.12)
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The macroscale flow equation is then given by

∇x · (K∗∇xp(0) + J∗fFε )︸ ︷︷ ︸
I

+ g∗
1 ·
⎛
⎝∂ ◦

χ
(0)

∂t
+ ∂u(0)

∂t

⎞
⎠+ g∗

0 · ∂
◦
χ

(1)

∂t︸ ︷︷ ︸
II

+
〈
∇y ·

(
G(0)

g
∂N
∂t

)〉
YS

: ∇xu(0) + 〈∇y · (G(0)
g N )〉YS : ∇x

∂u(0)

∂t︸ ︷︷ ︸
III

−
〈
∇y ·

(
G(0)

g
∂R
∂t

)〉
YS

p(0) − 〈∇y · (G(0)
g R)〉YS

∂p(0)

∂t︸ ︷︷ ︸
IV

= 0, (4.13)

where

K∗ = 〈G(0)
g W1〉YF , J∗ = 〈G(0)

g W2〉YF and g∗
i = 〈∇y · (G(i)

g )〉YS . (4.14)

In (4.13), terms are labelled I–IV to facilitate comparison with the recent work [36], which
considered a poroelastic medium, growing via a microscale (finite) accretion process represented
by the following interface condition: (

v − ∂u
∂t

)
· nε = η, (4.15)

for accretion rate η. Under the assumption of infinitesimale pore-scale deformation (and adapting
the notation employed in [36] to reflect that employed in this work) the following system of
equations governing the coupled system was obtained:

∇x · 〈(C(∇yN ) + C) : ∇xu(0) + C : (∇yR)p(0)〉YS − φ∇xp(0)

+ 〈((C(∇yN ) + C) : ∇xu(0) + C : (∇yR)p(0))q〉YΓ = 0, (4.16)

and

∇x · 〈v(0)〉YF︸ ︷︷ ︸
I

= −〈η(1)〉YΓ︸ ︷︷ ︸
II

+
〈
∇y ·

(
∂N
∂t

)〉
YS

: ∇xu(0) + 〈∇y · N 〉YS : ∇x
∂u(0)

∂t︸ ︷︷ ︸
III

+
〈
Tr
∂∇yR
∂t

〉
YS

p(0) + 〈Tr ∇yR〉YS
∂p(0)

∂t︸ ︷︷ ︸
IV

+〈v(0) · q〉YΓ , (4.17)

where (4.16) describes the macroscale mechanics (where q accounts for macroscale variation in
the interface) and (4.17) describes the macroscale flow.

Comparison of (4.10) and (4.13) against (4.16) and (4.17) highlights that, under finite growth
and infinitesimal deformation, our formulation is structurally similar to that obtained in [36].
Differences arise in the following ways:

(i) For generality, we retain momentum sources (fFε , fSε ), which are neglected in [36].
(ii) As we model growth coupled to solute transport (a feature not considered in [36]), N

and R have macroscale dependence arising from a constitutively specified dependence
on c(0)(x, t). Moreover, our (volumentric) model for growth differs, and as such there are
corresponding differences in the relevant terms.

(iii) In [36], the constitutive assumption on the solid stress is given by σS
ε = C : ∇xuε ; this

simplifies the equations for the effective solid stress as there are no transpose terms.
(iv) Under the assumption of infinitesimal deformation, all equations in [36] may be posed

in
◦
Ωε and there is no requirement to map to an initial periodic geometry in order to
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perform the asymptotic homogenization. Correspondingly, terms involving Fg, Gg, etc.
are not required in [36].

(v) The formulation in [36] contains additional terms on the interface (involving q), which
results from the extension to non-macroscopically uniform media via the application of
the Reynolds transport theorem.

(c) Infinitesimal growth, no deformation
The final case we consider is that of infinitesimal growth and no elastic deformation. A reasonable
biological application in which growth is small and elastic deformation is sufficiently small that
we may neglect it when considering flow and transport is that of bone tissue engineering. For
instance, in [74] a rigid scaffold is seeded with human bone cells and cultured for four weeks.
The resultant growth reduces the porosity of the structure by approximately 2%. Under this
assumption, the resulting macroscale flow equation is then given by

∇x · (K∗∇xp(0) + J∗fF ) +
〈
∇x · ∂

◦
χ

(1)

∂t

〉
YS

= 0, (4.18)

where

K∗ = 〈W1〉YF and J∗ = 〈W2〉YF , (4.19)

and the macroscale solute transport equation is given by

∂c(0)

∂t
= ∇x · D∗∇xc(0) − (1 − φ)RSc(0), (4.20)

where

D∗ = 〈D(I + (∇yQ)T)〉Y . (4.21)

In the recent work [38], a system of effective equations governing growing porous media is
derived under the assumptions set out above, again considering growth via surface accretion.
The form of the flow equation in [38] is identical to (4.18). However, the solute transport equation
differs due to the choice of time scale (time associated with macroscopic advection) adopted
in [38].

5. Conclusion
In this article, we have performed a spatial homogenization of a coupled fluid–structure
interaction and solute transport model applicable to the study of active poroelastic media. The
effective description that we obtain is of wide relevance to problems in, for example, tissue
engineering, geophysics and industry.

The multiple-scale techniques exploited in this work have been widely applied in the
homogenization of flow and transport in porous media [35,53] and more recently to restricted
models of growing media [36,38,39]. Here, we extend these ideas to a significantly more complex
description of the underlying dynamics. By mapping the fluid–structure interaction and transport
systems to a common frame, an approach also adopted in [37,41–43], we are able to derive an
effective description on the macroscale. We then investigated the correspondence, under selected
simplifying asymptotic limits, between our resulting macroscopic description and other recent
models in the literature.

There are a number of natural extensions to the work described in this article. The most
significant of these is the investigation of this model via numerical experiments. At present, there
exist relatively few three-dimensional computational examples of typical cell problems arising
from asymptotic homogenization (e.g. [40,75–78]). The cell problems associated with this work
are considerably more complex; furthermore, the coupling between the macroscale variables and
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the cell problems represent a significant challenge. However, given that the macroscopic variables
are constant on the cell, we may view these as high-dimensional parameteric PDEs, and, as such,
it may be possible to reduce computational load through the utilization of empirical interpolation
methods [79]. These methods employ greedy algorithms to determine which parameters contain
key information on lower-dimensional structures in the parameter space. Alternatively, model
order reduction methods such as proper orthogonal decomposition (POD) and dynamic mode
decomposition (DMD) [80–82] may be employed to obtain a reduced model, whereby snapshots
of solutions are taken across the parameter space, and singular value decompositions are
employed to extract lower-dimensional structures.

The challenge of parametrizing three-dimensional geometries is a highly active area of
research at the frontier of multiscale analysis in porous media. It is currently unclear how to
correctly extract parametrizations of deformation and growth from computational data. One
possible route forward may be to consider decoupled processes (such as flow, mechanics,
transport, etc.), considering each phenomenologically, whereby a parametrization may be
ascertained from physical assumptions. These ideas have been employed in the case of flow
in complicated microstructures that have evolved via decoupled processes [83–85]. In [83,84],
the authors employ a reduced basis to reduce the order of their model under the assumption
of a physical parametrization of their geometry. In [85], the authors consider a geometry
deformed via fluid–structure interaction to decouple the flow and mechanical processes, and
subsequently employ homogenization and corrector techniques to construct a more efficient
computational scheme.

Upon the development of suitable computational schemes, we emphasize the importance
of comparison of our effective description with the underlying true description given on the
microscale. Perhaps the most important piece of future work is, however, the full parametrization
of this model against experimental data across a range of application areas, in order to validate
its use.

In addition to the future work associated with the numerical simulations, we also highlight
several theoretical extensions. The first of these is the inclusion of thermoelasticity, whereby the
constitutive statement on the solid stress exhibits dependence on temperature (e.g. [60]). While the
model will be structurally similar to that studied in this work, there are differences in the analysis
and, as such, we defer its consideration. The second is the inclusion of multiple phases in the solid
material, i.e. we model the solid as a multiphase mixture. This approach lends itself to a more
precise description of biological tissues (modelling various cellular materials and extracellular
matrix as separate phases). Moreover, such a formulation allows for a more natural description of
conservation of mass between solid and fluid phases that would provide more direct applicability
to swelling/growth applications of interest here. We remark, however, that in this case the strain
energy functional may not exhibit the correct ellipticity properties to permit a fully nonlinear
analysis. The third is the coupling of this model to those presented in [86,87] to model drug
transport in vascularized tumours through the adoption of a double porous medium approach.
The final theoretical extension we propose is the inclusion of solid stress in the constitutive
statement of the growth law. The potential difficulty associated with this formulation arises while
demonstrating that the leading-order elastic deformation is macroscale.
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Appendix A. Nomenclature
Given the volume of nomenclature employed in this work, table 1 contains a brief description of
the key notation adopted. We note that table 1 is not exhaustive; however, it should be clear how
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Table 1. Nomenclature employed in the article.

nomenclature description

L lengthscale associated with macroscopic domain
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

� lengthscale associated with periodic microstructure
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ε ratio of microscopic and macroscopic lengthscales
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

τl , τg, τD time scales associated with loading, growth and diffusion
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ωε reference domain
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .◦

Ωε(t) grown domain
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ω̃ε(t) elastically deformed domain
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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