

Argyriou, Vasileios and Tzimiropoulos, Georgios (2016) Frequency domain subpixel registration using HOG phase correlation. Computer Vision and Image Understanding . ISSN 1077-3142

Access from the University of Nottingham repository:

http://eprints.nottingham.ac.uk/39855/1/CVIU-16-93R1.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

This article is made available under the Creative Commons Attribution Non-commercial No Derivatives licence and may be reused according to the conditions of the licence. For more details see: http://creativecommons.org/licenses/by-nc-nd/2.5/

A note on versions:

The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

Elsevier Editorial System(tm) for Computer

Vision and Image Understanding

Manuscript Draft

Manuscript Number: CVIU-16-93R1

Title: Frequency domain subpixel registration using HOG Phase Correlation

Article Type: Research paper

Keywords: Phase Correlation; registration in frequency domain; subpixel; Fourier; Histogram of Oriented Gradients.

Corresponding Author: Dr. Vasileios Argyriou, PhD

Corresponding Author's Institution: Kingston University

First Author: Vasileios Argyriou, PhD

Order of Authors: Vasileios Argyriou, PhD; Georgios Tzimiropoulos

Abstract: We present a novel frequency-domain image registration technique, which employs histograms of oriented gradients providing subpixel estimates. Our method involves image filtering using dense Histogram of Oriented Gradients (HOG), which provides an advanced representation of the images coping with real-world registration problems such as non-overlapping regions and small deformations. The proposed representation retains the orientation information and the corresponding weights in a multi-dimensional representation. Furthermore, due to the overlapping local contrast normalization characteristic of HOG, the proposed Histogram of Oriented Gradients - Phase Correlation (HOG-PC) method improves significantly the estimated motion parameters in small size blocks. Experiments using sequences with and without ground truth including both global and local/multiple motions demonstrate that the proposed method outperforms the state-of-the-art in frequency-domain motion estimation, in the shape of phase correlation, in terms of subpixel accuracy and motion compensation prediction for a range of test material, block sizes and motion scenarios.

Dear Review Coordinator,

We would like to submit the attached manuscript, "Frequency domain subpixel registration using HOG Phase Correlation," for consideration for possible publication in Elsevier Computer Vision and Image Understanding journal.

This paper has not been published or accepted for publication from another journal or conference. The major contributions of this paper include a novel high-performance version of the phase correlation algorithm based on histogram of oriented gradients (HOG-PC).

Sincerely,

Vasileios Argyriou Kingston University London Faculty of Science, Engineering and Computing. Penrhyn Road Kingston upon Thames Surrey KT1 2EE, UK Email: <u>Vasileios.Argyriou@kingston.ac.uk</u> Phone: +44 (0) 208 417 2591

Frequency domain subpixel registration using HOG Phase Correlation

June 14, 2016

1 General Comments

We would like first to thank the reviewers for their valuable comments and suggestions.

2 Reviewer #1

In this paper, combination of histograms of oriented gradients (HOG) and phase correlation was used for image registration, which is a reasonable extension of phase correlation approach for more robustness. Although slightly improved results are reported, the paper needs address the following issues to improve its presentation.

1) The motivation: as the improvement in comparison to other approaches is less significant, the author need further justify the motivation of the combination;

The main motivation of our work is to propose a dense HOG-based PC method for sub-pixel translation estimation that is also invariant to small deformations, and performs well when the assumption for translation invariance breaks. To the best of our knowledge this is one of the most important problems in block-based motion estimation, as the problem of noise has been addressed by many authors in the past. The robustness and accuracy of the proposed scheme is particularly evident when small blocks (8×8) are used. Please notice that in this case (see tables 1, 4, 7 and Figs 5-10), the proposed HOG phase correlation significantly outperforms other methods.

More details were added in line 45, The main point of this work is to propose...

2) Need compare the complexity with other relevant algorithms, especially those from Ren, GC, NGC and Xiaohua.

Comments on the complexity of the relevant algorithms were added and a new table with times was included (line 306, table 14).

Overall the complexity of the proposed HOG-PC is higher compared to the other approaches due to the computational power required for the pre-processing stage and the estimation of the dense HOG transform. In the current architecture we did not considered any parallel implementation but if a GPU HOG [1] was used it could be no actual difference among them. [1] Victor Prisacariu and Ian Reid, "FastHOG - a real-time GPU implementation of HOG", Department of Engineering Science, Oxford University", 2310/09", 2009

3) Show results from Ren in Figs 11, 13 and Fig 14. You can test on cases with more noise for better comparisons

All the above figures were updated including more noise (pages 21, 26 and 27). In the case of real videos the proposed method outperforms the other methods. Regarding the MRI images since the image/block size is significantly higher most of the approaches are very close in terms of accuracy with Ren's method to outperform especially in very large levels of noise.

4) Show results under different noise rather than Gaussian

Experiments were performed using different levels of motion blur noise. From the obtained results it can be observed that the proposed HOG-PC method outperforms the others especially in very small block sizes.

The updates are in lines 250 and 301, Furthermore, experiments with motion blur present were performed... and tables 4-9.

Furthermore, experiments were performed with 8 different levels of motion blur. In each case... and table 13.

5) Any way to extend the proposed approach to deal with other motions such as rotation and zooming?

Thank you for the suggestion, this is something that we have also thought about, however it is not clear how to apply the principles of scale and rotation estimation in the frequency domain for multi-channel representations like the dense HOG (for up to 2-channel representation one can use a complex number representation). This is an interesting extension and we hope to pursue it in the future.

6) If the estimated motion is block by block, how do you distinguish from background motion and foreground motion? Also will you do block by block motion compensation?

We did not consider to distinguish foreground background motion in this work and more details were added explaining that the estimated motion is block based and that the motion compensation was block by block too.

7) Check the format and English usage.

Typos were fixed and some parts were rephrased.

3 Reviewer #2

This paper presented a new motion estimation method by combining the power of HOG representation and phase correlation. Generally this paper is well written and easy to follow. I have one concern regarding the computational time, which is an important factor in video processing. However, I didn't see the results on computation cost.

As it was mentioned above comments on the complexity of the relevant algorithms were added and a new table with times was included (line 306, table 14).

Overall the complexity of the proposed HOG-PC is higher compared to the other approaches due to the computational power required for the pre-processing stage and the estimation of the dense HOG transform. In the current architecture we did not considered any parallel implementation but if a GPU HOG [1] was used it could be no actual difference among them. [1] Victor Prisacariu and Ian Reid, "FastHOG - a real-time GPU implementation of HOG", Department of Engineering Science, Oxford University", 2310/09", 2009

Please give more detail information about the medical images used in the last experiment. For example, what is the image resolution, are they 3D images or the video clip? In medical imaging, it is very difficult to get the ground truth. Please explain how do you obtain the ground truth in sub-voxel accuracy.

More details on the MRI images were added in line 218.

The images show real MRI data from a grapefruit that was acquired using a production quality Fast Spin Echo (FSE) sequence on a GE (Faireld, CT, USA) Signa Lx 1.5 Tesla MRI scanner. The 256×256 pixel images cover a 16 cm² FOV corresponding to a 0.0625mm square per pixel. Five images were acquired with the fruit at dierent positions in the FOV, by manually moving the scanner table.

Also, Gaussian noise is not common in real clinical applications. On the contrary, the noise is highly related with machine (scanner). Actually motion blur is more common than noise. It would be great if the authors can show the motion estimation accuracy in that scenario.

As it was mentioned above experiments were performed using noise generated by blur filter. From the obtained results it can be observed that the proposed HOG-PC method outperforms the others especially in very small block sizes.

The updates are in lines 250 and 301, Furthermore, experiments with motion blur present were performed... and tables 4-9.

Furthermore, experiments were performed with 8 different levels of motion blur. In each case... and table 13.

<u>Highlights</u>

A dense HOG Phase Correlation method Invariant to small deformations Performs well when the assumption for translation invariance breaks The robustness and accuracy is particularly evident when small blocks

Frequency domain subpixel registration using HOG Phase Correlation

Vasileios Argyriou and Georgios Tzimiropoulos Kingston University and University of Nottingham

Abstract

We present a novel frequency-domain image registration technique, which employs histograms of oriented gradients providing subpixel estimates. Our method involves image filtering using dense Histogram of Oriented Gradients (HOG), which provides an advanced representation of the images coping with real-world registration problems such as non-overlapping regions and small deformations. The proposed representation retains the orientation information and the corresponding weights in a multi-dimensional representation. Furthermore, due to the overlapping local contrast normalization characteristic of HOG, the proposed Histogram of Oriented Gradients - Phase Correlation (HOG-PC) method improves significantly the estimated motion parameters in small size blocks. Experiments using sequences with and without ground truth including both global and local/multiple motions demonstrate that the proposed method outperforms the state-of-the-art in frequency-domain motion estimation, in the shape of phase correlation, in terms of subpixel accuracy and motion compensation prediction for a range of test material, block sizes and motion scenarios. Keywords: Phase Correlation, registration in frequency domain, subpixel, Fourier, Histogram of Oriented Gradients.

1 1. Introduction

A critical component of various high-level computer vision and video processing systems is motion estimation and registration. To perform image registration, we usually assume that the input images are related by a parametric

Preprint submitted to Computer Vision and Image Understanding

June 13, 2016

geometrical transformation. Then, in order to obtain the unknown motion parameters, an optimisation approach is applied on a matching criterion. Pure translation is assumed in this work, which is fundamental in a number of applications such as standards conversion, noise reduction, image super-resolution, medical image registration, restoration, and compression. In such systems, motion compensated prediction is widely used for filtering and redundancy reduction purposes. International standards for video communications such as MPEGx and H.26x employ motion compensation prediction, which is based on regular block-based partitions of incoming frames.

Recently there has been a lot of interest in motion estimation techniques op-14 erating in the frequency domain. Perhaps the best-known method in this class is 15 phase correlation [1, 2], which has become one of the motion estimation methods 16 of choice for a wide range of professional studio and broadcasting applications 17 [3]. Phase Correlation (PC) and other frequency domain approaches (that are 18 based on the shift property of the Fourier Transform (FT)) offer speed through 19 the use of FFT routines and enjoy a high degree of accuracy featuring several 20 significant properties: immunity to uniform variations of illumination, insen-21 sitivity to changes in spectral energy and excellent peak localization accuracy. 22 Furthermore, it provides sub-pixel accuracy that has a significant impact on mo-23 tion compensated error performance and image registration for super-resolution 24 and other applications, as theoretical and experimental analyses have suggested 25 [4]. Sub-pixel accuracy mainly can be achieved through the use of bilinear in-26 terpolation, which is also applicable to frequency domain motion estimation 27 methods. 28

One of the main issues of frequency domain registration methods is that in order to obtain reliable motion estimates large blocks of image data are required. Although this requirement is not an issue when there is a single motion, it causes problems when multiple motions are present and affects the accuracy and the overall motion compensated error (especially at the motion borders). On the other hand, reducing the block size increases the sensitivity to noise and reduces the amount of useful image information. Therefore to circumvent the problem,

selecting useful and reliable features is essential. In computer vision and image 36 processing, histogram of oriented gradients (HOG) [5] is a feature descriptor 37 that is invariant to geometric and photometric transformations used mainly for 38 object recognition. Histogram of oriented gradients describe local shapes within 39 an image by the distribution of intensity gradients. The image is divided into 40 cells, and for the pixels within each cell, a histogram of gradient directions is 41 calculated. The local histograms can be normalized by calculating a measure 42 of the intensity across a larger block over a set of neighbouring cells providing 43 invariance to changes in illumination and shadowing. 44

The main point of this work is to propose a dense HOG-based PC method 45 that is invariant to small deformations, and performs well when the assumption 46 for translation invariance breaks. To the best of our knowledge this is one of 47 the most important problems in block-based motion estimation, as the problem 48 of noise has been addressed by many authors in the past. Additionally, the 49 limitations of frequency based methods when small blocks are used is key part 50 of the motivation of the combination, since HOG transform provides an extra 51 advantage in very small block sizes. In more details, in this paper we introduce 52 a novel high-performance version of the phase correlation algorithm based on 53 histogram of oriented gradients (HOG-PC). The key advances introduced by 54 this paper are the use of a dense histogram of oriented gradients to represent 55 the images. Note that the proposed dense representation is quite different from 56 the traditional representation of a block (or patch) based on HOG. The lat-57 ter achieves invariance to small translational displacements and hence does not 58 appear to be suitable for motion estimation. In contrast, we propose to use 59 a very dense representation by calculating a descriptor per pixel. This allows 60 us to interpret the obtain representation as a multi-channel block representa-61 tion. Then, motion estimation is performed by correlating the multi-channel 62 representations from two blocks. Our main contribution lies in showing that 63 this representation not only can recover translational motion very accurately 64 but is also better able to cope with real-world registration problems such as 65 non-overlapping regions, small deformations but also white noise. Furthermore, 66

due to the overlapping local contrast normalization characteristic of HOG, the proposed HOG-PC method improves significantly the estimated motion parameters in smaller size blocks. Finally, subpixel accuracy is obtained through the use of simple interpolation schemes [6, 7]. Experiments with ground truth data, noisy MR images, and real video sequences have shown that our scheme performs significantly better than recently proposed subpixel extensions to the phase correlation method.

This paper is organised as follows. In Section 2, we review the state-of-theart in sub-pixel motion estimation using phase correlation. In Section 3, we discuss the principles of the proposed HOG-PC and the key features of this method are analysed. In Section 4 we present experimental results while in Section 5 we draw conclusions arising from this paper.

79 2. Related work

In this section, a brief review of current state-of-the-art Fourier-based meth-80 ods for image registration is presented [8]. In many practical encoder implemen-81 tations, sub-pixel motion estimation is achieved by straightforward extensions 82 to the baseline integer-pixel block-matching algorithm mainly through the use of 83 bilinear interpolation. Interpolation in the data domain is also applicable to fre-84 quency domain motion estimation methods such as phase correlation. Moreover 85 such an approach cannot provide estimates of true floating-point accuracy, only 86 approximations to the nearest negative power of two. To circumvent the above 87 difficulties associated with interpolation, alternative approaches have been de-88 veloped. 89

Recently, several subpixel extensions have been proposed [9, 10, 11, 12, 13, 14]. In [15], Hoge proposes to perform the unwrapping after applying a rank-1 approximation to the phase difference matrix. In more detail, Hoge presents a so-called Subspace Identification Extension method, which is based on the observation that a 'noise-free' phase correlation matrix (i.e. a matrix computed from shifted replicas of the same image) is a rank one, separable-variable matrix.

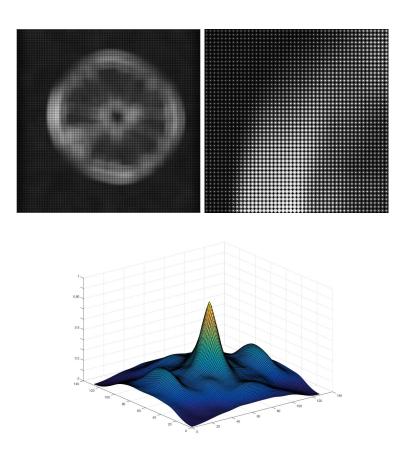


Figure 1: An example of the dense HOG features represented with orientation histograms (top) and a obtained correlation surface (bottom).

For a "noisy phase correlation matrix (i.e. a matrix computed from consecu-96 tive frames of a moving sequence), the sub-pixel motion estimation problem can 97 be recast as finding the rank one approximation to that matrix. This can be 98 achieved by using Singular Value Decomposition (SVD) followed by the identifi-99 cation of the left and right singular vectors. These vectors allow the construction 100 of a set of normal equations, which can be solved to yield the required estimate. 101 The work in [16] is a noise-robust extension to [15], where noise is assumed to be 102 AWGN. The authors in [17] derive the exact parametric model of the phase dif-103 ference matrix and solve an optimization problem for fitting the analytic model 104 to the noisy data. 105

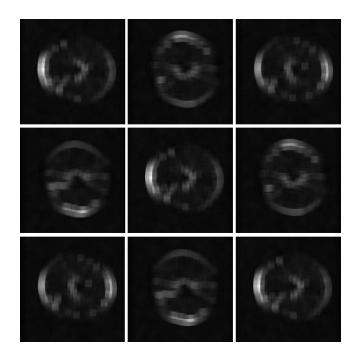


Figure 2: The first $\theta = 9$ channels of the dense HOG that were used in the proposed HOG-PC.

To estimate the subpixel shifts, Stone et al. [18] fit the phase values to a 2-D 106 linear function using linear regression, after masking out frequency components 107 corrupted by aliasing. The method inevitably requires 2-D phase unwrapping 108 which is a difficult ill-posed problem, while the parameters controlling masking 109 are arbitrarily chosen and require fine tuning. Thus, after obtaining an integer-110 precision alignment of the input images their method takes steps towards alias 111 cancellation by eliminating certain spectral components of each of the two input 112 images. Elimination is based on two criteria: (i) radial distance of a spectral 113 component from the component located at the origin and (ii) magnitude of 114 a spectral component in relation to a threshold. The latter is dynamically 115 determined as follows. Spectral components are sorted by magnitude and are 116 progressively eliminated starting with the lowest. The authors claim that there 117 exists a range in which the accuracy of the computed motion estimate becomes 118 stable and independent of the degree of progressive elimination. This stability 119 range is indirectly used to determine the required threshold. A plane fitting 120

¹²¹ operation on the frequencies that have survived the above two criteria yields ¹²² the required motion estimates. An extension to the method for the additional ¹²³ estimation of planar rotation has been proposed in [19].

Foroosh et al. [20] showed that the phase correlation function is the Dirich-124 let kernel and provided analytic results for the estimation of the subpixel shifts 125 using the *sinc* approximation. According to [20], images mutually shifted by a 126 sub-pixel amount can be assumed as having been obtained by an integer pixel 127 displacement on a higher resolution grid followed by subsampling. This assump-128 tion allows the analytic computation of the normalised cross-power spectrum as 129 a polyphase decomposition of a filtered unit impulse. The authors demonstrate 130 that the signal power of the resulting phase correlation surface is not concen-131 trated in a single peak but is distributed to several coherent peaks adjacent to 132 each other. The authors further show that this amounts to a Dirichlet kernel, 133 which can be closely approximated by a *sinc* function. This approximation 134 allows for the development of a closed-form solution for the sub-pixel shift esti-135 mate. 136

Finally, a fast method for subpixel estimation based on FFTs has been proposed in [21]. Notice that the above methods either assume aliasing-free images [20, 22, 21, 17], or cope with aliasing by frequency masking [18, 16, 15, 19], which requires fine tuning.

¹⁴¹ 3. HOG-PC for Subpixel Registration

Let $I_i(\mathbf{x}), \mathbf{x} = [x, y]^T \in \mathcal{R}^2, i = 1, 2$ be two image functions, related by an unknown translation $\mathbf{t} = [t_x, t_y]^T \in \mathcal{R}^2$

$$I_2(\mathbf{x}) = I_1(\mathbf{x} - \mathbf{t}) \tag{1}$$

To estimate the translational displacement, we use phase based correlation schemes. Each image $I_i(\mathbf{x})$ can be considered as a continuous periodic image function with period $T_x = T_y = 1$, [23]. The Fourier series coefficients of Iare given by

$$F_I(\mathbf{k}) = \int_{\Omega} I(\mathbf{x}) e^{-j\omega_0 \mathbf{k}^T \mathbf{x}} d\mathbf{x}$$
(2)

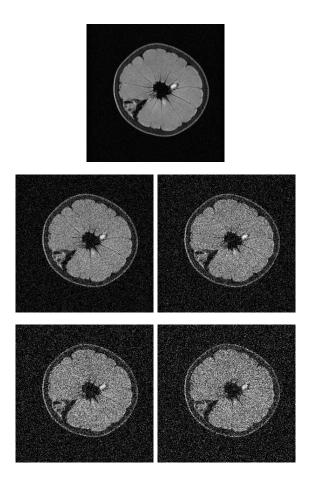


Figure 3: An example of the MRI data without and with noise of different levels (0.01,0.02,0.03,0.04).

where $\Omega = {\mathbf{x} : -1/2 \leq \mathbf{x} \leq 1/2}$, $\mathbf{k} = [k, l]^T \in Z^2$ and $\omega_0 = 2\pi$. If we sample *I* at a rate *N* with a 2-D Dirac comb function $D(\mathbf{x}) = \sum_{\mathbf{s}} \delta(\mathbf{x} - \mathbf{s}/N)$, we obtain a set of $N \times N$ discrete image values $I_1(\mathbf{m}) = I(\mathbf{m}/N)$, $\mathbf{m} = [m, n]^T \in \mathcal{R}^2$ and $-N/2 \leq \mathbf{m} < N/2$, [23]. Using *D*, we can write the DFT of I_1 as

Figure 4: A frame of each video sequence that was used in our evaluation process.

$$\hat{I}_{1}(\mathbf{k}) = \sum_{\mathbf{m}} I_{1}(\mathbf{m}) e^{-j(2\pi/N)\mathbf{k}^{T}\mathbf{m}}$$

$$= \int_{\Omega} D(\mathbf{x}) I(\mathbf{x}) e^{-j(2\pi/N)\mathbf{k}^{T}\mathbf{x}} d\mathbf{x}$$

$$= F_{I}(\mathbf{k}) \star \sum_{\mathbf{s}} e^{-j(2\pi/N)\mathbf{k}^{T}\mathbf{s}/N}$$

$$= N^{2} \sum_{\mathbf{s}} F_{I}(\mathbf{k} - \mathbf{s}N)$$
(3)

where $-N/2 \leq \mathbf{k} < N/2$ and \star denotes convolution.

Moving to the shifted version of the image [23], given by the equation (1) with $\mathbf{t} = [t_x, t_y]^T$, $\{\mathbf{t} : -1 < N\mathbf{t} < 1\}$. Sampling with D in a similar fashion we get I_2 and its DFT is given based on the Fourier shift property by

$$\hat{I}_2(\mathbf{k}) = N^2 \sum_{\mathbf{s}} F_I(\mathbf{k} - \mathbf{s}N) e^{-j(2\pi/N)(\mathbf{k} - \mathbf{s}N)^T(N\mathbf{t})}$$
(4)

Table 1: Average PSNR (dB) values for all the video sequences and block size 8×8 .

Method	GC	NGC	HOGPC	Hoge	Foroosh	Xiaohua	\mathbf{PC}	Ren
Akiyo	42.4208	43.0771	43.2201	39.8234	40.8600	40.9810	38.8748	41.7708
Flower	23.6991	25.2763	26.0815	17.5719	19.8677	20.0458	15.9774	20.5315
Football	18.7215	18.7584	18.8040	17.9245	18.2426	18.2003	17.7605	18.3034
Foreman	27.5536	28.3746	28.6088	24.6746	26.1103	26.0809	24.2605	35.9339
Highway	31.5640	32.1402	32.3362	30.4101	31.2490	30.9609	29.0454	32.8063
MobCal	21.6909	23.5442	23.9349	16.6177	19.3245	19.4276	14.9527	21.8954

Table 2: Average PSNR (dB) values for all the video sequences and block size 16×16 .

Method	GC	NGC	HOGPC	Hoge	Foroosh	Xiaohua	\mathbf{PC}	Ren
Akiyo	43.1677	43.2094	43.1455	43.1980	41.4381	41.8490	41.2989	41.0237
Flower	28.3028	28.5663	28.7076	23.8995	25.9038	25.3230	15.7029	24.4162
Football	19.6813	19.7728	20.0338	18.1636	18.6105	18.4471	17.6603	18.5527
Foreman	29.5387	29.7872	30.2192	25.9039	27.3208	28.0282	24.2521	36.3688
Highway	32.5355	32.8818	33.6166	31.3321	31.7945	30.7668	28.5041	32.8148
MobCal	24.5285	24.8592	24.9101	21.7679	23.0760	23.6421	14.6892	22.7079

Assuming no aliasing and combining equations (3) and (4) we have

$$\hat{I}_2(\mathbf{k}) = \hat{I}_1(\mathbf{k})e^{-j(2\pi/N)\mathbf{k}^T(N\mathbf{t})}$$
(5)

Note that the well-known shift property of the DFT refers to integer shifts and does not assume aliasing-free signals. Hereafter, we assume that our sampling device eliminates aliasing. Traditionally to estimate the translational displacement, we use phase correlation (PC), which is perhaps the most widely used correlation-based method in image registration. It looks for the maximum of the phase difference function which is defined as the inverse FT of the normalized cross-power spectrum [1]

$$\operatorname{PC}(\mathbf{u}) \triangleq F^{-1} \left\{ \frac{\hat{I}_2(\mathbf{k})\hat{I}_1^*(\mathbf{k})}{|\hat{I}_2(\mathbf{k})||\hat{I}_1^*(\mathbf{k})|} \right\} = F^{-1} \{ e^{j\mathbf{k}^T \mathbf{t}} \} = \delta(\mathbf{u} - \mathbf{t})$$
(6)

where * denotes complex conjugate and F^{-1} the inverse Fourier transform.

Table 3: Average PSNR (dB) values for all the video sequences and block size 32×32 .

Method	GC	NGC	HOGPC	Hoge	Foroosh	Xiaohua	\mathbf{PC}	Ren
Akiyo	42.1412	42.1554	41.9947	41.0056	39.8609	41.4001	38.2170	40.5871
Flower	28.3463	28.3894	28.3483	27.0887	27.8201	27.1752	15.6074	25.6091
Football	20.4393	20.5912	20.7832	18.7080	19.5177	18.9756	17.5200	18.6555
Foreman	30.7678	31.1017	31.4673	27.6488	29.5744	29.4516	24.2495	36.2586
Highway	32.9365	33.1902	33.8099	32.1031	32.3265	29.5379	28.5122	33.8376
MobCal	24.1923	24.2241	24.1245	23.7131	23.5444	23.5672	14.5033	23.4697

Table 4: Average PSNR (dB) values for all the video sequences (50 first frames) and block size 8×8 with 0.75 variance motion blur.

Method	GC	NGC	HOGPC	Hoge	Foroosh	Xiaohua	\mathbf{PC}	Ren
Akiyo	46.9358	47.9122	48.1894	43.8985	44.0877	43.5653	43.4136	46.3062
Flower	28.4947	30.4891	31.5629	22.6101	24.8113	22.4272	21.7711	26.0737
Football	18.2997	18.2785	18.3126	17.3936	17.6461	17.3321	17.3271	17.8680
Foreman	31.4301	32.5690	33.3006	28.3002	29.1089	28.1744	27.9264	30.5642
Highway	36.2005	36.8582	37.1551	34.6884	35.0371	34.3573	33.5344	36.0504
MobCal	25.3502	27.3564	27.6531	20.4433	22.0091	20.0361	19.5922	23.6230

¹⁶⁵ 3.1. Proposed methodology for HOG-PC

In this section, we introduce the proposed phase correlation algorithm based 166 on histogram of oriented gradients (HOG-PC). Note that the proposed dense 167 representation is quite different from the traditional representation of a block 168 (or patch) based on HOG. The latter achieves invariance to small translational 169 displacements and hence does not appear to be suitable for motion estimation. 170 In contrast, we propose to use a very dense representation by calculating a de-171 scriptor per pixel. This allows us to interpret the obtain representation as a 172 multi-channel block representation. Then, motion estimation is performed by 173 correlating the multi-channel representations from two blocks. Our main contri-174 bution lies in showing that this representation not only can recover translational 175 motion very accurately but is also better able to cope with real-world registra-176 tion problems such as non-overlapping regions small deformations but also white 177

Table 5: Average PSNR (dB) values for all the video sequences (50 first frames) and block size 16×16 with 0.75 variance motion blur.

Method	GC	NGC	HOGPC	Hoge	Foroosh	Xiaohua	\mathbf{PC}	Ren
Akiyo	47.7864	47.7916	47.8869	44.5982	43.9858	44.7131	43.2949	46.1797
Flower	36.2843	36.8024	37.0960	24.6397	28.5770	32.9379	21.2003	30.4665
Football	19.2769	19.3445	19.6467	17.4480	17.6951	17.9852	17.2224	17.8443
Foreman	33.8094	33.8268	34.7385	28.4528	28.8829	31.1467	27.7902	30.1301
Highway	37.0921	37.7399	38.3794	35.4120	35.6794	34.8676	33.3544	36.5686
MobCal	29.0098	29.5434	29.7630	22.9852	22.6976	26.2229	19.3175	24.6576

Table 6: Average PSNR (dB) values for all the video sequences (50 first frames) and block size 32×32 with 0.75 variance motion blur.

Method	GC	NGC	HOGPC	Hoge	Foroosh	Xiaohua	\mathbf{PC}	Ren
Akiyo	47.2598	47.0844	46.9395	42.8979	43.2420	45.2531	42.8459	45.1704
Flower	37.7471	37.7145	37.5289	34.4633	31.8037	35.6403	21.0538	33.7585
Football	20.0454	20.2501	20.4676	17.9476	17.4846	18.2341	17.0028	17.5864
Foreman	34.4031	34.5012	35.1448	29.4785	28.9129	32.9204	27.6481	29.9641
Highway	38.3238	38.8231	39.3635	36.4025	36.3173	34.2663	33.3791	36.9849
MobCal	29.3901	29.4741	29.3422	27.5164	23.2643	27.5576	18.9994	25.1790

noise. Furthermore, due to the overlapping local contrast normalization characteristic of HOG, the proposed HOG-PC method improves significantly the
estimated motion parameters in smaller size blocks. Finally, subpixel accuracy
is obtained through the use of simple interpolation schemes [6, 7].

We first describe the traditional HOG descriptor. HOG uses the normalized combination of gradient vectors from a given number of pixels to build up a histogram of binned angles that relate to the feature. The process begins by breaking the image up into set features spaces f comprised of a number of cells c, which in turn is made up of pixels. For each pixel within a cell the filter mask

[-1,0,1] is applied to its neighbouring pixels giving us the gradient vector \vec{g} .

The magnitude $\|\vec{g}\|$ of the gradient vector is obtained and its orientation

Table 7: Average PSNR (dB) values for all the video sequences (50 first frames) and block size 8×8 with 1.75 variance motion blur.

Method	GC	NGC	HOGPC	Hoge	Foroosh	Xiaohua	\mathbf{PC}	Ren
Akiyo	50.2757	51.0925	51.3390	47.4929	47.0069	47.3463	47.2890	49.0431
Flower	31.4674	32.8165	33.3934	27.2786	27.6245	27.2046	26.9964	29.2145
Football	19.4725	19.3277	19.3736	18.5606	18.6270	18.5354	18.5142	18.8796
Foreman	32.3824	33.2128	33.7498	29.9563	29.9954	29.8935	29.6478	31.4852
Highway	38.8627	39.1613	39.4571	37.5952	37.3573	37.5161	36.8784	38.2206
MobCal	28.1125	29.4835	29.6976	24.4869	24.6221	24.3584	24.1381	26.2775

Table 8: Average PSNR (dB) values for all the video sequences (50 first frames) and block size 16×16 with 1.75 variance motion blur.

Method	GC	NGC	HOGPC	Hoge	Foroosh	Xiaohua	\mathbf{PC}	Ren
Akiyo	51.4247	51.3765	51.6485	47.3513	46.8294	50.0535	47.1346	48.8104
Flower	38.2331	39.0902	39.7536	27.5034	27.9538	35.9841	27.0223	29.7296
Football	20.2406	20.3819	20.6140	18.4652	18.5598	19.0224	18.4073	18.7527
Foreman	34.5928	34.2964	35.3176	29.8665	29.7574	33.3645	29.6204	30.9343
Highway	40.1471	40.3989	41.0301	37.7915	37.6942	38.7673	36.9909	38.5279
MobCal	31.6078	32.2799	32.4236	24.8317	24.6213	29.8854	24.1093	26.2672

expressed using angle θ .

$$\theta = \tan^{-1}\left(g_y, g_x\right) \tag{7}$$

Additionally a weight *w* is defined for each pixel, which is used to scale its contribution to its cell's histogram. This is given by the mean value of the pixels within a given 2D kernel indicating the density over this area. By applying this weight, the proposed approach provides accurate estimates also in the presence of noise.

Once these values are established the pixels within each cell are binned into a histogram H according to their θ angle. The value added to a bin is given as the weighted magnitude of the vector $w \|\vec{g}\|$. Finally all cell histograms within a multi-dimensional feature H_j are normalised using the L_2 norm.

Table 9: Average PSNR (dB) values for all the video sequences (50 first frames) and block size 32×32 with 1.75 variance motion blur.

Method	GC	NGC	HOGPC	Hoge	Foroosh	Xiaohua	\mathbf{PC}	Ren
Akiyo	51.2539	50.7153	50.6264	40.8783	46.4685	49.6346	46.6632	47.7458
Flower	43.1483	42.6464	42.5386	30.6144	28.6057	41.1037	27.2853	30.8018
Football	21.1975	21.3593	21.7731	18.5759	18.3757	18.6508	18.2522	18.5016
Foreman	35.4305	35.2909	36.2796	29.6047	29.6118	33.8368	29.4914	30.6552
Highway	41.0594	41.7453	42.0343	37.8387	38.3018	39.9322	37.2725	39.0443
MobCal	33.2915	33.2234	33.2526	26.9309	24.4869	30.5041	24.1541	26.2379

$$H_j \to \frac{H_j}{\sqrt{\|\vec{g}\|_2^2 + e^2}} \tag{8}$$

The obtained features are then vectorised as a θ -dimensional descriptor

$$\vec{d} = \{H_1, ..., H_\theta\}$$
(9)

¹⁹⁷ Having defined HOG for a single cell, we now turn to the proposed dense ¹⁹⁸ HOG representation. For I_i , i = 1, 2, we extract d from (9) at each pixel ¹⁹⁹ location $I_i(\mathbf{m})$:

$$H_{i}(\mathbf{m}) = \{H_{i,1}(\mathbf{m}), H_{i,2}(\mathbf{m}), ..., H_{i,\theta}(\mathbf{m})\}$$
(10)

The resulting histograms can be re-arranged as a multi-channel feature representation (see figures 1 and 2).

To estimate the subpixel shift t from (1) using HOG-PC, we simply compute the correlation between the two multi-channel representation:

$$HOGPC(\mathbf{m}) = \sum_{j=1}^{\theta} H_{1,j}(\mathbf{m}) \star H_{2,j}(-\mathbf{m})$$
(11)

and find $\mathbf{t} = \arg \max_{\mathbf{m}} HOGPC(\mathbf{m})$. We can estimate sub-pixel accuracy registration $\mathbf{t}_0 = (x_0, y_0)$ by fitting a 1*D* kernel to the vicinity of the maximum on the correlation surface. A parametric kernel is used, which can adapt its shape to fit the correlation functions as well as to provide accurate estimates of the

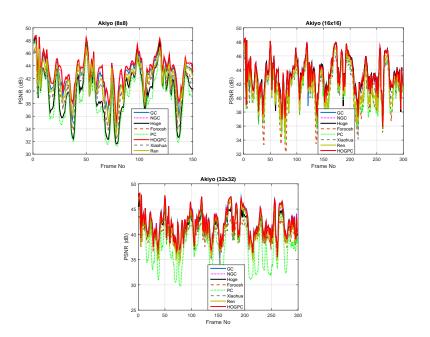


Figure 5: The PSNR values for the Akiyo sequence versus the frame number for all the block sizes.

²⁰⁸ subpixel shifts. Based on the work in [23] a reasonable choice for our kernel is²⁰⁹ given by

$$K_{1D}(x; \{x_0, \mathbf{p}\}) = p_1 \{1 - (p_2(x - x_0))^2\} \frac{1}{\sqrt{2\pi}p_3} e^{\frac{-(x - x_0)^2}{2p_3^2}}$$
(12)

which is a simple modification of the mexican hat wavelet [24]. To estimate y_0 , we set up a similar problem with the kernel defined as

$$K_{1D}(y; \{y_0, \mathbf{q}\}) = q_1 \{1 - (q_2(y - y_0))^2\} \frac{1}{\sqrt{2\pi}q_3} e^{\frac{-(y - y_0)^2}{2q_3^2}}$$
(13)

Our algorithm estimates the kernel parameters $\{x_0, \mathbf{p} = [p_1, p_2, p_3]^T\}$ and $\{y_0, \mathbf{q} = [q_1, q_2, q_3]^T\}$ in a least-squares sense.

212 4. Results

To evaluate and illustrate the efficiency of the proposed scheme a comparative study was performed with state of the art frequency domain based tech-

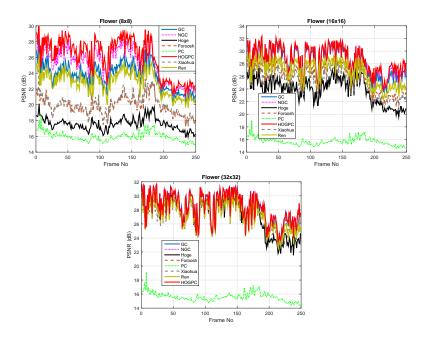


Figure 6: The PSNR values for the Flower sequence versus the frame number for all the block sizes.

niques. Both data with ground truth and video sequences have been used for 215 evaluating the performance. A set of MRI images are employed which have 216 undergone sub-pixel displacement and it is available by the authors in [15] (see 217 figure 3). The images show real MRI data from a grapefruit that was acquired 218 using a production quality Fast Spin Echo (FSE) sequence on a GE (Faireld, 219 CT, USA) Signa Lx 1.5 Tesla MRI scanner. The 256×256 pixel images cover a 220 16 cm^2 FOV corresponding to a 0.0625mm square per pixel. Five images were 221 acquired with the fruit at dierent positions in the FOV, by manually moving the 222 scanner table. Regarding the real videos the well-known sequences of 'Akiyo', 223 'Flower', 'Football', 'Foreman', 'Highway' and 'MobCal' were used including 224 150 - 300 frames each (see figure 4). 225

226 4.1. Video sequences without ground truth

Regarding the real video sequences without ground truth, in order to evaluate the accuracy of the proposed method the visual quality (fidelity) of the

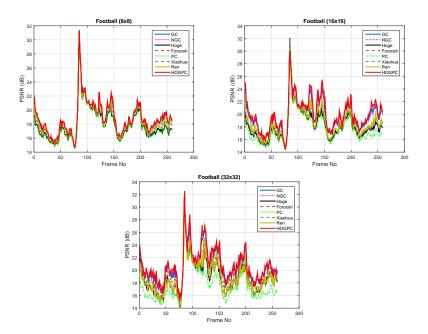


Figure 7: The PSNR values for the Football sequence versus the frame number for all the block sizes.

motion compensated sequence is considered. It is defined as the closeness between the motion compensated frames and the original ones, and the peak signal
to noise ratio (PSNR) is used in this work defined by

$$PSNR = 10\log\left(\frac{255^2}{MSE_I}\right) \tag{14}$$

where MSE_I is the mean square error of the original and motion compensated frames.

The performance of the proposed *HOGPC* scheme is compared with more than five popular *PC* based methods [15, 20, 22, 6, 17, 7, 23, 9]. Foroosh's method [20] estimates the subpixel shifts by fitting a *sinc* function to the available correlation samples. Hoge's and Xiaohua's [15, 14] methods are based on frequency masking, phase unwrapping and linear regression, while Ren's [22] approach applies a linear weighting of the height of the main peak on the one hand and the difference between its two neighboring side-peaks on the other.

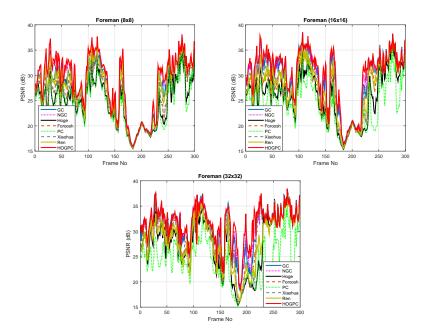


Figure 8: The PSNR values for the Foreman sequence versus the frame number for all the block sizes.

In the second part of our evaluation process, experiments were performed 241 using read video sequences and applying block based motion estimation. The 242 selected block sizes were 32×32 , 16×16 and 8×8 pixels and the motion 243 compensated prediction error was estimated for each block size over all the 244 sequences. The average PSNR values are shown in Tables 1,2 and 3 and it can 245 be observed that the proposed approach results the highest values indicating 246 better visual quality. In figures 5, 6, 7, 8, 9, and 10 the PSNR values over time 247 for the video sequences are shown with the proposed scheme to be the most 248 accurate and consistent in comparison with the other state-of-the-art methods. 249 Furthermore, experiments with motion blur present were performed indicating 250 the accuracy of the proposed method especially in the case of small block sizes 251 (e.g. 8×8). The average PSNR values are shown in Tables 4,5 and 6 for motion 252 blur variance equal to 0.75 and in Tables 7,8 and 9 for motion blur variance 253 equal to 1.75. 254

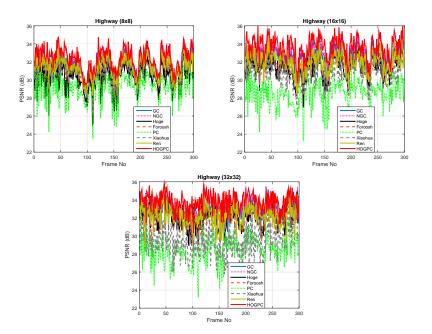


Figure 9: The PSNR values for the Highway sequence versus the frame number for all the block sizes.

Finally, in figure 11 we can see the gain of the HOGPC method as a ratio 255 over the other approaches moving from larger to smaller block sizes. As it 256 was expected the ratio increases due to the characteristics of our scheme and 257 HOG. So, since HOG is utilising neighboring information (i.e. surrounding 258 cells) even for small blocks HOGPC scheme contains more information allowing 259 more accurate estimates especially if larger motions are present. Furthermore, 260 observing the results in Tables 1,2 and 3 focusing on the proposed method and 261 especially for the Akiyo sequence that is characterised of small motion vectors 262 in average, it shows that HOGPC provides the best results for the case of 8×8 263 pixels. Also, it outperforms other methods used over larger blocks such as 16×16 264 pixels, indicating the accuracy of the proposed HOGPC method that exploits 265 the overlapping local contrast normalization characteristic of dense HOG. 266

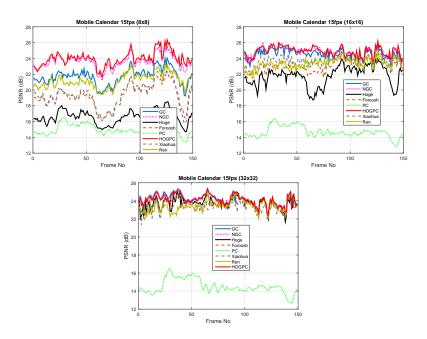


Figure 10: The PSNR values for the MobCal sequence versus the frame number for all the block sizes.

267 4.2. Real data with ground truth

In the case that ground truth is available, the mean square error (MSE) between the estimated subpixel motion vectors and the ground truth is used as a performance measure. Considering two vectors \mathbf{u} and \mathbf{v} representing the original (ground truth) and the estimated one, respectively, then

$$MSE_{MV} = \frac{1}{n} \sum_{i=x,y} (u_i - v_i)^2$$
(15)

²⁷² Consequently, a good quality estimate is expected to minimize MSE, which²⁷³ provides the accuracy of the estimates.

In more details, a set of five 256×256 pixel real MR images [15] was used and a sample of them is shown in figure 3. The 5 images yield a total of 10 possible pairwise registrations and the ground truth of the subpixel translations is provided.

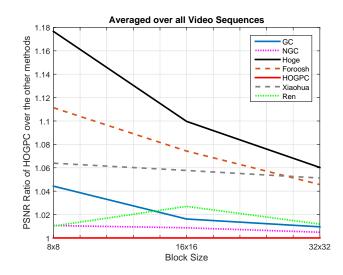


Figure 11: The PSNR ratio of the proposed HOGPC scheme over all the other methods for the different block sizes.

The estimated shifts and the corresponding measurements of their average 278 MSE are shown in Tables 4-12. Observing the results, the proposed method 279 provides the most accurate overall estimates with the lowest mean square error. 280 Furthermore, since ground truth measurements can be significantly biased [15]; 281 the performance of each method was assessed by computing the peak signal-to-282 noise ratio (PSNR) of the motion compensated prediction error. Figure 12 shows 283 the obtained results for each method and all the image pairs. The proposed 284 scheme achieves marginally the best registration accuracy in comparison with 285 NGC [23], while the difference with the other methods is higher. 286

Additionally, the five MR images were used to evaluate the performance of each method in the presence of additive white Gaussian noise. In this case we assume that the correct shift is given by the corresponding noise-free estimate for each method and image pair. In figure 13 the mean value of the registration error for noise variance in the range [0.005, 0.045] is illustrated for each method. Observing the results it can be seen that the proposed method is one of the most stable at high noise variances and provides the lowest overall MSE error. In the

Image pairs	[1,2]	[1,3]	[1,4]	[1,5]
GT	(-2.40,4.00)	(-4.80,8.00)	(-7.20, 4.32)	(-7.20,12.00)
Hoge	(-2.03, 4.01)	(-4.13, 8.01)	(-6.81, 4.17)	(-6.82, 12.02)
Foroosh	(-2.22, 4.23)	(-4.36, 8.24)	(-6.59, 4.41)	(-6.59, 12.26)
Balci	(-2.11, 4.10)	(-3.90, 8.05)	(-6.22, 4.34)	(-6.39, 12.15)
Gaussian	(-2.07, 4.02)	(-4.33, 8.01)	(-6.57, 4.37)	(-6.57, 12.06)
Quadratic	(-2.03, 4.01)	(-4.18, 8.00)	(-6.73, 4.25)	(-6.74, 12.03)
Sinc	(-2.00, 4.00)	(-4.12, 8.00)	(-6.72, 4.12)	(-6.73, 12.00)
ESinc	(-2.00, 4.00)	(-4.25, 8.00)	(-6.54, 4.31)	(-6.54, 12.04)
Ren	(-2.09, 4.02)	(-4.34, 8.01)	(-6.58, 4.38)	(-6.59, 12.08)
GC	(-2.04, 4.02)	(-4.24, 8.00)	(-6.67, 4.30)	(-6.68, 12.03)
NGC	(-2.04, 4.02)	(-4.24, 8.00)	(-6.67, 4.30)	(-6.68, 12.02)
Xiaohua	(-2.04, 3.95)	(-4.23, 7.97)	(-6.66, 4.36)	(-6.68, 12.06)
HOGPC	(-2.06, 4.04)	(-4.25, 8.03)	(-6.67, 4.33)	(-6.67, 12.04)

Table 10: Average MSE with the corresponding PSNR values, and the estimated motion vectors for the 10 image pairs of the MRI data (Part 1).

case of the other methods, the error rapidly increases for noise beyond a certain 294 level, since they do not always provide the correct pixel accuracy. The proposed 295 *HOGPC* scheme exploiting the accuracy of HOG over noisy data allows precise 296 estimates even for noise variance over the above range. Also, the PSNR was 297 used to further compare the proposed scheme with the other state-of-the-art 298 methods in the case of noise and the obtained results are shown in figure 14 299 demonstrating further the accuracy of HOGPC in terms of motion compensated 300 prediction error. Furthermore, experiments were performed with 8 different 301 levels of motion blur. In each case the variance was increased moving from 0.25302 up to 2 and for each level five repetitions were performed. The overall results 303 are in Table 13 showing that most of the methods to have similar performance 304 with the one in [22] and the proposed HOG-PC to result the best performance. 305 Overall the complexity of the proposed HOG-PC is higher compared to most 306

Image pairs	[2,3]	[2,4]	[2,5]	[3,4]
GT	(-2.40,4.00)	(-4.80,0.32)	(-4.80,8.00)	(-2.40,-3.68)
Hoge	(-2.10, 3.99)	(-4.28, 0.15)	(-4.78, 8.00)	(-2.17,-3.84)
Foroosh	(-2.32, 3.75)	(-4.55, 0.39)	(-4.55, 8.24)	(-2.40, -3.61)
Balci	(-2.18, 3.86)	(-4.16, 0.30)	(-4.13, 7.92)	(-2.34, -3.62)
Gaussian	(-2.26, 3.97)	(-4.55, 0.35)	(-4.56, 8.01)	(-2.43,-3.66)
Quadratic	(-2.13, 3.98)	(-4.65, 0.22)	(-4.65, 8.00)	(-2.25,-3.78)
Sinc	(-2.09, 4.00)	(-4.72, 0.11)	(-4.71, 8.00)	(-2.27, -3.89)
ESinc	(-2.19, 4.00)	(-4.59, 0.28)	(-4.60, 8.00)	(-2.46, -3.72)
Ren	(-2.27, 3.96)	(-4.54, 0.36)	(-4.54, 8.01)	(-2.40, -3.65)
GC	(-2.17, 3.98)	(-4.59, 0.27)	(-4.60, 8.00)	(-2.31, -3.71)
NGC	(-2.17, 3.98)	(-4.59, 0.27)	(-4.60, 8.00)	(-2.31, -3.71)
Xiaohua	(-2.18,3.96)	(-4.59, 0.34)	(-4.58, 8.04)	(-2.39, -3.64)
HOGPC	(-2.19, 3.99)	(-4.60, 0.28)	(-4.60,8.00)	(-2.35,-3.68)

Table 11: Average MSE with the corresponding PSNR values, and the estimated motion vectors for the 10 image pairs of the MRI data (Part 2).

of the other approaches due to the computational power required for the preprocessing stage and the estimation of the dense HOG transform. In this work all the methods were implemented in Matlab and the average required time per method is shown in table 14. In the current architecture we did not considered any parallel implementations, but if a GPU-HOG transform [25] was used it could be no significant difference among them.

313 5. Conclusion

In this paper, a phase correlation technique based on histograms of oriented gradients that operates in the frequency domain for subpixel image registration was presented. The proposed method takes full account of all the advantages of HOG filter providing especially higher accuracy in small block sizes. One of the most attractive features of the proposed scheme is that it retains the ori-

Image pairs	[3,5]	[4,5]	Average MSE (x,y)	PSNR dB
GT	(-2.40, 4.00)	(0.00, 7.68)	$(0.0000, 0.0000) \Rightarrow 0.0000$	0.0000
Hoge	(-2.18,4.51)	(0.01, 7.85)	$(0.3667, 0.1914) \Rightarrow 0.5581$	30.2380
Foroosh	(-2.41, 3.76)	(-0.18, 7.61)	$(0.3368, 0.1945) \Rightarrow 0.5313$	30.3865
Balci	(-2.49, 4.07)	(-0.03, 7.66)	$(0.5857, 0.0841) \Rightarrow 0.6697$	30.0364
Gaussian	(-2.44, 4.00)	(-0.01, 7.64)	$(0.3558, 0.0324) \Rightarrow 0.3882$	30.7528
Quadratic	(-2.27, 4.00)	(-0.01, 7.78)	$(0.3334, 0.0602) \Rightarrow 0.3936$	30.6963
Sinc	(-2.27, 4.00)	(0.00, 7.87)	$(0.3490, 0.1281) \Rightarrow 0.4771$	30.5317
ESinc	(-2.47, 4.00)	(0.00, 7.54)	$(0.3834, 0.0494) \Rightarrow 0.4329$	30.7081
Ren	(-2.41,4.00)	(-0.02, 7.64)	$(0.3488, 0.0403) \Rightarrow 0.3892$	30.7583
GC	(-2.32, 4.02)	(-0.01, 7.73)	$(0.3367, 0.0297) \Rightarrow 0.3664$	30.7835
NGC	(-2.32, 4.02)	(-0.01, 7.73)	$(0.3366, 0.0299) \Rightarrow 0.3664$	30.7835
Xiaohua	(-2.39, 4.04)	(-0.02, 7.70)	$(0.3399, 0.0411) \Rightarrow 0.3810$	30.7700
HOGPC	(-2.35,4.04)	(0.01, 7.72)	$(0.3301, 0.0301) \Rightarrow 0.3601$	30.7901

Table 12: Average MSE with the corresponding PSNR values, and the estimated motion vectors for the 10 image pairs of the MRI data (Part 3).

entation information and the corresponding weights of HOG filter and exploits its robustness to noise. HOG phase correlation yields very accurate subpixel motion estimates for a variety of test material and motion scenarios and outperforms techniques, which are the current registration methods of choice in the frequency domain.

- [1] C. Kuglin, D. Hines, The phase correlation image alignment method, in:
 Proc. IEEE Conf. Cyber. and Soc., 1975, pp. 163–165.
- J. Pearson, D. Hines, S. Goldsman, C. Kuglin, Video rate image correlation
 processor, Proc. SPIE Application of Digital Image Processing 119.
- [3] G. Thomas, Television motion measurement for datv and other applica tions, BBC Res. Dept. Rep., No. 1987/11.
- [4] B. Girod, Motion-compensating prediction with fractionalpel accuracy,
 IEEE Trans. Comm. 41 (4) (1993) 604.

Table 13: Average MSE of the estimated motion vectors with the corresponding PSNR values, for the 10 image pairs of the MRI data using 8 different motion blur levels and 5 repetitions for each one.

Method	GC	NGC	HOGPC	Hoge	Foroosh	Xiaohua	Ren
PSNR	39.4322	39.4368	39.4384	36.7849	38.5084	39.4287	39.3615
MSE	0.0220	0.0117	0.0114	0.3692	0.0183	0.0102	0.0079

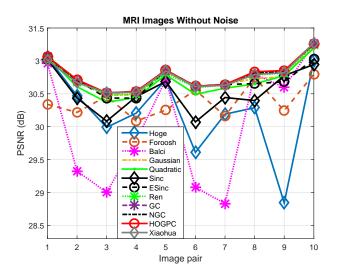


Figure 12: The PSNR values in dB over all image pairs.

- ³³² [5] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection,
 ³³³ in: Proceedings of the 2005 IEEE Computer Society Conference on Com³³⁴ puter Vision and Pattern Recognition (CVPR'05) Volume 1 Volume 01,
 ³³⁵ CVPR '05, 2005, pp. 886–893.
- [6] I. Abdou, Practical approach to the registration of multiple frames of video
 images, in Proc. SPIE Conf. Vis. Commun. Image Process. 3653 (1999)
 371–382.
- [7] V. Argyriou, T. Vlachos, A study of sub-pixel motion estimation using
 phase correlation, in Proc. Brit. Mach. Vis. Assoc. (2006) 387–396.
- ³⁴¹ [8] S. Kruger, A. Calway, A multiresolution frequency domain method for es-

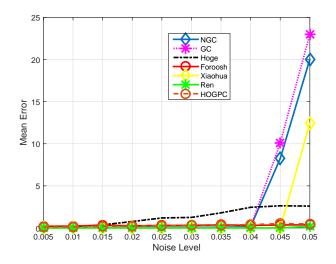


Figure 13: The Mean Error over all image pairs with different levels of noise for the top five methods.

Table 14: Average complexity for each method.

Method	GC	NGC	HOGPC	Hoge	Foroosh	Xiaohua	\mathbf{PC}	Ren
Time (sec)	0.3824	0.4340	0.6988	0.1826	0.0701	1.5374	0.0372	0.0389

342	timating affine motion parameters, In Proc. IEEE International Conf. on
343	Image Processing (1996) 113116.
344	[9] X. Tong, Z. Ye, Y. Xu, S. Liu, L. Li, H. Xie, T. Li, A novel subpixel phase
345	correlation method using singular value decomposition and unified random
346	sample consensus, Geoscience and Remote Sensing, IEEE Transactions on
347	53 (8) (2015) 4143–4156. doi:10.1109/TGRS.2015.2391999.
348	[10] L. Zhongke, Y. Xiaohui, W. Lenan, Image registration based on hough
349	transform and phase correlation, Neural Networks and Signal Processing,
350	2003. Proceedings of the 2003 International Conference on 2 (2003) $956-$
351	959.

352 [11] V. Maik, E. Chae, L. Eunsung, P. Chanyong, J. Gwanghyun, P. Sunhee,

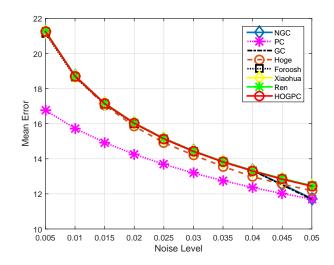


Figure 14: The PSNR values in dB over all image pairs with different levels of noise.

H. JinHee, J. Paik, Robust sub-pixel image registration based on combination of local phase correlation and feature analysis, Consumer Electronics
(ISCE 2014), The 18th IEEE International Symposium on (2014) 1–2.

³⁵⁶ [12] M. Uss, B. Vozel, V. Dushepa, V. Komjak, K. Chehdi, A precise lower
³⁵⁷ bound on image subpixel registration accuracy, Geoscience and Remote
³⁵⁸ Sensing, IEEE Transactions on 52 (6) (2014) 3333–3345.

³⁵⁹ [13] P. Cheng, C.-H. Menq, Real-time continuous image registration enabling
³⁶⁰ ultraprecise 2-d motion tracking, Image Processing, IEEE Transactions on
³⁶¹ 22 (5) (2013) 2081–2090.

- [14] X. Tong, Y. Xu, Z. Ye, S. Liu, L. Li, H. Xie, F. Wang, S. Gao, U. Stilla,
 An improved phase correlation method based on 2-d plane fitting and the
 maximum kernel density estimator, Geoscience and Remote Sensing Letters, IEEE 12 (9) (2015) 1953–1957.
- ³⁶⁶ [15] W. Hoge, Subspace identification extension to the phase correlation
 ³⁶⁷ method, IEEE Trans. Med. Imag. 22 (2) (2003) 277280.

- ³⁶⁸ [16] Y. Keller, A. Averbuch, A projection-based extension to phase correlation
 ³⁶⁹ image alignment, Signal Process. 87 (2007) 124–133.
- ³⁷⁰ [17] M. Balci, H. Foroosh, Subpixel estimation of shifts directly in the fourier ³⁷¹ domain, IEEE Trans. Image Process. 15 (7) (2006) 1965–1972.
- ³⁷² [18] H. Stone, M. Orchard, E. Chang, S. Martucci, A fast direct fourier-based
 ³⁷³ algorithm for subpixel registration of images, IEEE Trans. Geosci. Remote
 ³⁷⁴ Sens. 39 (10) (2001) 2235–2243.
- P. Vandewalle, S. Susstrunk, M. Vetterli, A frequency domain approach
 to registration of aliased images with application to superresolution,
 EURASIP J. Appl. Signal Process. (2006) 1–14.
- [20] H. Foroosh, J. Zerubia, M. Berthod, Extension of phase correlation to subpixel registration, IEEE Trans. Image Process. 11 (2) (2002) 188–200.
- J. Ren, T. Vlachos, J. Jiang, Subspace extension to phase correlation approach for fast image registration, in Proc. IEEE ICIP (2007) 481–484.
- J. Ren, J. Jiang, T. Vlachos, High-accuracy sub-pixel motion estimation
 from noisy images in fourier domain, Image Processing, IEEE Transactions
 on 19 (5) (2010) 1379–1384.
- [23] G. Tzimiropoulos, V. Argyriou, T. Stathaki, Subpixel registration with
 gradient correlation, Image Processing, IEEE Transactions on 20 (6) (2011)
 1761–1767.
- ³⁸⁸ [24] S. Mallat, A wavelet tour of signal processing, 2nd ed. New York: Academic.
- ³⁸⁹ [25] V. Prisacariu, I. Reid, Fasthog a real-time gpu implementation of hog,
 ³⁹⁰ Department of Engineering Science, Oxford University 09 (2310).