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Abstract 4 

Image classification for thematic mapping is a very common application in remote sensing, 5 

which is sometimes realized through object-based image analysis. In these analyses, it is common 6 

for some of the objects to be mixed in their class composition and thus violate the commonly 7 

made assumption of object purity that is implicit in a conventional object-based image analysis. 8 

Mixed objects can be a problem throughout a classification analysis, but are particularly 9 

challenging in the training stage as they can result in degraded training statistics and act to reduce 10 

mapping accuracy. In this paper the potential of using mixed objects in training object-based 11 

image classifications is evaluated. Remotely sensed data were submitted to a series of 12 

segmentation analyses from which a range of under- to over-segmented outputs were 13 

intentionally produced. Training objects were then selected from the segmentation outputs, 14 

resulting in training data sets that varied in terms of size (i.e. number of objects) and proportion 15 

of mixed objects. These training data sets were then used with an artificial neural network and a 16 

generalized linear model, which can accommodate objects of mixed composition, to produce a 17 

series of land cover maps. The use of training statistics estimated based on both pure and mixed 18 

objects often increased classification accuracy by around 25% when compared with accuracies 19 
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obtained from the use of only pure objects in training. So rather than the mixed objects being a 20 

problem, they can be an asset in classification and facilitate land cover mapping from remote 21 

sensing. It is, therefore, desirable to recognize the nature of the objects and possibly 22 

accommodate mixed objects directly in training. The results obtained here may also have 23 

implications for the common practice of seeking an optimal segmentation output, and also act to 24 

challenge the widespread view that object-based classification is superior to pixel-based 25 

classification. 26 

Keywords: OBIA; mixed pixels; under-segmentation; over-segmentation; scale parameter 27 

1. Introduction 28 

Information on the Earth’s surface such as land cover and related environmental processes is of 29 

great importance for a plethora of applications, for example for decision-making on issues related 30 

to agriculture and food security (Fritz et al., 2013; Gardi et al., 2015), monitoring the distribution 31 

of species (Martin et al., 2013; Tuanmu and Jetz, 2014), and modelling of the Earth’s climate 32 

(Luyssaert et al., 2014; Mahmood et al., 2014). For this reason, thematic mapping through a 33 

classification analysis is a very common application of remote sensing. Over the years substantial 34 

progress has been made in remote sensing-based mapping, and today there are many ways 35 

through which a classification analysis can be conducted (Lu and Weng, 2007; Momeni et al., 36 

2016). 37 

A key decision needed during a classification analysis is on which basic spatial unit to use. 38 

Considerable use of the pixel, the basic spatial unit of a digital image, and per-pixel based 39 
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classification has been common for decades. However, grouping spatially connected pixels into 40 

objects by means of an image segmentation analysis, and using the object as the basic spatial unit 41 

has become very popular in recent years (Blaschke et al., 2014). The objects obtained from an 42 

image segmentation analysis may, in principle, form a more suitable spatial unit than the pixel 43 

for land cover mapping as they should relate to natural spatial units (e.g. fields) unlike pixels 44 

which are artificial units defined more by the sensing system than the properties of the ground. 45 

The use of objects comprising multiple pixels can also aid the calculation of potentially useful 46 

discriminatory variables such as descriptors of image texture (Laliberte and Rango, 2009).  47 

There are, however, fundamental issues and assumptions of classification that often appear to be 48 

ignored or incompletely addressed in object-based image analyses. For example, it is common for 49 

the objects produced from the segmentation analysis to be routinely and unquestioningly used as 50 

if pure in the classification (e.g. Goodin et al., 2015; Shimabukuro et al., 2015; Uddin et al., 51 

2015). However, this is often not the case, mainly for two reasons. First, remotely sensed data 52 

inevitably comprise a proportion of mixed pixels whatever the spatial resolution used (Addink et 53 

al., 2012; Cracknell, 1998; Fisher, 1997), which cannot be accommodated by traditional image 54 

segmentation. For example, Wu (2009) found that 40-50% of the pixels of an urban area 55 

represented in multispectral IKONOS data (4 m resolution) were mixed. Second, image 56 

segmentation often produces mixed objects as a result of under-segmentation error. This type of 57 

error corresponds to situations such as the failure of the image segmentation analysis to define a 58 

border splitting two land cover classes, thereby generating a single object containing more than 59 

one class (Clinton et al., 2010).  60 
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Failure to satisfy the assumptions of classification can greatly degrade the quality of the land 61 

cover map produced ultimately. In particular, the specific case of under-segmentation error (Gao 62 

et al., 2011; Hirata and Takahashi, 2011; Wang et al., 2004) is a problem throughout the 63 

classification process as mixed objects can degrade class training statistics, they cannot be 64 

appropriately allocated to a single class, and any such allocation must to some extent be 65 

erroneous (Heumann, 2011). Action is therefore needed to address the impact of these mixed 66 

units. That said, deviation from the assumptions of classification can, however, sometimes be 67 

made in each of the main stages of a classification analysis (e.g. Foody, 1999a). Specifically, 68 

impure units can be accounted for in training (Eastman and Laney, 2002; Foody, 1997; Hansen, 69 

2012; Zhang and Foody, 2001), class allocation (Dronova et al., 2011; Foody, 1996; Wang, 70 

1990), and testing a classification (Binaghi et al., 1999; Foody, 1995; Stehman et al., 2007). For 71 

example, van de Vlag and Stein (2007) generated objects based on remotely sensed data, 72 

classified them using fuzzy decision trees, and produced fuzzy error matrices in accuracy 73 

assessment. However, little research has been undertaken on the use of mixed units in training 74 

object-based image classifications. 75 

Typically, the objects used in training are assumed to be pure (i.e. contain a single class), but a 76 

range of options are available if mixed objects are encountered. For example, the analyst could 77 

seek to simply ignore the problem, act to exclude the mixed cases, or adopt procedures that can 78 

accommodate the mixed nature of the units (Foody, 1999a, 1997). In object-based classification, 79 

the presence of mixed objects in training is sometimes addressed beforehand by deliberately 80 

favouring over-segmentation, that is, producing numerous small objects at the segmentation stage 81 
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(Boyden et al., 2013; Cánovas-García and Alonso-Sarría, 2015; Dronova et al., 2012; Van Coillie 82 

et al., 2008). However, this approach may be sub-optimal (Dorren, 2003; Gao et al., 2011; Hirata 83 

and Takahashi, 2011; Kim et al., 2009; Mishra and Crews, 2014) and is unlikely to remove all 84 

impure objects (Zhou et al., 2009; Zhou and Troy, 2008). Another solution sometimes adopted is 85 

the exclusion of mixed objects from the production of training statistics (Cai and Liu, 2013; 86 

Dean and Smith, 2003; Dronova et al., 2011; Güttler et al., 2016). In this way, the mixed units, 87 

which do not satisfy key assumptions of the analysis, are excluded so that the analysis can 88 

proceed with suitable data. Excluding mixed objects has, however, the consequence that the size 89 

of the training data sets will be reduced, and this could limit the quality of the resulting training 90 

statistics. This issue is particularly relevant in object-based classifications as the pool of potential 91 

training units is typically relatively small at the outset (Ma et al., 2015). Excluding mixed objects 92 

from the pool of selectable objects can exacerbate the challenge of finding a sufficient number of 93 

training objects (Mui et al., 2015; Wang et al., 2004). 94 

Another issue to take into account while excluding mixed objects is the criteria according to 95 

which an object should be considered as mixed. It is unclear whether an object containing a very 96 

small fraction of pixels corresponding to a minority class should be excluded from training 97 

because there is the chance of those minority pixels having a negligible impact on the training 98 

statistics produced. For example, Cai and Liu (2013) excluded from training all objects whose 99 

dominant class occupied less than 90% of the objects’ area. The effect of issues such as threshold 100 

selection have not been investigated in detail (Li et al., 2016) and is most likely to be dependent 101 
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on several factors, such as the remotely sensed data used and the land cover classes mixed 102 

(Dronova et al., 2011). 103 

The assumptions of a classification also impact on the way training data sets should be used. For 104 

example, the training stage of a supervised classification should be designed in relation to the 105 

chosen classifier as different algorithms use the data differently. Specifically, with a standard 106 

statistical classifier, such as the maximum likelihood classification, it is important that each class 107 

is described appropriately which often requires a relatively large and representative training 108 

sample (Ediriwickrema and Khorram, 1997; Hagner and Reese, 2007; Paola and Schowengerdt, 109 

1995; Richards and Kingsbury, 2014) while the use of a small sample of deliberately selected 110 

extreme and atypical samples may be more suited to non-parametric classifiers, such as a 111 

multilayer perceptron neural network, support vector machine, and classification tree (Foody, 112 

1999b; Foody and Mathur, 2006; Hansen, 2012; Pal and Foody, 2012). Critically, the nature of 113 

the data used in training a classification should be acknowledged and addressed.  114 

In this paper it is argued that it is not necessary, or even desirable, to exclude mixed objects from 115 

training an object-based image classification. In particular, it is possible to turn  the apparent 116 

problem of mixed units into an asset, as with mixed pixels in per-pixel classification (Foody, 117 

1997), recognizing that each individual mixed unit can be a source of training data on more than 118 

one class, and that mixed units can be used in training. Here, the potential of using mixed objects 119 

in training an object-based image classification is evaluated. A series of image segmentation 120 

analyses were undertaken from which training objects were selected, resulting in training data 121 
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sets that varied in terms of size and proportion of mixed objects. The mixed objects generated at 122 

the segmentation stage and encountered at the training stage are included in the set of objects 123 

used to estimate training statistics, and the classification outputs produced by two classifiers are 124 

evaluated in relation to a conventional analysis using only pure objects. Thus, the work sets out 125 

to test the hypothesis that mixed objects may be used in the training of object-based image 126 

classifications to increase the accuracy with which land cover may be mapped from remotely 127 

sensed data. 128 

2. Materials and methods 129 

2.1 Study area and data sets 130 

The analyses focused on a test site of approximately 45,000 ha in northern Portugal (Figure 1). 131 

The area corresponds to the downstream part of river Lima where the city of Viana do Castelo is 132 

settled. A diverse range of land cover types are present in the study area, and five land cover 133 

classes were defined: Artificial surfaces, Agricultural areas, Forest and semi-natural areas, Open 134 

spaces with little or no vegetation, and Wetlands and water bodies.   135 

 136 
Figure 1. Location of the study area. 137 
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A Portuguese map, “Carta de Ocupação do Solo” of 2007 (COS2007), was used as reference data 138 

set (Figure 2a) in training and testing the object-based classifications. This map was produced by 139 

the Portuguese mapping agency (Direção-Geral do Território) through visual interpretation of 140 

aerial imagery and use of auxiliarydata such as field work and the national forest inventory. Land 141 

cover is represented according to a nomenclature similar to that used in this study in the third of a 142 

total of five hierarchical thematic levels used to map land cover with a minimum mapping unit of 143 

1 ha (Caetano et al., 2010). As a guide to the thematic accuracy of the map, the overall accuracy 144 

is 96.82±1.01% at the 95% confidence level for the thematic detail used in this article, 5 classes, 145 

and the producer’s accuracy for each of the classes is >92%. This map provides the most accurate 146 

and detailed representation of the land cover that is available for the region and hence is suitable 147 

as reference data in the production and assessment of optimal image classifications in this study.  148 

 149 
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Figure 2. Data sets used: a) reference land cover map, COS2007, representing Artificial surfaces in red, 150 

Agricultural areas in yellow, Forest and semi natural areas in green, Open spaces with little or no 151 

vegetation in grey, and Wetlands and water bodies in blue; the square areas outlined in black are the 152 

training areas randomly located for the estimation of object-based training statistics. b) LISS-III image 153 

collected in Summer of 2006; RGB composition of data acquired in the near infrared, short wave infrared 154 

and red bands respectively. 155 

Two images acquired during Spring and Summer of 2006 (Figure 2b) by the Linear Imaging Self 156 

Scanning Sensor (LISS-III) onboard IRS-P6 (also known as ResourceSat-1) were used.  These 157 

two images are part of the IMAGE2006 European coverages provided by the European Space 158 

Agency (Müller et al., 2009). LISS-III is a multi-spectral camera operating in four spectral bands 159 

(green, red, near infrared, and short wave infrared) with a spatial resolution of 23 m in each. The 160 

two LISS-III images were orthorectified and resampled to 25 m spatial resolution using an 161 

SRTM-based digital elevation model (Müller et al., 2009). The four bands of the two images 162 

were stacked and thus formed an eight waveband data set. 163 

2.2 Image segmentation 164 

The LISS-III data were segmented using the multiresolution algorithm implemented in GeoDMA 165 

software (Körting et al., 2013), version 0.2.1, which is based on the popular algorithm of Baatz 166 

and Schäpe (2000). This is a region-based algorithm that uses spectral and shape properties of the 167 

objects being generated. Colour and shape parameters range within the interval 0-100 and are 168 

inversely proportional (i.e. colour=100-shape). In addition, the parameter shape depends on two 169 

other parameters, compactness and smoothness, also ranging within the interval 0-100 and 170 

inversely proportional. Finally, scale is a threshold of heterogeneity allowed within objects as 171 
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regard colour, and shape properties. Essentially, the larger the scale parameter value the larger 172 

the heterogeneity allowed within objects, thus making larger and fewer objects (Körting et al., 173 

2013).   174 

The scale, colour, and shape parameter values are the most influential parameters (Luo et al., 175 

2015) and were varied to obtain a series of different segmentations. First, five values were 176 

defined for the parameter colour, covering the entire range of possible values for this parameter: 177 

1, 25, 50, 75, and 99. The importance of the spectral properties of the objects is positively related 178 

to the magnitude of the colour parameter. For simplicity, the parameter shape is not discussed 179 

hereafter as its value is automatically known for a given value of parameter colour. Then, for 180 

each of the five colour parameter values defined, the scale parameter was varied greatly as this is 181 

the most influential parameter (Luo et al., 2015). Specifically, eight values were defined from 10 182 

to 80 in steps of 10. As a result, 40 segmentation outputs were obtained, ranging from over-183 

segmented results mostly composed of small and possibly pure objects to under-segmented 184 

results mostly composed of large and possibly mixed objects. For the purposes of this paper an 185 

object was taken to be pure if more than 90% of its area was covered with a single class, similar 186 

to Cai and Liu (2013). 187 

2.3 Training 188 

A fraction of the study area was randomly selected for training purposes. Specifically, ten 225 ha 189 

square areas were selected randomly to provide training data. As a result, a total of 2250 ha, 190 

which is ~5% of the study area (Figure 2a), was available for training purposes. The training 191 
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areas were intentionally defined as being small relative to the study area to simulate the limited 192 

availability of reference data that are typical of real-world applications. The objects of each of the 193 

segmentation outputs that intersected the training areas were selected for the production of 194 

training statistics. The objects generated via image segmentation are commonly used for 195 

estimating training statistics (e.g. Goodin et al., 2015). Thus, while the same geographical area 196 

was used in training each classification the set of objects used varied between the segmentation 197 

outputs. As a result, the training statistics varied between segmentation settings. In all cases, 198 

however, the representation of the land cover classes was constant and proportional to their 199 

abundance (Table 1) as the training areas defined were constant and randomly located. 200 

Table 1. Proportion of area of the land cover classes mapped in the reference COS2007 land cover map 201 

in the training areas defined. The relative proportion of the classes is common to all training statistics 202 

estimated from the segmentation settings used. 203 

Land cover class Proportion of area (%) 

Artificial surfaces 9.87 

Agricultural areas 25.99 

Forest and semi-natural areas 52.26 

Open spaces with little or no vegetation 10.35 

Wetlands and water bodies 1.53 

 204 
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The mean and standard deviation of the digital numbers of each object in the eight LISS-III 205 

spectral bands were used as training statistics, resulting in a total of 16 discriminating variables. 206 

The training objects were assigned reference class labels extracted from the COS2007 land cover 207 

map. The proportion of the area that each class occupied in a training object was estimated, 208 

ranging from 0.0 if the class was absent to the maximum value of 1.0 if the object was pure, with 209 

intermediate values for at least two classes if the object was of mixed class composition.  210 

The remotely sensed data were classified using each of the segmentation outputs produced. Two 211 

scenarios were followed. First, following the traditional procedure of using only pure objects at 212 

the training stage. Specifically, each object intercepting the training areas was taken as pure and 213 

hence allowed to be a training object only for the class with which had the maximum 214 

membership based on the proportion of class area, which had to be superior to 90% (otherwise 215 

they were excluded from training). Second, all of the training objects, even if some were mixed, 216 

were used. The fractional coverage of the classes found in the objects was used as a measure of 217 

class membership, and training objects were allowed multiple and partial membership.  218 

Because mixed objects were not excluded from training in the mixed training strategy, the size of 219 

the mixed training data sets was typically larger than when only pure objects were used. Since the 220 

size of the training set may impact the classification accuracy (Ma et al., 2015; Millard and 221 

Richardson, 2015) a series of analyses in which training set size was constant was also 222 

undertaken. For this additional analyses, reduced versions of the mixed training data sets were 223 

generated, with the size of the mixed data sets decreased to equal the size of the pure training 224 
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data sets. The reduction of the size of the mixed training data sets was achieved by excluding 225 

randomly selected objects. Since the mixed training data sets may comprise both pure and mixed 226 

objects, this approach means that all objects, pure and mixed, had the same probability of being 227 

excluded. This allowed the size of the training data sets to be reduced without changing 228 

substantially the inherent ratio of pure to mixed objects. As the random exclusion of objects can 229 

result in numerous and different training data sets each of which with a potential different impact 230 

on the results, three reduced mixed training data sets were produced from each mixed training 231 

data set.  232 

A series of classifications of the remotely sensed data using all 40 segmentation outputs was 233 

produced. With each segmentation output, classifications were produced that were trained using 234 

(i) pure training data sets, (ii) mixed training data sets, and (iii) the reduced (to same size as pure) 235 

training data sets. 236 

2.4 Classification 237 

In all analyses, multinomial regression models fitted by means of an artificial neural network 238 

with no hidden layer (Venables and Ripley, 2002) and a generalized linear model via penalized 239 

maximum likelihood (Friedman et al., 2010) were used for classification. These classifiers are 240 

available in the R programing language (R Core Team, 2016) from the packages ‘nnet’ and 241 

‘glmnet’ respectively. Both classifiers allow fractional composition of the objects to be used in 242 

training in a manner similar to that explained in Foody (1997) for per-pixel classification.  243 
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The output of the classifiers is soft, indicating the probability of an object belonging to each class 244 

(Friedman et al., 2010; Venables and Ripley, 2002). However, traditional hard land cover maps 245 

were estimated by allocating each object the label of the class with which it had the greatest 246 

probability of membership. Although it may be beneficial to address the potential mixed nature 247 

of the objects at the class allocation stage, hard classification was adopted to confine the focus of 248 

the paper to the training stage. Each segmented image was thus used to produce hard land cover 249 

maps based on different training strategies: pure, mixed, and reduced mixed. 250 

2.5 Accuracy assessment 251 

The thematic accuracy of each classification produced was assessed. Confusion matrices 252 

comparing the land cover maps produced and the reference COS2007 land cover map were 253 

constructed through an operation of spatial intersection of the two data layers. Thus, instead of 254 

using a sample to estimate classification accuracy, the entire study area was used to assess the 255 

accuracy with which each of the 40 segmentation outputs produced was classified. Note, 256 

however, that the area associated with training (Figure 2a) was not used for accuracy assessment 257 

because that would artificially increase classification accuracy. Classification accuracy was 258 

expressed in terms of proportion of area correctly classified. Because the entire study area was 259 

used to estimate proportions of area correctly and incorrectly classified, the issues of selecting 260 

either pixels or objects as sampling units and producing estimates of accuracy which holds 261 

statistical uncertainty do not arise. 262 



15 

 

The accuracy of the 40 segmentation outputs generated was also assessed to provide a measure of 263 

under- and over-segmentation error, which is useful for analysis of the results. The method 264 

developed by Möller et al. (2013) and slightly refined by Costa et al. (2015) was used. This 265 

method belongs to a popular family of methods widely known as empirical discrepancy or 266 

supervised methods (Clinton et al., 2010; Zhang, 1996), and essentially compares the image 267 

segmentation output under evaluation to a reference data set (e.g. land cover map) to measure the 268 

geometric match between the objects that form them. Möller et al.’s (2013) method includes 269 

typical area-based and position-based metrics such as the ratio of overlapping area among 270 

generated and reference objects and the distance between the objects’ centroid (Clinton et al., 271 

2010; Whiteside et al., 2014) to detected and measure under- and over-segmentation error 272 

separately. The metrics are the basis for finding an optimal segmentation output that offsets the 273 

two types of error while informing on which type predominates when unbalanced, which is 274 

useful for this study. A summary of the segmentation accuracy is provided by metric Mg which 275 

measures the strength and type of segmentation error. Negative Mg values indicate that under-276 

segmentation error dominates while positive Mg values represent the opposite case in which 277 

over-segmentation error dominates. Therefore, Mg~0 is considered indicative of optimal 278 

segmentation accuracy as both types of error are balanced (Möller et al., 2013). The reference 279 

data set used was the set of polygons of the COS2007 land cover map over the training areas 280 

defined. Thus, it was possible to determine whether the training data sets used were over-281 

segmented, under-segmented, or balanced.  282 
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3. Results 283 

The 40 segmentation outputs generated varied greatly in nature from over- to under-segmented, 284 

as expected, and two examples are shown in Figure 3 to highlight the different sets of objects 285 

obtained. The geometric accuracy of the objects that intersected the training areas, and hence 286 

used for training, was assessed, and the results are presented in Figure 4. Small values of the 287 

parameter scale produced over-segmented training objects (Mg>0) while large scale values 288 

yielded under-segmented outputs (Mg<0). For intermediate scale values, the type and magnitude 289 

of segmentation error became less evident. According to the Costa et al.’s (2015) adaptation of 290 

Möller et al.’s (2013) method, the scale value of 10, 30, 40, 50, and 70 were close to being 291 

optimal when the parameter colour was set at 1, 25, 50, 75, and 99, respectively, as Mg∼0. 292 

 293 
Figure 3. Segmentation results: a) Segmentation output produced with colour=75 and scale=10. b) 294 

Segmentation output produced with colour=75 and scale=80. 295 
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 296 
Figure 4. Segmentation accuracy based on Costa et al.’s (2015) adaptation of Möller et al.’s (2013) 297 

method. Dotted horizontal line corresponds to optimal accuracy. 298 

The range of segmentation outputs generated resulted in training data sets of varying sizes 299 

(Figure 5). The number of training objects was large when over-segmentation was large (i.e. 300 

small values of parameter scale), and decreased as the level of under-segmentation increased. For 301 

example, when the parameter scale was set at 10 and 80, the training data sets generated 302 

comprised >430 and <100 training objects respectively. For a same value of parameter scale, 303 

larger training data sets were obtained when parameter colour was large. In all cases, some 304 

objects were mixed and hence the number of pure objects generated by a segmentation analysis 305 

was always less than the total number of objects generated. As such more objects were available 306 

for training when mixed rather than only pure objects were allowed. Specifically, 30-70% of the 307 

total number of the training objects was excluded when only pure objects were permitted in 308 

training. For example, the apparently near optimal segmentation output generated using 309 

colour=50 and scale=40 comprised 113 objects of which only 62 were pure (Figure 5). Thus, 51 310 

objects (45% of the total) were of mixed class composition and hence excluded when only pure 311 



18 

 

objects were allowed in training using an apparently near optimal segmentation. Mixed objects 312 

should, therefore, be expected to occur and even be common in object-based analyses. 313 

 314 
Figure 5. Size of training data sets. 315 

The nature of the training data sets had a considerable impact on classification accuracy 316 

regardless of the classifier used. In general, the generalized linear model enabled classification to 317 

reach larger accuracy than the artificial neural network due to the regularization procedure of the 318 

former, but the results are consistent between them while excluding or allowing mixed objects in 319 

training. Critically, the magnitude of classification accuracy was consistently smaller for the 320 

classifications that excluded mixed objects in training relative to that which allowed mixed 321 

objects (Figure 6). For example, using the artificial neural network and segmentation output 322 

colour=50 and scale=40, the classification accuracy was 50.4 and 69.0% when the pure and 323 

mixed training data sets were used respectively (points A and B in Figure 6c; Figure 7a,b). The 324 
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differences observed in terms of classification accuracy were so substantial that the smallest 325 

accuracy achieved with the use of the mixed training data sets (57.7%; point C in Figure 6b, 326 

using 33 training objects) was larger than the largest accuracy achieved with the use of only pure 327 

training data (54.7%; point D in Figure 6i, using 540 training objects) if the results obtained with 328 

colour=1 (Figure 6b and Figure 6f) are ignored. The minimum value of parameter colour was 329 

associated with somewhat atypical results. For example, the segmentation settings defined by 330 

colour=1 and scale=80 are associated with an increase in classification accuracy when trained 331 

with only pure objects, but the quality of the land cover maps is very small. Specifically, virtually 332 

the entire study area was classified as Forest and semi-natural areas class, and hence the 333 

classification accuracy tends to converge with the proportion of the study area covered by that 334 

class (~50%). The results obtained using colour=1 were caused mainly by the extremely small 335 

consideration of spectral information while generating the objects, and thereby relatively large 336 

values for the parameter colour are commonly used. The results obtained with this particular 337 

value of parameter colour are not referred or discussed hereafter for simplicity. 338 

The reduced mixed training data sets also afforded larger classification accuracy than the pure 339 

training data sets. For example, the reduced mixed training data sets used to classify the 340 

segmentation output produced using colour=50 and scale=40 were enough for the accuracy of the 341 

artificial neural network to reach 61.6, 63.8, and 65.8% (points E in Figure 6c, Figure 7c,d), 342 

substantially more than with the use of pure training data (50.4%; point A in Figure 6c). There 343 

are a few cases in which the reduced mixed training data sets produced slightly larger 344 

classification accuracy than the full mixed training data sets, particularly when parameters colour 345 
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and scale were large and small respectively (Figure 6e and Figure 5j). Thus, the difference in the 346 

accuracy achieved with the use of pure and mixed training sets is not simply an issue of training 347 

set size; mixed objects appear useful to produce valuable discriminatory information. The ability 348 

to increase classification accuracy through the use of mixed training objects should help the 349 

production of land cover maps that meet user needs and exceed appropriate target accuracy 350 

values (Foody, 2008). The key issue in relation to the hypothesis being tested in this article, 351 

however, is that the use of mixed objects can substantially increase classification accuracy 352 

relative to that achieved when only pure training objects are used. The difference in accuracy 353 

arising from the use of mixed and pure training sets varied with the specific parameter settings of 354 

the classifications, but was typically large. Specifically, difference in accuracy between 355 

classifications trained using pure and mixed training sets was up to 36% but typically in the order 356 

of 20% (Figure 6). 357 



21 

 

 358 
Figure 6. Classification accuracy as a function of the parameter scale with parameter colour set at 1, 25, 359 

50, 75, and 99. The results obtained using the three reduced versions of the mixed training data sets are 360 

identified as #1, #2, and #3. Panel a) to e) and f) to j) refer to the artificial neural network and 361 

generalized linear model respectively. 362 



22 

 

 363 
Figure 7. Land cover maps obtained using the segmentation output produced with colour=50 and 364 

scale=40, the artificial neural network, and different training strategies. a) Pure training (accuracy: 365 

50.4%). b) Mixed training (accuracy: 69.0%). c) Mixed training with reduced samples #1 (accuracy: 366 

61.5%). d) Mixed training with reduced samples #3 (accuracy: 65.8%). Colour legend as in Figure 2. 367 

Beyond the evident difference between the classifications generated with pure and mixed, even if 368 

reduced, training data, there is a clear positive trend in classification accuracy with over-369 

segmentation. The largest overall accuracies were reached using scale=10 regardless of the 370 

colour parameter values defined (25, 50, 75, or 99) and training strategy used (pure or mixed). 371 

However, there were differences in the way classification accuracy varied as a function of the 372 

parameter scale. Classification accuracy decreased continuously with increasing scale values 373 



23 

 

when the entire mixed training data sets were used (smooth decreasing red lines in Figure 6); 374 

classification accuracy decreased variably when the reduced mixed training data sets were used 375 

(fluctuating decreasing grey lines in Figure 6), which is likely due to the random exclusion of 376 

specific training objects – objects with more or less impact on the training statistics could be 377 

excluded; finally, classification accuracy also tended to decrease as a function of the parameter 378 

scale when the pure training data sets were used, but marked variations are visible in Figure 6 379 

(fluctuating blue lines). Overall accuracy sometimes peaked locally around the regions indicated 380 

as being close to balanced segmentation errors (Mg∼0), for example when the colour parameter 381 

was set at 50 and 75 and the artificial neural network was used (point A in Figure 6c and point F 382 

in Figure 6d). The local peaks around the regions indicated as being close to balanced 383 

segmentation errors agree with numerous studies reporting that segmentation results neither over- 384 

nor under-segmented are associated with land cover maps of larger thematic accuracy which have 385 

been produced via an image classification analysis trained with pure data (Dorren, 2003; Gao et 386 

al., 2011; Hirata and Takahashi, 2011; Kim et al., 2009; Kim and Warner, 2011; Mishra and 387 

Crews, 2014). 388 

4. Discussion 389 

Object-based classification of LISS-III data benefited from allowing training data sets to include 390 

mixed objects. An important advantage of mixed training is the opportunity to use relatively 391 

large training data sets since there is no need to exclude mixed objects. Furthermore, mixed 392 

objects allow efficiency as they give information on more than one class. It is well-known that 393 

the size of a training sample often positively influences classification accuracy (Ma et al., 2015; 394 
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Millard and Richardson, 2015). However, the size of the training data sets is not the only factor 395 

explaining the results obtained. When the parameter scale was set at small values, the pure 396 

training data sets were large, but the classification accuracy continued to be relatively small. On 397 

the contrary, mixed training afforded larger classification accuracy than pure training, even when 398 

the mixed training data sets were small. Indeed, the results obtained from the reduced mixed 399 

training data sets are closer to those obtained from the full mixed rather than the pure training 400 

data sets. Note that the difference in classification accuracy achieved with full and reduced mixed 401 

training data sets shrank with an increase in over-segmentation (Figure 6). This suggests that the 402 

size of the training data sets produced from extremely over-segmented outputs is not entirely 403 

needed, that is a smaller number of training objects may be sufficient to produce similar 404 

classification results as long as mixed objects are allowed in training. 405 

Mixed objects provide useful discriminatory information, and this may be the main advantage of 406 

allowing mixed objects in training. Specifically, a representative sample of the objects generated 407 

is used, which includes objects of mixed in addition to pure class composition. Thus, classifiers 408 

can learn that the spectral properties of the objects may steam from the spectral signature of 409 

thematic classes as well as their mixture. Mixed units must convey information on more than one 410 

class and also will, in feature space, tend to lie between the classes involved. As a result of the 411 

latter the mixed units may be expected to lie close to the classification hyperplane that separates 412 

the classes. Mixed units, therefore, may have the potential to aid class separation, the central aim 413 

of a classification analysis. This potential can be exploited when the classifier can directly 414 

accommodate mixed responses in training and uses the training cases, rather than summary 415 
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statistics, directly (Foody, 1999b; Foody and Mathur, 2006). Focus on separability rather than 416 

description of classes has been focus of innovative learning methods in recent years, such as 417 

active learning with mixed spectral responses (Samat et al., 2016). This may be especially 418 

relevant for classification as mixed objects may be common in an image segmentation output.  419 

The use of mixed units is not without challenges. For example, due to intra-class spectral 420 

variation it is possible for units of slightly different thematic composition to have the exact same 421 

spectral response. However, the general trend is for mixed units to lie between the relevant 422 

classes in feature space. The exact position in feature space is a function of the mixing. A unit 423 

dominated by one class might be expected to lie relatively close to that class and still be distant 424 

from the other(s) involved while one of more equal mixing lies more centrally between the 425 

classes; exact details will depend on the specific classes and details (Foody, 2000; Hill et al., 426 

2007; Lee and Lathrop, 2006; Zhu et al., 2013). Another difference between the pure and mixed 427 

training strategies relates to the fluctuating classification accuracy observed across the range of 428 

segmentation levels used. The accuracy of the classifications that used only pure training data 429 

was highly variable as a function of the parameter scale. These results were possibly caused by 430 

the imbalanced number of training objects per class (Table 1) and the relatively small size of the 431 

pure training data sets (Ma et al., 2015). Imbalanced training sets and the limited spectral 432 

resolution of the data used may have set limits to the achievable accuracy and larger accuracy 433 

could potentially be achieved with a larger, more balanced, training set and hyperspectral data 434 

(Carrão et al., 2008).  On the contrary, by setting parameter colour at relatively large values 435 
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benefited classification accuracy irrespective of the training strategy followed because the 436 

spectral content of the remotely sensed data gained importance for the generation of the objects. 437 

The fluctuating classification accuracy associated with pure training sometimes showed a peak 438 

with segmentation settings which were near to optimal (e.g. point A in Figure 6c and point F in 439 

Figure 6d). This may suggest that larger accuracy of the image segmentation analysis offers 440 

larger classification accuracy and justifies the common practice for searching for optimal image 441 

segmentation results (Dorren, 2003; Gao et al., 2011; Hirata and Takahashi, 2011; Kim et al., 442 

2009; Kim and Warner, 2011; Mishra and Crews, 2014). Indeed, since image segmentation and 443 

object-based classification have become popular methods for land cover mapping, the body of 444 

literature dedicated to methods for parameterization and accuracy assessment of image 445 

segmentation has grown (Clinton et al., 2010; Whiteside et al., 2014; Yang et al., 2015). 446 

Typically, these methods are focused on finding a segmentation result considered as being 447 

optimal in the sense that over- and under-segmentation error are minimal and balanced. 448 

However, a comprehensive analysis of the results shows that over-segmentation is associated 449 

with larger classification accuracy, and thus the assessment of segmentation accuracy is not 450 

necessarily informative for the prediction of an accuracy object-based classification (Figure 4 and 451 

Figure 6; Li et al., 2016; Ma et al., 2015). A number of studies (Belgiu and Drǎguţ, 2014; 452 

Räsänen et al., 2013; Verbeeck et al., 2012) have observed that classification accuracy and 453 

segmentation accuracy, the latter at least as defined by empirical discrepancy methods, may not 454 

be positively related. 455 
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It was notable that the results showed a positive trend of classification accuracy with over-456 

segmentation. In the situation of over-segmentation the size and spectral content of the objects 457 

generated become close to those of the pixels, and thus the results suggest that classification 458 

accuracy might possibly reach a maximum if per-pixel or near to per-pixel (Dronova et al., 2012; 459 

Ju et al., 2005) classification had been undertaken. Comparing object-based and per-pixel image 460 

classification has received much attention, and some publications have reported similar or larger 461 

accuracy of per-pixel classification as compared to object-based classification (Cai and Liu, 462 

2013; Goodin et al., 2015; Robertson and King, 2011). However, the majority of the literature 463 

actually appears to hold the contrary view, that is that object-based classification achieves larger 464 

accuracy than per-pixel (Estoque et al., 2015; Goodin et al., 2015; Memarian et al., 2013; 465 

Whiteside et al., 2011). Apparently, the view that object-based classification is superior to per-466 

pixel classification has become widespread and commonly unquestionable. The results presented 467 

above emphasize the need for more research in this respect. For example, typical comparisons 468 

between object-based and per-pixel classifications have relied on pure training, while the use of 469 

mixed training, which is also beneficial for per-pixel classification (Eastman and Laney, 2002; 470 

Foody, 1997; Hansen, 2012; Zhang and Foody, 2001), should be considered in comparative 471 

studies. Furthermore, it should be taken into account that the suitability of per-pixel and object-472 

based classifications may depend on scale issues related to the land cover patterns on the ground, 473 

and the spatial resolution of the remotely sensed data and classification nomenclature used. For 474 

example, the appropriateness of a segmentation level varies as a function of the land cover 475 
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classes mapped (Castilla et al., 2014; Kim and Warner, 2011; Laliberte and Rango, 2009) not 476 

least because the definition of categorical classes is a scale dependent issue (Ju et al., 2005). 477 

Finally, this study used an artificial neural network and generalized linear model able to 478 

accommodate mixed objects which is a fundamental aspect to take into account if training using 479 

impure units is to be undertaken. Alternative parametric classifiers, such as the maximum 480 

likelihood classification provided in commonly used software packages, may be less appropriate 481 

as relatively large and representative samples formed by pure training units are needed to 482 

describe the classes; unless the training statistics are rectified. For example, the component parts 483 

of a mixed object can be unmixed and used to estimate the signal of the object as it would be if 484 

pure (Foody and Arora, 1996). The use of mixed objects for training a classification is, therefore, 485 

possible for a range of classifiers and may facilitate land cover mapping from remote sensing. 486 

The mixed nature of the spatial units used may also be addressed at the class allocation stage as 487 

partial and multi class membership are estimated, which can then be assessed based, for example, 488 

on the fuzzy confusion matrix (Binaghi et al., 1999; Stehman et al., 2007). This paper focused on 489 

the training stage, but a fully fuzzy classification approach may be implemented for thematic 490 

mapping (Foody, 1997; Zhang and Foody, 2001). 491 

5. Conclusions 492 

An implicit assumption made typically in object-based image classification is that the objects are 493 

pure. This is often not the case, and in this paper it was shown that mixed objects can be 494 

accommodated into the training stage of an object-based image classification. Contrary to 495 
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common practice, it may be, therefore, not necessary to remove mixed objects from the training 496 

stage of a supervised image classification. Rather, an analysis of the effects of allowing mixed 497 

objects in training should be considered, which also affords an increase in the size of the training 498 

data set, and may contribute to an increase in classification accuracy. For example, by using 499 

mixed objects in this study often the overall accuracy increased by around 25% relative to that 500 

achieved using pure objects only. Furthermore, the results suggest that it may not be necessary to 501 

follow common practice and seek an optimal segmentation output. Specifically, deliberate over-502 

segmentation may be a suitable strategy for generating objects for optimal training.  503 
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LIST OF FIGURE CAPTIONS 778 

Figure 1. Location of the study area. 779 

Figure 2. Data sets used: a) reference land cover map, COS2007, representing Artificial surfaces in red, 780 

Agricultural areas in yellow, Forest and semi natural areas in green, Open spaces with little or no 781 

vegetation in grey, and Wetlands and water bodies in blue; the square areas outlined in black are the 782 

training areas randomly located for the estimation of object-based training statistics. b) LISS-III image 783 

collected in Summer of 2006; RGB composition of data acquired in the near infrared, short wave infrared 784 

and red bands respectively. 785 

Figure 3. Segmentation results: a) Segmentation output produced with colour=75 and scale=10. b) 786 

Segmentation output produced with colour=75 and scale=80. 787 

Figure 4. Segmentation accuracy based on Costa et al.’s (2015) adaptation of Möller et al.’s (2013) 788 

method. Dotted horizontal line corresponds to optimal accuracy. 789 

Figure 5. Size of training data sets. 790 

Figure 6. Classification accuracy as a function of the parameter scale with parameter colour set at 1, 25, 791 

50, 75, and 99. The results obtained using the three reduced versions of the mixed training data sets are 792 

identified as #1, #2, and #3. Panel a) to e) and f) to j) refer to the artificial neural network and 793 

generalized linear model respectively. 794 

Figure 7. Land cover maps obtained using the segmentation output produced with colour=50 and 795 

scale=40, the artificial neural network, and different training strategies. a) Pure training (accuracy: 796 

50.4%). b) Mixed training (accuracy: 69.0%). c) Mixed training with reduced samples #1 (accuracy: 797 

61.5%). d) Mixed training with reduced samples #3 (accuracy: 65.8%). Colour legend as in Figure 2. 798 


