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ABSTRACT

We present quantified visual morphologies of approximately 48 000 galaxies observed in
three Hubble Space Telescope legacy fields by the Cosmic Assembly Near-infrared Deep
Extragalactic Legacy Survey (CANDELS) and classified by participants in the Galaxy Zoo
project. 90 per cent of galaxies have z < 3 and are observed in rest-frame optical wavelengths
by CANDELS. Each galaxy received an average of 40 independent classifications, which we
combine into detailed morphological information on galaxy features such as clumpiness, bar
instabilities, spiral structure, and merger and tidal signatures. We apply a consensus-based
classifier weighting method that preserves classifier independence while effectively down-
weighting significantly outlying classifications. After analysing the effect of varying image
depth on reported classifications, we also provide depth-corrected classifications which both
preserve the information in the deepest observations and also enable the use of classifications at
comparable depths across the full survey. Comparing the Galaxy Zoo classifications to previous
classifications of the same galaxies shows very good agreement; for some applications, the
high number of independent classifications provided by Galaxy Zoo provides an advantage
in selecting galaxies with a particular morphological profile, while in others the combination
of Galaxy Zoo with other classifications is a more promising approach than using any one
method alone. We combine the Galaxy Zoo classifications of ‘smooth’ galaxies with parametric
morphologies to select a sample of featureless discs at 1 < z < 3, which may represent a
dynamically warmer progenitor population to the settled disc galaxies seen at later epochs.

Key words: galaxies: bulges—galaxies: elliptical and lenticular, cD — galaxies: evolution—
galaxies: general — galaxies: spiral — galaxies: structure.
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1 INTRODUCTION

The shape and appearance of a galaxy reflect the underlying physi-
cal processes that have formed it and which continue to influence its
evolution. For example, the signatures of past merger events (from z
~ 2 onwards; Martig et al. 2012) are thought to be visible even at 7 =
0 in the form of a galactic bulge; the strength of the bulge is thought
to be tied to the strength of the merger, as indeed the lack of a bulge
indicates a lack of significant mergers (e.g. Kormendy et al. 2010).
Likewise, other morphological features are tied to disc instabili-
ties and resonances (e.g. Kormendy & Kennicutt 2004; Elmegreen,
Bournaud & Elmegreen 2008; D’Onghia, Vogelsberger &
Hernquist 2013), and orbital changes from the disruptive (merg-
ers; e.g. Lotz et al. 2008a,b; Darg et al. 2010a,b) to the relatively
subtle (e.g. bars; Athanassoula 1992; Sellwood & Wilkinson 1993;
Athanassoula 2005; Athanassoula, Machado & Rodionov 2013, and
for studies of visually identified bars at z > O specifically, see e.g.
Sheth et al. 2008; Melvin et al. 2014; Simmons et al. 2014; Cheung
et al. 2015). Combinations of morphological parameters with other
measures, such as environment, colour, mass, and star formation
histories (e.g. Tojeiro et al. 2007; Bamford et al. 2009; Kaviraj
2014a,b; Schawinski et al. 2014; Smethurst et al. 2015) can provide
more insight than either alone.

Morphological measures have a long history in astronomy (e.g.
Hubble 1926; de Vaucouleurs 1953, 1959; Sandage 1961; van
den Bergh 1976; Abraham et al. 1996; Nair & Abraham 2010).
The computerized era of astrophysics has brought with it a num-
ber of automated morphological classification techniques. Some
use multiple parameters to characterize a galaxy’s distribution of
light (Sérsic 1968; Odewahn et al. 2002), while others adopt a
non-parametric approach, each reducing a galaxy to one num-
ber (and often used in combination; e.g. Abraham et al. 1994;
Conselice 2003; Lotz, Primack & Madau 2004). Both types of
analyses lend themselves relatively well to large-scale processing
of images from galaxy surveys (e.g. Simard et al. 2002, 2009,
2011; Scarlata et al. 2007; Griffith et al. 2012; Lackner & Gunn
2012, 2013; Meert, Vikram & Bernardi 2015, 2016) and provide
a uniform quantitative set of measures. Modern machine learning
techniques, with appropriate training, are also applicable to large
data sets (Huertas-Company et al. 2008, 2015; Dieleman, Willett &
Dambre 2015).

However, no computer has yet exceeded the human brain’s capac-
ity for pattern detection and serendipitous discovery. Visual mor-
phologies remain among the most nuanced and powerful measures
of galaxy structure. Galaxy Zoo combines the strengths of visual
classification with the volume of computer-driven approaches, us-
ing the World Wide Web to collect more independent and complete
visual classifications than any group of professional astronomers
is realistically capable of and combining these classifications via
tested and proven techniques.

Since 2007, Galaxy Zoo has been a unique resource of quanti-
tative and statistically robust visual galaxy morphologies. Prior to
Galaxy Zoo Cosmic Assembly Near-infrared Deep Extragalactic
Legacy Survey (CANDELS), three Galaxy Zoo projects have
collected morphologies for over 1000000 galaxies using the
largest surveys to date to z ~ 1 (Lintott et al. 2008, 2011; Willett
et al. 2013, 2016). These projects have been and continue to be
extremely scientifically productive, both for the project team (e.g.
Galloway et al. 2015; Keel et al. 2015; Willett et al. 2015) and for
the larger scientific community (e.g. Amorin, Pérez-Montero &
Vilchez 2010; Finkelman, Funes & Brosch 2012; Robaina et al.
2012; Combes, Moiseev & Reshetnikov 2013; Joachimi, Singh &
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Mandelbaum 2015; Zhang et al. 2015; Lépez-Corredoira & Kroupa
2016).

This paper presents morphological classifications of 49 555 im-
ages from the CANDELS (Grogin et al. 2011; Koekemoer et al.
2011); the largest near-infrared Hubble Space Telescope (HST) sur-
vey to date, which images galaxies at rest-frame optical wavelengths
to z ~ 3. The morphologies are quantified by the Galaxy Zoo'
project (Lintott et al. 2008). Over 95 000 volunteers have con-
tributed over 2000 000 detailed galaxy classifications to this effort.
We combine, on average, 43 independent classifications of each
galaxy to produce detailed, quantitative morphological descriptions
of these distant galaxies along many physical axes of interest.

In Section 2 we describe the observational data and the prepa-
ration of CANDELS images for use in Galaxy Zoo. In Section 3
we detail the collection of morphological classifications and the
method of weighting and combining independent classifications
for each galaxy. Section 4 compares Galaxy Zoo classifications to
other morphological measurements. In Section 5 we show an exam-
ple result using the classifications, and in Section 6 we summarize.
Throughout this paper we use the AB magnitude system, and where
necessary we adopt a cosmology consistent with A cold dark matter
(ACDM), with Hy = 70kms~! Mpc!, @, = 0.3, and Q, = 0.7
(Bennett et al. 2013).

2 OBSERVATIONAL DATA

2.1 Images

CANDELS (Grogin et al. 2011; Koekemoer et al. 2011) is an
HST Treasury programme combining optical and near-infrared
imaging from the Advanced Camera for Surveys (ACS) and
Wide Field Camera 3 (WFC3)/Infrared Channel (IR), provid-
ing an unprecedented opportunity to study galaxy structure and
evolution across a range of redshifts. CANDELS covers the
area included in five fields which had been targeted for previ-
ous studies (GOODS-North and -South, Giavalisco et al. 2004;
EGS, Davis et al. 2007; UDS, Cirasuolo et al. 2007, Lawrence
et al. 2007; and COSMOS, Scoville et al. 2007), divided into
‘deep’ and ‘wide’ fields. Each of the wide fields (UDS, COS-
MOS, EGS and flanking fields to the GOODS-S and GOODS-N
deep fields) is imaged over two orbits in WFC3/IR, splitin a 2:1 ratio
between filters F160W and F125W, respectively, with parallel expo-
sures made in F606W and F814W using ACS. Each of the deep fields
(corresponding to those targeted by GOODS-S and GOODS-N)
is imaged over at least four orbits each in both the F/60W and
F125W filters and three orbits in the F105W filter, with ACS expo-
sures in F606W and F814W in parallel. These data are reduced and
combined to produce a single mosaic for each field in each band,
with drizzled resolutions of 0.03 and 0.06 arcsec pixel~! for ACS
and WFC3/IR, respectively (Koekemoer et al. 2011).

The fourth phase of Galaxy Zoo included all detections with
H < 25.5 from COSMOS, GOODS-South, and UDS, comprising
49 555 unique images. These were shown to visitors to the website
www.galaxyzoo.org starting on 2012 September 10. The images
shown on the site were colour composites of ACS I (F814W), WFC3
J(FI125W),and WFC3 H (F160W) filters for the blue, green, and red
channels, respectively. Previous iterations of Galaxy Zoo (Lintott
etal. 2008) showed that the effect of using colour images (rather than
monochrome or single filter images) for classifications is small, but

!'2004.galaxyzoo.org
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that their inclusion greatly increases classifier engagement, resulting
in significantly faster collection of quantitative visual morphologies.

The physical angular sizes of the Galaxy Zoo CANDELS im-
ages were matched in different filters, using the native point spread
functions (PSFs). The images were combined with an asinh stretch
(described in detail in Lupton et al. 2004) with a non-linearity value
of 4.0, chosen to show clear features across a wide dynamic range.

Sources in the data set vary greatly in size and surface brightness,
and a single set of values for channel scalings is not adequate to
capture the variety of features across the images. We therefore used
a variable scaling based on the flux of each target source. For each
image the R, G, and B channels have a fixed ratio of 4: 3: 4, and the
multiplier floor was set at 2.2.

Each colour image is 424 pixels?. The angular size of the image
varies based on the size of the galaxies, according to equations (2)
and (3) of Haussler et al. (2007, and also see Kartaltepe et al. 2015
for further details), with a minimum of 30 x 30 native WFC3 pixels
zoomed to 424 x 424 display pixels. The Galaxy Zoo interface loads
the normal colour images by default, and the classifier may choose to
display an inverted colour image, but may not otherwise change the
image scaling or size within the software while performing
the classification. Classifiers are also not able to discuss galax-
ies before providing their classification, or pick specific galaxies to
classify. This design ensures a consistent set of independent classi-
fications which can be combined as described below.

2.2 Photometry

The selection of galaxies to include in Galaxy Zoo CANDELS was
based on preliminary photometry of the ACS and WFC3 images,
computed using SEXTRACTOR (Bertin & Arnouts 1996). As described
in Section 2.1, the sample was selected using H < 25.5 mag.

Subsequent analysis has produced more refined photometry in
each field (GOODS-S, Guo et al. 2013; UDS, Galametz et al.
2013; COSMOS, Nayyeri et al. 2016). In particular, an adapted
form of SEXTRACTOR has been used to more cleanly determine back-
grounds and provide improved flux measurements. As a result,
many source magnitudes have been revised to fainter values: the
average source magnitude in the sample is fainter by 0.35 mag. The
faintest detected source in the revised catalogue has a magnitude of
H=1283.

In general, the morphological quantities presented here do not
rely on photometric information beyond initial identification of the
sample. For example, we do not use colour, size, or redshift in-
formation to inform the raw or weighted morphologies. There is
one exception: in Section 3.3 we describe how an analysis of on-
going classifications led to a modification to the retirement limit of
some subjects based on their classifiability as a function of surface
brightness and magnitude. Thus for fainter, lower surface brightness
images the number of classifications may be lower than the average
of ~40 per subject.

Otherwise, we only incorporated photometry into our analysis
after the collection of classifications was complete. In particular,
we use rest-frame V-band luminosities and UVJ colours to show
examples of how to use classifications in Section 3.7, H-band Auto
magnitude and 80 per cent flux radius in Section 3.8 when dis-
cussing depth corrections and classification biases, and rest-frame
luminosities and photometric redshifts in the analysis of smooth
discs in Section 5. Rest-frame colours have been computed from
the full multiwavelength CANDELS photometry in each field us-
ing a template-based interpolation implemented in EAzy (Brammer,
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van Dokkum & Coppi 2008) and the template set of Muzzin et al.
(2013).

2.3 Redshifts

The choice to cover areas which had been investigated by previ-
ous surveys, and the high-profile nature of the CANDELS survey
itself has ensured that each of the fields has considerable follow-up,
providing a wealth of ancillary data. Of particular importance for
our work is the availability of reliable estimates of redshift. Our ap-
proach has been, therefore, to gather spectroscopic and photometric
data where possible.

For COSMOS galaxies, we use spectroscopic redshifts from
zCOSMOS (Lilly et al. 2007) or, where this is not possible, photo-
metric redshifts derived from the COSMOS survey itself (Ilbert et al.
2009) and the NEWFIRM medium-band survey (Whitaker et al.
2011). For GOODS-South, Cardamone et al. (2010) assembled pho-
tometric redshifts from deep imaging carried out by Multiwavelenth
Survey by Yale—Chile (MUSYC; Gawiser et al. 2006) and spectro-
scopic redshifts from a variety of sources (Cimatti et al. 2002;
Le Fevre et al. 2004; Vanzella et al. 2008; Balestra et al. 2010).
For UDS, we use available spectroscopic (Simpson et al. 2012a)
and photometric redshifts (Hartley et al. 2013). The latter makes
use of deep multiwavelength coverage from UKIRT Infrared Deep
Sky Survey (UKIDSS) as well as J- and H-band magnitudes from
CANDELS itself.

Of the 49 555 galaxies originally included in Galaxy Zoo
CANDELS, 46 234 currently have measured spectroscopic (2886)
or photometric (43 348) redshifts. Where available, agreement be-
tween spectroscopic and photometric redshift is generally very
good, with Az = o, /(1 + Zgpec) = 0.02 and ~8 per cent of sources
having Az > 0.2. The use of photometric redshifts introduces an
uncertainty of less than 1 per cent into the analysis described here
(Simmons et al. 2014). For the remaining ~3000 galaxies, we rely
on photometric redshifts derived by Dahlen et al. (2013) who use
a Bayesian approach which combines results from several different
and independent approaches.

3 CLASSIFICATION DATA

3.1 Definition of terms

Throughout this paper we adopt the following terms to describe dif-
ferent parts of the Galaxy Zoo software and data (similar to Willett
etal. 2013 and Simpson, Page & De Roure 2014, and used generally
throughout the ZOONIVERSE citizen science platform software).

(i) Classifier. A classifier is a volunteer participating in the
project.

(ii) Subject. Within the ZOONIVERSE software, a subject is a unit
of data to be classified. In Galaxy Zoo CANDELS, each subject
consists of a colour image and an inverted copy of the colour im-
age, with the goal of classifying one galaxy per subject. (For other
projects this may include light curves, groups of images, video, or
audio files.)

(iii) Classification. Galaxy Zoo CANDELS asks the classifier to
complete several tasks to fully classify each subject. A classification
is a unit of data that consists of one complete flow through the
decision tree described in Section 3.2.

2 WWW.Zooniverse. org

1102 ‘G Afenuer uo weybumon Jo AiseAluN e /H10°seudnolploxoseduw//:dny wolj papeojumoq


http://www.zooniverse.org
http://mnras.oxfordjournals.org/

(iv) Task and Question; Response and Answer. The decision tree
described below is composed of multiple tasks the classifier is asked
to complete. Each task in Galaxy Zoo CANDELS consists of a
single question, with two or more possible responses, one of which
the classifier selects as their answer in order to move on to the next
task.

3.2 Decision tree

The goal of Galaxy Zoo CANDELS is to provide detailed quan-
titative visual morphologies of galaxies observed by the deepest,
most complete HST multiwavelength legacy survey to date. There
are many morphological features of interest, including both broad
questions about a galaxy’s overall appearance and more detailed
questions about specific features.

We employ a tree-based structure for collecting information on
these morphological features, a strategy that has been used success-
fully since Galaxy Zoo 2 (GZ2; Willett et al. 2013). The Galaxy
Zoo CANDELS decision tree is shown in visual form in Fig. 1 and
in text form in Table 1. We note that this tree is most similar to the
tree used in the Galaxy Zoo: Hubble project (described in Melvin
et al. 2014; Willett et al. 2016), which also has a branch identifying
clumpy galaxies and focusing on the detailed structure of galaxy
clumps not present in the GZ2 tree. There are small differences be-
tween the CANDELS and GZH tree; however for example, task 10,
which asks about a bulge in an edge-on disc, is a Yes/No question
here, whereas in previous iterations of the decision tree this question
also asked whether the bulge shape was rounded or boxy. Addition-
ally, the final task in the tree (task 16) is substantially different from
previous versions and is here only concerned with galaxy mergers
and tidal features.

The CANDELS decision tree first asks the classifier to choose
between the broad categories of ‘smooth and rounded’, ‘features or
disk’, and ‘star or artifact’. The next step either exits the classifi-
cation (if the classifier has indicated that the subject is of a star or
artifact) or moves on to a task which asks for further details about
the galaxy. This broad classification follows the practice of previ-
ous Galaxy Zoo projects in making a division based solely on visual
appearance, rather than attempting to infer underlying dynamical
conditions. In particular, we should expect classical SO galaxies
where the disc is completely smooth and hence not easily visible
in these images to be included in the ‘smooth’ sample. Where such
discs are visible, for example when edge-on, they will naturally
appear in the ‘featured’” sample.

If the classifier has indicated in the first task that the galaxy
has features or a disc, the subsequent tasks ask a series of follow-
up questions about features such as clumps, spiral patterns, bulge
strength, and the presence of a bar. If the classifier has instead
indicated that the galaxy is mostly smooth and rounded, the next
task asks them to rate the overall roundedness, a question roughly
corresponding to an axis-ratio measurement. Finally, when the clas-
sifier has finished answering all follow-up questions about either the
‘smooth’ or ‘featured’ galaxy, the final task asks whether the galaxy
is undergoing a merger, has tidal tails, or has both, or neither.

The tree-based structure has a number of advantages. First, it
collects substantially more information on each galaxy than a single
question would, and captures a more detailed classification of higher
order structures while minimizing the effort required on the part of
the classifier by only asking for relevant inputs based on the answers
provided to previous questions.

Second, it focuses the classifier on a single feature at a time,
highlighting each feature. This resets the attention of the classifier

Galaxy Zoo CANDELS data release 4423

with each new question and avoids the problems that may result
when a person is presented with a large number of decision tasks at
once, including a decrease in optimal decision making (Iyengar &
Lepper 2000; Crescenzi, Capra & Arguello 2013; Besedes et al.
2015) and a reduced ability to recognize the unexpected (Simons &
Chabris 1999; Todd, Fougnie & Marois 2005).

Third, the tree-based structure is especially optimal for an in-
terface which may collect classifications from classifiers who have
never before seen an image of a galaxy and may seek additional
training. Within the interface, the classifier may optionally display
training images in a ‘help’ section that shows different examples
of the feature relevant to the current question. Asking single-topic
questions in turn permits a full set of training images to be avail-
able throughout the classification without placing an unnecessary
cognitive load on the classifier.

The disadvantage of a tree-based classification structure concerns
the dependencies introduced into the vote fractions by such a struc-
ture. A classifier cannot, for example, answer that the same galaxy
has both a mostly smooth appearance and also has a bar feature.
This is in some ways an advantage, as it prevents contradictory and
unphysical classifications, but it also means that an analysis of mor-
phological vote fractions with the goal of examining spiral galaxies
(for example) must account for the fact that whether a given classi-
fier reached the spiral branch of the decision tree depends on their
answer to the questions preceding it.

Accounting for dependencies of questions in deeper branches of
the decision tree on higher level questions is, however, a manage-
able task which has been undertaken successfully in many previous
studies of specific galaxy structural features (for specific exam-
ples, see e.g. Masters et al. 2011; Melvin et al. 2014; Galloway
et al. 2015). We provide guidelines for optimal morphological se-
lection of samples using Galaxy Zoo consensus classifications in
Section 3.6.

After the classification of each subject is finished, the classifier is
asked “Would you like to discuss this object?’ If the classifier selects
‘no’, a new subject is shown for classification. If the classifier
selects ‘yes’, a new window opens with a discussion page focused
on the subject they have just classified. Within this part of the
Galaxy Zoo software, called TALK, people may ask questions and
make comments on specific subjects, or engage in more general
discussions. People may also ‘tag’ subjects and discussions using
a format similar to Twitter’s #hashtag system. Some of these tags
were used in the pre-analysis of Galaxy Zoo CANDELS data, on
which more details are given in Section 3.3 below.

3.3 Raw classifications

The first classification of a subject from CANDELS was registered
on the Galaxy Zoo interface® on the 2012 September 10. The fi-
nal classification considered here, in the first phase of Galaxy Zoo
CANDELS, was registered on the 2013 November 30. Between
these times, the site collected 2149 206 classifications of 52 073
CANDELS subjects (of which 2518 were intentional duplicates of
the same galaxy; see Section 3.8) from 41 552 registered classifiers
and 53 714 web browser sessions where the classifier did not log in.
For all analysis presented here we have assumed that each unregis-
tered browser session contains classifications from a single, unique
classifier.

3 2004.galaxyzoo.org
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Figure 1. The decision tree for Galaxy Zoo CANDELS in visual format, including graphical icons associated with each response in the classification interface.
There are 16 tasks, with one question per task and up to six possible responses per question. Questions are coloured according to the minimum number of
branches prior to that question. All classifiers are asked the first question (task T00), and there are four subsequent levels of branching. The tree is also shown

in text in Table 1.
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Table 1. The Galaxy Zoo CANDELS decision tree, comprising 16 tasks and 51 responses. Each task is composed of a single question
and up to six possible responses. The first question is task 00, and a classification is completed by responding to all subsequent questions
until the end of the tree is reached. The ‘Next’ column indicates the subsequent task the classifier is directed to upon choosing a specific
response. Although a classifier will flow through the tree from top to bottom, there is no path through the tree that includes all tasks.

Task Question Responses Next Task Question Responses Next
TOO  Is the galaxy simply smooth Smooth 01 TO9  Could this be a disk viewed Yes 10
and rounded, with no sign of Features or disk 02 edge-on? No 11
a disk? Star or artifact end
T10  Does the galaxy have a Yes 16
TO1  How rounded is it? Completely round 16 bulge at its centre? No 16
In between 16
Cigar-shaped 16 T11  Is there a sign of a bar Bar 12
Seature through the centre No bar 12
TO2  Does the galaxy have a Yes 03 of the galaxy?
mostly clumpy appearance? No 09
T12  Is there any sign of a Spiral 13
TO3  How many clumps 1 07 spiral arm pattern? No spiral 15
are there? 2 05
3 04 T13  How tightly wound do the Tight 14
4 04 spiral arms appear? Medium 14
More than four 04 Loose 14
Cannot tell 04
T14  How many spiral arms 1 15
TO04 Do the clumps appear in Straight line 05 are there? 2 15
a straight line, a chain Chain 05 3 15
or a cluster? Cluster 05 4 15
Spiral 05 More than four 15
Cannot tell 15
TOS  Is there one clump which is Yes 06
clearly brighter than the others? No 07 T15  How prominent is the No bulge 16
central bulge, compared Just noticeable 16
TO6  Is the brightest clump Yes 07 with the rest of the galaxy? Obvious 16
central to the galaxy? No 16 Dominant 16
TO7  Does the galaxy Yes 08 T16  Is the galaxy currently Merging end
appear symmetrical? No 08 merging or is there any Tidal debris end
sign of tidal debris? Both end
TO8 Do the clumps appear to be Yes 16 Neither end
embedded within a larger object? No 16

Subjects within a given Galaxy Zoo sample are chosen randomly
for classification, so that the number of independent classifications
per galaxy builds up uniformly through the full sample. Once a
pre-set classification minimum count has been reached, the subject
is retired from the active classification pool. While more sophis-
ticated task assignment might have led to efficiency savings (e.g.
Waterhouse 2013), it would have changed the experience of what
was a popular project (Bowyer et al. 2015) in unpredictable ways,
and the infrastructure supporting the project did not at the time
make such complexities possible. The initial goal for Galaxy Zoo
CANDELS was thus simply to obtain at least 40 independent clas-
sifications for each galaxy.

This uniform retirement limit was modified twice during the
project. In the first instance, a pre-analysis of the data set performed
when the average number of classifications per galaxy had reached
approximately 20 revealed 11 837 subjects where further classifi-
cation was unlikely to provide significant additional information.
These subjects were identified with the help of a set of subjects
tagged in the Galaxy Zoo TALK software as ‘#toofainttoclassify’ and
‘#FHB’ (which stands for ‘Faint Hubble Blob’). Tags in Galaxy
Zoo TALK are generally highly incomplete; thus the 204 tagged sub-
jects were used as tracers during a further examination of all sub-
jects in magnitude—surface brightness parameter space. The selec-

tion, made from initial photometry, was deliberately conservative,
retiring only those subjects where it was clear that the classification
vote fractions had converged at all tiers of the classification tree.
During this analysis, an additional 1555 subjects were identified as
highly likely to be stars or artefacts and were also retired.

The second modification of the retirement limit was implemented
1 yr after the project start. At this time, the retirement limit was
raised to 80 classifications for all galaxies where at least 20 per cent
of classifiers had answered ‘features or disk’ to the first question
(task TOO in Fig. 1 and Table 1). This is a higher retirement limit
than in previous Galaxy Zoo projects, and it is justified by the
increased complexity of the decision tree compared to, e.g. Galaxy
Zoo 2 (Willett et al. 2013). The Galaxy Zoo CANDELS decision
tree has an additional branch level, and the number of classifiers
answering a question is typically reduced at each branch point.
Thus, 40 classifications at the first question may not be enough
to ensure convergence in, for example, task 14, ‘How many spiral
arms are there?’, a fifth-tier task with six possible responses. The
increased retirement limit affected 7402 subjects.

Fig. 2(a) shows the distribution of total classification counts
within the sample. The majority of subjects received 40 classifi-
cations, but the distribution is asymmetric: there are peaks at ~20,
40, and 80 classifications, consistent with the description above. The
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Figure 2. Basic information on classifications. Left: distribution of (unweighted) number of classifications per subject in Galaxy Zoo CANDELS. The majority
of subjects have 40 independent classifications each; a subset of 13 392 were retired early after being identified as too faint and low surface brightness for
additional classifications to be useful (11 837) or as stars or artefacts (1555). Subsequently, 7402 subjects where at least 20 per cent of classifiers registered
a vote for ‘features or disk’ in the first task were re-activated with a retirement limit of 80 classifications, in order to ensure a complete sampling of the
deepest branches of the decision tree. Right: cumulative distribution of classifications per classifier, where the classifiers are sorted in order of least to most
classifications contributed (Lorenz curve for classifiers). If every classifier had contributed the same number of classifications, the Lorenz curve would be equal
to the dashed curve. The top 9 per cent of classifiers contributed 80 per cent of the classifications (Gini coefficient = 0.86).

Lorenz curve of classifications (i.e. the cumulative number of clas-
sifications in order of classifier contribution) is shown in Fig. 2(b).
The curve is highly skewed from the 1: 1 line that would be seen
if all classifiers contributed the same number of classifications; the
top 9 per cent of classifiers contributed 80 per cent of total classi-
fications. The Gini coefficient for classifications, i.e. the fractional
difference in area under the Lorenz curve versus the dashed line,
is 0.86. This is typical of past Galaxy Zoo projects and ZOONIVERSE
citizen research projects in general (Cox et al. 2015).

The values in Fig. 2 are raw classification counts; while raw
classification counts and vote fractions are certainly useful, and
included in the data release described in Section 3.7, we addition-
ally ‘clean’ the data with a simple method to identify seriously
errant classifiers (most likely from bots), and then apply a classi-
fier weighting scheme to classifications to produce a cleaner set of
vote fractions for each subject. Both steps are described in further
detail below.

3.4 Identification and removal of single-answer prolific
classifiers

Within the raw classifications, a small group of classifiers (86, or
less than 0.1 per cent) classified at least 200 subjects and gave the
same answer to the question in the first task at least 98 per cent of
the time. Within this group, 99.6 per cent of classifications were
for ‘star or artifact’ (from 84 classifiers) and 0.4 per cent were for
‘smooth’ (from two classifiers).

Only a small number of unresolved sources or sources dominated
by an unresolved element (i.e. stars and quasars) are included in
the full Galaxy Zoo CANDELS subject sample. Examination of
the CANDELS photometric catalogues (Galametz et al. 2013; Guo
et al. 2013; Nayyeri et al. 2016) shows that less than 12 per cent of
subjects have CLASS_ST AR > 0.25 (a very inclusive cut; a more
typical cut on stellarity estimates the number of unresolved sources
at less than 3 per cent). If the subjects assigned to a classifier are
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drawn at random from the subject set, then for any classifier who
submits a substantial number of classifications, the chances they
will be shown a large fraction of stars are very small.

Even for more common answers to the first task, the chances
of a classifier being randomly assigned a highly uniform set of N
subjects becomes very small as N becomes large. For example, if
the probability of being assigned a ‘smooth’ galaxy is p = 0.9,
the chance of being assigned a subject set of 98 per cent smooth
galaxies out of N > 200 total is so small that it would likely happen
approximately once per billion classifiers, i.e. it is highly unlikely
in a project with ~100 000 classifiers.

As the chances of any classifier being actually served
>98 per cent of subjects with the same intrinsic classification in
more than 200 classifications are vanishingly small, these classi-
fiers are most likely bots or are otherwise not actually engaging
in the classification task. While these classifications (6.8 per cent
of the total classifications) would be substantially down-weighted
during the classifier weighting process described below, we for-
mally omit them from further analysis and do not include them in
the weighting and consensus calculations. The fraction of bot-like
classifications in this project is consistent with that found in the first
Galaxy Zoo project, where approximately 4 per cent of classifica-
tions were removed for the same reasons (Lintott et al. 2008). The
average number of classifications per unique subject after excluding
the omitted classifications is 40.4.

We did not manually search for classifiers whose inputs are con-
sistent with random or otherwise suspect; these inputs, if they exist,
are effectively down-weighed via the consensus-based classifier
weighting described below, within which prolific classifiers tend to
have very high consistency values.

3.5 Classifier weighting

Multiple methods of classifier weighting have been successfully em-
ployed by different zooN1VERSE projects (Lintott et al. 2008; Bamford
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et al. 2009; Lintott et al. 2011; Schwamb et al. 2012; Simpson et al.
2012b, 2013a; Johnson et al. 2015; Marshall et al. 2016). In general,
the optimal choice of classifier weighting depends on the amount
of information available per subject and the goal of the project. In
Galaxy Zoo CANDELS, the goal is to converge to a classification
for each galaxy whilst still allowing for unexpected discoveries.
There is ample information from classifiers but little information
on the ‘ground truth’, i.e. we do not know what the true intrinsic
classification is for even a modest fraction of the sample.

For these reasons, we apply a consensus-based weighting method
for the majority of the tasks in the decision tree, informed first by
the application of initial weights based on comparison of the classi-
fications in the first task to the stellarity (CLASS_STAR) parameter
from the CANDELS photometric catalogues. Both are described
below, in the order in which they are applied.

3.5.1 Initial weighting based on ‘star’ versus ‘galaxy’
classifications

In the initial classification task (T00), we ask classifiers to sepa-
rate stars from galaxies and identify a galaxy as ‘smooth’ or as
having ‘features or disk’. Although we have no ‘ground truth’ in-
formation on the overall morphology of a galaxy, we do have very
reliable information on whether the source detected in each image
is extended, from the CLASS_STAR parameter. We can therefore
apply classifier weightings to this task based on whether classi-
fiers typically classify bright stars as ‘star or artifact’, and whether
they classify extended objects as galaxies (i.e. whether they answer
either ‘smooth’ or ‘features or disk’).

We select a sample of bright stars having FI60W <18.5 and
CLASS_STAR > 0.8 from within the Galaxy Zoo-CANDELS sub-
ject set. After manually rejecting two subjects which contain a
galaxy in the central image position with a bright star nearby
or overlapping, the bright-star gold-standard sample contains 263
subjects.

We select a sample of extended sources having F160W <25 and
CLASS_STAR < 0.03, with further manual removal of images with
artefacts and other ‘unclassifiable’ sources. We first cleaned this
sample by rejecting remaining sources where more than 65 per cent
of classifiers had selected the ‘star or artifact’ response to task T0O0,
a choice made to favour purity of the extended-source sample over
completeness. We additionally rejected 398 artefacts falling below
this threshold, leaving a total of 29 996 subjects in the extended-
source gold-standard sample.

Having selected these samples, we then assigned an index ng to
each subject classification from within either gold-standard subject
set. For subjects within the bright-star gold-standard set, the classi-
fication index was set to ny = —1 if the classifier had not marked the
subject as ‘star or artifact’, and was ny = 0 otherwise. For subjects
within the extended-source gold-standard set, the classification in-
dex was set to ng = —1 if the classifier had marked the subject as
‘star or artifact’, and was set to n, = +1 otherwise.

We then define the index n. for each classifier as the sum of
all their classification indices ng, and the weight for task TOO is
assigned based on the classifier index as

max (1.17,0.01) if n. <O,
W00 =Y min(1.05",3) if n. > 0. ()
This weighting results in a set of classifier weights between

0.01 < wy < 3, with classifiers whose classifications are gen-
erally ‘correct’ being up-weighted and classifiers who are more
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often ‘incorrect’ being down-weighted. 79 per cent of classifiers
classified at least one subject within either gold-standard subject
set; classifiers who did not classify any subjects in the gold-standard
subject set have wyy = 1. Of the classifiers who were included in
the weighting, 56 per cent have wyy > 1, with a mean of (wyy) =
1.11. As a last step, the weights are re-normalized so that the sum
of weights is equal to the total number of classifications.

Following this initial weighting, we create an initial set of vote
fractions for each subject by summing the weighted votes for each
task and response, and reporting the vote fractions ffor each. We use
this as an initial consensus classification catalogue in the consensus-
based weighting applied to the remaining tasks, described in further
detail below.

3.5.2 Consensus-based classifier weighting

Following the weighting of task TOO described above, we adopt an
iterative consensus-based weighting method for classification tasks
TO1 through T16. This weighting scheme follows previous Galaxy
Zoo projects and effectively identifies the small proportion of clas-
sifiers whose contributions are routinely errant compared to other
classifiers (or consistent with random inputs) and downweights their
contributions, while preserving the inputs from the vast majority of
classifiers.

Weights for each classifier are computed based on a mean con-
sistency factor, ', which is the average of consistencies for each
of that classifier’s classifications. For a given classification i com-
posed of a series of completed tasks ¢ answered about a specific
subject, we compare the classifier’s answer to each task with the
aggregated classifications of all classifiers of the same subject. Each
task has a, answers from all classifiers, each of which is assigned
to one of N,, possible responses to the task. We define the vote
fraction for a particular response r as f, = a,/a,, where a, is the
number of positive answers for that response (i.e. the number of
classifiers who selected that response out of all possible responses
to the task).

For each task that was completed by the classifier in classification
i, the consistency index «, for each response r to that task 7 is

I if the classifier’s answer corresponds
K = to this response, )

(1 — f,) if the answer does not correspond.

The consistency for that task, «;, is the average of these indices
over all possible responses. For example, if a classifier answered
‘star or artifact’ to task TOO for a particular subject, and the overall
vote fractions on that task for that subject are (‘smooth’, ‘features
or disk’, ‘star or artifact’) = (0.1, 0.6, 0.3), then the classifier’s
consistency for task TOO for this classification is

ke =[1-01)+(1—-0.6)+0.3]/3 =0.53.

In the above example, the classifier’s answer to task TOO leads to
the end of the workflow (Table 1), so this «; is also equal to the clas-
sifier’s consistency for the overall classification, «;. More generally,
the classification consistency is the answer-weighted average of the
task consistencies:

_ Z, Kia;

Zt A 7
where each sum is over the number of tasks the classifier completed
during the classification.

©)

Ki
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Following this calculation for the entire classification data base,
each classifier’s average consistency is calculated as

%= %ZK,-. )

Averaging over a classifier’s individual consistency values for
all classifications effectively downweights those contributions from
classifiers whose classifications regularly diverge from the consen-
sus whilst preserving the diversity of classifications from classifiers
who are on average consistent with each other. It also allows for the
classifications of skilled classifiers to remain highly weighted even
on difficult subjects where the individual consensus is skewed (e.g.
if an image is very noisy or if a nearby artefact is distracting to less
experienced classifiers).

The classifier weight is then calculated as

w = min (1.0, (£/0.6)*7), ®)

a formulation that preserves a uniform weighting for any classi-
fier with ¥ > 0.6 and downweights those with a lower consistency
rating.

The weighted consensus classifications are then calculated for
each subject by summing the weighted votes for each task and re-
sponse between task TO1 and T16, and reporting the vote fractions
f for each. (Although the classifications for task TOO are included
in the computation of the consensus-based weights, the vote frac-
tions for task TOO are not re-computed using the consensus-based
weights.) As the classifier weights are calculated via comparison
with the consensus, which leads to a new consensus, this method
can be iterated until the classifier weights converge to a stable value.

In practice, the number of iterations required to reach this goal
is low (e.g. three or less in previous projects; Bamford et al. 2009;
Willett et al. 2013). In Fig. 3 we show the distribution of classifier
consistencies after 1-5 iterations of the above method, although the
difference between iterations 3 through 5 cannot be distinguished
within the line weight even in the inset (zoomed) subsection of the
figure. Between the fourth and fifth iterations, more than 99 per cent
of consistency values varied by less than 0.1 per cent. After five
iterations, approximately 4 per cent of classifiers have consistency
k < 0.5 (corresponding to a weight w < 0.2), whereas 83 per cent
of classifiers have an end weight of w = 1. The vast majority of
Galaxy Zoo classifiers thus contribute highly valuable information
to the project.

Fig. 4 shows examples of galaxies with different weighted con-
sensus classifications for several of the tasks described in Table 1
and Fig. 1. Fig. 5 shows the demographics of the full sample, using
the weighted vote fractions to assign a single label to each galaxy
at each task in the classification tree. We only consider galaxies for
a given task if they were assigned an appropriate label that flows
into that task (Fig. 1). Galaxies are considered ‘featured’ if at least
30 per cent of (weighted) classifiers answered ‘features or disk’ in
the initial task; for all other tasks and responses, we assign labels
based on a plurality of weighted responses.

This very simple method provides an overview of the sample
demographics. The majority of galaxies in the sample would be
considered ‘smooth’, with only 12 per cent labelled as ‘featured’
even given the relatively generous selection of featured galaxies.
Were we to select subsets of galaxies based on other criteria, such
as stellar mass, the demographics would likely change substan-
tially. For example, the vast majority of the galaxies that were
retired early based on their low surface brightnesses and sizes
(Section 3.3) would be considered smooth or, owing to the high
noise levels relative to the detected galaxy, labelled as artefacts.
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Figure 3. Distribution of classifier consistencies k after one (black dashed),
two (black dotted), and three or more (black solid) iterations of the
consistency-based weighting method (described in Section 3.5). A portion
of the plot is magnified (inset) to show further detail. Convergence of this
method requires relatively few iterations, consistent with previous Galaxy
Zoo projects. Approximately 83 per cent of classifiers have ¥ > 0.6 and
weights w = 1.

3.6 Use of classifications in practice

The branched nature of the decision tree (Fig. 1) means that selection
of a sample of galaxies for a given morphological investigation may
depend on a number of factors. For example, it is possible to choose
a quantitative threshold for selection of a sample of galaxies with a
given feature or combination of features corresponding to one’s op-
timal trade-off between sample completeness and purity. One may
also weight a population analysis by the vote fraction for a particular
morphological feature (making the assumption that the vote frac-
tion is a well-behaved estimator of the true probability of a galaxy
having the relevant feature; e.g. Skibba et al. 2009; Smethurst et al.
2015). However, for all tasks below TOO in the tree, it is important
to consider the responses to the tasks above it in this analysis.

For example, a study with the goal of examining spiral galaxies
would ideally use a sample selected by considering the responses
to task T12, ‘Is there any sign of a spiral arm pattern?’ If a pure
sample of galaxies with clear spiral arms is desired, a threshold
may be selected at a high vote fraction for fgyr. If the threshold
considers only this vote fraction, however, the final sample will
likely be contaminated by galaxies where the spiral vote fraction is
dominated by noise because only a small number of people reached
that task (e.g. a warped edge-on disc).

In order to reach task T12, a classifier must give specific answers
to the questions ‘Is the galaxy simply smooth and rounded, with
no sign of a disk?’ (T00), ‘Does the galaxy have a mostly clumpy
appearance?’ (T02), and ‘Could this be a disk viewed edge-on?’
(T09). Each of these classifications should be considered in the
context of this hypothetical study’s goals in order to select as pure
a sample as possible whilst minimizing contamination and bias.

If a moderately complete sample is desired, for example,
the user could select thresholds for the selection such as
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Figure 4. Example (inverted) galaxy images for different consensus classifications of different responses to tasks in the Galaxy Zoo CANDELS classification
tree. From top to bottom row, the responses are: task T00, ‘smooth’; task T0O, ‘features or disk’; task TOO, ‘star or artifact’; task T02, ‘yes’ (clumpy); task
TO09, ‘yes’ (edge-on); task T12, ‘yes’ (spiral); task T16, ‘merging’. Each image is labelled with the weighted percentage of total votes for that task that were
registered for that response, with the weighted vote percentage increasing from left to right. The galaxies were selected after following the suggestions in
Section 3.6 regarding selection of appropriate samples, including restrictions on votes from earlier branches in the tree (see Fig. 1 for more information on
branches). The right most column shows vote fraction distributions for the task and response in each row, among galaxies where at least 10 answers total were
received for that question.
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Figure 5. Demographics of the Galaxy Zoo CANDELS sample, using the aggregate distribution of weighted morphologies. In the left-hand panel, the full
classification tree (Fig. 1 and Table 1) is shown. The right-hand panel shows only tasks T02-T16, the ‘featured’ branches of the tree, for which the full detail is
difficult to see in the left-hand panel. Each node in each diagram (dark blue horizontal bars of uniform height) represents a task in the tree. The paths between
tasks represent each possible answer to the task; these flow from top to bottom between their origin question and the subsequent task in the tree. For the first
task, TOO, a galaxy is considered ‘featured’ if the weighted vote fractions meet the criteria (ffeatres = 0.3 and fitarorartifact < 0.5). From among galaxies not
considered ‘featured’, a galaxy is then assigned a label (i.e. to a path) of ‘smooth’ or ‘artifact’ based on the plurality classification between those two responses.
For the remaining tasks, the label for an eligible galaxy is assigned according to the plurality answer for that task. At each node, a galaxy is assigned only
one label. The widths of the paths are proportional to the number of galaxies assigned to that path; the widths of the nodes are proportional to the number of
galaxies for which the question was reliably answered. The plurality answer represents the single most common response to a task — this may be either above
or below 50 per cent, depending on the number of answers and level of consensus. While this method provides a useful overview of the morphologies of the
entire data set, we note that examining subsets based on various cuts (e.g. stellar mass or luminosity thresholds) may reveal very different demographics for
those subpopulations.

Sreawres > 0.5, footcumpy > 0.5, footedge-on > 0.5. Because most
galaxies with these classifications will have received 80 clas-
sifications apiece (Section 3.3), these chained thresholds mean
the minimum number of classifiers who will have answered the
spiral question for subjects that are included in the sample is
80 x 0.5 = 10. Higher thresholds will further increase the
minimum number of respondents to the deeper-branched task.
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If lower thresholds are desired, we recommend that the selec-
tion explicitly require a minimum number of respondents to each
task.

There is no single set of thresholds that is ideal for all situations.
However, in the data release accompanying this paper, we include
‘clean’ selections of galaxies with different morphological features.
These are detailed further below.
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3.7 Data release and ‘clean’ samples

This paper includes the release of the raw and weighted classifica-
tions for each of the 49 555 subjects in the Galaxy Zoo CANDELS
sample. In addition to each raw and weighted vote fraction for
each task, we include the raw and weighted number of answers to
each task, as well as the total raw and weighted classifier count
for each subject. This combines for a total of 136 quantities for
each subject, not including the subject ID or any other metadata.
The structure of the data for each task number NN with i = Oto
n — 1 responses is as follows:

t[NN]_[quest_abbrev]_a[i]_[resp_abbrev]_frac: the raw fraction
of classifiers who gave this response. quest_abbrev and resp_abbrev
are abbreviated versions of the specific question and response, re-
spectively.

t[NN]_[quest_abbrev]_a[i]_[resp_abbrev]_weighted_frac: the
weighted fraction of classifiers who gave this response.

t[NN]_[quest_abbrev]_count: the raw count of classifiers who
responded to this task.

t[NN]_[quest_abbrev]_weight: the weighted count of classifiers
who responded to this task.

For example, the information available for task TOO (which has
three responses) is structured as

t00_smooth_or_featured_a0_smooth_frac
t00_smooth_or_featured_al_features_frac
t00_smooth_or_featured_a2_star_or_artifact_frac
t00_smooth_or_featured_a0_smooth_weighted_frac
t00_smooth_or_featured_al_features_weighted_frac
t00_smooth_or_featured_a2_star_or_artifact_weighted
_frac
t00_smooth_or_featured_count
t00_smooth_or_featured_weight

The sum of raw _frac fractions adds to 1.0, as does the sum of
_weighted_frac fractions. Multiplying the _frac values (raw frac-
tions) by the _count (raw classifier counts) will retrieve the number
of people who gave a specific answer; likewise with weighted an-
swer counts from _weighted_frac and _weight. As the consensus-
based classifier weighting described in Section 3.5 assigns a weight
of w < 1 to each classifier, the weighted vote count for tasks TO1—
T16 must be less than or equal to the raw vote count for those tasks.
While the raw vote counts and fractions are provided for complete-
ness, we recommend that users of this data set use the weighted
fractions and counts. The raw and weighted classifications are pre-
sented in Table 2.

In addition to the vote fractions for each subject, we provide
a set of flags for each subject that indicates its member or non-
member status in a ‘clean’ sample of galaxies of a specific type. We
select separate clean samples of smooth, featured, clumpy, edge-
on, and spiral galaxies. These samples contain exemplars of each
galaxy type with minimal contamination of the sample — as a result,
samples selected with the flags will be highly incomplete, but also
highly pure. They are selected according to vote fraction and vote
count thresholds given in Table 3, which were selected following
visual inspection of the resulting samples. The thresholds roughly
coincide with advice given in Kartaltepe et al. (2015), who consider
classifications for systems with H > 24.5 unreliable; only eight
systems in the ‘clean’ spiral sample (2 per cent of the sample) are
fainter than that limit.

We provide the ‘clean’ flags for the convenience of the end user,
but we additionally encourage those wishing to use Galaxy Zoo
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classifications to investigate whether a different set of thresholds
would be optimal for their own science case. For example, it should
be noted that the redshift and magnitude distributions of samples
constructed using these thresholds will be different from the main
sample. We show in Fig. 6 the luminosity—redshift distributions of
galaxies identified as smooth and featured with a range of differ-
ent thresholds; brighter, nearby galaxies are clearly more likely to
appear in featured samples based on more restrictive thresholds.
Bamford et al. (2009) were able to adjust for this bias in classifi-
cations of Sloan Digital Sky Survey (SDSS) galaxies by assuming
that no evolution took place across the sample, an assumption which
is clearly not valid here. The study of Galaxy Zoo classifications
in other Hubble surveys by Willett et al. (2016) used artificially
redshifted images to quantify this bias, but no such images are yet
available for the range of redshifts probed by CANDELS.

Fig. 6 shows that the peak of the distribution of rest-frame V-
band absolute magnitudes in a sample of featured galaxies varies
from My peac = —21.1 when the sample is selected to have freaures
> 0.4, to My peax = —22.0 when the sample is selected to have
Jreauures = 0.7 (the ‘clean’ featured sample); the full sample of all
galaxies has My peac = —19.9. The peak redshift of featured sam-
ples is relatively insensitive to the choice of threshold, for threshold
values of at least 0.4. However, more restrictive thresholds progres-
sively remove a tail of galaxies with higher redshifts. For example,
35 per cent of galaxies with fieaures > 0.4 also have z > 1.5, whereas
only 5 per cent of galaxies with freaures > 0.7 have z > 1.5. This
effect is also discussed in Bamford et al. (2009), and we discuss
image resolution in more detail in Section 3.9.

For smooth galaxies, as expected, the effect on redshift and
brightness distributions is much smaller, with the peak of the
absolute V magnitude distribution of the ‘clean’ smooth sample

(fsmooth = 0.8) at My peax = —20.4 and galaxies across the com-
plete range of both variables included in the ‘clean’ smooth sample
(Fig. 6).

As an example of the use of these morphologies, Fig. 7 shows rest-
frame UVJ colour—colour plots for different morphological samples
at different redshifts. Within each redshift range, the smooth sam-
ple is chosen to match the rest-V luminosity range of the spiral
or clumpy sample being compared. The clean spiral sample has
colours generally associated with star-forming galaxies with redder
colours extending into the dusty region of UVJ space, but avoiding
the passive region (e.g. Williams et al. 2009; Muzzin et al. 2013).
Clumpy galaxies tend to be blue at all redshifts examined. Smooth
galaxies generally span the range of observed colours compared to
the full sample. This result is similar to that seen by Kartaltepe et al.
(2015), although that study measures somewhat different quanti-
ties in their visual classifications. We compare our classifications to
those of Kartaltepe et al. in detail in Section 4, and we discuss the
smooth galaxy sample in further detail in Section 5.

3.8 Depth corrections

As outlined in Section 2.1, the depth of the CANDELS survey varies
substantially between two types of fields, from shallower ‘wide’
fields with ~1 orbit depth in FI60W to ‘deep’ fields with 2> 4
times the overall depth of the wide fields.

Because different morphological features have different charac-
teristic surface brightnesses and light profiles (e.g. clumps, tidal
signatures, spheroids, discs), we expect the morphological classifi-
cations of subjects to vary somewhat based on the imaging depth.
For a survey such as CANDELS that is already relatively deep,
we expect this effect to generally be small, but nevertheless using
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Table 2. Raw and weighted classifications for the full Galaxy Zoo CANDELS sample. The complete version of this table is available in electronic form
and at: http://data.galaxyzoo.org. The printed table shows a transposed subset of the full table to illustrate its format and content. The complete version
includes raw and weighted morphological classifications for all tasks in the classification tree (Fig. 1 and Table 1) for each of the 49 555 unique sources in the
sample, as well as flags clean_smooth, clean_featured, clean_clumpy, clean_edge_on, clean_spiral which mark galaxies in the ‘clean’ subsamples described

in Section 3.7 and Table 3, and the flag smooth_disc which marks smooth galaxies with significant disc components, as described in Section 5.

Data column name

Subjects

1D COS_11292 COS_26682 GDS_17388 GDS_25569 UDS_14391 UDS_23274 ...
RA 150.110092 150.131912  53.126442  53.189608  34.323514  34.490365
Dec. 2.314499 2.516023  —27.756544 —27.695279 —5.198308 —5.143040
num_classifications 38 76 74 39 73 78
num_classifications_weighted 35.04 67.15 82.23 36.62 62.00 72.76
t00_smooth_or_featured_a0_smooth_frac 0.61 0.30 0.19 0.44 0.26 0.44
t00_smooth_or_featured_al_features_frac 0.03 0.25 0.62 0.18 0.23 0.42
t00_smooth_or_featured_a2_artifact_frac 0.37 0.45 0.19 0.38 0.51 0.14
t00_smooth_or_featured_a0_smooth_weighted_frac 0.84 0.41 0.24 0.63 0.39 0.51
t00_smooth_or_featured_al_features_weighted_frac 0.04 0.31 0.74 0.24 0.30 0.46
t00_smooth_or_featured_a2_artifact_weighted_frac 0.11 0.28 0.02 0.12 0.31 0.03
t00_smooth_or_featured_count 38 76 74 39 73 78
t00_smooth_or_featured_weight 42.13 88.04 82.23 42.47 75.17 87.94
t01_how_rounded_a0_completely_frac 0.87 0.17 0.86 0.59 0.16 0.21
t01_how_rounded_al_inbetween_frac 0.13 0.83 0.14 0.41 0.37 0.74
t01_how_rounded_a2_cigarshaped_frac 0.00 0.00 0.00 0.00 0.47 0.06
t01_how_rounded_a0_completely_weighted_frac 0.87 0.17 0.85 0.58 0.16 0.21
t01_how_rounded_al_inbetween_weighted_frac 0.13 0.83 0.15 0.42 0.37 0.74
t01_how_rounded_a2_cigarshaped_weighted_frac 0.00 0.00 0.00 0.00 0.47 0.05
t01_how_rounded_count 23 23 14 17 19 34
t01_how_rounded_weight 23.00 22.99 13.78 16.55 18.96 32.68
t02_clumpy_appearance_a0_yes_frac 0.00 0.74 0.13 0.86 0.41 0.45
t02_clumpy_appearance_al_no_frac 1.00 0.26 0.87 0.14 0.59 0.55
t02_clumpy_appearance_a0_yes_weighted_frac 0.00 0.74 0.12 0.86 0.39 0.45
t02_clumpy_appearance_al_no_weighted_frac 1.00 0.26 0.88 0.14 0.61 0.55
t02_clumpy_appearance_count 1 19 46 7 17 33
t02_clumpy_appearance_weight 1.00 19.00 45.71 7.00 16.28 32.46
t03_how_many_clumps_a0_1_frac 0.00 0.00 0.50 0.17 0.00 0.60
t03_how_many_clumps_al_2_frac 0.00 0.36 0.00 0.33 0.00 0.00
t03_how_many_clumps_a2_3_frac 0.00 0.29 0.13 0.00 0.29 0.00
t03_how_many_clumps_a3_4_frac 0.00 0.00 0.00 0.00 0.14 0.13
t03_how_many_clumps_a4_5_plus_frac 0.00 0.00 0.38 0.00 0.43 0.00
t03_how_many_clumps_a5_cant_tell_frac 0.00 0.36 0.00 0.50 0.14 0.27
t03_how_many_clumps_a0_1_weighted_frac 0.00 0.00 0.50 0.17 0.00 0.62
t03_how_many_clumps_al_2_weighted_frac 0.00 0.36 0.00 0.33 0.00 0.00
t03_how_many_clumps_a2_3_weighted_frac 0.00 0.29 0.15 0.00 0.32 0.00
t03_how_many_clumps_a3_4_weighted_frac 0.00 0.00 0.00 0.00 0.16 0.11
t03_how_many_clumps_a4_5_plus_weighted_frac 0.00 0.00 0.35 0.00 0.36 0.00
t03_how_many_clumps_a5_cant_tell_weighted_frac 0.00 0.36 0.00 0.50 0.16 0.27
t03_how_many_clumps_count 0 14 6 6 7 15
t03_how_many_clumps_weight 0.00 14.00 5.36 6.00 6.28 14.46
t04_clump_configuration_a0_straight_line_frac 0.00 0.00 0.00 0.00 0.57 0.17
t04_clump_configuration_al_chain_frac 0.00 0.00 0.00 0.00 0.00 0.17
t04_clump_configuration_a2_cluster_or_irregular_frac 0.00 1.00 1.00 1.00 0.43 0.67
t04_clump_configuration_a3_spiral_frac 0.00 0.00 0.00 0.00 0.00 0.00
t04_clump_configuration_a0_straight_line_weighted_frac 0.00 0.00 0.00 0.00 0.64 0.18
t04_clump_configuration_al_chain_weighted_frac 0.00 0.00 0.00 0.00 0.00 0.18
t04_clump_configuration_a2_cluster_or_irregular_weighted_frac 0.00 1.00 1.00 1.00 0.36 0.63
t04_clump_configuration_a3_spiral_weighted_frac 0.00 0.00 0.00 0.00 0.00 0.00
t04_clump_configuration_count 0 9 4 3 7 6
t04_clump_configuration_weight 0.00 9.00 3.36 3.00 6.28 5.46
t05_is_one_clump_brightest_a0_yes_frac 0.00 0.07 0.25 1.00 0.43 0.67
t05_is_one_clump_brightest_al_no_frac 0.00 0.93 0.75 0.00 0.57 0.33
t05_is_one_clump_brightest_a0_yes_weighted_frac 0.00 0.07 0.30 1.00 0.48 0.63
t05_is_one_clump_brightest_al_no_weighted_frac 0.00 0.93 0.70 0.00 0.52 0.37
t05_is_one_clump_brightest_count 0 14 4 5 7 6
t05_is_one_clump_brightest_weight 0.00 14.00 3.36 5.00 6.28 5.46
t06_brightest_clump_central_a0_yes_frac 0.00 0.00 1.00 0.60 1.00 0.75
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Table 2 — continued
Data column name Subjects
1D COS_11292 COS_26682 GDS_17388 GDS_25569 UDS_14391 UDS_23274
t06_brightest_clump_central_al_no_frac 0.00 1.00 0.00 0.40 0.00 0.25
t06_brightest_clump_central_a0_yes_weighted_frac 0.00 0.00 1.00 0.60 1.00 0.83
t06_brightest_clump_central_al_no_weighted_frac 0.00 1.00 0.00 0.40 0.00 0.17
t06_brightest_clump_central_count 0 1 1 5 3 4
t06_brightest_clump_central_weight 0.00 1.00 1.00 5.00 3.00 3.46
t07_galaxy_symmetrical_a0_yes_frac 0.00 0.08 0.67 0.25 0.29 0.21
t07_galaxy_symmetrical_al_no_frac 0.00 0.92 0.33 0.75 0.71 0.79
t07_galaxy_symmetrical_a0_yes_weighted_frac 0.00 0.08 0.70 0.25 0.32 0.22
t07_galaxy_symmetrical_al_no_weighted_frac 0.00 0.92 0.30 0.75 0.68 0.78
t07_galaxy_symmetrical_count 0 13 6 4 7 14
t07_galaxy_symmetrical_weight 0.00 13.00 5.36 4.00 6.28 13.87
t08_clumps_embedded_larger_object_a0_yes_frac 0.00 0.31 0.83 0.25 0.86 0.57
t08_clumps_embedded_larger_object_al_no_frac 0.00 0.69 0.17 0.75 0.14 0.43
t08_clumps_embedded_larger_object_a0_yes_weighted_frac 0.00 0.31 0.81 0.25 0.96 0.57
t08_clumps_embedded_larger_object_al_no_weighted_frac 0.00 0.69 0.19 0.75 0.04 0.43
t08_clumps_embedded_larger_object_count 0 13 6 4 7 14
t08_clumps_embedded_larger_object_weight 0.00 13.00 5.36 4.00 6.28 13.87
t09_disk_edge_on_a0_yes_frac 0.00 0.20 0.00 0.00 0.60 0.11
t09_disk_edge_on_al_no_frac 1.00 0.80 1.00 1.00 0.40 0.89
t09_disk_edge_on_a0_yes_weighted_frac 0.00 0.20 0.00 0.00 0.60 0.11
t09_disk_edge_on_al_no_weighted_frac 1.00 0.80 1.00 1.00 0.40 0.89
t09_disk_edge_on_count 1 5 40 1 10 18
t09_disk_edge_on_weight 1.00 5.00 40.35 1.00 10.00 18.00
t10_edge_on_bulge_a0_yes_frac 0.00 0.00 0.00 0.00 0.17 1.00
t10_edge_on_bulge_al_no_frac 0.00 1.00 0.00 0.00 0.83 0.00
t10_edge_on_bulge_a0_yes_weighted_frac 0.00 0.00 0.00 0.00 0.17 1.00
t10_edge_on_bulge_al_no_weighted_frac 0.00 1.00 0.00 0.00 0.83 0.00
t10_edge_on_bulge_count 0 1 0 0 6 2
t10_edge_on_bulge_weight 0.00 1.00 0.00 0.00 6.00 2.00
t11_bar_feature_a0_yes_frac 0.00 0.00 0.05 0.00 0.50 0.00
t11_bar_feature_al_no_frac 1.00 1.00 0.95 1.00 0.50 1.00
t11_bar_feature_a0_yes_weighted_frac 0.00 0.00 0.05 0.00 0.50 0.00
t11_bar_feature_al_no_weighted_frac 1.00 1.00 0.95 1.00 0.50 1.00
t11_bar_feature_count 1 4 40 1 4 16
t11_bar_feature_weight 1.00 4.00 40.35 1.00 4.00 16.00
t12_spiral_pattern_a0_yes_frac 0.00 0.50 0.60 0.00 0.25 0.69
t12_spiral_pattern_al_no_frac 1.00 0.50 0.40 1.00 0.75 0.31
t12_spiral_pattern_a0_yes_weighted_frac 0.00 0.50 0.59 0.00 0.25 0.69
t12_spiral_pattern_al_no_weighted_frac 1.00 0.50 0.41 1.00 0.75 0.31
t12_spiral_pattern_count 1 4 40 1 4 16
t12_spiral_pattern_weight 1.00 4.00 40.35 1.00 4.00 16.00
t13_spiral_arm_winding_a0_tight_frac 0.00 0.00 0.79 0.00 0.00 0.36
t13_spiral_arm_winding_al_medium_frac 0.00 0.50 0.17 0.00 0.00 0.45
t13_spiral_arm_winding_a2_loose_frac 0.00 0.50 0.04 0.00 1.00 0.18
t13_spiral_arm_winding_a0_tight_weighted_frac 0.00 0.00 0.79 0.00 0.00 0.36
t13_spiral_arm_winding_al_medium_weighted_frac 0.00 0.50 0.17 0.00 0.00 0.45
t13_spiral_arm_winding_a2_loose_weighted_frac 0.00 0.50 0.04 0.00 1.00 0.18
t13_spiral_arm_winding_count 0 2 24 0 1 11
t13_spiral_arm_winding_weight 0.00 2.00 24.00 0.00 1.00 11.00
t14_spiral_arm_count_a0_1_frac 0.00 0.00 0.08 0.00 0.00 0.27
t14_spiral_arm_count_al_2_frac 0.00 1.00 0.38 0.00 0.00 0.18
t14_spiral_arm_count_a2_3_frac 0.00 0.00 0.08 0.00 0.00 0.00
t14_spiral_arm_count_a3_4_frac 0.00 0.00 0.00 0.00 1.00 0.00
t14_spiral_arm_count_a4_5_plus_frac 0.00 0.00 0.00 0.00 0.00 0.00
t14_spiral_arm_count_a5_cant_tell_frac 0.00 0.00 0.46 0.00 0.00 0.55
t14_spiral_arm_count_a0_1_weighted_frac 0.00 0.00 0.08 0.00 0.00 0.27
t14_spiral_arm_count_al_2_weighted_frac 0.00 1.00 0.38 0.00 0.00 0.18
t14_spiral_arm_count_a2_3_weighted_frac 0.00 0.00 0.08 0.00 0.00 0.00
t14_spiral_arm_count_a3_4_weighted_frac 0.00 0.00 0.00 0.00 1.00 0.00
t14_spiral_arm_count_a4_5_plus_weighted_frac 0.00 0.00 0.00 0.00 0.00 0.00
t14_spiral_arm_count_a5_cant_tell_weighted_frac 0.00 0.00 0.46 0.00 0.00 0.55
t14_spiral_arm_count_count 0 2 24 0 1 11
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Table 2. — continued

Data column name Subjects

D COS_11292 COS_26682 GDS_17388 GDS_25569 UDS_14391 UDS_23274
t14_spiral_arm_count_weight 0.00 2.00 24.00 0.00 1.00 11.00
t15_bulge_prominence_a0_no_bulge_frac 1.00 0.75 0.03 0.00 0.25 0.25
t15_bulge_prominence_al_obvious_frac 0.00 0.25 0.90 0.00 0.25 0.69
t15_bulge_prominence_a2_dominant_frac 0.00 0.00 0.08 1.00 0.50 0.06
t15_bulge_prominence_a0_no_bulge_weighted_frac 1.00 0.75 0.02 0.00 0.25 0.25
t15_bulge_prominence_al_obvious_weighted_frac 0.00 0.25 0.90 0.00 0.25 0.69
t15_bulge_prominence_a2_dominant_weighted_frac 0.00 0.00 0.07 1.00 0.50 0.06
t15_bulge_prominence_count 1 4 40 1 4 16
t15_bulge_prominence_weight 1.00 4.00 40.35 1.00 4.00 16.00
t16_merging_tidal_debris_a0_merging_frac 0.21 0.40 0.45 0.04 0.22 0.07
t16_merging_tidal_debris_al_tidal_debris_frac 0.00 0.07 0.02 0.42 0.11 0.16
t16_merging_tidal_debris_a2_both_frac 0.00 0.29 0.13 0.04 0.11 0.01
t16_merging_tidal_debris_a3_neither_frac 0.79 0.24 0.40 0.50 0.56 0.75
t16_merging_tidal_debris_a0_merging_weighted_frac 0.21 0.40 0.45 0.04 0.21 0.08
t16_merging_tidal_debris_al_tidal_debris_weighted_frac 0.00 0.07 0.02 0.42 0.11 0.17
t16_merging_tidal_debris_a2_both_weighted_frac 0.00 0.29 0.12 0.04 0.11 0.01
t16_merging_tidal_debris_a3_neither_weighted_frac 0.79 0.24 0.41 0.49 0.57 0.75
t16_merging_tidal_debris_count 24 42 60 24 36 67
t16_merging_tidal_debris_weight 24.00 41.99 59.49 23.55 35.24 65.14

Table 3. Clean samples, designated in the Galaxy Zoo CANDELS weighted
classification catalogue with flags. Each sample is selected using criteria
from at least one task in the decision tree (Fig. 1 and Table 1); samples
selecting for features characterized in lower branches of the tree include
selection criteria on dependent tasks. The selection for the clumpy clean
sample also includes a rejection of subjects having a substantial fraction of
classifications for ‘merging’, ‘tidal debris’, or ‘both’. The clean samples are
relatively free from contaminants, and are correspondingly incomplete.

Clean sample Tasks Selection Nsample
Smooth TOO fsmooth = 0.8 6770
Featured TOO Sreatures = 0.7 312
Clumpy TOO Sreatures = 0.4 333
T02 Setumpy = 0.7, N1o2 > 10
T16 fneither >0.25
Edge'on T00 ffcalures = 0.4 223
T02 fnot clumpy >0.23
TO09 fedge»on > 0.7, Ntg9 > 10
Spiral TOO Sreatures > 0.4 383
TO2 ﬁlol clumpy >03
T09 fnol edge-on >05
T12 fspiral = 0.8, Nt12 > 10

classifications based on imaging from both the wide and deep fields
could complicate some scientific inquiries.

To measure and correct for this, shallower (two-epoch) im-
ages of a subsample of ‘deep’ subjects were created and added
to the active subject sets. These images (from 2518 subjects in
the GOODS-South deep field; hereafter the ‘measured-correction’
subset) are of comparable depth to the wide fields. Below we
describe how comparison of the shallower and deeper weighted
consensus classifications of these subjects allows us to determine
typical depth corrections to all deep-field subject morphologies
as a function of deep-exposure morphology and galaxy surface
brightness.

We define the observed surface brightness of a galaxy using
the magnitude and size reported in the CANDELS photometric
catalogues for each field. Specifically, we use the FI60W auto
fluxes and the radius containing 80 per cent of the galaxy light, rgo,
to determine a representative surface brightness for each galaxy. We
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also use the measured axis ratios b/a, dividing the flux by the area
contained within an ellipse of area wagybg), in arcsec>. We then
convert to magnitudes, resulting in a single surface brightness psp
in mag arcsec ™2 for each subject.

Fig. 8 shows the difference between shallower and deeper
weighted consensus classifications as a function of surface bright-
ness and deep-exposure morphology for the initial task in the
classification tree, TO0. When determining depth corrections for
each task, we consider subjects which received more than 10 an-
swers to the question presented by the task, and we also remove
42 bright stars with pusg > 17 (the mean weighted ‘star or ar-
tifact’ vote fraction for these iS fiyeracr = 0.89). For tasks TO1-
T16, we additionally remove subjects with firerace > 0.5. We then
determine a best-fitting plane to the change in vote fraction,
Af, = fohalow — Jdeep» for each response as a function of galaxy
surface brightness and the vote fraction fg., for the deep-exposure
image.

In general, the correction to the vote fraction is a stronger function
of the vote fraction than of the surface brightness, though most cor-
rections do depend on both. For example, the correction Affeaures
(middle row of Fig. 8) is clearly a linear function of the deep-
exposure vote fraction freawres, Such that highly ‘featured’ galaxies
tend to have lower featured vote fractions in the shallower images
(as expected), with a slight turnover at feyures > 0.9 indicating that
such galaxies, with obvious features, are still identifiable as featured
even at shallower depth. The A freuues—tsp relation is nearly flat,
but the scatter is higher for lower surface brightness galaxies. As
expected, for very bright galaxies the change in depth makes lit-
tle difference to the classification, whereas for fainter galaxies the
change depends more on details of features that vary from galaxy
to galaxy. It is therefore important to note that the best-fitting cor-
rections (right-hand column of Fig. 8) are average values across
the whole sample and can be highly uncertain for an individual
galaxy.

The best-fitting planes for each response to each task can be
used to predict the wide-field depth classifications for galaxies in
the deep fields, both in this paper and in future releases of Galaxy
Zoo CANDELS data. For the 8130 subjects with F160W limiting
magnitudes at least as faint as the brightest limiting magnitude in
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Figure 7. Rest-frame U — V versus V — J colour—colour plots for different classification selections. From left to right, each column shows sources in increasing
redshift bins, with z < 0.5 in the leftmost column, 0.5 < z < 1 in the centre, and 1 < z < 1.5 atright. In all panels, grey-scale points, contours and shading show
the full sample within that redshift range, and red lines show contours representing the clean ‘smooth’ sample. In the top row, blue circles show galaxies in the
clean ‘spiral” sample. In the bottom row, green squares show galaxies in the clean ‘clumpy’ sample. (See Table 3 for a definition of each sample.) In each panel,
smooth and spiral (or smooth and clumpy) samples are restricted to the same rest-frame V-band luminosity range. Dashed lines show the empirical selection
criteria for quiescent galaxies in each redshift bin (from Williams et al. 2009). Each morphologically distinct sample occupies a different part of colour—colour
space.
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Figure 8. Depth corrections to classifications for individual responses to task T0O: ‘smooth’ (top row), ‘features or disk’ (middle row), and ‘star or artifact’
(bottom row). The change in classification (Af) between the deep- and wide-field-depth observations of the same subjects is fit as a function of deep-field-depth
morphology (vote fraction f; left-hand column) and galaxy characteristic surface brightness (1sg, middle column). Each point is a subject which received at
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least 10 responses within the task. The best-fitting plane is shown in projection (blue line) in the right-hand column.

the measured-correction subset (F/60W = 28.26) but for which
we do not also have separate wide-field depth classifications, we
use their vote fractions for each task and response, f;, and their
surface brightnesses (sp, to interpolate corrections Af, along the
best-fitting plane for each task and response. Where an (f,, tsg)
pair is outside the area defined by the data (points in each panel of
Fig. 8), we assume that the correction is equal to the value of the
correction at the nearest boundary defined by the projection of the

MNRAS 464, 4420-4447 (2017)

data in the measured-correction subset on to the best-fitting plane
(i.e. we do not extrapolate).

In addition to the release of classification data described in Sec-
tion 3.7 above, we additionally present these ‘corrected’, weighted
classifications for each of the 8130 subjects with deep exposures
but for which we do not also have separate wide-field depth clas-
sifications, as well as the measured wide-field depth classifica-
tions for the measured-correction subset, for a total of 10 648
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Table 4. Depth-corrected classifications for the ‘measured-correction’ sample defined in Section 3.8. The complete version of this table is available in
electronic form and at: http://data.galaxyzoo.org. The printed table shows a transposed subset of the full table to illustrate its format and content.

Data column name

Subjects

ID GDS_12132GDS_15834GDS_17388GDS_17613GDS_20321 GDS_8970
RA 53.099782 53.075878 53.126442 53.192374 53.159091 53.142340
Dec. —27.799512—-27.768666—27.756544—27.752376—27.728037—-27.827641

t00_smooth_or_featured_a0_smooth_weighted_frac_deepcorr
t00_smooth_or_featured_al_features_weighted_frac_deepcorr
t00_smooth_or_featured_a2_artifact_weighted_frac_deepcorr
t01_how_rounded_a0_completely_weighted_frac_deepcorr
t01_how_rounded_al_inbetween_weighted_frac_deepcorr
t01_how_rounded_a2_cigarshaped_weighted_frac_deepcorr
t02_clumpy_appearance_a0_yes_weighted_frac_deepcorr
t02_clumpy_appearance_al_no_weighted_frac_deepcorr
t03_how_many_clumps_a0_1_weighted_frac_deepcorr
t03_how_many_clumps_al_2_weighted_frac_deepcorr
t03_how_many_clumps_a2_3_weighted_frac_deepcorr
t03_how_many_clumps_a3_4_weighted_frac_deepcorr
t03_how_many_clumps_a4_5_plus_weighted_frac_deepcorr
t03_how_many_clumps_a5_cant_tell_weighted_frac_deepcorr
t04_clump_configuration_a0_straight_line_weighted_frac_deepcorr
t04_clump_configuration_al_chain_weighted_frac_deepcorr

t04_clump_configuration_a2_cluster_or_irregular_weighted_frac_deepcorr

t04_clump_configuration_a3_spiral_weighted_frac_deepcorr
t05_is_one_clump_brightest_a0_yes_weighted_frac_deepcorr
t05_is_one_clump_brightest_al_no_weighted_frac_deepcorr
t06_brightest_clump_central_a0_yes_weighted_frac_deepcorr
t06_brightest_clump_central_al_no_weighted_frac_deepcorr
t07_galaxy_symmetrical_a0_yes_weighted_frac_deepcorr
t07_galaxy_symmetrical_al_no_weighted_frac_deepcorr
t08_clumps_embedded_larger_object_a0_yes_weighted_frac_deepcorr
t08_clumps_embedded_larger_object_al_no_weighted_frac_deepcorr
t09_disk_edge_on_a0_yes_weighted_frac_deepcorr
t09_disk_edge_on_al_no_weighted_frac_deepcorr
t10_edge_on_bulge_a0_yes_weighted_frac_deepcorr
t10_edge_on_bulge_al_no_weighted_frac_deepcorr
t11_bar_feature_a0_yes_weighted_frac_deepcorr
t11_bar_feature_al_no_weighted_frac_deepcorr
t12_spiral_pattern_a0_yes_weighted_frac_deepcorr
t12_spiral_pattern_al_no_weighted_frac_deepcorr
t13_spiral_arm_winding_a0_tight_weighted_frac_deepcorr
t13_spiral_arm_winding_al_medium_weighted_frac_deepcorr
t13_spiral_arm_winding_a2_loose_weighted_frac_deepcorr
t14_spiral_arm_count_a0_1_weighted_frac_deepcorr
t14_spiral_arm_count_al_2_weighted_frac_deepcorr
t14_spiral_arm_count_a2_3_weighted_frac_deepcorr
t14_spiral_arm_count_a3_4_weighted_frac_deepcorr
t14_spiral_arm_count_a4_5_plus_weighted_frac_deepcorr
t14_spiral_arm_count_a5_cant_tell_weighted_frac_deepcorr
t15_bulge_prominence_a0_no_bulge_weighted_frac_deepcorr
t15_bulge_prominence_al_obvious_weighted_frac_deepcorr
t15_bulge_prominence_a2_dominant_weighted_frac_deepcorr
t16_merging_tidal_debris_a0_merging_weighted_frac_deepcorr
t16_merging_tidal_debris_al_tidal_debris_weighted_frac_deepcorr
t16_merging_tidal_debris_a2_both_weighted_frac_deepcorr
t16_merging_tidal_debris_a3_neither_weighted_frac_deepcorr

0.67 0.55 0.37 0.70 0.36 0.64
0.05 0.16 0.47 0.07 0.18 0.18
0.28 0.28 0.16 0.23 0.45 0.18
0.84 0.32 0.87 0.59 0.26 0.43
0.15 0.67 0.13 0.36 0.72 0.51
0.01 0.01 0.00 0.05 0.02 0.06
1.00 0.48 0.41 0.74 0.58 0.48
0.00 0.52 0.59 0.26 0.42 0.52
1.00 0.06 0.55 0.28 0.03 0.25
0.00 0.50 0.00 0.09 0.33 0.03
0.00 0.14 0.03 0.25 0.26 0.03
0.00 0.02 0.07 0.02 0.02 0.22
0.00 0.07 0.35 0.20 0.04 0.04
0.00 0.21 0.00 0.16 0.32 0.43
0.00 0.02 0.00 0.02 0.00 0.00
0.00 0.11 0.00 0.34 0.00 0.07
0.00 0.87 0.60 0.63 1.00 0.62
0.00 0.00 0.40 0.01 0.00 0.31
0.00 0.25 0.40 0.42 0.49 0.38
0.00 0.75 0.60 0.58 0.51 0.62
0.00 0.28 1.00 1.00 0.51 0.18
0.00 0.72 0.00 0.00 0.49 0.82
0.00 0.04 0.66 0.05 0.00 0.34
1.00 0.96 0.34 0.95 1.00 0.66
0.61 0.36 0.66 0.48 0.35 0.17
0.39 0.64 0.34 0.52 0.65 0.83
0.00 0.06 0.05 0.00 0.72 0.40
0.00 0.94 0.95 0.00 0.28 0.60
0.00 0.00 1.00 0.00 1.00 0.50
0.00 0.00 0.00 0.00 0.00 0.50
0.00 0.01 0.05 0.00 0.00 0.00
0.00 0.99 0.95 0.00 1.00 1.00
0.00 0.00 0.29 0.00 1.00 0.00
0.00 1.00 0.71 0.00 0.00 1.00
0.00 0.00 0.83 0.00 1.00 0.00
0.00 0.00 0.17 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.17 0.00 0.00 0.00
0.00 0.00 0.68 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.17 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 1.00 0.00
0.00 0.75 0.00 0.00 0.00 1.00
0.00 0.20 0.62 0.00 1.00 0.00
0.00 0.05 0.38 0.00 0.00 0.00
0.01 0.10 0.35 0.09 0.15 0.54
0.02 0.02 0.01 0.07 0.10 0.04
0.01 0.01 0.04 0.02 0.05 0.03
0.96 0.87 0.60 0.82 0.70 0.39

morphological classifications of deep-field subjects corrected to the
wide-field average depth.

For these subjects, the wide-field depth classifications are
given in Table 4 and as a separate table in the data catalogues.
The naming of columns is as described in Section 3.7, except
with an additional _deepcorr added to each relevant weighted-
classification column. For example, the wide-field vote fraction for
classifiers indicating an answer of ‘smooth’ to task TOO is labelled

t00_smooth_or_featured_a0_smooth_weighted_frac_deepcorr,
which is depth corrected from the deep-exposure classification in-
dicated in the t00_smooth_or_featured_a0_smooth_weighted_frac
column. For those investigating science questions where it is ad-
vantageous to consider classifications from images of comparable
depth across an entire sample (e.g. Bamford et al. 2008), we
recommend using the _deepcorr classifications for subjects in the
‘deep’ fields.
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3.9 Resolution effects

In addition to variations in classification as a function of image depth
discussed above, the minimum resolved physical scale in a galaxy
changes as a function of redshift, which affects the detectability of
smaller scale features. However, at the redshifts where the bulk of
galaxies in the Galaxy Zoo CANDELS data set lie (z = 0.5), the
redshift dependence of the angular diameter distance is relatively
flat compared to its evolution at lower redshifts. This means that
the physical resolution changes only slightly over the bulk of the
survey. At z > 1, where Galaxy Zoo CANDELS adds substan-
tially new rest-frame optical morphologies compared to previous
HST morphological surveys (e.g. Scarlata et al. 2007; Willett et al.
2016), the maximum variation in physical resolution as a function
of redshift is approximately 5 per cent. Given the resolution of the
drizzled HST images (Section 2.1) and a PSF FWHM ~2.5 pixels,
a morphological feature in a galaxy must be larger than approxi-
mately 1 kpc to be resolved in F/60W at any redshift covered by
Galaxy Zoo CANDELS.

More specifically, the FWHM of the WFC3 PSF is equivalent
to 0.92 kpc at z = 0.5; this increases to 1.22 kpc at z = 1 and
1.27 kpc at z = 1.6, the redshift at which physical resolution is
at its worst. At the redshift where the central wavelength of the
F160W filter is approximately aligned with the rest-frame B band,
z="2.7, the FWHM of the WFC3 PSF in physical units is 1.19 kpc.
The images used here therefore cannot resolve intrinsically distinct
features smaller than ~1-1.3 kpc, so a galaxy with only features
smaller than this is likely to be classified as ‘smooth’ in Galaxy Zoo
CANDELS. There may be exceptions due to the fact that the ACS
PSF is approximately half the size, and the colour images use ACS
F814W images in the blue channel. A galaxy with features of a size
just below the detection limit in WFC3 but which are also bright in
F814W (which is in the rest-frame UV for z 2 1) may show blue
resolved features in the subject images.

ACS and WFC3 on HST provide the highest resolution images
currently available. These images may in the future be used in com-
parison with morphological studies using the James Webb Space
Telescope, although that telescope is not as well optimized for sur-
veys as HST. The classifications presented here will likely be of
substantial use to large-scale morphological studies using the Eu-
clid mission (Refregier et al. 2010), which will cover more of the
sky at approximately half the resolution of HST at any wavelength.
For now, however, we note going forward that the features reported
by Galaxy Zoo CANDELS will in general be limited to those with
a physical size of at least ~1 kpc.

4 COMPARISON TO OTHER VISUAL
CLASSIFICATIONS

Most of the galaxies in the CANDELS data set have additional
visual classifications available in the form of expert classifications
from astronomers and undergraduate students who are members of
the CANDELS team. Analysis of the full set of classifications in
that separate project is still underway; the first release of classi-
fications from the GOODS-South field is presented by Kartaltepe
et al. (2015, hereafter K15), who also detail the project design and
objectives, including the classification interface. Consensus classi-
fications from the UDS field are also available (Kartaltepe et al.,
in preparation). For each galaxy in all fields, between three and
seven (typically three) members of the CANDELS team provided
classifications.

MNRAS 464, 4420-4447 (2017)

The classification scheme described in K15 is substantially dif-
ferent to that presented here. First, while that project collects de-
tailed classifications about a number of possible structural features
(with 37 different responses possible), they do not always align
precisely with the questions asked in Galaxy Zoo CANDELS. For
example, the Main Morphology Class of K15 requires the clas-
sifier to select at least one option from among ‘disk’, ‘spheroid’,
and ‘peculiar/irregular’ galaxy types, along with options for ‘point
source/compact’ and ‘unclassifiable’. The last of these is not an op-
tion Galaxy Zoo provides, and the first two are not necessarily the
same as task TOO’s responses of ‘features’ versus ‘smooth’ (note:
this also means that we cannot compare to the machine classifica-
tions of Huertas-Company et al. 2015, as there are no categories in
that study that translate to the measurements made by Galaxy Zoo
volunteers). While Galaxy Zoo does classify bulge strength, it does
so after multiple branches of the decision tree, and therefore this is
not easily comparable to a first-tier task.

In fact, all responses collected by the CANDELS team interface
are first-tier tasks: the classifier is presented with all 37 options at
once. Additionally, colour composites are not used in that project.
Images from each ACS and WEFC3 filter are presented separately
within the interface, with options for the classifier to specify when
classifications differ significantly between filters. Classifiers may
also view the segmentation map in the F/60W band, and in the
Perl/DS9 version of the CANDELS team interface the classifier
may adjust the stretch of the image. These options are not avail-
able to Galaxy Zoo classifiers. On the other hand, the Galaxy Zoo
decision tree asks multiple questions designed to elucidate the spa-
tial configuration of clumps in a galaxy, whereas the CANDELS
team interface instead requests a clumpiness rating and makes a
distinction between patchiness and clumpiness.

The CANDELS team visual classifications in the GOODS-South
and UDS fields have been used in multiple studies, many of which
adapt new metrics based on the raw consensus classifications (Guo
et al. 2015; Rosario et al. 2015). For example, Guo et al. (2015)
combine the raw classifications of clumpiness and patchiness to
create single-parameter measures of each, while Mclntosh et al. (in
preparation) apply a user weighting scheme to the K15 classifica-
tions and produce a ‘disciness’ metric Dy, ranging from 0 (no disc)
to 1 (pure disc). In the Galaxy Zoo CANDELS classifications, each
question about clumpiness is kept distinct, and there is no single
question that identifies a disc independent of other features.

Despite these significant differences, it is nevertheless helpful
to compare the CANDELS team classifications to the Galaxy Zoo
CANDELS classifications. There are 15 383 Galaxy Zoo CAN-
DELS subjects which also have classifications from the CANDELS
team. Fig. 9 shows the comparison of consensus vote fractions in
four categories: featured, merger or interaction, edge-on, and spi-
ral. Fig. 10 compares the CANDELS team duskiness parameter D,
(MclIntosh et al., in preparation) to the Galaxy Zoo CANDELS ‘Fea-
tures or Disk’ answer to task TOO. For all comparisons below, we
have compared the subset of CANDELS sources that are brighter
than the surface brightness limit usg < 24.5, have visual classifi-
cations from both teams, have not been deemed ‘unclassifiable’ by
the CANDELS team ( fyne, cr < 0.3), and have not been rejected as
stars or artefacts by more than 50 per cent of classifiers for either
project. This selection results in a sample of 13 145 galaxies. The
surface brightness limit is chosen to favour inclusiveness. While
this choice adds somewhat to the noise seen in Figs 9 and 10, we do
not expect it to bias the correlations, as each classification project
uses visual classifications of the same data so should be equally
affected (or unaffected) by surface brightness issues.
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Figure 9. Comparison of Galaxy Zoo classifications with visual classifications from the CANDELS team (Kartaltepe et al. 2015). The classification questions
differ between the two projects, but we have selected four different classifications which are the most similar: (a) the sum of vote fractions in K15 for spiral, bar,
and clumpy features, versus the Galaxy Zoo vote fraction for ‘features or disk’ in task T0O. Note that the sum of these vote fractions from K15 can add to >1;
(b) vote fractions for merger or interactions (task T16 in the Galaxy Zoo decision tree) for those subjects not identified as ‘star or artifact” in task T0O; (c) vote
fractions for the presence of an edge-on disc (task T09) for subjects that are neither artefacts nor predominantly smooth, nor dominated by clumps; and (d) vote
fractions for the presence of spiral arms (task T12) for those subjects in panel (c) that are not edge-on. In all panels, the number of individual galaxies in a given
hexagon in parameter space is shown by its shaded value. Red squares show the average Galaxy Zoo vote fraction binned by CANDELS team classification;
blue circles show the average CANDELS team classification in bins of Galaxy Zoo vote fraction. Error bars on red and blue points show the region enclosing
the middle 68 per cent of values in that bin. When parameters are chosen that measure similar features between the different visual classification methods, they

track each other well across many different kinds of structural classification.

4.1 Featured galaxies

We seek to compare the overall classification of CANDELS galax-
ies as ‘smooth’ or ‘featured’ between Galaxy Zoo and the CAN-
DELS team. However, the team interface described in K15 does not
specifically ask about this distinction. It does ask about discs and
spheroids; however, equating ‘smooth’ to ‘spheroid’ and ‘featured’
to ‘disc’ requires assumptions about galaxies at z > 1 that we would
prefer to avoid (see Sections 4.5 and 5 for further discussion of
‘smooth’ discs).

In order to compare the ‘featured’ vote fraction for TOO in
Galaxy Zoo CANDELS to a more similar measure from the CAN-
DELS team visual classifications, we construct a CANDELS team
‘featured’ galaxy measure using a combination of vote fractions
from the CANDELS team classifications (K15). We choose a set
of structures that are unambiguously inconsistent with a smooth

light distribution in a galaxy, namely spiral arms, clumps, and
bar features.

Within the CANDELS team classification interface, a classifier
may indicate the presence of a bar or spiral arms by selecting one
response for each, fuu.cr or fipira,cr. The clumpy classification,
however, is actually a rating of both ‘clumpiness’ and ‘patchiness’,
in a3 x 3 grid with ratings from O to 2 along each axis. According
to K15, ‘clumps are concentrated independent knots of light while
patches are more diffuse structures.” Both are inconsistent with a
smooth light distribution, so we include both in the creation of a
‘featured’ vote for the CANDELS team classifications.

We combine clumpy classifications within this matrix of possible
responses into a single value, following an approach similar to Guo
et al. (2015) but modified to include clumpiness and patchiness in
the same metric. Each vote is weighted by the strength of features
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Figure 10. Comparison of Galaxy Zoo ‘featured’ classifications with
visually determined disciness parameter Dy, from the CANDELS team
(Mclntosh et al., in preparation). The number of individual galaxies in a
given hexagon in parameter space is shown by its shaded value. Red squares
show the average Galaxy Zoo vote fraction binned by CANDELS team clas-
sification; blue circles show the average CANDELS team classification in
bins of Galaxy Zoo vote fraction. Error bars on red and blue points show the
region enclosing the middle 68 per cent of values in that bin. While these two
parameters weakly correlate (o = 0.29), they do not in general measure the
same thing. Galaxies with a high freaures Value are generally discy ((Dy) ~ 0.8
for galaxies with frearures > 0.5, though within this subset the parameters are
uncorrelated), but Galaxy Zoo volunteers also identify mergers and other
features not associated with discs. As these are rare, one can select a sample
of disc galaxies based on a feaures threshold alone, but such a selection will
also remove a potentially important sample of relatively featureless discs.

that it indicates, by assigning a weight of 0.25 for each level along
each axis. For a clumpiness rating i and a patchiness rating j, the
weight for that vote fraction is

For example, the weight for C; P, = 0.75. As the maximum value
within the selection matrix is C,P,, the maximum weight is 1. The
overall clumpy vote fraction for a given object is then

fclumpy,CT = Z Z Wij fll
J

i

We note that classifiers may make multiple selections within the
clumpiness/patchiness rating matrix, so the weighted, summed vote
fraction fcumpy can in principle exceed 1.

Fig. 9(a) shows the summed ‘featured’ vote fraction for the
CANDELS team, foar.ct + fopiral,cT + felumpy,cT, versus the Galaxy
Zoo vote fraction for the response ‘features or disk’ to task TOO,
for the 13 145 galaxies that have been classified by both and that
meet the surface brightness and other criteria described at the start
of Section 4. Fig. 9 shows the 2D histogram via hexagonal shading,
indicating that in both projects a high vote for features of any kind is
relatively rare (most galaxies have fieaures ~ 0 and freaures.ct ~ 0).
To guide the eye, Fig. 9 also shows binned averages: blue circles
show the average CANDELS team classification in equal-sized bins
of Galaxy Zoo vote fraction, while red squares show the average
Galaxy Zoo classification binned by CANDELS team classification.

The featured vote fractions track each other well, with a clear
and highly significant positive correlation (Spearman p = 0.45,
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p < 2 x 1071%).* There are virtually no galaxies for which the
CANDELS team voted strongly for features being present but the
Galaxy Zoo classifiers did not. It is also rare for the Galaxy Zoo
classifiers to find a proportionally higher vote fraction for features
than the CANDELS team, although the few examples seen in this
parameter space may contain examples of distraction bias in a clas-
sification interface that presents dozens of choices simultaneously
(e.g. Simons & Chabris 1999; Iyengar & Lepper 2000). This is
clearly a small effect, however, on the whole the classifications
agree remarkably well with each other.

4.2 Merging or interacting galaxies

The final classification task (T16) in the Galaxy Zoo decision tree
asks whether the classifier sees evidence of a merger, or of tidal in-
teraction, or both, or neither. The CANDELS team Interaction Class
(K15) asks the classifier to decide between the following classes:
merger, interaction (within segmap), interaction (outside segmap),
non-interacting companion, and none. There is also a separate flag
within the CANDELS team classification to indicate whether a
galaxy has tidal arms. Because these selections between projects
are similar but not exactly the same, we choose to compare the sum
of all signs of interaction of any kind within both projects. Specifi-
cally, we consider the sum of vote fractions within the CANDELS
team classifications for ‘merger’, ‘interaction within segmap’, ‘in-
teraction beyond segmap’, and ‘tidal arms’, while for Galaxy Zoo
we consider the sum of vote fractions for ‘merging’, ‘tidal debris’,
or ‘both’. For Galaxy Zoo the maximum vote fraction is 1, whereas
the maximum value for the combined CANDELS team vote is 2.

Fig. 9(b) compares these fractions for each galaxy in the same
way and using the same sample as Fig. 9(a), with darker shaded bins
representing a higher number of galaxies within that bin, and with
red squares and blue circles indicating averages of one classification
binned by the other, as described in Section 4.1 above. The striations
seen in the hexagonal bins reflect the finite number of possible vote
fractions within the CANDELS team votes; this structure was not
seen in Fig. 9(a) due to the weighted combination of clumpy vote
fractions.

Although Galaxy Zoo and the CANDELS team measure
different aspects of mergers differently, in combination the
merger/interaction vote fractions clearly correlate (o0 = 0.67,
p < 2 x 1071%). The correlation is likewise strong when we com-
pare Galaxy Zoo vote fractions to the combined and re-normalized
merger/interaction value from Rosario et al. (2015) (o = 0.70, p <
2 x 107'%; note that we show the raw vote fraction combination
in Fig. 9b for consistency with the other figure panels). As in the
comparison between overall featured fractions, there are more ex-
amples where the Galaxy Zoo vote fraction is notably higher than
the CANDELS team vote fraction than vice versa. Examination of
galaxies where Galaxy Zoo0 fiergerorinteraction > 0.5 and CANDELS
team fierger or interaction, cT = 0 indicates some cases where a merger
or tidal feature is clearly present, but others where it is less obvious
whether a nearby companion is interacting.

Indeed, among this subsample the CANDELS team vote fraction
for ‘non-interacting companion’ is considerably higher on average
than for the overall sample. This option is not explicitly available
to Galaxy Zoo classifiers, although even moderately experienced
classifiers, particularly those who participate in discussions within

4 The reported p value is consistent with zero within machine precision, i.e.
highly significant.
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the community TALK software, will in general select ‘neither’ if they
decide the companion is not interacting. This explains why the num-
ber of galaxies showing this mismatch is much smaller (less than
2 per cent of the sample) than the overall number of galaxies which
CANDELS team classifications mark as having a non-interacting
companion. Future analyses of mergers and interacting galaxies
may find a combination of Galaxy Zoo and CANDELS team clas-
sifications useful for eliminating the effects of distraction bias and
distinguishing between interacting and non-interacting companions.

4.3 Edge-on galaxies

As described in Section 3.6, the branched nature of the Galaxy
Zoo decision tree means that selecting a sample for comparison of
edge-on vote fraction requires care. We thus consider, in addition
to the previous sample requirements, that a galaxy must also have a
featured vote fraction fieaures > 0.3 and a not clumpy vote fraction
Jrotctlumpy = 0.3. This selection favours completeness over purity, and
is thus appropriate for a comparison of different visual classification
methods. The selection results in a sample of 1611 galaxies.

Both the CANDELS team and Galaxy Zoo classifications allow
for the flagging of a galaxy as edge-on with a single selection,
facilitating a direct comparison. Fig. 9(c) shows the CANDELS
team versus the Galaxy Zoo classification vote fractions. The two
agree very well (p = 0.72, p < 2 x 107'%), with the average
vote fractions in one classification schema binned by the other (red
squares and blue circles) generally consistent with a 1:1 line.

4.4 Spiral galaxies

The spiral galaxy tasks in Galaxy Zoo are one branch below the
edge-on disc galaxy task (T09), introducing another dependency
on the sample selection, as described in Section 3.6. From within
the sample used to construct Fig. 9(c), we further require a vote
of fuowedge-on = 0.5, a selection chosen to balance the desire for
completeness with the need to be able to see spiral arms if they are
present. This selects 1192 galaxies, whose positions in Fig. 9(d) are
shown in the 2D shaded histograms.

As in all other morphological parameters shown in Fig. 9, the
visual classifications from both projects agree very well (p = 0.61,
p < 2 x 1071%). Outliers in this figure include some examples that
are best explained by distraction bias in the absence of a decision
tree in CANDELS, and also include a few examples of distraction
bias of a different sort in Galaxy Zoo: a handful of subjects that
include a spiral galaxy very near the central, much fainter, galaxy.
Such examples are a very small part of the overall sample and are
relatively easily rejected from a sample selection in any case. We
also note that those galaxies with fy1 > 0.5 have a CANDELS
‘duskiness’ parameter mean value of D, ~ 0.8: that is, where a
(weighted) majority of Galaxy Zoo classifiers indicated the presence
of spiral arms, a high fraction of CANDELS classifiers identified
clear visual signs of a disc.

In general, the classifications agree very well along this and
other morphological axes which are directly comparable between
the CANDELS team and Galaxy Zoo visual classifications. In most
cases, however, the Galaxy Zoo and CANDELS team visual classi-
fications are complementary rather than directly translatable. This
is potentially an advantage for those wishing to include both in more
complex selections. For instance, a combination of Galaxy Zoo and
CANDELS team visual classifications would likely be helpful in
selecting a sample of interacting galaxies with the optimum combi-
nation of completeness and purity, while a combination of clumpy

Galaxy Zoo CANDELS data release 4441

selections from each would allow for a comparison of clumpiness
versus patchiness in galaxies with a range of clump configurations.

4.5 ‘Disc-like’ and ‘featured’ are not equivalent

Using a different combination of CANDELS team classifications
and Galaxy Zoo classifications, we can directly test how well galaxy
features correlate with visually identified discs by comparing the
‘disciness’ parameter D, (Mclntosh et al., in preparation) assessed
by CANDELS team members to the Galaxy Zoo ‘Features or disk’
vote fraction in Fig. 10. The D, parameter is a visual assessment
of light concentration intended to distinguish discs from spheroids
even in the absence of features traditionally associated with discs,
given high enough data quality. We follow McIntosh et al. in select-
ing only galaxies where there was high agreement of disc and/or
spheroid nature (DS,, > 0.65 from that work), and galaxies with
high scores for their quality metric (Q,, > 0.65) and low scores
for their ‘unclassifiable’ measure (Uy, < 0.35). This selection, in
combination with the surface brightness and non-artefact criteria
described above, results in a selection of 11 780 galaxies. Fig. 10
uses the same hexagonal binning for the 2D histograms and binned
averages as Fig. 9.

Fig. 10 confirms that the Galaxy Zoo ‘features or disk’ classifi-
cation does not in general measure the same property as D,. The
two parameters are only weakly correlated (Spearman p = 0.29,p
<2 x 1071%), and at fiqures > 0.5 there is no significant correlation,
although 94 per cent of galaxies with fyures > 0.5 have D, > 0.5. In
other words, those galaxies with very high featured vote fractions
are also identified as disc-dominated galaxies by the CANDELS
team. Indeed, visual inspection of these sources shows a high frac-
tion of grand design spirals and other striking disc morphologies;
the few subjects with high feaures and low D, are clearly highly
complex systems, typically obvious interactions with tidal features
or other strong asymmetries.

While it may thus be the case that the purity of a sample of
discs selected via a threshold value of freyyes Varies directly with
the threshold value chosen, Fig. 10 indicates that such a sample
will not be complete for any reasonable fieures threshold. There is
a high concentration of galaxies with D, ~ 1 and fieaures < 0.3,
i.e. galaxies which CANDELS team members identified visually
as having a disc-like light profile but which Galaxy Zoo volun-
teers indicated are either smooth or have only weak features. We
return to these potentially interesting galaxies in Section 5, but
for now note that task TOO in the Galaxy Zoo classification tree
is intended to provide only a descriptive classification of whether
a galaxy has features or not. As such, although fieaures 1S useful
in selecting disc galaxy samples, these samples may be biased
against selection of featureless discs. Depending on the particu-
lar research question, a more complex selection or a correction
for this effect (e.g. that performed in Simmons et al. 2014) may
be necessary.

5 THE EVOLUTION OF ‘SMOOTH’ AND
‘FEATURED’ GALAXIES

Although the morphological classifications described here present
quantified visual assessments of a range of galaxy properties, the
classification tree described in Section 3.2 never explicitly asks
the classifier to decide whether a galaxy has a disc. While many
questions ask about disc instability features (or their absence), there
is no single question that attempts to positively identify all discs.
This choice of what not to ask, which echoes that of previous Galaxy
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Figure 11. Distributions of luminosity function sampling for galaxy subsamples selected by morphology and redshift. M — M* indicates where each galaxy
lies on the rest-frame optical luminosity function for galaxies relative to M* at that redshift; values >0 indicate galaxies fainter than M*. The left-hand panel
shows smooth (blue solid line) and featured (red dotted line) galaxies from Galaxy Zoo CANDELS at 1 < z < 3 using rest-frame V-band absolute magnitudes
and the luminosity function measured by Marchesini et al. (2012). The featured sample is considerably smaller and brighter than the smooth sample (we show
the featured distribution counts multiplied by 10 for easier comparison). The right-hand panel shows smooth and featured galaxies from Galaxy Zoo 2 (Willett
et al. 2013) using the rest-frame g-band absolute magnitudes and the luminosity function measured by Blanton et al. (2001). Each sample has substantially
different luminosities and luminosity distributions; further comparison of the samples requires controlling for these differences.

Zoo projects, partly reflects a discomfort with asking classifiers to
assess light concentrations by eye without any further context.

Thus within the Galaxy Zoo CANDELS classifications discs may
be identified by the presence of specific features, but the absence
of these features does not necessarily imply the lack of a disc, par-
ticularly at the epochs probed here. Decoupling questions about
‘features’ from measures of a galaxy’s disciness enables these to
be assessed independently. Specifically, while galaxies with strong
‘features’ (as defined by the classification tree in Section 3.2)
may be prone to systematic biases in identification of discs via Sérsic
(1968) index measurements, galaxies which are more ‘smooth’
do not suffer from these effects, and thus disc strength may be
more accurately assessed. With the advent of new tools to mea-
sure light profiles via simultaneous consideration of multiwave-
length imaging (HauBler et al. 2013), measurements of relative
bulge and disc strengths are now possible with much higher
accuracy than available for single-wavelength measurements at
7~ 2.

To compare the Galaxy Zoo classifications of ‘featured’
and ‘smooth’ to measurements of disc strength, we first se-
lect samples of smooth and of featured galaxies by select-
ing subjects with redshifts 1 < z < 3, with surface bright-
nesses brighter than 24.5 mag arcsec™2, and which have ‘star
or artifact’” vote fractions (as described in Section 3.7, from
the tOO_smooth_or_featured_a2_artifact_weighted_frac column)
Jartefact < 0.4. For the smooth sample, we select galaxies having
Jfsmooth > 0.6; galaxies in the featured sample have fieyures > 0.4.

Each sample is further refined by matching to multiwavelength
1JH bulge—disc decompositions of galaxies in the CANDELS fields
by HauBler et al. (in preparation) using the software package
GALAPAGOs-2, developed by the MegaMorph project (HauBler et al.
2013). Each galaxy is fit with two Sérsic (1968) components: a
bulge where the Sérsic index n is allowed to vary, and an exponen-
tial disc with fixed n = 1. We choose galaxies where the bulge—disc
fits reported no error flags and where the fit parameters converged
to values well within the limits of constraints set by the fitting rou-
tine (i.e. limits on Sérsic index and effective radius of 0.22 < n <
7.8 and 0.33 < r. < 390, respectively). These selections result in
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samples of 51 featured galaxies and 1950 smooth galaxies with
reliable bulge—disc decompositions.

Additionally, we select local galaxies observed by SDSS at the
same range of physical resolutions (1.16 < FWHM < 1.20 kpc,
corresponding to 0.0418 < z < 0.0436 at median seeing in SDSS
DR?7) and classified as ‘smooth’ and ‘featured’ in Galaxy Zoo 2
according to the ‘clean’ criteria described in that work (Willett
et al. 2013). Within these constraints, we consider only galaxies
with bulge—disc parametric fits by Simard et al. (2011); the fits use
an exponential disc and a free-n bulge, as with the fits to CANDELS
galaxies by HauBler et al. This selects samples of 1169 featured
galaxies and 330 smooth galaxies at z & 0.04.

Fig. 11 shows the luminosities of these samples relative to the
evolving M* of the luminosity functions measured at these red-
shifts. For the CANDELS samples, we use the rest-frame V-band
luminosity functions of Marchesini et al. (2012), linearly interpo-
lating between measured values of M7, within 1 <z < 3 to calculate
AMy = My — M;, using rest-frame V-band absolute magnitudes
for each galaxy. We compute a similar value for the SDSS samples,
AM, = M, — M, using the local g-band luminosity function of
Blanton et al. (2001) and rest-frame g-band absolute magnitudes of
each galaxy.

In order to meaningfully compare disc fractions between sam-
ples of different morphologies and redshifts, we require that both
featured and smooth samples be matched in terms of how they sam-
ple the luminosity function of galaxies within their redshift ranges.
Fig. 11 shows that the samples all have very different distributions
of AM. We therefore weight galaxies in each sample such that the
weighted histograms of AM are statistically indistinguishable, as
shown in Fig. 12. This method has the advantage of considering all
the galaxies in the sample (with appropriate weights) rather than
relying on randomly selected subsamples.

We note that while Fig. 11 plots samples measured from within
the same redshift ranges and data sets (CANDELS and SDSS,
respectively) in the same panels, Fig. 12 groups samples by
Galaxy Zoo morphology. The weighted histograms in each panel
are normalized with respect to each other so that no galaxy has
a weight greater than 1; the samples are divided in this way
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Figure 12. Weighted distributions of M — M* for the smooth (left-hand panel) and featured (right-hand panel) samples shown in Fig. 11. M is the galaxy
absolute rest-frame magnitude in V (CANDELS) or g (SDSS), and M* is the ‘knee’ of the luminosity function in the relevant band, evaluated at the redshift of
each observed galaxy. The weights for each galaxy in each bin are chosen so that all samples have statistically indistinguishable M — M* distributions. Weights
are normalized separately for smooth and featured distributions and chosen so that the maximum weight for any single galaxy is 1.0; this results in effective
counts of 132 galaxies per smooth sample and 44 galaxies per featured sample (CANDELS and SDSS are shown as solid and dashed curves, respectively).
The peak of the distribution is slightly fainter than M* at each redshift, and the full weighted distribution includes galaxies at luminosities £2 mag from M*.

The bulge properties of these weighted samples are compared in Fig. 13.

because the goal is to compare smooth galaxies at z ~ 0 with
smooth galaxies at 1 < z < 3, and likewise for featured galaxies.
Given these weightings, there are effectively 132 galaxies in each
of the smooth samples, and 44 galaxies in each of the featured
samples.

Fig. 13 shows the distribution of bulge-to-total luminosity ratios
in the smooth (left-hand panel) and featured (right-hand panel)
samples for CANDELS and SDSS. We use SDSS g-band results and
interpolate the CANDELS multiwavelength bulge-to-total ratios to
the g band (although we note that our qualitative results do not
change if we use bulge-to-total ratios which are flux-summed to
obtain one measurement across all observed bands). As expected,
featured galaxies are generally disc dominated. The differences in
the bulge-to-total distributions between featured samples at z ~ 0
and 1 <z <3are notsignificantly different: a Kolmogorov—Smirnov
(K-S) test indicates a significance of 0.80 (pxs = 0.41). We cannot
rule out the hypothesis that these two distributions are drawn from
the same parent population, despite the very different epochs they
probe.

However, the smooth galaxies at 1 < z < 3 have a consider-
ably more uniform distribution of bulge-to-total ratios than smooth
galaxies at z ~ 0. While there is a population of disc-dominated
smooth galaxies at z ~ 0, a significantly higher portion of the
higher redshift smooth galaxies have disc-dominated morphologies
than in the local smooth population: 54 per cent of smooth galaxies
at 1 < z < 3 have B/Tot < 0.5, versus 29 per cent of galaxies at
z ~ 0. A K-S test confirms that the differences in distributions are
statistically significant, indicating the distributions are inconsistent
with being drawn from the same parent population at the 4.3¢ level
(p=15x107).

Smooth disc-dominated galaxies are typically more compact than
featured disc-dominated galaxies in the CANDELS samples: the
median 80 per cent flux radius, rg, of the weighted smooth sam-
ple with disc-dominated bulge-to-total ratios is 5 kpc, compared
with 7.5 kpc for the featured disc-dominated sample. Within the
quoted significant figures, the median rg, values are not sensi-
tive to the choice of B/Tot used to define ‘disc dominated’. Disc-
dominated galaxies with smooth morphologies are more compact,

on average, than disc-dominated galaxies with clear features, at the
same luminosities and colours.

This finding of a substantial population of completely smooth
disc galaxies at z > 1 is consistent with a previous study of a much
smaller sample (Conselice et al. 2011), with the observed decline in
disc bar fraction at z 2 1 (Melvin et al. 2014; Simmons et al. 2014),
and also with the results of recent dynamical studies of galaxies at
z > 1 (e.g. Wisnioski et al. 2015) showing that disc galaxies are
on average dynamically warmer and thus less prone to instabilities
such as bar and spiral modes. In the absence of such features these
discs are likely to be classified as ‘smooth’.

The existence of this population makes the common task of se-
lecting a sample to study the properties of disc galaxies more dif-
ficult. Fig. 14 shows the distributions of B/Tot for smooth galax-
ies split according to colour-based selection criteria. A selection
on U — V colour is ineffective at separating disc-dominated from
bulge-dominated smooth galaxies. Additionally incorporating V — J
colours so as to sort smooth galaxies into quiescent and star-forming
categories (drawn as dashed lines Fig. 7, according to empirical cri-
teria from Williams et al. 2009) is somewhat more effective, but
is still far from ideal. If one were to select star-forming smooth
galaxies as a proxy for selecting disc-dominated smooth galax-
ies from the weighted samples shown in Figs 12 and 13, the se-
lection would include 77 per cent of smooth galaxies with B/Tot
< 0.5, but would also include a substantial fraction of smooth
galaxies with B/Tot > 0.5, such that the sample would only be
63 per cent pure. If, on the other hand, one were to select quies-
cent smooth galaxies as a proxy for spheroid-dominated smooth
galaxies, that selection would only be 48 per cent complete at
identifying galaxies with B/Tot > 0.5 and 64 per cent pure. The
issue is not unique to high-redshift galaxies: using colour as a
proxy for light distribution in smooth galaxies from the SDSS sam-
ple described above (and using K-corrected colours from Blanton
et al. 2005) leads to similarly low completeness and purity frac-
tions for lower redshift smooth-disc samples. Colour-based criteria
alone are not particularly efficient at separating disc-dominated
from spheroid-dominated galaxies that have mostly smooth
morphologies.
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ously smooth (red curves) and featured (blue curves). The samples are weighted to control for differences in sampling of the luminosity functions at each
redshift. The CANDELS galaxies span 1 < z < 3; the SDSS galaxies are chosen to match the same range of physical resolutions in kpc given median seeing
of 1.4 arcsec (0.0418 < z < 0.0436). The featured samples are generally disc dominated, which is expected given that the majority of features measured by
Galaxy Zoo 2 and Galaxy Zoo CANDELS are associated with disc instabilities. A K-S test between featured samples shows no statistically significant result.
However, the smooth galaxy samples have very different distributions between 1 < z < 3 and z &~ 0.04. In particular, while the more local sample of smooth
galaxies shows a high fraction of bulge-dominated galaxies, the distribution of higher redshift ‘smooth’ galaxies is relatively uniform and includes a substantial
population of disc-dominated galaxies at 1 < z < 3 which have no evidence of ‘features’ often associated with discs. A K-S test between smooth samples
returns p < 1.5 x 107> (4.30). Smooth galaxies at z ~ 0 and z > 1 are most likely not drawn from the same underlying distribution of morphologies.
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Figure 14. Distributions of bulge-to-total ratios for smooth galaxies in CANDELS with 1 < z < 3. Distributions use the same weights as in Figs 12 and 13.
In the left-hand panel, smooth galaxies are sorted by rest-frame U — V colour: those with U — V > 1.3 are shown in the red-dashed histogram, and those
with U — V < 1.3 are shown in the solid cyan histogram. In the right-hand panel, the smooth sample is split into quiescent (green-dashed) and star-forming
(purple solid) subsamples; these categories are applied via the criteria of Williams et al. (2009) (also shown as dashed lines in our Fig. 7), which additionally
incorporate V — J colour. Neither U — V nor V — J colour alone are a useful means of separating disc-dominated from spheroid-dominated smooth galaxies in
this sample. Two-colour information is more effective, but only partially so: using the level of star-forming activity as a proxy for whether a smooth galaxy is
disc dominated or spheroid dominated can at most reach a completeness level of 77 per cent and a purity level of 63 per cent in this sample.
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Disc galaxies with smooth light distributions will be most cleanly
selected by using a cut on the bulge-to-total ratio. However, those
with complex features in the disc, whether these are spiral arms
at low redshift or clumpy galaxies in higher redshift samples, may
suffer from catastrophic failure of fitting if modelled with smooth
distributions. Therefore, a superset of galaxies selected from both
Galaxy Zoo morphologies and smooth discs from cuts on bulge-to-
total ratios will provide a more complete sample of z > 1 discs than
either method alone. A complementary selection may be used to
identify a cleaner sample of disc-free smooth galaxies. The subset
of 1149 smooth galaxies at 1 < z < 3 with high-quality fitting and
B/Tot < 0.5 is flagged as an extra column in Table 2, available as
part of this Galaxy Zoo CANDELS data release.

6 SUMMARY

The Galaxy Zoo project has collected typically 40 or more inde-
pendent visual classifications to date from colour images of three
CANDELS fields: GOODS-South, COSMOS, and the UDS. Here
we present the public release of these classifications, both in raw
form and after applying an iterative consensus-based classifier
weighting scheme that has been successfully applied to multiple
previous Galaxy Zoo projects, as well as additional weighting tech-
niques making use of the stellarity parameter from automated mea-
surements. We provide an analysis of changes in classifications
with imaging depth and offer advice and caveats for usage of these
morphological measurements for different science goals.

Approximately 12 per cent of the full catalogue is composed of
galaxies where at least 30 per cent of weighted classifiers indicated
the galaxy was ‘featured’. These galaxies include clumpy galax-
ies, edge-on galaxies, galaxies with spiral arms and with bulges
at a range of strengths. Each of these morphological parameters is
reported for every galaxy in the sample.

Comparison of the Galaxy Zoo morphologies with existing visual
morphologies from other studies shows remarkably good agreement
across a wide range of morphological features. We also combine
Galaxy Zoo morphologies with multiwavelength bulge—disc decom-
positions to show that, while the presence of features is a reliable
indicator of a disc, the absence of such features does not imply
an absence of a significant disc. A substantial fraction of galaxies
lacking significant morphological signatures of disc features have
disc-dominated light profiles; this fraction is significantly higher
at z > 1 than for luminosity- and resolution-matched samples of
smooth galaxies at z ~ 0. We identify a sample of smooth discs at
1 <z < 3 as part of this Galaxy Zoo CANDELS data release.

This data release includes three of the five legacy fields imaged
by the CANDELS project. Future work in the collaboration between
Galaxy Zoo and CANDELS includes the classification of the other
two fields (EGS and GOODS-North). Other future studies of this
rich data set may include a more detailed study of clumpy structures
in z > 1 galaxies and examination of mergers at these epochs, for
comparison to local samples with similar selection methods (Darg
et al. 2010b,a).

The public catalogue of Galaxy Zoo CANDELS morphologies
may be obtained from data.galaxyzoo.org.
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