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Uninvited guest in mixed derivative Hořava gravity
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We revisit the mixed-derivative extension of Hořava gravity which was designed to address the
naturalness problems of the standard theory in the presence of matter couplings. We consider the minimal
theory with mixed-derivative terms that contain two spatial and two temporal derivatives. Including all
terms compatible with the (modified) scaling rules and the foliation-preserving diffeomorphisms, we
calculate the dispersion relations of propagating modes. We find that the theory contains four propagating
degrees of freedom, as opposed to three in the standard Hořava gravity. The new degree of freedom is
another scalar graviton, and it is unstable at low energies. Our result brings tension to the Lorentz-violation
suppression mechanism that relies on separation of scales.

DOI: 10.1103/PhysRevD.94.084014

I. INTRODUCTION

The predictions of general relativity (GR) are in perfect
agreement with the currently available observations and
experiments [1]. On the other hand, we have theoretical
indications that GR might not be a complete theory; it is not
perturbatively renormalizable and is thus expected to break
down at high energies.
Hořava gravity [2] exhibits improved behavior at high

energies due to the presence of higher-order derivative
terms in the action. If one insists on Lorentz invariance,
higher-order derivatives are known to lead to a breakdown
of unitarity [3]. However, Hořava gravity is constructed in a
preferred foliation, thus breaking local Lorentz symmetry.
This property allows the space and time coordinates to have
different scalings at high energies:

t → ½k�−zt; xi → ½k�−1xi: ð1Þ

As a result, in Dþ 1 dimensions the theory contains terms
with 2 time derivatives and at least 2z spatial derivatives.
The minimum amount of scaling anisotropy that leads to
power-counting renormalizability is z ¼ D. The theory
itself is defined by the invariance under foliation-preserving
diffeomorphism (DiffF ) symmetry given by

t → t0ðtÞ; xi → xi0ðxi; tÞ: ð2Þ

Collecting all terms invariant under DiffF transformations,
the general action for the minimal theory (z ¼ 3) in 3þ 1
dimensions is given by [4]

S ¼ M2
p

2

Z
dtd3xN

ffiffiffi
g

p ðKijKij − λK2Þ þ SV; ð3Þ

where the “kinetic” terms are composed of the extrinsic
curvature

Kij ¼
1

2N
ð_gij −∇iNj −∇jNiÞ; ð4Þ

and the action including the “potential” terms is

SV ≡M2
p

2

Z
dtd3xN

ffiffiffi
g

p �
L1 þ

1

M2�
L2 þ

1

M4�
L3

�
; ð5Þ

where Ln contains all terms invariant under Eq. (2) which
contain 2n derivatives of the ADM variables ðN; gijÞ.
Ni does not actually contribute. In the UV, k ≫ M�, the
higher-derivative terms are expected to take over, resulting
in modified dispersion relations ω2 ∝ k6. This provides an
additional momentum suppression in the graviton propa-
gators, and the theory is power-counting renormalizable
[2,5]. In the opposite regime, k ≪ M�, the dispersion
relations become relativistic, and the reduced IR theory
has been shown to have regions in parameter space entirely
consistent with observations [4,6–9]. See also Ref. [10] for
an early brief review.
Despite these attractive features, an open problem is to

screen the Lorentz violations. Although the direct bounds
on Lorentz violations in the gravity sector are weak, the
bounds on Lorentz-violating operators in the matter sector
are very stringent [11,12]. Even if one is willing to assume
that lower-order Lorentz-violating operators in the matter
sector are absent at tree level, loop corrections will generate
them, and fine-tunings at order 10−20 would be needed to
match experiments [13,14]. Moreover, observations require
even the higher-order Lorentz-violating operators to be
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suppressed in the matter sector [15]. Hence, preventing
Lorentz violations from leaking from the gravity sector to
the matter sector is an important issue.
Several ways to address this concern have been proposed

in the literature. A symmetry enjoyed by all sectors may
forbid lower-dimension Lorentz-violating operators in the
matter sector. Supersymmetry is one such example [16],
although this would require a supersymmetric version of
Hořava gravity which is still unknown [17–19]. Another
approach is to go beyond the perturbative realm, by strong
interactions that take over at an intermediate scale between
the Lorentz violation scale and some IR scale and accel-
erate the flow to Lorentz invariance in the IR [20–22].
In this paper, we will instead focus on another

potential resolution that was proposed in Ref. [23], where
the Lorentz-violating gravity sector is coupled to the
Standard Model via power-suppressed operators. This
way, the induced Lorentz violations in the matter sector
scale as ðM�=MpÞ2 and can therefore be made small by
regulating the relative size of M�. However, the rather
generic mechanism of Ref. [23] is not entirely successful
when applied to Hořava gravity. The obstruction is that
nondynamical vector gravitons do not undergo any modi-
fication with respect to GR, leading to quadratic divergen-
ces that need to be fine-tuned away.1 Away to remove this
obstruction is to modify the behavior of the vector gravitons
at high momenta. In Appendix A, we argue that this
issue cannot be resolved by adding higher-order spatial
derivatives to the “potential” part of the action. The authors
of Ref. [23] proposed the addition of a single term
∇iKjk∇iKjk, which modifies the vector graviton sector
at linear order while leaving the tensor and scalar dispersion
relations qualitatively unchanged.2 Notably, this is a
dimension 2zþ 2 operator, beyond the truncation at 2z.
Moreover, it is not the only 2zþ 2 dimensional operator,
and a possible concern is that additional operators can be
generated by radiative corrections.
In order to address this concern, in Ref. [25], the

contributions of all terms of the form ð∇iKjkÞ2 were
studied. In this extension, all dispersion relations in the
UV now become of the type ω2 ∝ k4. Although for the
standard Hořava gravity, this is not enough for power-
counting renormalizability, Ref. [25] argued that in the

presence of mixed-derivative terms, the UV scaling relation
(1) is modified, and for the new power counting, these
dispersion relations provide sufficient momentum suppres-
sions in the amplitudes. Starting from modified anisotropic
scaling rules, the fundamental basis for generic mixed-
derivative extensions were introduced in Ref. [26], using a
scalar field theory as an example. This new class of
Lifshitz-like (extensions to the Lifshitz scalar) theories
are power-counting renormalizable and unitary.
Equipped with a consistent theoretical construction, the

goal of the present paper is to apply the insights of Ref. [26]
to gravity and construct the most general mixed-derivative
extension of Hořava gravity that includes all terms com-
patible with both the modified scaling rules and the DiffF
symmetry. The resulting theory actually contains terms
other than the ð∇iKjkÞ2 terms considered in Ref. [25].
Excluding these new terms would require unjustified fine-
tuning. However, a perturbative analysis reveals that they
have a dramatic impact, as they alter the dynamics by
generating a new degree of freedom.
The rest of the paper is organized as follows: In Sec. II,

we briefly review the minimal mixed-derivative extension
of Hořava gravity and construct the most general action that
contributes at quadratic order in perturbations around flat
spacetime. Section III is devoted to the calculation of
dispersion relations for this theory and stability analysis.
In Sec. IV, we revisit this analysis by adopting the
projectability condition. We conclude with Sec. V, where
we discuss our results.

II. MIXED-DERIVATIVE HOŘAVA GRAVITY

We start this section by reviewing the renormalizability
and unitarity conditions for a mixed-derivative extension
of Hořava gravity, first obtained in Ref. [26]. However,
instead of working directly with a gravity theory, we resort
instead to the simplified case of the Lifshitz scalar. This
has been used in the literature in order to investigate the
renormalization properties of standard Hořava gravity
[5,27], and this treatment was later extended to include
mixed-derivative terms in Ref. [26].
We focus on 3þ 1 dimensions. To avoid the

Ostrogradski instability, the number of time derivatives
is restricted to two. Moreover, we will only consider mixed-
derivative terms with two time and two spatial derivatives.
Hence, we consider the following Lagrangian density for
the free theory:

Lfree ¼ α _ϕ2 þ β _ϕð−△Þ _ϕ −
Xz
l¼1

γlϕð−△Þlϕ; ð6Þ

where △≡ ∂i∂i. In the UV, the terms with the coefficients
β and γz dominate. Hence, the theory exhibits the aniso-
tropic scaling

t → ½k�1−z; xi → ½k�−1: ð7Þ

1A more ambitious application of this mechanism was dis-
cussed in Ref. [24], where Hořava gravity is coupled to super-
symmetric matter for which SUSY breaking is mediated by the
Lorentz violations in the gravity sector. In this scenario, both the
SUSY breaking and the Lorentz violations in the matter sector are
controlled by the ratio ðM�=MpÞ2; i.e., the suppression mecha-
nism of Ref. [23] works in both ways. However, this scenario also
requires that the graviton loop integrals be regulated by the
higher-order dispersion relations, and hence its application to
Hořava gravity requires taming the vector sector divergences.

2More precisely, the dispersion relation of the scalar mode
does change in the UV, but its momentum dependence stays the
same; i.e., ω2 ∝ k6.
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In Ref. [26], any self-interaction with up to 2z derivatives
was shown to be renormalizable provided z ≥ 2. The
minimum value of z that satisfies this inequality, z ¼ 2,
corresponds to relativistic scaling, as is clear from
Eq. (7). This would mean that time and space derivatives
scale the same way and the term ϕ̈2 is also allowed in
the free Lagrangian, compromising unitarity. Requiring
that unitarity be preserved imposes the following
condition [26]:

z > 2: ð8Þ

Therefore, for a Lifshitz scalar theory with two temporal
and two spatial derivative terms, self-interactions with up to
six spatial derivatives are power-counting renormalizable,
provided that the free theory contains at least six spatial
derivatives.
We now proceed to construct a gravitational action

that satisfies the same requirements. The action is of the
form

S ¼ M2
p

2

Z
dtd3xN

ffiffiffi
g

p ðKijKij − λK2Þ þ SV þ S×; ð9Þ

where the kinetic terms with two time derivatives are
built out of the extrinsic curvature, Kij, while the terms
SV , defined in Eq. (5), contain all operators compatible
with the DiffF symmetry that have two, four and six
spatial derivatives. The last term in Eq. (9) is

S× ¼ M2
p

2M2�

Z
dtd3xN

ffiffiffi
g

p
L×; ð10Þ

which contains all DiffF invariant operators that involve
two spatial and two time derivatives. The number of
independent operators compatible with DiffF and the
power counting is of order 102. However, below we are
going to focus on linear perturbations around Minkowski
spacetime, Hence, we only need to consider the terms
that will contribute to the quadratic action in perturba-
tion theory around this background. In this case, Rij, Kij

and ai are all at least of linear order in perturbations, and
so no term which is cubic (or higher) in these will
survive the quadratic truncation. Furthermore, since the
derivatives (excluding total derivatives) always enter
with at least two perturbation order quantities, any terms
related by commutation of derivatives are redundant at
this order around Minkowski. Finally, some terms are
related at this order in perturbation theory by integration
by parts. For example, NDiðRaiÞ is equivalent to
−NRDiai up to a total derivative and Raiai, which is
cubic order.
Following these criteria, we have significantly fewer

terms to include in the action. The terms already present in
standard Hořava gravity (5) are

L1 ¼ 2αaiai þ βR;

L2 ¼ α1RDiai þ α2DiajDiaj þ β1RijRij þ β2R2;

L3 ¼ α3DiDiRDjaj þ α4DkDkaiDjDjai

þ β3DiRjkDiRjk þ β4DiRDiR: ð11Þ

The relevant mixed-derivative terms are

L× ¼ DiKjkDlKmnMijklmn

þ 2ðσ1AiAi þ σ2AiDiK þ σ3AiDjKijÞ; ð12Þ

where [25]

Mijklmn ≡ γ1gijglmgkn þ γ2gilgjmgkn

þ γ3gilgjkgmn þ γ4gijgklgmn; ð13Þ

and

Ai ≡ 1

2N
ð _ai − NjDjai − ajDiNjÞ ð14Þ

is the DiffF covariant combination which contains the time
derivative of the acceleration. There is also a DiffF
covariant combination which contains the time derivative
of the 3-curvature, namely3

rij ≡ 1

2N
ð _Rij − NkDkRij − RikDjNk − RjkDiNkÞ: ð16Þ

Naively, the terms Kijrij and Kr are DiffF scalars with the
right number of derivatives and should be included in L×.
But as we show in Appendix B, they are redundant at the
level of the action quadratic in perturbations around flat
spacetime.
As already discussed in Refs. [23,25,26], the mixed-

derivative terms in the first line of Eq. (12) can be thought
of as UV deformations of the kinetic terms of the tensor and
scalar modes. However, we will see that the three terms on
the second line (those involving Ai) are instead related to a
new scalar degree of freedom. That is, this theory has two
tensor and two scalar degrees of freedom, in contrast with
the three degrees of freedom in Hořava gravity.

3In the 4D covariant formulation, the invariance of these
quantities is more transparent. The two quantities can be defined
in this case as

Aν ≡ −
hμν
2
£uaμ; rαβ ≡ −

hμαhνα
2

£uRμν; ð15Þ

where the Lie derivatives are along the normal vector uμ, the
projection onto the constant time hypersurfaces is done through
hμν ≡ δμν þ uμuν, and aμ and Rμν are 4D covariant generalizations
of the acceleration and the 3D Ricci tensor. In the ADM
formulation, by replacing uμ ¼ δ0μN, the above definitions reduce
to the ones given in Eqs. (14) and (16).
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III. PERTURBATIONS AROUND MINKOWSKI

We now perform the perturbative analysis of the theory
given in Eq. (9). Since we focus on perturbations around
flat spacetime, we adopt the following decomposition:

N ¼ 1þ A; Ni ¼ Bi þ ∂iB;

gij ¼ δijð1þ 2ψÞ þ
�
∂i∂j −

δij
3
Δ
�
Eþ ∂ðiEjÞ þ γij;

ð17Þ

where ∂iγij ¼ γii ¼ 0, leaving us with two degrees of
freedom in the tensor sector. In the vector sector we have
∂iBi ¼ ∂iEi ¼ 0, leaving us with four degrees of freedom.
Finally, we have four scalar degrees of freedom, A, B, ψ
and E. This exhausts the ten degrees of freedom that can
reside in a lapse N, a shift Ni and a symmetric 3-metric
(or a foliated 4-metric).
From here on, we shall proceed by expanding all

perturbations in terms of plane waves, through

Qðt; ~xÞ ¼ 1

ð2πÞ3=2
Z

d3kQ~kðtÞei
~k·~x; ð18Þ

where Qðt; xiÞ stands for any perturbation while Q~kðtÞ is
the corresponding mode function. This operation non-
trivially fixes the boundary conditions (see Ref. [25] for

a discussion). In the following, we will suppress the label ~k
in order to lighten the notation.

A. Tensor sector

Since the tensor modes are only affected by the first term
in (12), the dispersion relations are the same as in Ref. [25].
Namely, the action quadratic in tensor perturbations is

Sð2Þtensor ¼
M2

p

8

Z
dtd3kð1þ γ2κ

2Þðj_γijj2 − ω2
T jγijj2Þ; ð19Þ

where we define κ ≡ k=M�. The dispersion relation for the
tensor perturbations is given by

ω2
T ¼ k2

β − β1κ
2 − β3κ

4

1þ γ2κ
2

: ð20Þ

The linear stability of the tensor perturbations can be
attained by requiring a positive kinetic term and a real
frequency. In the UV, i.e. κ ≫ 1, the kinetic term is
dominated by the κ2 part, which imposes γ2 > 0. The
dispersion relation in this regime is

ω2
T ¼ −

β3k2

γ2
½κ2 þOðκ0Þ�; ð21Þ

requiring β3=γ2 < 0.

In the IR, i.e. for κ ≪ 1, the kinetic term is manifestly
positive, so the only constraint comes from requiring a real
propagation speed:

ω2
T ¼ βk2½1þOðκ2Þ�: ð22Þ

Collecting all the conditions from stability of tensor modes
at various scales, we have

γ2 > 0; β3 < 0; β > 0: ð23Þ

B. Vector sector

The original motivation for the mixed-derivative
extension of Hořava gravity is to overcome the technical
naturalness problem in the suppression mechanism of
Ref. [23]. Although the four vector perturbations Bi and
Ei correspond to two gauge modes and two nondynam-
ical modes, the gauge invariant combination Bi − _Ei=2
will still be generated virtually in graviton loops (like the
Coulomb field in electromagnetism). However, in stan-
dard Hořava gravity, the vector propagator remains the
same as in GR. As the suppression mechanism relies on
loop integrals that are regulated in the UV, the vector
loops lead to quadratic divergences. The addition of
mixed-derivative terms provides the necessary contribu-
tion to the vector propagator.
Considering that the quantity Ai in Eq. (12) contains

only scalar perturbations, the vector sector is only
affected by the first term in (12). The action quadratic in
vector perturbations thus coincides with the results of
Ref. [25]:

Sð2Þvector ¼
M2

p

4

Z
dtd3kk2

�
1þ κ2

2
ðγ1 þ 2γ2Þ

�����Bi −
_Ei

2

����
2

:

ð24Þ

By specifying appropriate boundary conditions [25], the
equation of motion for the nondynamical Bi field can be
solved as

Bi ¼ 1

2
_Ei; ð25Þ

and therefore, by replacing this solution back in the action,
we find that the action itself vanishes up to boundary terms.
Hence, there are no dynamical vector modes, but the
propagator now decays as 1=k4 in the UV.

C. Scalar sector

We can now proceed to studying the scalar sector of the
theory, which is where the interesting features lie. The
quadratic action for this sector is

COATES, COLOMBO, GÜMRÜKÇÜOĞLU, and SOTIRIOU PHYSICAL REVIEW D 94, 084014 (2016)

084014-4



Sð2Þscalar ¼
M2

p

2

Z
dtd3k

�
½3ð1 − 3λÞ þ ðγ1 þ 3γ2 þ 9γ3 þ 3γ4Þκ2�

���� _ψ þ k2

6
_E

����
2

þ k2ð2αþ α2κ
2 þ α4κ

4ÞjAj2

þ 2k2½β þ ð3β1 þ 8β2Þκ2 þ ð3β3 þ 8β4Þκ4�
����ψ þ k2

6
E

����
2

þ k4½1 − λþ ðγ1 þ γ2 þ γ3 þ γ4Þκ2�
����B −

_E
2

����
2

þ 2k2ðβ − α1κ
2 þ α3κ

4Þ
�
A�

�
ψ þ k2

6
E

�
þ c:c:

�

þ k2½1 − 3λþ ðγ1 þ γ2 þ 3γ3 þ 2γ4Þκ2�
��

B −
_E
2

���
_ψ þ k2

6
_E

�
þ c:c:

�

þ σ1κ
2

2
j _Aj2 þ k2κ2ðσ2 þ σ3Þ

2

��
B −

_E
2

��
_Aþ c:c:

�
þ κ2ð3σ2 þ σ3Þ

2

�
_A�
�
_ψ þ k2

6
_E

�
þ c:c:

�	
: ð26Þ

This action is manifestly gauge invariant, as at linear
order, the quantities

Ψ≡ ψ þ k2

6
E; B≡ B −

1

2
_E; and kA ð27Þ

are invariant (hence, they do not transform) under DiffF .
Note that the perturbation A is a scalar under 3D
diffeomorphisms, but under time reparametrizations of
the type t → tþ fðtÞ, it transforms as A → Aþ f0ðtÞ.
Therefore, the quantity ∂iA is gauge invariant while A is
not. That is, the gauge invariant plane wave mode
function is kA.
We are left with three scalar degrees of freedom, two of

which are dynamical. We can now use the momentum
constraint to replace B, obtaining

B ¼ −
1

k2
1

1 − λþ ðγ1 þ γ2 þ γ3 þ γ4Þκ2

×

�
½1 − 3λþ ðγ1 þ γ2 þ 3γ3 þ 2γ4Þκ2�

�
_ψ þ k2

6
_E

�

þ σ2 þ σ3
2

κ2 _A

�
: ð28Þ

Unlike the case in Ref. [25], we can see that this time the
field A is dynamical; for this reason we cannot perform any
further reductions. We then have a scalar action with two
dynamical degrees of freedom, Y ¼ ðΨ; AÞ, which can be
written as

Sð2Þscalar ¼
M2

p

2

Z
dtd3kð _Y†K _Y − Y†MYÞ; ð29Þ

where the matrices K andM are symmetric 2 × 2 matrices.
The kinetic matrix K has components

K11 ¼ 6þ ð4γ1 þ 6γ2Þκ2þ

×
4þ ½8ðγ1 þ γ2Þ þ 4γ4�κ2 þ ½2ðγ1 þ γ2Þ þ γ4�2κ4

λ − 1 − ðγ1 þ γ2 þ γ3 þ γ4Þκ2
;

K12 ¼ −σ3κ2 −
σ2 þ σ3

2

2κ2 þ ½2ðγ1 þ γ2Þ þ γ4�κ4
λ − 1 − ðγ1 þ γ2 þ γ3 þ γ4Þκ2

;

K22 ¼
σ1κ

2

2
þ ðσ2 þ σ3Þ2κ4
4½λ − 1 − ðγ1 þ γ2 þ γ3 þ γ4Þκ2�

; ð30Þ

while for the mass matrix M we have

M11 ¼ −2k2½β þ ð3β1 þ 8β2Þκ2 þ ð3β3 þ 8β4Þκ4�;
M12 ¼ −2k2½β − α1κ

2 þ α3κ
4�;

M22 ¼ −k2½2αþ α2κ
2 þ α4κ

4�: ð31Þ

The nondiagonal kinetic matrix can be diagonalized by
performing a rotation to a new field basis Z through

Z≡ R−1Y; ð32Þ

with the rotation

R ¼
�
1 − K12

K11

0 1

�
: ð33Þ

In the new field basis, the kinetic matrix is diagonal,
RTKR ¼ diagðK̄1; K̄2Þ, with eigenvalues

K̄1 ¼ K11; K̄2 ¼
detK
K11

: ð34Þ

It should be noted that this procedure is not unique. For
instance, one could choose K22 and detK=K22 for the
kinetic eigenvalues, or adopt a basis obtained through an
orthogonal rotation. However, the latter produces very
complicated eigenvalues, rendering the treatment much
more inconvenient. Provided that the rotation has a nonzero
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determinant (i.e., the transformation can be inverted), the
stability conditions are compatible.
The first eigenvalue in Eq. (34) is independent of σ1, σ2,

σ3, while the second one vanishes when these parameters
are zero. Hence, we identify the former mode as the scalar
graviton of standard Hořava theory. In the IR, the eigen-
values (34) reduce to

K̄1 ¼
2ð3λ − 1Þ
λ − 1

þOðκ2Þ; K̄2 ¼
σ1κ

2

2
þOðκ4Þ; ð35Þ

leading to the following conditions for avoiding a ghost
instability:

3λ − 1

λ − 1
> 0; σ1 > 0: ð36Þ

Thanks to the large number of UV-relevant operators,
there is more freedom to avoid high-energy ghosts. In the
κ ≫ 1 limit, the kinetic eigenvalues become

K̄1 ¼
�
2ðγ2þ2γ3Þ−

ð2γ3þ γ4Þ2
γ1þ γ2þ γ3þ γ4

�
κ2þOðκ0Þ;

K̄2 ¼
�
σ1
2
−
ð2γ1þ3γ2Þσ22þ2ðγ2− γ4Þσ2σ3þðγ2þ2γ3Þσ23
4γ1ðγ2þ2γ3Þþ4γ2ðγ2þ3γ3Þþ4γ2γ4−2γ24

�

× κ2þOðκ0Þ: ð37Þ

We finally obtain the dispersion relations. The equation
of motion for the mode functions Y can be obtained by
varying the reduced action (29) with respect to Y†:

KŸ þMY ¼ 0: ð38Þ

We can then easily find the eigenfrequencies by consider-
ing a mode with Y ¼ Y0e−iωt and solving the equation

det ½ð−iωÞ2K þM� ¼ 0; ð39Þ

which gives two distinct solutions for ω2. The exact forms
of the dispersion relations are not suitable for presentation.
For the present discussion, the expressions in the IR limit
are instructive:

ω2
1

M2�
¼ βðβ− αÞðλ− 1Þ

αð3λ− 1Þ κ2 þOðκ4Þ;

ω2
2

M2�
¼ −

4α

σ1

þ
�
2½βσ1 − αð3σ2 þ σ3Þ�2

ασ21ð3λ− 1Þ −
ðβσ1 þ 2ασ3Þ2

ασ21
−
6α2
σ1

�
κ2

3

þOðκ4Þ: ð40Þ

We remark that the first expression retains the form of the
IR dispersion relation for the scalar graviton in standard

Hořava gravity, which upon imposing the stability of tensor
modes (23) and positivity of kinetic terms (36), retains the
familiar condition

β > α > 0; ð41Þ

to have a real propagation speed. On the other hand, the
second mode has a tachyonic instability at leading order;
i.e., a negative squared mass. The time scale for this
tachyonic instability is

tins ¼
ffiffiffiffiffi
σ1

p
πM�

ffiffiffi
α

p : ð42Þ

D. The scalar sector in the IR limit

One might be tempted to assume that the higher-
dimensional mixed-derivative operators (12) are UV defor-
mations, irrelevant from the perspective of the low-energy
effective theory. However, from Eq. (40) we see that at
leading order, the dispersion relation of the second mode in
the IR depends on the coupling constant σ1 from a mixed-
derivative term. This is because the term A2

i actually
generates a kinetic term for an otherwise nonpropagating
perturbation in standard Hořava gravity. In that regard,
the mixed-derivative term A2

i is an IR-relevant term, as
it provides the low-energy kinetic term for the—now
dynamical—lapse perturbation A. However, due to the
two additional spatial derivatives in this term, the would-be
gradient term aiai now provides a mass to A.
It is therefore instructive to consider the IR theory and

present a cleaner and more concise rederivation of the
perturbative dynamics. This will clearly describe the source
of the new degree of freedom and the reason why it is either
a ghost or a tachyon. We drop all the UV-relevant terms
such that the resulting action preserves the number of
degrees of freedom of the full theory, obtaining

SIR ¼ M2
p

2

Z
Ndt

ffiffiffi
g

p
d3x

�
KijKij − λK2 þ 2αaiai

þ βRþ 2

M2�
σ1AiAi

�
: ð43Þ

As we are interested only in the scalar sector of the theory,
we fix the gauge and decompose the dynamical fields as

N ¼ 1þ A; Ni ¼ ∂iB; gij ¼ δijð1þ 2ψÞ: ð44Þ

Expanding the action up to quadratic order in perturbations,
we arrive at the action

Sð2ÞIR;Scalar ¼
M2

p

2

Z
dtd3xLIR; ð45Þ

with
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LIR ¼ −3ð3λ − 1Þ _ψ2 þ σ1
2M2�

∇i
_A∇i _Aþ 2ð3λ − 1ÞΔB _ψ

þ 2β∇iψ∇iψ þ 2α∇iA∇iAþ 4β∇iA∇iψ

− ðλ − 1ÞðΔBÞ2: ð46Þ

Integrating out the nondynamical mode B, the reduced
action becomes

LIR ¼ 2ð3λ − 1Þ
λ − 1

_ψ2 þ σ1
2M2�

∇i
_A∇i _Aþ 2α∇iA∇iA

þ 4β∇iA∇iψ þ 2β∇iψ∇iψ : ð47Þ

Due to the lack of kinetic mixing between A and ψ , we can
immediately read off the no-ghost conditions,

3λ − 1

λ − 1
> 0; σ1 > 0; ð48Þ

as before. Furthermore, as the canonically normalized field
is ∇iA, the leading-order contribution to the dispersion
relation of this field comes from the second and third terms
in the above action, allowing us to read off the mass of the
massive mode as

m2 ¼ −
4M2�α
σ1

: ð49Þ

Therefore, this IR exercise demonstrates that at leading
order the unstable mode corresponds to the gradient of the
lapse, i.e. ∇iA, which acquires a negative squared mass.
The remaining degree is massless and can be easily shown
to correspond to the Hořava scalar.

E. Changing the nature of the instability

We have found above that the new scalar degree of
freedom has a tachyonic instability, provided that the
remaining stability conditions (23), (36) and (41) are
satisfied. On the other hand, by relaxing one of these
conditions, it is possible to obtain a real mass for the new
degree of freedom. There are three ways to accomplish this:
(i) For α < 0 < β, the first scalar mode has a gradient
instability. (ii) For β < α < 0, the tensor mode becomes a
ghost. (iii) For σ1 < 0, the second scalar mode is a ghost.
The limits on the parameters of the Hořava scalar and the

tensor modes are well established [6–8], so wewill preserve
the stability conditions for the modes already present in
the standard Hořava theory. This leaves us with the third
option. In fact, if we allow the IR effective theory to have a
ghost with a mass larger than the cutoff of the low-energy
action (strong coupling scale [28,29]), Msc, then the ghost
will not be generated in the regime of validity of the
effective field theory [6]. This is an approach frequently
used in effective field theories. However, here we actually
know the UV completion of the theory, so we can

eventually verify if the UV terms do indeed exorcise
the ghost.
For the IR effective theory to stay weakly coupled at all

relevant scales, one needs M� < Msc. This choice ensures
that the higher-derivative terms in the action become
relevant before the IR theory becomes strongly coupled
[30]. Then, the conditions for having a heavy ghost and for
avoiding strong coupling can be combined into one:

4α

jσ1j
>

M2
sc

M2�
> 1; ð50Þ

where we take σ1 < 0. For the present discussion, we will
assume jσ1j ≪ α, which is necessary but not sufficient for
satisfying the above conditions, although the details of our
argument will not change in the case of a larger hierarchy
between Msc and M�.
From our previous analysis it is clear that the ghost

degree of freedom is not an artifact of some truncation (as is
the usual assumption in effective field theories that contain
a very massive ghost), but it actually continues to exist and
propagate in the UV theory. Hence, the only way to have
positive energy at high momenta is if the kinetic term for
this scalar changes sign at some intermediate momentum.
On the other hand, in the deep IR, the equation of motion
for the new degree is, up to boundary conditions,

−
jσ1j
2M2�

Ä − αA ¼ 0: ð51Þ

The coefficient of the kinetic term and the mass term have
the same sign for positive α and before a canonical
normalization. This suggests that when the former changes
sign, the latter should as well, or else the scalar mode will
turn from being a ghost to being classically unstable.
Clearly, one needs to go beyond the IR limit of the

dispersion relation in order to get the full picture. To make
this discussion concrete, we chose an example parameter
set which is compatible with the current bounds on the IR
parameters:

α ¼ 10−7; β − 1 ¼ 1.5 × 10−7; λ − 1 ¼ 10−8;

α1 ¼ α2 ¼ β1 ¼ β2 ¼ −1; α3 ¼ α4 ¼ β3 ¼ β4 ¼ −2;

γ1 ¼ γ2 ¼ γ3 ¼ 1; γ4 ¼ −13; σ1 ¼ −10−8;

σ2 ¼ σ3 ¼ 1: ð52Þ

With these parameters, the standard Hořava scalar is stable
in both the IR and UV, while the new mode is a heavy ghost
in the IR and stable in the UV. In Fig. 1, we show the kinetic
terms for each mode as a function of momenta. The second
mode is the new degree of freedom. Notice that at around
k≃ 10−4M�, the sign of the kinetic term flips, and the
mode becomes healthy again. This is due to the second
term in K̄2 in Eq. (37) becoming dominant. In Fig. 2, we
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show the dispersion relation as a function of the momen-
tum. The first mode, i.e. the scalar graviton of Hořava
theory, has a dispersion relation ∝ k2 in the IR and ∝ k4 in
the UV, as expected. The second mode starts off with a
constant mass (> M�), but when its kinetic term crosses
zero and flips its sign, the frequency of the mode diverges.
It then experiences a tachyonic instability between the
momenta 10−4M� < k < M�. This implies that the theory
is actually unstable at low energies, and the IR truncation
that we used earlier to argue that the new scalar is a heavy
ghost in the IR is simply misleading.

It seems likely that one could actually fine-tune the
parameters of the theory so as to make the sign flip in the
kinetic term exactly coincide with the one in the frequency
and avoid any instability at any momenta. The complexity
of the full dispersion relations in the diagonal basis makes it
particularly challenging to find such a tuning in practice.
However, it is hard to imagine how it would be radiatively
stable even if it exists.

IV. INVOKING THE PROJECTABILITY
CONDITION

We now reexamine the results of the previous sections by
assuming further restrictions in the theory. The issues
associated with the unstable extra degree stem from the
terms with coefficients σn, i.e. those that contain time
derivatives of the acceleration vector, which render the
lapse dynamical. On the other hand, the projectability
condition [2] constrains the lapse to be a function of time
only. Hence, if one imposes this condition, the offending
terms will trivially vanish. In this restricted theory, the
lapse can be fixed by using the (space-independent) time
reparametrization symmetry. We remark that projectable
Hořava gravity [2,31–33] has recently been shown to be
renormalizable [34].
Imposing projectability affects only the scalar sector, and

the results in the previous section remain the same for the
tensor and vector modes. Thus, the stability conditions for
the tensor modes are still given by Eq. (23), and the vector
modes still acquire contributions from mixed-derivative
terms that improve the UV behavior.
The effect on the scalar sector is far more dramatic, as the

projectability condition actually removes the second scalar
mode. The coefficient of the kinetic term for the remaining
scalar graviton is

K̄s;p ¼ 6þ ð4γ1 þ 6γ2Þκ2

þ 4þ ½8ðγ1 þ γ2Þ þ 4γ4�κ2 þ ½2ðγ1 þ γ2Þ þ γ4�2κ4
λ − 1 − ðγ1 þ γ2 þ γ3 þ γ4Þκ2

;

ð53Þ

while the dispersion relation is given by

ω2
s;p ¼ −2κ2½β þ ð3β1 þ 8β2Þκ2 þ ð3β3 þ 8β4Þκ4�

K̄s;p
: ð54Þ

In the UV, the dispersion relation becomes ω2
s;p ∝ κ4, as

expected from the modified scaling (7). In the opposite
limit, the IR expression for the coefficient of the kinetic
term yields

K̄2
s;p ¼ 2ð3λ − 1Þ

λ − 1
½1þOðκ2Þ�; ð55Þ

while the dispersion relation reduces to

10 6 10 4 0.01 1 100
10 20

10 15

10 10

10 5

1

105

k M

K2

K2

K1

FIG. 1. The kinetic matrix eigenvalues (34) for the parameter
set (52). The first eigenvalue (solid line) corresponds to the scalar
graviton of Hořava gravity, while the second eigenvalue (dashed
line, with absolute value shown as dotted line) is of the new
degree arising from the mixed-derivative extension. With the
chosen parameters, the latter mode stops being a ghost at
momentum k≃ 10−4M�.

10 6 10 4 0.01 1 100
10 13

10 9

10 5

0.1

1000

107

k M

2
2 M 2

2
2 M 2

1
2 M 2

FIG. 2. The dispersion relation of the two modes, analytically
obtained by solving Eq. (39), and then evaluated using the
parameter set (52). The solid line corresponds to the first
(Hořava) mode; the dashed line corresponds to the new degree.
The dotted line is the absolute value of the frequency of the
second mode.
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ω2
s;p ¼ −

βðλ − 1Þ
3λ − 1

k2½1þOðκ2Þ�: ð56Þ

Requiring positivity of the kinetic term’s coefficient (55) in
this limit yields4

3λ − 1

λ − 1
> 0: ð57Þ

Combining the above with the conditions from the tensor
sector (23), we see that the sound speed for the scalar
mode is imaginary, leading to a gradient-type instability.5

This is the well-known result of Hořava gravity with the
projectability condition [32].
In standard Hořava gravity, this IR gradient instability

is accompanied by strong coupling in the limit λ → 1
[37–39]. This behavior emanates from the kinetic part of
the action; the solution of the momentum constraint yields a
shift vector with longitudinal component B ∝ ðλ − 1Þ−1.
As the perturbative expansion of the action contains
arbitrary powers of B, upon canonical normalization, terms
of higher order acquire coefficients with increasing powers
of the factor ðλ − 1Þ−1. Thus, if in the IR, (λ − 1) runs to
sufficiently small values from above, the perturbative
expansion that led to the conclusion that there is an
instability actually breaks down. This leaves open the
possibility to have a nonperturbative restoration of the
GR limit. Indeed, there are indications that λ → 1 limit is
continuously connected to GR for spherically symmetric
configurations [36] and for cosmological solutions
[40,41].6

On the other hand, in the mixed-derivative extension of
projectable Hořava gravity, the scalar sector is modified.
Although the gradient instability persists, the λ → 1 limit
can still be perturbative. To be precise, the solution of the
momentum constraint now gives (in the gauge E ¼ 0)

Bjλ→1 ¼
1

k2
2 − ðγ1 þ γ2 þ 3γ3 þ 2γ4Þκ2

ðγ1 þ γ2 þ γ3 þ γ4Þκ2
_ψ ; ð58Þ

thus the longitudinal component of the shift vector no
longer diverges in this limit. As a result, the strong coupling
argument for projectable Hořava gravity does not apply to
the mixed-derivative extension, and there is no indication
that the perturbative expansion breaks down. However, the

potential absence of strong coupling is not necessarily a
blessing, as the gradient instability at low momenta can no
longer be screened.
A further implication of the finite λ → 1 limit arises in

the dispersion relation for the Hořava scalar. In the original
theory, the scalar dispersion relation is ∝ ðλ − 1Þ and thus
vanishes in this limit. On the other hand, the mixed-
derivative extension provides a finite contribution to the
next-to-leading-order term in (54):

ω2
s;pjλ→1 ¼ k2

�
βðγ1 þ γ2 þ γ3 þ γ4Þ

2
κ2 þOðk4Þ

�
; ð59Þ

giving rise to a k4 dispersion relation in the IR.

V. DISCUSSION

Coupling matter to gravity is an important challenge in
Lorentz-violating gravity theories. In particular, the main
concern is to find a way to avoid large Lorentz-violating
corrections to the matter sector, where Lorentz symmetry is
extremely well constrained [11].
A mechanism which relies on separation of scales to

suppress the Lorentz-violating corrections was proposed in
Ref. [23]. However, adapting this mechanism to Hořava
gravity introduces a technical naturalness problem, in that
the vector graviton loops diverge quadratically. It has been
suggested in Ref. [23] that adding one specific mixed-
derivative term could resolve this problem. Mixed-derivative
terms were studied in more generality in Refs. [25,26]. In
Ref. [25], it was shown that theories with mixed-derivative
terms exhibit a modified scaling anisotropy, and in Ref. [26],
a tower of power-counting renormalizable, unitary Lifshitz-
type theories were introduced.
In this paper, we applied the insights of Ref. [26] to

gravity and introduced the minimal mixed-derivative exten-
sion of Hořava gravity, which includes all possible terms
that are allowed by the new scaling and contribute to
the quadratic action in perturbations around flat space. The
perturbative analysis of this more general version of the
theory uncovered an instability, the nature of which
depends on the choice of parameters. In general, instead
of the single scalar graviton appearing in Hořava gravity
(and in the restricted mixed-derivative theory of
Refs. [23,25]), there are actually two propagating scalar
degrees of freedom. In the IR, the new scalar degree of
freedom turns out to be either a tachyon or a ghost; i.e., it
has either imaginary mass or negative kinetic energy.
In the former case, the mode exhibits an exponential

growth with a time scale

tins ¼ ð7 × 10−31 sÞ
�

M�
109 GeV

�
−1
�

α

10−7

�
−1=2

σ1
1=2; ð60Þ

where M� is the characteristic scale that suppresses
higher-order operators in Hořava gravity; α is one of the

4As an alternative, it has been suggested in Ref. [35] that
certain tuning of the couplings might do away with the ghost, in a
fashion similar to what we suggested in Sec. III E in order to tame
the new degree of freedom in our extension.

5In a cosmological setup, the amount of time necessary for the
gradient instability to develop can be longer than the time scale of
the Jeans instability, necessary for structure formation [36].

6Around cosmological backgrounds, the reduced action for the
dynamical degrees of freedom might even be compatible with
perturbative expansion, although there is no known local field
redefinition to achieve this [41].
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parameters of the IR part of the actions, currently con-
strained to about one part in 107 by weak field constraints
[6]; and σ1 is the coefficient of one of the terms that appear
in the mixed-derivative extension. Attempting to render the
instability inefficient would require very large values of σ1.
If instead the new scalar degree of freedom is a ghost,

effective field theory wisdom suggests that its mass can be
made to be heavy enough such that the instability is never
reached within the regime of validity of the IR approxi-
mation. However, unlike most effective field theory treat-
ments, we know that here the ghost is not a byproduct of the
truncation, and that this degree of freedom continues to
propagate in the UV completion. Our analysis suggests that
one cannot have a transition from a heavy ghost to healthy
mode without fine-tuning.
One way to avoid the unwanted scalar degree of freedom

is to adopt the projectability condition of Hořava gravity.
In this case the offending terms would be automatically
excluded due to the restrictions in the field content
(ai ¼ 0). However, in this case the known scalar degree
of freedom is itself either a ghost or classically unstable,
just as in the version without mixed-derivative terms.
Remarkably, though, a preliminary analysis suggest that
the mixed-derivative terms remove strong coupling and
make the projectable theory perturbative in the λ → 1 limit.
The analysis presented above is preliminary, and this
potential resolution of the ghost problem deserves further
investigation. However, this is beyond the scope of this
paper and will be addressed in future work.
Our results imply that adding mixed-derivative terms in

order to address the naturalness problem found in Ref. [23]
has serious shortcomings. The mixed-derivative extension
appears to be the only resolution without increasing the
field content of the theory and so long as DiffF symmetry is
preserved. An alternative would be to relax this symmetry
in a way that allows the vector modes to be dynamical.
This is an interesting direction that will be explored in
future work.
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APPENDIX A: MODIFYING VECTOR
PROPAGATORS IN HOŔ AVA GRAVITY

In this appendix, we show that Hoř ava gravity with
generic z leads to the same linear equations for vector
modes as GR. We start by considering linear vector
perturbations around a Minkowski background:

N ¼ 1; Ni ¼ Bi; gij ¼ δij þ ∂ðiEjÞ; ðA1Þ

where scalar and tensor perturbations are ignored for the
present discussion. Under infinitesimal transformation of
spatial coordinates xi → xi þ ξi, we have

Bi −
_Ei

2
→ Bi −

_Ei

2
; ðA2Þ

i.e., this combination involving transverse vectors is invari-
ant. In fact, this is the only gauge invariant combination
(up to a factor) one can construct out of vector fields. For
this reason, any term in the action contributing only to one
of Bi or Ei is expected to vanish at quadratic order. As an
example, let us consider the spatial curvature tensor, which
clearly does not depend on the shift vector (and hence its
perturbation Bi),

Rij ¼ −
δlm

2
½δgij;lm þ δglm;ij − 2δglði;jÞm�

þOðperturbations2Þ: ðA3Þ

Using the decomposition (17), it is immediately apparent
that the dependence on the transverse vector Ei drops out at
linear order in perturbations. Thus, we infer that any term in
the action which contains two powers of the Ricci tensor
will not contribute to the vector propagator. Similarly, the
quantities ai and R contain only scalar perturbations at
linear order. Terms that mix these quantities with Rij will
not contribute to the vector propagator due to 3D rotational
symmetry of the Minkowski background.
Thus, any term in the action that can potentially modify

the vector propagator should contain both Bi and Ei in the
specific combination (A2). The only such terms are the
ones that involve Lie derivatives along the normal vector,
e.g. the extrinsic curvature:

Kij ¼ −
�
∂ðiBjÞ −

∂ði _EjÞ
2

�
þOðperturbations2Þ; ðA4Þ

where we only considered contributions to the vector
sector. Notice that the trace of this quantity K does not
contribute to the quadratic vector action either. Thus, we
have shown that in the action (3), only the KijKij term
contributes to the vector modes, independent of the number
of spatial derivatives introduced by the SV term.
If one insists on the symmetry (2) and the field content

N, Ni and gij, then there are only two ways to modify the
quadratic action for vector modes with respect to GR: (i) to
include higher powers of Kij, and (ii) to include terms
quadratic in Kij, but with spatial derivatives. Clearly, the
former option involves more than two time derivatives, and
this is a threat for unitarity, so the only viable option is the
latter one.
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APPENDIX B: DEGENERATE TERMS
FOR LINEAR PERTURBATIONS

In this Appendix, we show that including the terms
Kijrij and Kr in L× would be redundant, as at quadratic
order in perturbations around Minkowski spacetime,
their contribution is no different than that of the
DiKjkDlKmn terms.
In the action (12), rij is always combined with Kij,

whose leading-order term is already linear in perturba-
tions. Therefore, only the linear-order term for rij
contributes to the action quadratic in perturbations.
From Eq. (14), we have

rij ¼
1

2N
½ _Rij − NkDkRij − RikDjNk − RjkDiNk�: ðB1Þ

Since around flat spacetime, both Rij and Ni are of order
perturbations, only the first term in (B1) is of linear
order. Explicitly,

rij ¼
1

2
½∂k

_Γk
ij − ∂i

_Γk
jk� þOðperturbations2Þ: ðB2Þ

From the definition of Christoffel symbols and the
extrinsic curvature, we get

_Γk
ij ¼ DjKk

i þDiKk
j −DkKij þDiDjNk

þOðperturbations2Þ; ðB3Þ
using which, Eq. (B2) becomes

rij ¼
1

2
½DiDkKjk þDjDkKik −DiDjK −DkDkKij�

þOðperturbations2Þ: ðB4Þ
Notice that at leading order, the covariant derivatives
commute and indices are raised/lowered by the flat
Euclidean metric.
Finally, the combinations that appear in the action (12)

can be written, up to boundary terms, as

Kijrij → −DiKijDkKjk þ
1

2
ðDkKijDkKij þDiKijDjKÞ

þOðperturbations3Þ;
Kr → DiKDiK −DiKijDjK þOðperturbations3Þ:

ðB5Þ
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