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Sequestering effects on and of vacuum decay

Nemanja Kaloper,1,* Antonio Padilla,2,† and David Stefanyszyn2,‡
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2School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, United Kingdom
(Received 24 May 2016; published 13 July 2016)

We consider phase transitions and their contributions to vacuum energy in the manifestly local theory of
vacuum energy sequestering. We demonstrate that the absence of instabilities imposes constraints on the
couplings of gravitating and nongravitating sectors, which can be satisfied in a large class of models. We
further show by explicit construction that the vacuum energy contributions to the effective cosmological
constant in the descendant vacua are generically strongly suppressed by the ratios of space-time volumes of
parent and descendant geometries. This means that the cosmological constant in de Sitter descendant vacua
remains insensitive to phase transitions which may have occurred in the course of its cosmic history.
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I. INTRODUCTION

The cosmological constant problem follows from the
universality of gravity and the quantum generation of
vacuum energy by virtual particles (see, e.g., Refs. [1–6]).
Even the geometry of space-time in vacuummust be curved,
with the curvature set by the vacuum energy density.
Cosmological observations constrain it to be about 10 billion
light years, implying that the scale of the vacuum energy
density is about a millielectron volt. However, theoretical
estimates exceed this value manyfold, giving an energy
density of the vacuum possibly as high as Planckian scales,
some 120 orders of magnitude too large.
This huge vacuum energy could be cancelled in a world

which is either supersymmetric and/or conformally invari-
ant. In those cases, matter spectra “conspire” to exactly
cancel vacuum energy as dictated by symmetry. But our
world is neither supersymmetric nor conformal at scales
below TeV. An alternative has been to look for a dynamical
adjustment of vacuum energy, where a degree of freedom
“soaks” it all up and somehow prevents it from gravitating.
A problem with realizing this in quantum field theory
(QFT) is summarized by Weinberg’s no-go theorem [3]
which prohibits such adjustment in any standard QFT
coupled to gravity.
Such a desperate state of affairs prompted work on

modifying gravity itself. Typically, changing gravity yields
fast instabilities and nonlocal/acausal behavior, which
conflict with the observations. However, recently we have
proposed a maximally minimal modification of standard
GR involving global gauge variables such as the total
space-time volume [7–10], which cancels all matter
vacuum energy contributions from gravitational equations.
The setup uses some of the ideas advocated earlier by

Refs. [11,12]. In this proposal, all quantum-generated
vacuum energy contributions from a protected matter sector
cancel completely from gravitational equations of motion.
The only vacuum energy which sources gravity is a
renormalized vacuum energy, which in our proposal is
automatically radiatively stable.
The numerical value of this quantity is not determined by

the theory. However, this is fully consistent with the spirit
of renormalization in QFT. Indeed, in QFT any UV
sensitive physical quantities in the theory (particle masses,
couplings) must be renormalized; an infinity is subtracted
by a bare counterterm, and a boundary condition for the
finite remainder is picked at some scale μ. Since the scale μ
is completely arbitrary, after the subtraction, one is left
with a family of theories characterized by the arbitrary
subtraction point μ. The only way to determine the
numerical value of this quantity is to match it to an
observation. Once this is done, one can go on and make
predictions about all the other physical quantities which are
not UV sensitive.
The physical cosmological constant is a UV sensitive

physical variable, including quartically divergent loop-
generated contributions from QFT, which are cancelled
by the bare counterterm: Einstein’s original “classical” Λ.
The net result is finite by design because it is what sources
the background vacuum energy, but its value must be
measured. The trick is how one measures the cosmological
constant. The very notion implies the statement that this
quantity is known with arbitrary precision—by being a
constant. But because the physical cosmological constant is
a space-time filling quantity, this means that it must be
measured over all space-time (this has been noted also in
Ref. [13]). This deep subtlety is normally completely
ignored in classical general relativity (GR) since this
measurement, while being nonlocal, is “preordained” by
the postulate that the cosmological constant of a particular
value is given in the initial data for Einstein’s equations. In
QFT, this just does not work.
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In our case [10], we can write the effective Einstein
equations, Gμ

ν ¼ τμν − Λeffδ
μ
ν, where τμν is the matter

stress energy of localized sources (i.e., with vacuum
energy subtracted off). What must be measured is the
residual cosmological constant on the right-hand side,
since it includes the finite renormalized part. It is Λeff ¼
1
4
hτμμi þ ΔΛ, after the constant contribution is extracted

from the equations by averaging over the whole space-time
(denoted by h…i). The modifications of the global sector of
the theory, which can be written using a completely local
action, lead to dynamical global constraints that ensure that
all loop corrections precisely cancel from Λeff , once it is
fixed by observations at a desired level of the loop
expansion.
However, radiative stability is just one aspect of the

cosmological constant problem in QFT coupled to gravity.
Another aspect that is physically well defined is the issue of
contributions from phase transitions [3,14–16]. The prob-
lem is that phase transitions in gravitating QFT generically
change the finite part of the vacuum energy by terms of the
order of OðM4Þ, where M is the scale of the phase
transition. For example, since QCD undergoes a confining
phase transition at a scale ∼GeV, one expects that the
vacuum energies of the QCD vacuum before and after the
phase transition will differ by OðGeV4Þ≃ 1046M2

PlH
2
0,

where H0 is the Hubble scale now. This is over 40
orders of magnitude greater than the critical energy density
of the universe now. This begs the question of how the
theory knows to pick the vacuum energy of the QCD
vacuum before the phase transition just right, so that it
cancels the contribution from the QCD phase transition to
46 decimal orders. A similar situation occurs with the
electroweak phase transitions, grand unified theory phase
transitions, inflationary dynamics, etc.
In Refs. [7,8], the problem of phase transitions and their

contributions to vacuum energy was addressed qualita-
tively. The framework was the simple vacuum energy
sequestering with global constraints. The main assumption
made in that analysis was that the vacuum transition occurs
instantaneously over spacelike surfaces. As a consequence,
it was found that the vacuum energy contribution from the
transition is suppressed by the large volume of the universe
after the transition. In a way, what helped suppress the
vacuum energy difference was the fact that the universe
spent a relatively short time in the false vacuum. On the
other hand, while this picture of the post-transition geom-
etry might be reasonable at late times after the transition,
early on it does not capture the fact that vacuum transitions
affect the geometry locally, via bubble nucleation and their
subsequent evolution. Further, in the original sequestering
scenario, the global constraints needed the space-time
volume of the universe to be finite, and the universe to
collapse, and so studying local dynamics of phase tran-
sitions and ultimately the geometric picture of a cosmic
multiverse was difficult [7,8]. However, the manifestly

local formulation of Ref. [10] allows us to develop a fully
local description which extends the dynamics of phase
transitions and bubble formation from GR to the seques-
tering theory.
In this paper, we study the effects of phase transitions in

the matter sector on the geometry of the universe with the
vacuum sequestering dynamics enforced by the 4-form
gauge sectors as in Ref. [10]. We determine the post-
transition geometry for the bubble dynamics using a set of
adapted Israel junction conditions and analyze the
possible transitions in the limit of maximally symmetric
geometries which describe the possible vacua of the theory.
We work in the single bubble limit because in a large
universe it suffices to understand the general dynamics
when the nucleation rate is small (i.e., under control in
effective field theory). This is similar to the situation in GR
[17]. We find that requiring the absence of catastrophic
instabilities imposes constraints on the functions σðΛ=μ4Þ,
σ̂ðκ2=M2

PlÞ, requiring their logarithmic derivatives to be
positive and sufficiently large, respectively. Since these
functions are largely unconstrained by perturbative dynam-
ics, these conditions can be readily met. Once they are
satisfied, the nucleation and evolution processes follow
closely those of the standard GR, with no surprises. This
shows that the sequestering mechanism remains consistent
with the description of a universe with many phase
transitions. Importantly, we compute the effect of the
vacuum energy difference of the states before and after
the transition on the geometry inside the bubbles of a true
vacuum. It is controlled by a ratio of the space-time
volumes before and after the transition, which are indi-
vidually divergent. We regulate them by a time-reversal
symmetric cutoff, picked out by the covariant junction
conditions. In the limit when the cutoff surfaces approach
the infinitely inflated past of the de Sitter (dS) parent
and the infinitely inflated future of the descendent, we find
that the vacuum energy corrections from the phase tran-
sitions inside the descendant bubbles are completely sup-
pressed. This shows that the corrections to vacuum energy
from phase transitions in the regions described by the true
dS (or Minkowski) vacua at late times are negligible, as it
should be to fit the real world.
The paper is organized as follows. In the next section,

we review the local vacuum energy sequestering of
Ref. [10]. In Sec. III, we study the process of vacuum
energy transition, giving the description of the bubble
formation and evolution in the thin wall limit, following
the work of Ref. [17] for GR. In Sec. IV, we study in more
detail how bubbles evolve and consider the limits when
they go to their maximal extent. We also compute the
corrections to the vacuum energy generated by the jump of
the potential energy density in field theory and find that it is
suppressed inside the bubbles of dS. We summarize in
Sec. V. In the Appendixes, we give additional technical
details.
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II. MANIFESTLY LOCAL VACUUM
SEQUESTERING: A REVIEW

The local action for sequestering is given by [10]

S ¼
Z

d4x
ffiffiffi
g

p �
κ2ðxÞ
2

R − ΛðxÞ − Lmðgμν;ΦÞ
�

þ
Z

dxμdxν…
�
σ

�
Λ
μ4

�
Fμνλσ

4!
þ σ̂

�
κ2

M2
Pl

�
F̂μνλσ

4!

�
: ð1Þ

The metric gμν has corresponding Ricci scalar, R, Fμνλσ ¼
4∂ ½μAνλσ� and F̂μνλσ ¼ 4∂ ½μÂνλσ� are a pair of 4-forms, κðxÞ
and ΛðxÞ are scalar fields, and σ and σ̂ are smooth functions
of which the arguments have been normalized with respect
to the field theory cutoff μ and the gravitational cutoffMPl,
respectively. The functions are almost arbitrary; σ must not
be a logarithm [8], and σ and σ̂ must not both be linear.1 The
field theory sector is coupled to the metric minimally in the
usual way. The second line in (1) is a purely nongravitating,
topological sector by virtue of the absence of the metric.
The pair of 4-forms plays the role of the covariant measure,
and their variation fixes κðxÞ and ΛðxÞ to be integration
constants on shell. However, these scalars are fields which
vary off shell, and their variation and selection of back-
ground values by the ensuing field equations are the origin
of the constraint on the space-time average of the Ricci
scalar. On shell, they are constant because of their coupling
to the 4-forms, the gauge symmetries of which completely
remove the local degrees of freedom. These couplings of
κðxÞ and ΛðxÞ to the 4-forms as well as to the gravitational
sector ensure the constraint on hRi which yields the
equation for the bare counterterm for the cosmological
constant that guarantees cancellation of the loop correc-
tions. Specifically, the local field equations are

κ2Gμ
ν ¼ ð∇μ∇ν − δμν∇2Þκ2 þ Tμ

ν − ΛðxÞδμν;
σ0

μ4
Fμνλρ ¼

ffiffiffi
g

p
ϵμνλρ;

σ̂0

M2
Pl

F̂μνλρ ¼ −
1

2
R

ffiffiffi
g

p
ϵμνλρ;

σ0

μ4
∂μΛ ¼ 0;

σ̂0

M2
Pl

∂μκ
2 ¼ 0;

where Tμν ¼ 2ffiffi
g

p δ
δgμν

R
d4x

ffiffiffi
g

p
Lmðgμν;ΦÞ is the matter stress

energy tensor. Taking the trace of the gravity equation and
averaging over space-time fixes the value of the classical
counterterm Λ (fixed to be constant by the F4 equation of
motion) as a function of hTα

αi and hRiwhere Tα
α ¼ gμνTμν

is the trace of the matter stress energy tensor. One can then

eliminate the dependence of hRi using the integrated
equations for the two 4-forms such that

Λ ¼ 1

4
hTα

αi þ ΔΛ ð2Þ

with

ΔΛ ¼ 1

4
κ2hRi ¼ −

μ4

2

κ2σ̂0

M2
Plσ

0

R
F̂4R
F4

: ð3Þ

Inserting this expression into the gravity equation yields

κ2Gμ
ν ¼ Tμ

ν −
1

4
δμνhTα

αi − ΔΛδμν: ð4Þ

So, as claimed above, the vacuum energy contributions to
the energy momentum tensor (Tμ

ν ¼ −δμνVvac) will drop
out and not source curvature. We refer the reader to
Ref. [10] for more details.
In the presence of a boundary, the action (1) must be

supplemented with extra terms in order to have a well-
defined variational principle. These are the analog of the
Gibbons-Hawking term in general relativity [18], and they
will affect the computation of tunnelling rates in the next
section. To this end, we supplement the action with the
following boundary term,

Z
d3x

ffiffiffi
h

p
κ2ðxÞK; ð5Þ

where K is the trace of the extrinsic curvature on the
boundary and hij is the induced metric. Variation of the
action with respect to the metric and κ now yields a
boundary term [19],

Z
d3x

1

2

ffiffiffi
h

p
½−κ2ðKij − KhijÞ�δhij þ

ffiffiffi
h

p
Kδκ2; ð6Þ

where we have used na∂aκ
2 ¼ 0 which follows from the

bulk equations of motion. For the action to be stationary
under such a variation, one normally imposes Dirichlet
boundary conditions on both the metric and κ. However, we
do not do so here. Dirichlet boundary conditions on either
Λ and κ would interfere with the global constraints that
arise from bulk variations and are crucial to the sequester-
ing mechanism. Instead, we imagine imposing Neumann
boundary conditions on the two scalars, which physically
means that there is no momentum loss from the scalar
through the boundary. However, since the scalars are
constant on shell, the Neumann boundary conditions are
really redundant since they are automatically satisfied by
the solutions of the field equations.
For the action to be stationary under all field variations,

we impose an alternative boundary condition on the metric,

1When both functions are linear, both 4-forms are completely
specified by the geometry, which translates into a global con-
straint on the boundary data. There is no longer a one-to-one map
between boundary data and observables; the former is 1 degree of
freedom short on account of the constraint, and so the latter must
relate to the fine-tuning of at least one parameter in the theory.
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δhij ¼ −
δκ2

κ2
hij; ð7Þ

and Dirichlet boundary conditions on the 3-forms. The
choice (7) is actually equivalent to a Dirichlet boundary
condition on the Einstein framemetric. In any event, it now
follows that the variation of the full action does indeed
vanish on shell, as required by a well-defined action and
variational principle.

III. INCLUSION OF SEQUESTERING:
MATERIALIZATION OF THE BUBBLE

Let us now look at the case when the matter sector has
two vacua with different vacuum energy. We will treat the
system semiclassically and allow for the matter sector to
tunnel quantum mechanically between vacua. To derive
the tunnelling rates, we must compute the bounce, a
solution to the Euclidean field equations2 that interpolates
between the two vacua. In the limit where the difference in
the energy density between vacua is small compared with
the height of the barrier separating them, we can describe
the transition region using a thin wall approximation [20].
Generically, one expects vacuum decay to be dominated
by Euclidean configurations that are Oð4Þ invariant
[21,22]. We will therefore also take a bounce geometry
with rotational invariance such that ds2 ¼ dr2 þ ρ2ðrÞdχ2
where dχ2 ¼ γijdxidxj is the unit 3-sphere in the
Euclidean signature.
In a neighborhood of the wall, we can set up a

coordinate system such that the wall is centered at
r ¼ 0 with r > 0 corresponding to the exterior of a bubble
(which we will denote Mþ) and r < 0 the interior (which
we denoteM−). Due to the rotational invariance, all fields
are now only dependent on the radial coordinate r. In
particular, we have the following nonzero components for
the 3-forms:

Aijk ¼ AðrÞ ffiffiffi
γ

p
ϵijk; Âijk ¼ ÂðrÞ ffiffiffi

γ
p

ϵijk: ð8Þ

Λ and κ are constant on shell, while the remaining field
equations reduce to the following set of ordinary differ-
ential equations

3κ2
�
ρ02

ρ2
−

1

ρ2

�
¼ −ðΛþ VðrÞÞ; ð9Þ

κ2
�
ρ02

ρ2
−

1

ρ2
þ 2

ρ00

ρ

�
¼ −ðΛþ VðrÞ þ σwδðrÞÞ; ð10Þ

σ0

μ4
A0ðrÞ ¼ ρ3; ð11Þ

σ̂0

M2
Pl

Â0ðrÞ ¼ −3
�
1

ρ2
−
ρ02

ρ2
−
ρ00

ρ

�
ρ3: ð12Þ

Here, we have taken the thin wall limit, modelling the
contributions from vacuum energy as a step function,

VðrÞ ¼
�
Vþ r > 0

V− r < 0;
ð13Þ

and the wall as a delta function weighted by its tension σw.
Away from the bubble wall, we see that

ρðrÞ ¼ 1

q
sin qðr0 þ ϵrÞ; ð14Þ

where ϵ ¼ �1, and

q2 ¼ Λþ V
3κ2

represents the local value of the vacuum curvature. The
expression (14) holds for q real or pure imaginary and in
the limit that q → 0, corresponding to sections of the
sphere, hyperboloid, and plane, respectively.3 r0 is an
integration constant that can take different values on either
side of the wall. The solutions for the 3-forms are

AðrÞ ¼ A0 þ
μ4

σ0

Z
r

0

ρ3dr; ð15Þ

ÂðrÞ ¼ Â0 − 6
M2

Pl

σ̂0

Z
r

0

q2ρ3dr; ð16Þ

where again the integration constants A0 and Â0 can, in
principle, differ on either side of the wall.
We must now impose matching conditions across the

bubble wall. These normally take the form of continuity
conditions on the dynamical fields and junction conditions4

on their normal derivatives. Here, the situation turns out to
be slightly more subtle on account of the fact that not all
fields are dynamical. We can extract the appropriate
matching conditions by simply integrating the field equa-
tions (9) to (12) across the bubble wall. Equations (9) and
(11), respectively, result in continuity conditions on the
radius of the 3-sphere, ρ, and the 3-form, A, yielding

1

qþ
sin qþrþ0 ¼ 1

q−
sin q−r−0 ; Aþ

0 ¼ A−
0 ; ð17Þ

where the labels � correspond to M�. In contrast,
integrating Eqs. (10) and (12) across the wall, we find

2The Wick rotation to the Euclidean signature is t → −itE,
S → iSE.

3When we Wick rotate back to Lorentzian signature in the next
section, these will correspond to sections of dS, AdS, and
Minkowski space, respectively.

4In general relativity, these are usually referred to as the Israel
junction conditions [23].
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the following discontinuities supported by the delta func-
tion source

2κ2
Δρ0

ρ0
¼ −σw;

σ̂0

M2
Pl

ΔÂ ¼ 3ρ20Δρ0; ð18Þ

where ρ0 ¼ ρð0Þ and ΔQ ¼ Qð0þÞ −Qð0−Þ denotes the
jump across the wall. The first discontinuity (i.e., the jump
in ρ0) is familiar; it represents the jump in extrinsic
curvature across the bubble wall as per the Israel junction
conditions [23]. However, we see that we also have a
second discontinuity, from which we can infer the follow-
ing jump in the 3-form, Â:

Âþ
0 − Â−

0 ¼ −
3M2

Pl

2κ2σ̂0
ρ30σw: ð19Þ

This discontinuity in the 3-form follows from the fact that
the corresponding 4-form field strength is sourced by the
curvature, which in turn gets sourced by the delta function
at the wall. In a physically resolved configuration with a
wall of finite thickness, clearly all fields would be con-
tinuous (at least up to a gauge transformation). That field Â,
however, would vary nontrivially—with the variation
becoming a sharp jump in the thin wall limit—occurs
because a wall with a finite tension is charged under it. This
is because Â couples to (vacuum) energy, and so tensional
walls behave as membranes carrying its charge.
If we demand that the wall is supported by physically

realistic matter, we require that the tension of the wall be
non-negative (σw ≥ 0). This places an important constraint
on the allowed configurations following from (18),

Δρ0 ¼ Δðϵ cos qr0Þ ≤ 0: ð20Þ

An identical constraint is obtained in GR. We can place
further constraints by taking into account the impact of
tunnelling rates, which we will now compute.
In the semiclassical theory of vacuum decay in the

presence of gravity, tunnelling rates describing transition
between vacua are given by [17,20,24]

Γ
V
∼ exp−B=ℏ; ð21Þ

where

B ¼ SbounceE − S∞E : ð22Þ

Here, SbounceE is the Euclidean action evaluated on the
bounce solution, and S∞E is the Euclidean action for the
initial vacuum solution. The bounce solutions are just
the Euclidean bubble configurations described above.
The entire solution is covered by the coordinates given
in the neighborhood of the wall, with r ranging from its

minimum value in the interior, r−min, to its maximum value
in the exterior, rþmax, where

rmin ¼

8>><
>>:

−r0; ϵ ¼ þ1;

r0 − π
q ; ϵ ¼ −1; q2 > 0;

−∞; ϵ ¼ −1; q2 ≤ 0;

ð23Þ

rmax ¼

8>><
>>:

π
q − r0; ϵ ¼ þ1; q2 > 0;

∞; ϵ ¼ þ1; q2 ≤ 0;

r0; ϵ ¼ −1:

ð24Þ

The initial vacuum solution is taken to range from rmin to
rmax, but without any jump in the curvature. This solution
coincides with the bounce in the exterior of the bubble. To
gain an intuitive picture for these configurations, consider
tunnelling between vacua of positive curvature, as in Fig. 1:
the initial vacuum is just a Euclidean sphere, while the
bounce is two such spheres of different radii, cut and pasted
together across the bubble wall.
For sequestering, the on shell Euclidean action is closely

related to the one in GR, differing only by the flux terms,
such that

B ¼ BGR − σΔc − σ̂Δĉ: ð25Þ

Here, BGR ¼ −2κ2Ω3Δ½ 1q2 ½ρ03�0rmin
� þ σwΩ3ρ

3
0 represents the

tunnelling exponent computed in GR for the same geo-
metrical configuration, and Ω3 is the volume of the unit 3-
sphere. In GR, Λ is a fixed parameter that has to be chosen
by hand, in contrast to the sequestering scenario. Although
the asymptotic structures of the 3-forms agree for the
bounce and the initial vacuum, the net flux does not, on
account of the fact that the total volumes can and do differ.
Because of this, we have nontrivial values for

Δc ¼
Z
bounce

F4 −
Z
initial vac

F4

¼ −
μ4

σ0
Ω3Δ

�Z
0

rmin

drρ3
�
; ð26Þ

FIG. 1. Pictoral representations of an initial Euclidean vacuum
with positive curvature (left) and the corresponding bounce
describing tunnelling to a vacuum with lower positive curvature
(right).
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and

Δĉ ¼
Z
bounce

F̂4 −
Z
initial vac

F̂4;

¼ M2
Pl

2σ̂0
Ω3

�
−3

σw
κ2

ρ30 þ 12Δ
�Z

0

rmin

drq2ρ3
��

: ð27Þ

One can easily show thatZ
0

rmin

drρ3 ¼ −
1

3q4
½ρ0ð3 − ρ02Þ�0rmin

: ð28Þ

Now, divergences in (25) can occur when rmin ¼ −∞ or, in
other words, when ϵ ¼ −1, and we have q2 ≤ 0 (i.e., planar
or hyperbolic geometries). These are important since they
can lead to infinitely suppressed (B → þ∞) or infinitely
enhanced (B → −∞) tunnelling rates. Provided we have
non-negative tension in the wall, the only configurations we
need to worry about are those with ϵþ ¼ −1 and q2þ ≤ 0.
These are wormhole configurations—in the Lorentzian
picture, the asymptotic region of anti-de Sitter (AdS) or
Minkowski space tunnels to a new vacuum. However, in
GR, for these, BGR → þ∞, and so they are infinitely
suppressed. This need not be true in sequestering. To
see this, note that the divergent contribution to the tunnel-
ling exponent goes as

∼
Ω3

8

�
2κ2

jqj2þ

�
1þM2

Plσ̂

κ2σ̂0

�
þ μ4

3jqj4þ
σ

σ0

�
e−3jqjþðr

þ
min−r

þ
0
Þ: ð29Þ

Depending on the form of σ and σ̂, this may diverge to
either þ∞, or even −∞. The latter would correspond to a
catastrophic vacuum instability—the semiclassical
approximation breaks down completely, and tunnelling
rates are unsuppressed. However, such pathologies are
avoided with a judicious choice of σ and σ̂, which as we
noted above are largely unconstrained by perturbative
physics. This situation is in fact really similar to what
happens in GR when one adds higher derivative boundary
terms, which can completely alter the Euclidean actions
[25]. So as in those cases, we will simply assume that a
choice of boundary contributions has been made which
precludes instabilities and ignore these wormhole configu-
rations. With this, the net result is that the spectrum of

allowed configurations is identical to those in GR, as seen
from Table I.
For all of the remaining configurations with walls of

non-negative tension, it turns out that

ρ0ðrminÞ ¼ 1; −1 ≤ ρ0ð0þÞ ≤ ρ0ð0−Þ: ð30Þ

One can next show

BGR ¼ 2Ω3κ
2ρ20Δ

�
1

1þ ρ0ð0Þ
�
≥ 0; ð31Þ

while the flux contributions are

−σΔc ¼ Ω3

μ4ρ40
3

σ

σ0
Δ
�

1

1þ ρ0ð0Þ þ
�

1

1þ ρ0ð0Þ
�

2
�
; ð32Þ

−σ̂Δĉ ¼ −Ω3M2
Plρ

2
0

σ̂

σ̂0
Δ
�
ρ0ð0Þ þ 4

1þ ρ0ð0Þ
�
: ð33Þ

Although tunnelling is guaranteed to be suppressed in GR,
once again, this is not a priori guaranteed for sequestering
because generically the sign of the flux contributions is not
fixed. As above, we must make a judicious choice of σ and
σ0 in order to avoid a breakdown of the semiclassical
description. If we also take into account the wormhole
tunnelling rates described by (29), a sufficient condition for
all tunnelling rates to remain suppressed is given by

κ2σ̂0

M2
Plσ̂

> 2;
σ0

μ4σ
> 0: ð34Þ

The conditions are very important since they place con-
straints on the theory required by the absence of rapid
instabilities. These inequalities can be satisfied, for in-
stance, using a growing exponential for σ and a monomial
for σ̂. When the conditions (34) hold, we find that
sequestering admits exactly the same transitions as GR,
albeit with slightly modified rates. Tunnelling between
vacua with positive curvature can proceed in either direc-
tion, although the transition rate for tunnelling upward is
significantly suppressed as in GR. If we wish to consider
other values of the curvature as well (i.e., zero and
negative), then tunnelling will always proceed toward

TABLE I. Summary of allowed configurations, taking into account the constraint on the tension and assuming wormhole nucleation
suppressed in Minkowski and AdS. S denotes the sphere, H denotes the hyperboloid, and planar limits can be extracted from the table
simply by taking qþ or q− to vanish.

Sþ − S− Sþ − H− Hþ − S− Hþ − H−

ϵ� ¼ 1 ðqr0Þþ ≥ ðqr0Þ− Allowed Not allowed jqjþ ≤ jqj−
ϵ� ¼ −1 ðqr0Þþ ≤ ðqr0Þ− Not allowed Infinitely suppressed Infinitely suppressed
ϵþ ¼ 1, ϵ− ¼ −1 hqr0i ∈ ½π=2; π� Not allowed Not allowed Not allowed
ϵþ ¼ −1, ϵ− ¼ 1 hqr0i ∈ ½0; π=2� Allowed Infinitely suppressed Infinitely suppressed
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vacua of lower curvature, with the reverse process proving
impossible. The interior of bubbles of zero or negative
curvature can only contain the center of the geometry as
opposed to the asymptotic region (ϵ− ¼ þ1). Similarly, the
exterior regions of zero or negative curvature must always
contain the asymptotics (ϵþ ¼ þ1).
To get some intuition as to the origin of the bounds (34),

note that the Euclidean action for a sphere of radius 1=q is
given by

SGRE ¼ −6π2
M2

Pl

q2
; ð35Þ

for GR, and

SseqE ¼ −6π2
M2

Pl

q2

�
κ2

M2
Pl

− 2
σ̂

σ̂0

�
− 2π2

μ4

q4
σ

σ0
; ð36Þ

for sequestering. When the bounds (34) are saturated, we
see that the Euclidean action for a sphere of any radius
vanishes in sequestering. This represents a critical point
where the qualitative behavior changes: when the bounds
are satisfied, increasing the radius of the sphere always
lowers the Euclidean action, just as it does in GR. When the
bounds are not satisfied, this is no longer true. The bounds
guarantee qualitatively similar behavior to GR, favoring
transitions that lower the dS curvature. Of course, the
sequestering corrections can and do alter the rate at which
the Euclidean action decreases with the curvature of the
sphere, and this will affect tunnelling rates.
Let us for simplicity examine the same two special, but

illuminating, cases as [20]. The first is decay from positive
into zero curvature (q2 → 0). We then have ρ0ð0−Þ ¼ 1 and
ρ0ð0þÞ ∈ ½−1; 1�. The tunnelling exponent is

B ¼ BGR

�
1þ μ4

12q2κ2
σ

σ0
sð8 − 3sÞ −M2

PL

κ2
σ̂

σ̂0
s

�
; ð37Þ

where BGR ¼ Ω3
κ2

q2 s
2 and

s ¼ 1 − ρ0ð0þÞ ¼ σ2w
2κ4q2

�
1

1þ σ2w=4κ4q2

�
: ð38Þ

For this process, sequestering can either enhance or
suppress tunnelling relative to GR, depending on the choice
of σ and σ̂, and the size of the bubble. As with GR, the
dominant processes correspond to nucleation of small
bubbles, with 0 ≤ s ≪ 1, for which

B ≈ BGR

�
1þ 2μ4

3q2κ2
σ

σ0
s −

M2
PL

κ2
σ̂

σ̂0
s

�
: ð39Þ

Assuming the conditions (34) hold, we see that for large
jumps in curvature tunnelling is enhanced by the sequester,
as the hatted fluxes win out, whereas for small jumps it is

suppressed, since the unhatted fluxes win out in this case.
We can understand this intuitively by once again studying
the Euclidean actions for a sphere (35), (36). For high
curvatures, the first term in (36) dominates, and we see that
sequestering reduces the rate at which the action decreases,
in comparison to GR. This should make tunnelling easier as
there is less suppression. At low curvatures, the second
term dominates, and sequestering enhances the rate at
which the action decreases, making tunnelling more
difficult.
Next, we consider decay from zero to negative curvature

(0 → −jqj2). We have ρ0ð0þÞ ¼ 1 and ρ0ð0−Þ ≥ 1, so that
the tunnelling exponent is given by

B ¼ BGR

�
1 −

μ4

12jqj2κ2
σ

σ0
sð8 − 3sÞ −M2

PL

κ2
σ̂

σ̂0
s

�
; ð40Þ

where BGR ¼ Ω3
κ2

jqj2 s
2 and

s ¼ 1 − ρ0ð0−Þ ¼ −
σ2w

2κ4jqj2
�

1

1 − σ2w=4κ4jqj2
�
: ð41Þ

As emphasized in Ref. [20], there are no sensible solutions
with jqj2 < σ2w=4κ4. This is already well understood; for a
transition to occur, the energy stored in the wall should
compensate for the energy deficit inside the bubble, and in
AdS space, the bubble wall simply cannot get big enough
for this to happen. Indeed, this result was recently shown to
extend beyond the thin wall limit [26,27].
Again, as in GR, the dominant processes correspond to

nucleation of small bubbles, with 0 < −s ≪ 1. For the
decay of Minkowski into AdS, this limit yields a tunnelling
exponent,

B ≈ BGR

�
1 −

2μ4

3jqj2κ2
σ

σ0
s −

M2
PL

κ2
σ̂

σ̂0
s

�
: ð42Þ

Recall from Ref. [20] that in GR gravitational effects are
seen to help stabilize the false Minkowski vacuum (see,
however, Ref. [28]). Assuming the conditions (34) hold, we
see that sequestering enhances this effect even further.

IV. INCLUSION OF SEQUESTERING:
GROWTH OF THE BUBBLE

Once the bubble has materialized, we can track its
subsequent evolution by Wick rotating the bounce solution
back to Lorentzian signature. In a neighborhood of the
bubble wall, the geometry is described by the metric

ds2 ¼ dr2 þ ρðrÞ2ð−dτ2 þ cosh2 τdΩ2
2Þ; ð43Þ

where
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ρðrÞ ¼
(

1
qþ
sin qþðϵþrþ rþ0 Þ; r > 0;

1
q−
sin q−ðϵ−rþ r−0 Þ; r < 0;

ð44Þ

with the wall itself at r ¼ 0. The interior and exterior
correspond to sections of maximally symmetric space-time,
i.e., Minkowski (q2 ¼ 0), dS (q2 > 0), or AdS (q2 < 0),
although it will be important to realize that these coor-
dinates do not cover the entire space in the Lorentzian
signature. τ ¼ 0 is a special point since it corresponds to a
minimal spacelike surface with vanishing extrinsic curva-
ture. This represents a stationary point in the geometry
where one may consistently Wick rotate to Euclidean time
and connect to the bounce solution. It follows that τ ¼ 0
corresponds to the nucleation time; before this, there is no
wall, and the entire solution lies in the initial vacuum
(labelled with a “þ”). Afterward, we have an expanding
bubble separating two distinct vacua (labelled with “þ” and
“−”). We saw in the previous section that the allowed
configurations match those in GR. In others words, (i) we
may tunnel between dS vacua in either direction, although
the process which increases the dS curvature is suppressed;
(ii) all other allowed tunnelling processes serve to reduce
the curvature; (iii) if the exterior of a bubble is Minkowski
or AdS, it must include the asymptotic region; and (iv) if
the interior of a bubble is Minkowski or AdS it must not
include the asymptotic region (i.e., no wormholes).
Now, the dynamics of the sequestering scenario is

sensitive to the global structure of the solution, so
Coleman’s coordinate patch (43) is inadequate for a
complete description. We therefore switch to global coor-
dinates capable of covering the entire maximally symmetric
space-time. These are described in detail in the Appendix.
We summarize the main features here. For dS in global
coordinates, the metric is given by

ds2 ¼ −dt2 þ cosh2 qt
q2

ðdθ2 þ sin2 θdΩ2
2Þ; ð45Þ

where t ∈ ð−∞;∞Þ and θ ∈ ½0; π�. Tunnelling can occur at
any of the minimal spacelike surfaces

cos θ ¼ tanh qt
tanh α

; ð46Þ

parametrized by the constant α. Indeed, as shown in the
Appendix, one can locally map these surfaces to the τ ¼ 0
surface in Coleman’s coordinate patch.
For the Minkowski vacuum, the globally defined metric

is given by

ds2 ¼ −dt2 þ du2 þ u2dΩ2
2; ð47Þ

where t ∈ ð−∞;∞Þ and u ∈ ½0;∞Þ, with minimal space-
like surfaces occurring at t ¼ t0, constant. Again, it is
shown in the Appendix that one can locally map these

surfaces to the tunnelling surface τ ¼ 0 in Coleman’s
coordinates.
Finally, for AdS in global coordinates,

ds2 ¼ −
cosh2 jqju

jqj2 dt2 þ du2 þ sinh2 jqju
jqj2 dΩ2

2; ð48Þ

where t; u ∈ ð−∞;∞Þ. Again, the minimal spacelike sur-
faces that map to τ ¼ 0 correspond to t ¼ t0, constant.
Up until the minimal spacelike surface, the solution lies

in a single vacuum described by the appropriate global
coordinate system. Once the bubble has nucleated, we have
two distinct vacua separated by the bubble wall. As shown
in the Appendix, in the global coordinate systems, the wall
itself is located at

dS∶ cos qr0 ¼ cosh α cosh qt cos θ − sinh α sinh qt;

flat∶ r20 ¼ u2 − ðt − t0Þ2;
AdS∶ cosh jqjr0 ¼ cosh jqju cosðt − t0Þ:

Outside the wall, the initial vacuum solution persists. Inside
the wall, a new vacuum appears, again described by an
appropriate global coordinate system. The interior solution
is cut off in space at the position of the wall, and in the past
by a suitable minimal surface.
When the interior solution corresponds to a portion of

AdS space, there is an additional feature, already noted by
Coleman et al. in GR [20,29]. The interior AdS geometry is
unstable against gravitational collapse, with a curvature
singularity on the surface,

cosh jqju cosðt − t0Þ ¼ −1: ð49Þ

Armed with the global structure of our solutions, we can
proceed to compute the integrated fluxes of the 4-forms,
which control the vacuum energy contributions in the
bulk. As in the Euclidean case, we denote these respectively
as c and ĉ,

c ¼
Z

Fð4Þ ¼
μ4

σ0

Z
d4x

ffiffiffi
g

p
; ð50Þ

ĉ ¼
Z

F̂ð4Þ ¼ −
M2

Pl

2σ̂0

Z
d4x

ffiffiffi
g

p
R; ð51Þ

although generically the integrated Lorentzian fluxes will
differ from their Euclidean counterparts.
For any given solution, the space-time is split into the

volume before bubble nucleation (denoted by Vþ
b ), the

volume of the exterior of the bubble after nucleation
(denoted by Vþ

a ), and the volume of the interior of the
bubble after nucleation (denoted by V−

a ). There is also the
bubble wall, although its contribution will never be
particularly significant. In any event, the integrated fluxes
can be calculated explicitly on a solution,
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c ¼ μ4

σ0
ðVþ

b þ Vþ
a þ V−

a Þ; ð52Þ

ĉ ¼ −
6M2

Pl

σ̂0
½ðq2VbÞþ þ ðq2VaÞþ þ ðq2VaÞ−�: ð53Þ

The total space-time volume is the sum V total ¼
Vþ
b þ Vþ

a þ V−
a . Equations (52) and (53) can be rewritten

as equations for the total cosmological constants in the two
vacua as

q2þ ¼ −
μ4σ̂0

6M2
Plσ

0
ĉ
c
þ Δq2

1þ I
; ð54Þ

q2− ¼ −
μ4σ̂0

6M2
Plσ

0
ĉ
c
−

Δq2

1þ I−1 ; ð55Þ

where

Δq2 ¼ q2þ − q2− ¼ ΔV
3κ2

; ð56Þ

and

I ¼ Vþ
b þ Vþ

a

V−
a

: ð57Þ

Consistent with the variational principle, we treat c and ĉ as
fixed and extract the above expressions (54), (55), for the
local curvature.
At this point, we can see that these equations are the key

for understanding the effect of sequestering on the vacuum
energy contributions by phase transitions, given by the
jump in vacuum energy, ΔV, which is induced by the
transition inside each bubble. The influence of the jump on
the geometry of the region where it is observed is controlled
by the ratios of volumes before and after bubble nucleation,
in a way similar to the intuitive picture of volume controlled
corrections in global sequester [7,8]. Technically, we see

that if I ≫ 1 we have that q2þ ¼ − μ4σ̂0

6M2
Plσ

0
ĉ
c, and so the

exterior curvature is completely insensitive to the jump in
vacuum energy and is given entirely by the residual
cosmological constant. In contrast, in this case, the interior
curvature would be strongly dependent on ΔV. The reverse
is true when I ≪ 1, and in general, the ratio I determines
which cosmological constant has the least sensitivity to the
local vacuum energy.
This behavior is of crucial importance for the physics of

vacuum energy induced by the phase transition. We can
summarize it very simply: vacuum energy is most effi-
ciently sequestered in the vacuum that dominates the space-
time volume; the more it dominates, the more efficient the
sequester in that region.
Again, as in Refs. [7,8], the vacuum energy was more

efficiently sequestered at late times the earlier the

transition, except now we have a fully local description,
which is physically more realistic. We give the relevant
space-time volumes and their ratios in Appendix D. They
formally diverge in the limit of infinite past and future, but
the junction conditions which follow from covariance
ensure that the divergence rates are the same. Thus, the
ratios are finite, and the regulator completely cancels. This
cosmological version of the l’Hôpital theorem yields the
following ratios for various geometries before and after the
transition,

IdS→dS ∼
q−
qþ

; ð58Þ

IdS→M ¼ 0; ð59Þ

IdS→AdS ¼ ∞; ð60Þ

IM→AdS ¼ ∞; ð61Þ

IAdS→AdS ¼ ∞; ð62Þ

where IX→Y denotes tunnelling from X to Y, where X, Y are
dS, Minkowski (M), and AdS.
Consider the dS to dS transitions, for which transitions

can occur in either direction. These are clearly of main
phenomenological interest. For these initial and final
geometries, the transitions from high to low curvature have
q− < qþ, and so the bubble interior is less sensitive to the
jump in vacuum energy than the exterior. The reverse is true
for (highly suppressed) transitions from low to high
curvature. This is a fundamentally important result. It tells
us that in the low curvature vacua the vacuum energy
contributions are most efficiently sequestered. Intuitively,
this follows from the fact that an inertial observer is
causally connected to a larger volume the lower the dS
curvature—once a proper ratio of measures before and after
the transition is set up by the junction conditions—and as
we have seen, large volumes sequester most efficiently.
That vacuum energy in low curvature, near-Minkowski
vacua are efficiently sequestered is hardly trivial; one could
easily have imagined a scenario in which a near-Minkowski
vacuum was only possible whenever the residual cosmo-
logical constant was tuned against the jump in vacuum
energy. However, thanks to the dynamics of sequestering,
such tuning is not necessary. If we take the residual
cosmological constant to be small compared to the jump
in vacuum energy, we are guaranteed to get a vacuum of
low curvature. This is in addition to the cancellation of the
radiative corrections—sequestering here simply automati-
cally protects the smallness of curvature in the vacua which
start with small curvature to begin with, from any source of
contamination.
This extends beyond dS to dS transitions to the tran-

sitions describing including Minkowski → AdS. The latter
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are, of course, complicated by the fact that gravitational
collapse occurs inside an AdS bubble. Generically, the
vacuum with least the absolute value of curvature is the one
that is least sensitive to the jump in vacuum energy.5 In
other words, generically, no fine-tuning against vacuum
energy is required to achieve a low curvature vacuum in
sequestering, even when tunnelling effects are taken into
account.
We conclude this section with a brief comment on our

choice of regulator for the space-time volume divergences:
the expressions we derived for the volume ratios IX→Y
above used a particular choice of volume regulator, as
specified in the Appendix. It was based on global coor-
dinates and constant time slices. In particular, for dS space,
we cut the volumes of at constant global time and then take
that cutoff to infinity. This choice guarantees that we cover
the entire space and no more when the cutoff is removed.
The regulators in Minkowski and AdS space were chosen
along the same lines.

V. SUMMARY

Classical field theory is blind to the number of stable
vacua with different energies. In quantum theory, dynam-
ics of tunnelling permits transitions between different
vacua, with well-established semiclassical methods
describing the transition via bubble nucleation. In a
gravitational context, such transitions result in a change
of the space-time curvature. The difference corresponds
to the energy difference of the two vacua. Here, we have
considered such transitions, along the lines of Coleman
and De Luccia [20], only now in the context of the
sequestering proposal [7–10]. In particular, we work with
the manifestly local vacuum energy sequestering [10],
where the radiative corrections to vacuum energy are
automatically sequestered away from the gravitational
field equations, rendering the vacuum curvature radia-
tively stable, in stark contrast to what happens in GR. In
the global sequestering, it has been argued that the same
occurs with vacuum energy transition from phase tran-
sitions [7,8]. Here, we show this occurs in the local
theory, where the dynamics of phase transitions occurs
via bubble nucleation. Our main result is that, generically,
the effects of the transition in vacuum energy are most
efficiently sequestered in vacua with low absolute curva-
ture, i.e., near Minkowski. This means that near-
Minkowski vacua (e.g., dS with small curvature) are
automatically safe from vacuum energy corrections

induced by phase transitions, just as they are safe from
quantum radiative corrections; the locally small value of
the vacuum curvature is stable against matter loops and
against the transition in vacuum energy.
To ensure the absence of catastrophic instabilities in the

theory, we must impose conditions (34) on the auxiliary
functions controlling the couplings on the bare Planck scale
and the bare cosmological constant to the topological sector
which controls the sequester. Once we pick these cou-
plings, tunnelling between vacua goes through in qualita-
tively the same way as GR: the allowed transitions
generically lower the vacuum curvature. The one exception
to this rule is the upward transitions between dS vacua that
are highly suppressed, as in GR. Curiously, the sequester-
ing corrections render near-Minkowski vacua more stable
than they would be in GR. Tunnelling from high dS
curvature to Minkowski is enhanced relative to GR, while
tunnelling fromMinkowski to AdS is suppressed relative to
GR. There is no obvious reason to expect that this particular
feature will be generic to all adaptations of the sequestering
proposal that exploit similar cancellation mechanisms.
Sequestering effects become very significant for the

determination of the local value of the vacuum curvature.
Generically, it turns out that the effect of vacuum energy,
and in particular the scale of the transition, is very
efficiently sequestered in the vacuum region that dominates
the space-time volume. The opposite is true in the vacuum
region with less space-time volume. For the allowed
configurations, this means that the vacuum energy con-
tributions in near-Minkowski vacua are generically the
most efficiently sequestered. We can understand this
intuitively from the point of view of an inertial observer
in dS space, the static patch of which is larger the smaller
the curvature (in the units of the Compton wavelength of a
proton, say). So, such observers do not have to fine tune the
residual cosmological constant to cancel jumps in vacuum
energy in order to protect their “nearness” to the
Minkowski vacuum. Note that this outcome is in stark
contrast to GR where one always has to fine tune the bare
cosmological constant against the transition scale in order
to achieve a small vacuum curvature.
Our analysis of phase transitions in sequestering may

open up a window to future tests of the proposal. For
example, it was recently suggested that phase transitions in
the interior of neutron stars could affect their mass to size
distribution, while cosmological phase transitions can
affect the propagation of primordial gravitational waves
[30]. Phase transitions may also lead to detectable gravi-
tational wave signals at ground and space based interfer-
ometers [31]. As we have seen, phase transition
contributions to vacuum energy are partially—but very
efficiently—cancelled in sequestering, with the size of
cancellation controlled by the relevant volume ratios. It
would be interesting to consider the implications of these
effects for concrete experimental searches.

5There is one exception to this rule: tunnelling from a dS
vacuum with large curvature to an AdS vacuum with small
(absolute) curvature. Then, the ratio I is infinite, meaning it is the
large exterior dS curvature that is insensitive to the vacuum
energy. Indeed, there is a clear discontinuity between dS →
Minkowski tunnelling and dS → AdS tunnelling, since gravita-
tional collapse occurs inside the bubble of the latter.
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APPENDIX A: MAXIMALLY
SYMMETRIC SPACE-TIMES

Here, we briefly review maximally symmetric space-
times and their coordinate covers that were used in this
paper. We begin with dS space in four dimensions
which is best described as a hyperboloid embedded in
five-dimensional (5D) Minkowski space. This makes the
SOð1; 4Þ symmetry group of dS space manifest since the
hyperboloid breaks the translational invariance of
Minkowski space but leaves intact the Lorentz invariance.
dS space with a radius of curvature 1=q is described
by the surface W2 þ R2 − T2 ¼ 1=q2 embedded in 5D
Minkowski with the metric ds25 ¼ −dT2 þ dW2 þ dR2 þ
R2dΩ2

2 where dΩ2
2 describes a 2-sphere (dΩ2

2 ¼ dχ2 þ
sin2 χdϕ2). In global coordinates ðt; θ; χ;ϕÞ, the metric on
the hyperboloid is

ds2 ¼ −dt2 þ cosh2 qt
q2

ðdθ2 þ sin2 θdΩ2
2Þ; ðA1Þ

where t ∈ ð−∞;∞Þ and θ ∈ ½0; π�. The mapping from the
embedding coordinates to the global coordinates on the
hyperboloid is

W ¼ 1

q
cosh qt cos θ; ðA2Þ

R ¼ 1

q
coshqt sin θ; ðA3Þ

T ¼ 1

q
sinh qt: ðA4Þ

Coleman’s coordinates that only cover a patch of dS space
are given by

ds2 ¼ dr2 þ ρ2ðrÞð−dτ2 þ cosh2 τdΩ2
2Þ; ðA5Þ

where

ρðrÞ ¼ sin qðϵrþ r0Þ
q

¼ sinQðrÞ
q

; ðA6Þ

defining QðrÞ ¼ qðϵrþ r0Þ. Although these coordinates
describe (a portion of) the same hyperboloid, we define its
mapping from the embedding space using different
Minkowskian coordinates. This ensures that a point on
the waist of the hyperboloid at τ ¼ 0 can be mapped to a
point with arbitrary time in global coordinates. Since the

hyperbolid is Lorentz invariant, we can describe the same
surface by performing a boost along the W direction with
rapidity α. The global coordinates are then mapped to
Coleman’s by

cosQðrÞ ¼ cosh α coshqt cos θ − sinh α sinh qt;

sinQðrÞ sinh τ ¼ cosh α sinh qt − sinh α cosh qt cos θ;

sinQðrÞ cosh τ ¼ cosh qt sin θ:

A similar description of AdS space exists; however, in four
dimensions, the symmetry group of the embedding mani-
fold is SOð2; 3Þ rather than SOð1; 4Þ. Therefore, AdS space
is described by the surface W2 þ T2 − R2 ¼ 1=jqj2
embedded in ds25¼−dT2−dW2þdR2þR2dΩ2

2. In global
coordinates ðt; u; χ;ϕÞ, the metric on the hyperboloid is

ds2 ¼ −
cosh2 jqju

jqj2 dt2 þ du2 þ sinh2 jqju
jqj2 dΩ2

2; ðA7Þ

where t ∈ ð−∞;∞Þ, u ∈ ½0;∞Þ and the mapping from the
embedding coordinates to the global ones is

W ¼ 1

jqj cosh jqju cos t; ðA8Þ

T ¼ 1

jqj cosh jqju sin t; ðA9Þ

R ¼ 1

jqj sinh jqju: ðA10Þ

Using Coleman’s coordinates, the metric is equivalent to
Eq. (A5) with

ρðrÞ ¼ sinh jqjðϵrþ r0Þ
jqj ¼ sinhQðrÞ

jqj ; ðA11Þ

where now QðrÞ ¼ jqjðϵrþ r0Þ. Ensuring that τ ¼ 0 maps
to an arbitrary global time, we make use of the SOð2; 3Þ
symmetry in the embedding manifold and perform a
rotation in the T−W plane before mapping to Coleman’s
coordinates. The relevant mapping is now

coshQðrÞ ¼ cosh jqju cosðt − t0Þ; ðA12Þ

sinhQðrÞ sinh τ ¼ cosh jqju sinðt − t0Þ; ðA13Þ

sinhQðrÞ cosh τ ¼ sinh jqju; ðA14Þ

where t0 is the angle of rotation.
The remaining maximally symmetric space-time is

Minkowski space with a vanishing cosmological constant.
In terms of Coleman’s coordinates, this corresponds to the
same metric of Eq. (A5) but with ρðrÞ ¼ ϵrþ r0 and in
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global coordinates has the usual flat metric ds2 ¼
−dt2 þ du2 þ u2dΩ2

2. The mapping from Coleman’s coor-
dinates to global coordinates is given by

u ¼ ρðrÞ cosh τ; ðA15Þ

t ¼ ρðrÞ sinh τ þ t0: ðA16Þ

Again, in order that τ ¼ 0 maps to an arbitrary global time,
we have used the translational invariance of Minkowski
space to shift the temporal coordinate before defining the
mapping.

APPENDIX B: LOCATION
OF AdS SINGULARITY

As shown in Ref. [29], an AdS interior suffers from a
curvature singularity due to the collapse of the bubble in the
future. So we need to cut off the spacetime at this surface.
Here, we calculate where this surface is in global coor-
dinates. A coordinate singularity occurs at QðrÞ ¼ 0 in
Coleman’s coordinates so at this point we change to
cosmological coordinates with

ds2 ¼ −dη2 þ ρ̄2ðηÞðdλ2 þ sinh2 λdΩ2
2Þ; ðB1Þ

where ρ̄ðηÞ ¼ sin jqjη=jqj. Again, we can describe this
space-time as an embedding in a 5D space-time with
symmetry SOð2; 3Þ. The embedding is

W ¼ cos jqjη
jqj ; ðB2Þ

T ¼ sin jqjη
jqj cosh λ; ðB3Þ

R ¼ sin jqjη
jqj sinh λ: ðB4Þ

From Ref. [29], a curvature singularity forms at η ¼ π=jqj.
We use the same embedding coordinates when mapping to
the cosmological ones as we do when mapping to
Coleman’s such that

coshQðrÞ ¼ cos jqjη; ðB5Þ

sinhQðrÞ sinh τ ¼ sin jqjη cosh λ; ðB6Þ

sinhQðrÞ cosh τ ¼ sin jqjη sinh λ: ðB7Þ

From Eq (B6), the singularity is at coshQðrÞ ¼ −1, and so
in global coordinates, the curvature singularity corresponds
to the surface cosh jqju cosðt − t0Þ ¼ −1 by Eq. (A12).

APPENDIX C: SPACE-TIME VOLUMES

The volume of dS space in global coordinates is

VdS
total

Ω2

¼
Z

∞

−∞
dt

cosh3 qt
q3

Z
π

0

dθ sin2 θ: ðC1Þ

The volume of AdS space in global coordinates is

VAdS
total

Ω2

¼
Z

∞

−∞
dt

Z
∞

0

du
cosh jqju sinh2 jqju

jqj3 : ðC2Þ

The volume of Minkowski space in global coordinates is

VM
total

Ω2

¼
Z

∞

−∞
dt

Z
∞

0

duu2: ðC3Þ

Each volume is divergent, and so they need to be regulated
on the relevant surface. We only care about the ratio of the
volumes so the divergent behavior in each case is sufficient
to determine the behavior of the ratios.
There are generic regions of space-time that appear in

each of our bubble geometries. In dS, there are three
volumes that may be of interest, as shown in Fig. 2. Let us
compute these volumes: for X ¼ A, B, C, we have

VdS
X

Ω2

¼
Z
X
dtdθ

cosh3 qt sin2 θ
q3

: ðC4Þ

The nucleation surface representing the boundary of
region A corresponds to time τ ¼ 0 in Coleman’s coor-
dinates and the surface tanh qt ¼ tanh α cos θ in global
coordinates, i.e.,

ttunðθÞ ¼
1

q
tanh−1ðtanh α cos θÞ: ðC5Þ

FIG. 2. Slicing of space-time volumes in global coordinates for
tunnelling involving dS vacua. Region A describes the era before
nucleation of a bubble, while regions B and C can be either the
interior or exterior of a bubble depending on the configuration.
Regions B and C are each split into two parts by a dotted black
line to make the integrals simpler to handle.
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The wall separating regions B and C is at r ¼ 0 and
corresponds to the surface cosqr0 ¼ cosh α cosh qt cos θ −
sinh α sinh qt in global coordinates, i.e.,

θwallðtÞ ¼ cos−1
�
cos qr0 þ sinh α sinh qt

cosh α cosh qt

�
: ðC6Þ

The volume of region A diverges as t → −∞, and we must
regulate it, cutting the space-time off at t ¼ −treg. This
region of space-time is defined up until bubble nucleation,
and so the upper limit of the t integral is given by the
nucleation surface t ¼ ttunðθÞ, which is finite for finite α.
The volume is

VdS
A

Ω2

¼
Z

π

0

dθ sin2 θ
Z

ttunðθÞ

−treg
dt

cosh3 qt
q3

: ðC7Þ

Performing the t integral, we have

VdS
A

Ω2

¼
Z

π

0

dθ
sin2 θ
3q4

½sinh qtðcosh2 qtþ 2Þ�ttunðθÞ−treg : ðC8Þ

Since ttun is finite, the integral is dominated by the regulated
surface and can therefore be approximated by

VdS
A

Ω2

∼
π

48q4
e3qtreg : ðC9Þ

We now consider the volumes after bubble nucleation.
For region B, we have

VdS
B

Ω2

¼
Z

θwallðtÞ

0

dθ sin2 θ
Z

treg

t†

dt
cosh3 qt

q3
; ðC10Þ

where we have ignored the contribution from below the
dotted black line (at t ¼ t†) since it is finite even as we
remove the regulator. Note that the late time regulator at
t ¼ treg is assumed to be equal in size to the early time
regulator t ¼ −treg. This choice guarantees that, in the
absence of a wall, the volume in t ≥ 0 is exactly equal to the
volume in t ≤ 0. Doing the integrals,

VdS
B

Ω2

∼
�
cos−1ðtanh αÞ − tanh α

cosh α

�
1

48q4
e3qtreg : ðC11Þ

For region C,

VdS
C

Ω2

¼
Z

π

θwallðtÞ
dθ sin2 θ

Z
treg

t⋆
dt

cosh3 qt
q3

: ðC12Þ

Again, we dropped the contribution from below the dotted
black line (at t ¼ t⋆) since it is finite even as we remove the
regulator. Performing the integrals yields

VdS
C

Ω2

∼
�
π − cos−1ðtanh αÞ þ tanh α

cosh α

�
1

48q4
e3qtreg : ðC13Þ

Note that VdS
A ∼ VdS

B þ VdS
C ∼ VdS

total=2.
Now, consider the relevant sections of AdS space, as

shown in Fig. 3. Again, we have three volumes of interest,
for X ¼ A, B, C,

VAdS
X

Ω2

¼
Z
X
dtdu

cosh jqju sinh2 jqju
jqj3 : ðC14Þ

The nucleation surface corresponding to the boundary of
region A is τ ¼ 0, which in global coordinates translates to
cosh jqju sinðt − t0Þ ¼ 0. Taking the principle root for
definiteness, we have t ¼ t0. The wall separating regions
B andC is at r ¼ 0which in global coordinates corresponds
to cosh jqjr0 ¼ cosh jqju cosðt − t0Þ, i.e.,

twallðuÞ ¼ t0 þ cos−1
�
cosh jqjr0
cosh jqju

�
∈
�
t0; t0 þ

π

2

�
: ðC15Þ

For tunnelling into AdS, there is an added complication due
to the singularity in the AdS interior in region B. In the
previous section, we showed that this lies at

tsingðuÞ ¼ t−0 þ cos−1
�

−1
cosh jqj−u

�
∈
�
t−0 þ π

2
; t−0 þ π

�
:

ðC16Þ

Consider first the volume of the region A, before bubble
nucleation. This is given by

VAdS
A

Ω2

¼
Z

t0

−∞
dt

Z
ureg

0

du
cosh jqju sinh2 jqju

jqj3 : ðC17Þ

FIG. 3. Slicing of space-time volumes in global coordinates for
tunnelling involving AdS vacua. Region A corresponds to the
time before nucleation of a bubble, region B to a bubble interior,
and region C to a bubble exterior for the allowed configurations.
Region B is split into two parts by a dotted black line to make the
integrals simpler to handle and is also cut off by a singularity.
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This has two divergent directions. For now, we regulate in u
only, cutting off the integral at u ¼ ureg, such that

VAdS
A

Ω2

∼
1

24jqj4 e
3jqjureg

Z
t0

−∞
dt: ðC18Þ

Now, consider region B, which corresponds to the
interior of an AdS bubble. Cutting off the AdS space at
the singularity surface, we find that the volume is given by

VAdS
B

Ω2

¼
Z

ureg

u⋆
du

cosh jqju sinh2 jqju
jqj3

Z
tsingðuÞ

twallðuÞ
dt; ðC19Þ

where we have neglected the finite part to the left of dotted
black line (at u ¼ u⋆). We regulate the divergence in the
integral by cutting it off at u ¼ ureg. This yields a leading
order contribution:

VAdS
B

Ω2

∼
ð1þ cosh jqjr0Þ

8jqj4 e2jqjureg : ðC20Þ

For region C, corresponding to the an AdS exterior, we
have

VAdS
C

Ω2

¼
Z

ureg

uwallðt0Þ
du

cosh jqju sinh2 jqju
jqj3

Z
twallðuÞ

t0

dt; ðC21Þ

where again we have regulated the u integral by cutting it
off at u ¼ ureg. We approximate this volume as

VAdS
C

Ω2

∼
π

48jqj4 e
3jqjureg : ðC22Þ

Finally, we turn to the relevant sections of Minkowski
space, as shown in Fig. 4. Again, we have three volumes to
calculate, for X ¼ A, B, C,

VM
X

Ω2

¼
Z
X
dtduu2: ðC23Þ

Tunnelling can occur at the boundary of region A, which is
given by global time t ¼ t0. The wall separating B and
C is given by uwallðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r20 þ ðt − t0Þ2

p
, or equivalently

twallðuÞ ¼ t0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 − r20

p
. The initial volume, of region A,

is

VM
A

Ω2

¼
Z

t0

−∞
dt

Z
ureg

0

duu2: ðC24Þ

This has two divergent directions, but for now we only
regulate the u integral, at u ¼ ureg, yielding

VM
A

Ω2

∼
u3reg
3

Z
t0

−∞
dt: ðC25Þ

For region B, we must regulate the time integral, cutting it
off at t ¼ treg, such that

VM
B

Ω2

¼
Z

treg

t0

dt
Z

uwallðtÞ

0

duu2 ∼
t4reg
12

: ðC26Þ

Finally, for region C, we regulate the u integral, just as we
did for region A, yielding

VM
C

Ω2

¼
Z

ureg

uwallðt0Þ
duu2

Z
twallðuÞ

t0

dt ∼
u4reg
4

: ðC27Þ

APPENDIX D: VOLUME RATIOS

We shall now compute the ratio I ¼ Vþ
b þVþ

a

V−
a

for
each of the allowed configurations. We start with
tunnelling between dS vacua, for which there are four
configurations, ultimately corresponding to the four
possible arrangements of the geometries after bubble
nucleation (i.e., BB, BC, CB, and CC). The summary
of results is

Vþ
b ∼

π

48q4þ
e3qþt

þ
reg ; ðD1Þ

Vþ
a ∼ fþðαþÞ

π

48q4þ
e3qþt

þ
reg ; ðD2Þ

V−
a ∼ f−ðα−Þ

π

48q4−
e3q−t

−
reg ; ðD3Þ

where the form of the coefficients f� depends on the
chosen orientation (i.e., BB, BC, CB, or CC). To relate the

FIG. 4. Dissection of space-time volumes in global coordinates
for tunnelling involving Minkowski vacua. Region A corresponds
to the time before nucleation of a bubble, region B to a bubble
interior, and region C to a bubble exterior for the allowed
configurations.
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regulators inside and outside the bubble, we match the
geometries at their point of intersection with the wall. In
other words, we match the radius of the 2-sphere at this
intersection point, 1

q cosh qtreg sin θwallðtregÞ, yielding�
eqtreg

q cosh α

�
þ
¼

�
eqtreg

q cosh α

�
−
; ðD4Þ

at large values of the treg. This equation is just the Israel
junction condition on the surface of the bubble in the
angular directions.
This now allows us to compare the volume terms inside

and outside of the bubble, ultimately yielding a ratio of the
form

IdS→dS ∼
cosh3 αþ
cosh3 α−

�
1þ fþðαþÞ
f−ðα−Þ

�
q−
qþ

: ðD5Þ

We neglect possible zeros or singular points in the co-
efficient of q−

qþ
since these will only occur for very precise

nucleation times, and are not generic.
Now, consider tunnelling between AdS vacua. From the

previous section, we now have

Vþ
b ∼

1

24jqj4þ
e3jqjþu

þ
reg

Z
tþ
0

−∞
dt; ðD6Þ

Vþ
a ∼

π

48jqj4þ
e3jqjþu

þ
reg ; ðD7Þ

V−
a ∼

ð1þ cosh jqj−r−0 Þ
8jqj4−

e2jqj−u−reg : ðD8Þ

Matching the radius of the 2-sphere at the intersection of
the regulators with the wall now gives

�
ejqjureg

jqj
�

þ
¼

�
ejqjureg

jqj
�

−
; ðD9Þ

for large ureg. Using this to compute the corresponding ratio
gives

IAdS→AdS → ∞: ðD10Þ

For tunnelling from dS into AdS, we have

Vþ
b ∼

π

48q4þ
e3qþt

þ
reg ; ðD11Þ

Vþ
a ∼ fþðαþÞ

π

48q4þ
e3qþt

þ
reg ; ðD12Þ

V−
a ∼

ð1þ cosh jqj−r−0 Þ
8jqj4−

e2jqj−u−reg : ðD13Þ

Matching the radius of the 2-sphere at the intersection of
the regulators with the wall gives

�
eqtreg

q cosh α

�
þ
¼

�
ejqjureg

q

�
−
; ðD14Þ

for large treg and ureg. This implies that the ratio is

IdS→AdS → ∞; ðD15Þ
where we once again neglect any nongeneric behavior
occurring at special isolated choices of αþ.
We now turn to transitions to Minkowski vacua. For

tunnelling from dS into Minkowski, we have

Vþ
b ∼

π

48q4þ
e3qþt

þ
reg ; ðD16Þ

Vþ
a ∼ fþðαþÞ

π

48q4þ
e3qþt

þ
reg ; ðD17Þ

V−
a ∼

ðt−regÞ4
12

: ðD18Þ

Matching the regulators now gives

�
eqtreg

2q coshα

�
þ
¼ t−reg; ðD19Þ

which gives

IdS→M ¼ 0: ðD20Þ
As before, we ignore special cases that might occur at
special isolated choices of αþ.
Finally, we consider tunnelling from Minkowski into

AdS, for which

Vþ
b ∼

ðuþregÞ3
3

Z
tþ
0

−∞
dt; ðD21Þ

Vþ
a ∼

ðuþregÞ4
4

; ðD22Þ

V−
a ∼

ð1þ cosh jqj−r−0 Þ
8jqj4−

e2jqj−u−reg : ðD23Þ

Matching the regulators, we find

uþreg ¼
�
ejqjureg

2jqj
�

−
; ðD24Þ

and so

IM→AdS → ∞: ðD25Þ
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