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Abstract: In the railway industry asset management decisions are focused on the
maintenance, enhancement and renewal of assets in order to ensure a required level of
dependability and improvement in services at the lowest whole life costs. To achieve these
objectives system lifecycle models, rather than individual asset models, offer a greater
advantage. The paper presents a modelling approach developed for constructing multi-
asset system models to support well-informed railway infrastructure asset management
decisions. The models are built using the Petri Net formalism and are analysed by a means
of Monte Carlo simulations. A specific example of the railway superstructure model is
presented. Its simulation results demonstrate the superiority of the system-wide model
against individual asset models in terms of its accuracy in predicting the superstructure
(system) performance and information available to support asset management decisions.
Furthermore, by using the multi-asset system model interdependencies among
maintenance regimes of different assets and different parts of the infrastructure can be
modelled.

Keywords: Railway infrastructure, asset management, system-wide models, Petri Nets.

1. Introduction

Railway infrastructure asset management is a decision making exercise mainly focusing
on asset selection and intervention strategies with the aim to deliver reliable and safe
infrastructure at low costs. The largest costs incurred over the operation life of assets are
intervention costs. Assets need be inspected, maintained, repaired, enhanced and renewed
in order to deliver a reliable and safe infrastructure with sufficient capacity to run train
services. It is therefore very important to determine intervention policies that would
achieve the performance targets required at the minimum costs.

Mathematical models are widely used to support asset management decisions. As
understanding of the asset operation and degradation are essential for tailoring
maintenance activities and their schedules that prolong lives of assets, significant efforts
have been made to develop tools to model performance and degradation processes of
individual assets [1-3]. Another group of models proposed to aid the decision making
processes in asset management focuses on modelling intervention activities and their
impact on performance of the assets [4-6]. In terms of optimising the whole infrastructure
performance, the models that consider joint dependability implications and costs of asset
management decisions are the most valuable. Having an ability to assess how an
intervention on a single asset group impacts other parts of the railway system cross-asset
and cross-sub-system trade-offs can be made delivering cost savings without comprising
safety.
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To aid the decision-making process in the management of the railway infrastructure, a
new modelling framework has been developed and is presented in the paper. The
modelling framework is used to construct and analyse multi-asset system models that
predict the state of the railway infrastructure at various levels of granularity over a
specified time horizon accounting for possible inspection, testing, maintenance, repair,
renewal and upgrade options. Using the models short-term maintenance programme
alternatives can be analysed investigating their effect on long-term performance of the
infrastructure. The Petri Net (PN) technique is used to build the models. Due to the
stochastic nature of the processes modelled, e.g., a demand for intervention, and due to the
size and complexity of the models a simulation method is used for the analysis of PNs.

The paper is organised as follows: in section 2 the proposed asset management
modelling framework is discussed in detail, in section 3 a case study of the application of
the modelling framework and its results are presented, finally, section 4 presents
conclusions and summary of the paper.

2. Asset Management Modelling Approach

2.1 Modelling Technique

The asset management decisions rely on the knowledge and understanding of the asset
performance and intervention processes. To be able to model these processes requires a
modelling technique which is capable of modelling both stochastic and deterministic
events, as well as their interactions. PNs [7] can capture such behavioural specifications of
the processes and offer several advantages over other commonly used methods such as
Markov methods, which assume only exponential rates between states, or Communicating
State Machines, which are a special case of PN and cannot directly represent concurrency
[8].

A standard PN consists of a set of places, a set of transitions and a set of directed arcs
which connect places to transitions and vice versa. Transitions, drawn as bars, depict
actions, events or processes that represent a change in the system state (e.g., component
degradation, failure) or performed activities (e.g., component repair). Places, drawn as
circles, represent preconditions and post conditions of the actions and processes. This
could be a particular system state (e.g., operational, failed) or activity being modelled (e.g.,
maintenance completion). Transitions are linked to places and vice versa by directed arcs.
Tokens move between places through transitions according to transition firing rules and
mimic the dynamic behaviour of the system. A transition is enabled for firing if each of its
input places contains at least as many tokens as the multiplicity of the input places. An
enabled transition fires by removing as many tokens as the multiplicity of the input arcs
from each input place, and adding as many tokens as the multiplicity of the output arcs to
each output place.

In order to make the model representation more compact and to enhance the modelling
power of the PN technique, the standard PN formalism has been extended. One of the
extensions introduced that is often encountered in the literature is an inhibit arc [7]. Some
more complex extensions relying on logical interactions between objects of PN that were
initially proposed in [9] have been used in this work with further enhancements.
Additionally, two new extensions to the standard formalism of transitions have been
introduced. The first special construct is a periodical transition. The firing delay time of
such a transition is determined by two parameters: 1) T, the time since the start of the
model execution until the moment the transition becomes enabled and 2) p, the length of
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the time interval between periodical events, e.g., periodical inspections. The firing delay
time of the transitions is then equal to the reminder after the division T/p and signifies the
remaining time until the next periodical event. If modelling periodical asset inspections,
the firing delay time of the periodical transition would be equal to a remainder after the
division of the lifetime of the asset by the length of the time interval between inspections.

The second of the PN extensions mentioned earlier introduces a multi-functional
transition that combines time-related and place marking-related transition features. For
example, a decision-making transition, whose firing delay time depends on the marking of
specified places, combines features of the decision-making and place conditional
transitions.

For large and complex PNs (as in the case of the model presented here) a discrete-
event simulation is commonly used to check the system properties. The simulation
process models the system over its lifetime. At the end of the simulation two types of
outputs that facilitate the assessment of the system behaviour are produced: 1) the number
of tokens received by places of interest and 2) the duration the places remained marked
over the modelled time horizon. Thus, by counting tokens received by particular places
during the simulation, discrete system parameters can be evaluated such as numbers of
failures or maintenance activities performed over the lifetime. Similarly, by accumulating
time periods when the places remains marked, time related parameters such as availability
or downtime can be estimated.

In a case of a PN containing transitions with stochastic firing times, each simulation
will produce performance parameters of the modelled system which will be stochastic in
their nature. For this reason a Monte Carlo (MC) simulation technique, where the
modelled system lifetime constitutes a single simulation experiment, is used to obtain
expected values of the parameters. During the experiment delay times of stochastic
transitions are randomly sampled from appropriate distributions and performance
parameters of interest are obtained. The experiments are repeated until the convergence of
the parameters of interest is confirmed, i.e., when the coefficient of variation of a
specified performance parameter is less than the prescribed tolerance value. Parameters
chosen should not have heavy-tailed distributions in order to avoid using too few samples
to obtain MC estimates [10].

The software used in the study for the execution of the PN is implemented in C++. Due
to the enhanced features introduced to the PN technique, commercial software could not
be used in this case.

2.2 Modelling Framework

This section introduces the concepts of the modelling framework emphasizing its main
features. The detailed description of the framework will be presented in a case study in
Section 3.1 where the application example will be discussed.

2.2.1 Railway Infrastructure Representation

The concept of the modelling framework architecture is based on a hierarchical
representation of the infrastructure network. Using a top down approach the whole rail
network is first broken down into operational routes, representing railway network parts in
different regions of the country. Each route comprises of several lines which represent
portions of a route between two major locations, e.g., stations. The entire line is divided
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into sections based on a chosen criterion, e.g. dividing it into track sections separated by
switches. Finally each section is further divided into segments.

In the presented hierarchical topology of the railway network individual asset (two
types of assets will be considered in this study namely sleepers and rails) are modelled at a
segment level. In this context, a segment of the track is equivalent to the smallest unit of
the network for which degradation and intervention processes of its constituent elements
can be determined. When representing each section in terms of segments, each section
would have as many sets of segments as there are different assets in the section.

2.2.2 Asset State PN Model

Each asset segment has its PN that models the operational life of the asset by depicting
asset’s degradation process and interventions carried out. Even though an individual PN
model is built for a specific asset, all asset PNs share some common features. Each asset
segment PN consists of three interlinked sub-modules: degradation-failure, inspection and
intervention. The modules are interlinked through commonly shared places.

Most railway assets do not fail suddenly but deteriorate gradually reaching an
unacceptable or failed condition state. Behaviour of such assets is modelled by dividing
the deterioration process into a finite number of discrete degradation states. Parameters for
the degradation-failure model including the number of states and degradation rates are
determined based on the observed asset behaviour using failure, maintenance and
utilisation data.

The asset intervention model includes options to account for specific inspection,
testing, servicing, repair, renewal and upgrade alternatives. The choice of the activities
and their timing can be based on various criteria including risk, asset condition, asset
reliability or simply a predefined time regime. Criterion for choosing a particular activity
is determined based on the management strategy specified for the asset.

2.2.3 Infrastructure State Model Construction

The asset state models are used as subnets for building an infrastructure state PN model at
a chosen hierarchical level. The PN model can be constructed to model either a single-
asset or a multi-asset system. For example, in order to build a section state model for a
single asset type, individual asset segment models are joined together. The section model,
however, cannot be viewed simply as a collection of discreet segment models assembled
together. Additional PN subnets are used to implement the model integration strategy
addressing the asset management principles at a section level and taking into account
existing interdependencies among asset management activities. An integration strategy
will differ from asset to asset and from one intervention strategy to another. Similarly, by
following an appropriate integration strategy and joining segment models representing
individual sections, a line, route and finally whole network PN state model is constructed.
In the same manner, a multi-asset state model can be constructed. In this case, the
integration process involves the use of PN subnets that model the existing and potential
interdependencies among intervention activities of different assets, common inspection
routines or concurrent and opportunistic maintenance activities.

The conceptual structure of the proposed modelling framework is shown in Figure 1.
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describe the condition of rails. For simplicity, the degradation processes of sleepers and
rails are assumed to be independent. Furthermore, condition degradation of assets in one
segment is not affected by the state of other segments. As an example, the PN sub-net
modelling the degradation process of sleepers in a single track segment is illustrated in
Figure 3.

Figure 3: Sleepers Degradation Sub-net

The times to reach each degradation state in the degradation models are stochastic and
their values are sampled from appropriate distributions. In the case study it is assumed
that the degradation processes of both assets follow exponential distributions. Statistical
analysis of records obtained from the asset maintenance database and the rail defect
management system was performed to estimate values of the exponential distribution
parameters which are provided in Table 1 and Table 2 respectively.

Table 1: Mean Number of Days to Reach Consecutive Condition Degradation States of Sleepers in
a Single Segment

Change in condition Location #1 Location #2
Good → defective sleepers 6313 1601 
Defective sleepers → individual ineffective sleepers 1766 450 
Individual ineffective sleepers → critical number of ineffective sleepers 10306 4085 

Table 2: Mean Number of Days to Reach Consecutive Condition Degradation States of Rails in a
Single Segment

Change in condition Location #1 Location #2
Good → minor defects 3152 2937 
Minor defects → major defects 615 889 
Major defects → minor damage 3772 2405 
Minor damage → major damage 132544 30729 

To detect any signs of asset degradation and faults, the superstructure is inspected on a
regular basis as part of the permanent way inspection regime which is specified based on
the track category [11]. Sleepers are inspected visually and an ultrasonic test unit (UTU)
is used for rail inspection. For the track category considered in the case study inspections
are carried out every 2 and 4 weeks for sleepers and rails respectively. A typical PN sub-
net modelling the inspection of sleepers in a single segment is presented in Figure 4 and
Figure 5. Specifically, the PN presented in Figure 4 models the schedules of visual
inspection activities in the segment. Only inspections when changes in asset condition are
detectable are modelled. For example, once the condition of the sleepers, which were
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known to be in the “new” state, starts deteriorating and sleepers develop defects place
P_SL_1_2 becomes marked and transition T_SL_2_1 becomes enabled. The firing delay
time of the enabled transition determines the time till the next scheduled inspection when
the condition will be detected. This transition along with transitions T_SL_2_2 and
T_SL_2_3 are periodic transitions and their firing delay time is equal to the remainder
after the division of the system lifetime by the inspection period (in this case 14 days).
Note that places named P_SL_1_2 – P_SL_1_4 appear in both the degradation and
inspection sub-modules as these places link the two sub-modules.

Figure 4: Sub-net Modelling Scheduling of Visual Inspection Activities

The PN in Figure 5 models an actual detection of a new degraded state reached. For
example, the given marking of the PN sub-net indicates that minor defects of sleepers
have been detected during the inspection and therefore a request for maintenance has been
placed. Two transitions in the PN in Figure 5 are decision making transitions. Conditional
marking rules introduced with these transitions ensure that only a single (the most severe)
sleepers condition state is identified in a segment. For example, when transition
T_SL_1_5 fires, based on conditional marking rules a single token is removed from places
P_SL_1_5 and P_SL_1_8 at the same time. According conditional marking rules exist for
transition P_SL_1_6. Note that when the latter transition fires places P_SC_1_1 and
P_L_1_1 receive one token each. The number of tokens residing in these places indicate
how many segments have emergency speed restrictions (ESRs) imposed in the specified
section and the whole line respectively.

It is assumed that inspection schedules are prepared for individual sections. Thus,
when building a scaled up infrastructure PN each segment will have a set of places and
transitions modelling the detection of defects and faults in that segment (as shown in
Figure 4 and Figure 5) and these will be linked to an appropriate inspection subnet
associated with the section containing the segments in question.
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Figure 5: Sub-net Modelling Identification of Asset Condition During Inspection

Two types of maintenance activities are modelled in the case study: preventive and
reactive. Preventive maintenance is only carried out for sleepers and is assumed to be
performed regularly at fixed time intervals. Reactive maintenance of sleepers involves
either repairs of defective sleepers or replacement of any ineffective sleepers. Reactive
interventions of rails involve either rail grinding, welding or rail replacement. In the
model the preferred choices for the techniques are modelled by determining the likelihood
with which each technique will be selected to repair different rail defects and damages.

The sleepers’ maintenance PN sub-net is shown in Figure 6 as an example. The given
marking of places in the PN indicates that repairs of defective sleepers have been
scheduled after a specified period of time. Since only minor defects of the sleepers have
been found, the repairs will be carried out as part of routine track preventive intervention
activities (not shown in Figure 6), i.e., transition T_SL_3_2 will be eventually enabled.
The latter transition is a periodic transition whose firing delay time is determined based on
preventive intervention schedules. Otherwise, if the sleepers were found to be ineffective
the work would be started as initially scheduled, i.e., transition T_SL_3_3 would be
enabled and fire immediately.
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Figure 6: Sleepers Intervention PN Sub-net

In general, the delays in carrying out repairs and repair duration times depend on the
severity of an asset defect or fault. In the model it is assumed that these times follow
lognormal distributions whose parameters are determined based on guidance and
requirements provided for the maintenance of track assets [12]. The input parameters used
to model maintenance of sleepers and rails are provided in Table 3 and Table 4
respectively.

Table 3: Intervention Response and Duration Parameters for Sleepers

Intervention response time
distribution parameters

Intervention duration
distribution parameters

Condition State/Level
Mean
(days)

Standard
Deviation (days)

Mean
(hours)

Standard
Deviation (hours)

Defective sleepers 630 30 0.90 0.01
Individual ineffective
sleepers

90 7 1.50 0.10

Critical number of
ineffective sleepers

9 1 3.00 0.10

When building the superstructure section PN, asset state sub-nets will be replicated 80
times. Sleeper segment PN models will be linked to the section visual inspection sub-net,
while rail segment PNs will be linked to the corresponding rail inspection sub-net. In
addition, several new places will be added which will be linked to every segment PN to be
able to monitor performance of the superstructure within the section. For example, to
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observe ESRs introduced in the section the place labelled P_SC_1_1 as shown in Figure 5
will be linked to each asset segment degradation sub-net in that section. The
superstructure line PN model will be constructed by replicating the section PN 5 times.
Similar to the section PN, additional places will be introduced in the line model to monitor
the performance of the superstructure at the line level.

Table 4: Intervention Response and Duration Parameters for Rails

Intervention response
time distribution

parameters

Intervention duration distribution
parameters

Condition
State/Level

Mean
(days)

Standard
Deviation (days)

Intervention
Type

Mean
(hours)

Standard
Deviation (hours)

Minor defects 360 30

Grinding 0.01 0.0033
Welding 1.00 0.2500
Rail
replacement

2.00 0.5000

Major defects 135 7

Grinding 0.01 0.0033
Welding 1.25 0.2500
Rail
replacement

2.00 0.5000

Minor
damage

47 7

Grinding 0.01 0.0033
Welding 1.50 0.2500
Rail
replacement

2.00 0.5000

Major
damage

7 1

Grinding 0.01 0.0033
Welding 1.75 0.2500
Rail
replacement

2.00 0.5000

Having constructed multi-asset section PNs allows the inclusion of opportunistic and
concurrent maintenance strategies. The purpose of the opportunistic maintenance strategy
modelled here is to take an advantage of the section possession time scheduled for the
replacement of ineffective sleepers in a specified segment and to carry out maintenance of
sleepers in adjacent segments within one half of a mile distance in the same section, given
sleepers in the segments require corrective intervention. To implement opportunistic
maintenance scenarios the transition labelled T_SL_3_3 in the sleepers intervention PN
sub-net, as that shown in Figure 6, has the functionality of a decision making transition
activated. The firing of the transition will mark places in the PNs of specified adjacent
segments representing the initiation of maintenance ahead of the planned schedule. The
resulting marking of these places will change the firing times of the place conditional
transitions labelled T_SL_3_1 in the corresponding segments to instantaneous ones.

To model concurrent maintenance of assets, i.e. simultaneous replacement of rails and
ineffective sleepers, the decision making transition labelled T_SL_3_3 in the sleepers
intervention PN sub-net and its equivalent in the rails intervention PN sub-net have
specific place marking rules introduced for this purpose. Given that the sleepers and rails
in the same segment are scheduled to be replaced, the firing of transition T_SL_3_3 will
mark the place in the rail PN of that segment representing the initiation of maintenance
ahead of the planned schedule and subsequently the place conditional transition in the rail
PN equivalent to that labelled T_SL_3_1 will fire immediately. In the same manner rail
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replacement started in the segment will initiate replacement of sleepers ahead of the
planned schedule.

3.2 Analysis

The superstructure line model presented and three of its variants were used for the
analysis. The first variant of the baseline model had an option to perform opportunistic
maintenance of sleepers introduced. Concurrent maintenance of assets, i.e, simultaneous
replacement of rails and sleepers, was another intervention option considered. A
maintenance strategy incorporating both opportunistic and concurrent maintenance
options was introduced in the third variant of the model. MC simulations of 60 year
operational life cycle for all four models were performed.

Table 5 and Table 6 list expected values of the total number of days and average
durations of ESRs calculated over the whole lifetime respectively. As one can see from
the results presented, the number of days ESRs are imposed and the average duration of
each ESR instance due to poor state of rails are much greater than those due to sleepers. It
is interesting to note that for sleepers the difference in terms of durations of ESR between
the two parts of the line (at location #1 and location #2) is very significant. These
observations suggest that in order to reduce disruptions for train passengers the focus
should be placed on changing the intervention strategy to ensure a better condition of rails.
Additionally, efforts should also be made to tailor interventions of sleepers in order to
reduce ESRs in the second part of the line.

Table 5: Expected Number of Days Spent with ESRs imposed over the Lifetime – Scheduled
Interventions only

Line Section in Location #1 Section in Location #2
Rails 1614.4 333.8 330.7
Sleepers 274.1 6.3 128.8
Superstructure 1875.6 340.7 464.9

Table 6: Expected Average Duration (expressed in days) of ESR imposed– Scheduled Interventions
only

Line Section in Location #1 Section in Location #2
Rails 45.1 46.5 46.5
Sleepers 9.0 9.1 9.0
Superstructure 28.4 43.5 21.7

Overall, the results demonstrate the advantage of having an integrated model of the
superstructure as oppose to individual asset models to assess durations of ESRs. The
superstructure model predicts infrastructure performance by eliminating periods of ESRs
that overlap between the two asset groups (e.g. 1614.4+274.1≠1875.6). When predicting 
the duration of ESR at a line level the overlaps among individual sections are also
eliminated as indicated in Table 5 (e.g. 3×340.7+ 2×464.9 ≠1875.6).

Table 7 and Table 8 demonstrate the impact of different intervention strategies on
ESRs over the lifetime of the superstructure. For example, with the introduction of
concurrent maintenance the total duration of ESRs in the line reduced by 21 days from
1875 to 1854. Periods of ESRs reduce even more if instead of concurrent maintenance
opportunistic maintenance programme is used. However, adopting both opportunistic and
concurrent maintenance programmes provide no additional benefits in terms of reduction
of the number of days ESRs are imposed over the lifetime of the superstructure. In any



14 Dovile Rama and John D. Andrews

case, the results prove that introducing concurrent and/or opportunistic maintenance as a
way to improve cost-efficiency will not only reduce maintenance costs but it will
additionally provide cost savings as a result of reduction in ESRs and, subsequently, train
delays. It is interesting to note, that even though the total duration of ESRs reduces with
the introduction of opportunistic maintenance, the average duration of ESRs increases,
particularly, in the sections in the second part of the line. In this case adjusting
intervention response times could be considered as an option for reducing prolonged
periods of ESRs.

Table 7: Expected Number of Days spent with ESRs imposed over the Lifetime of the
Superstructure under different Maintenance Strategies

Line Section in
Location #1

Section in
Location #2

Scheduled interventions only 1875.6 340.7 464.9
Concurrent interventions performed 1854.2 342.3 446.5
Opportunistic interventions performed 1808.1 345.3 411.0
Opportunistic + concurrent
interventions performed

1843.8 351.5 443.2

Table 8: Expected Average Duration (expressed in days) of ESRs imposed over the Lifetime of the
Superstructure under different Maintenance Strategies

Line Section in
Location #1

Section in
Location #2

Scheduled interventions only 28.4 43.48 21.72
Concurrent interventions performed 28.19 43.38 21.24
Opportunistic interventions performed 31.70 43.52 24.96
Opportunistic + concurrent
interventions performed

29.42 43.64 22.75

Another set of performance parameters was obtained to assess the intervention activities.
The effects of different intervention strategies on the numbers of interventions and the
downtime of the superstructure are summarised in Table 9 and Table 10 respectively.
With the introduction of concurrent and opportunistic maintenance activities along the
scheduled maintenance work, the number of interventions carried out in the line increases.
The largest increase of additional 142 (3%) activities occurs as a result of the introduction
of opportunistic interventions. Intervention numbers in the last two sections of the line
(location # 2) follow the same pattern (increase in 5% from 1336 to 1405 activities) as that
of the line; while the numbers of maintenance activities carried out in the first three
sections of the line (location # 1) remain the same for all maintenance strategies. Most of
the variation in the numbers of intervention activities can be attributed to more frequent
repairs of sleepers. Alternatively, the downtime of the superstructure either remains the
same or decreases as a result of carrying out opportunistic and/or concurrent maintenance.
The largest improvement in the downtime in the line (decrease by 10%) is achieved when
opportunistic maintenance activities are included in the work bank. These findings imply
that despite an increase in the numbers of interventions their durations are shorter. Such a
maintenance strategy would be very beneficial in the parts of the network where train
intensity is high providing shorter windows for maintenance.



A Holistic Approach to Railway Infrastructure Asset Management 15

Table 9: Expected Number of Intervention Activities over the Lifetime of the Superstructure under
different Maintenance Strategies expressed in Days

Line Section in
Location #1

Section in
Location #2

Scheduled interventions only 4893 741 1336
Concurrent interventions performed 4894 741 1337
Opportunistic interventions performed 5035 741 1405
Opportunistic + concurrent
interventions performed

4905 741 1342

Table 10: Expected Number of Days of Downtime over the Lifetime of the Superstructure under
different Maintenance Strategies

Line Section in
Location #1

Section in
Location #2

Scheduled interventions only 227.4 33.7 70.4
Concurrent interventions performed 227.4 33.6 70.4
Opportunistic interventions performed 204.7 33.4 61.7
Opportunistic + concurrent
interventions performed

215.1 33.5 64.3

4. Summary and Conclusions

In the paper a framework for modelling the railway infrastructure and changes in its state
over time has been presented. The proposed framework uses a hierarchical modular
platform where models combining degradation and intervention processes of individual
assets are at the lowest hierarchical level. They can be deployed as stand-alone asset state
models or as building blocks to construct infrastructure models for any level of the
network granularity with a varying degree of complexity. The advantage of the approach
is the flexibility to construct very detailed system–wide models for any part of the railway
infrastructure.

The models are constructed using the PN technique and are executed by the means of
MC simulations. By performing the simulations the infrastructure performance can be
predicted and alternative asset management strategies investigated. Further investigations
can be carried out on how to modify the strategies in order to improve infrastructure
performance and, if associated costs are known, what impact they will have on the
expenditure.

In the paper the development of the superstructure model has been described followed
by the model application example for the investigation of the infrastructure performance
under different maintenance strategies. The analysis has produced a set of performance
parameters of the superstructure and its constituent elements at different hierarchical
levels of the network. The results demonstrate essential advantages of the modelling
framework proposed. In terms of accuracy in predicting the superstructure (system)
performance and information available to support asset management decisions, the
system-wide model is superior to individual asset models. Furthermore, having the multi-
asset system model different maintenance strategies, including opportunistic and
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concurrent maintenance, which require interdependencies among different assets and
different parts of the infrastructure to be accounted for, can be modelled.
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