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Abstract—The increased penetration of renewable energy
sources and other distributed energy sources has been seen
nowadays. In this scenario power converters play a crucial role
by providing the interconnection of these energy sources. This
paper presents new configurations of power converters for grid
interconnection systems. Several topologies are analyzedwhich
are based on isolated ac-ac matrix converters.

Index Terms—Grid interconnection, Power converters, Gal-
vanic Isolation

I. I NTRODUCTION

According to the Energy Program 2014-2018 from the
Chilean Minister of Energy1, the technological and econom-
ical development of the country has lead to an increase in the
energy demand in Chile. It is well known that energy resources
based on fossil fuels are very limited in the country. Chile has
little natural gas and oil resources and, at the same time, the
extraction costs of coal are high. In addition, there is huge
social opposition to the electrical development, because the
perception of the community to this development is associated
with environmental deterioration and social cost.

This has lead to higher generation costs and thus high elec-
tricity prices for the consumers. With all this what is needed
is a “safe and efficient energy development, with reasonable
prices, that take advantage of the renewable resources in a
sustainable and non-polluting way”.

In order to avoid the events experienced after the big
earthquake and last huge storm in the north and central areasof
the country (communication problems and thousands of people
without electricity), recent initiatives from the government
have been focused on electrical systems interconnection, to the
promotion of using non-conventional renewable energies, and
the installations of microgrids in isolated areas as well asthe
inclusion of redundancy and reliability of the interconnected
system. In all of these initiatives, power converters play a
critical role because they allow the integration to the elec-
trical network of different kind of generation and distribution
systems.

In the last years the concept of microgrids has become very
popular. “A microgrid is a localized station with its own power
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resources, generation and loads, which is intended as a back-
up power or to bolster the main power grid during periods
of heavy demand. Often, microgrids involve multiple energy
sources as a way of incorporating renewable energy. Other
purposes include reducing costs and enhancing reliability.”
[1]. In the last years it is possible to find different microgrid
systems based on alternative renewable energies such as: solar
(photovoltaic - thermal) [2]–[6], wind [7]–[12], ocean [12],
micro-hydro [6], [10], [13], geothermal [14], [15], among oth-
ers. Most of these microgrid clusters are working in islanded
or grid interconnected modes.

In this context, power converters are critical, because they
allow the integration to the electrical network with different
kinds of generation and distribution systems. The most tradi-
tional power converters used in these applications are active
front end rectifiers (AFE) [16], [17], two-level voltage source
converters (2L-VSI) [18]–[20] and multilevel power convert-
ers such as the three-level neutral point clamped (3L-NPC)
converters [21]–[23] and cascade H-Bridge topologies [24].
Modular multilevel converter technologies have emerged also
as a suitable solution to the integration of renewable energy to
the electrical grid [25]–[27]. As it can be reviewed, most ofthe
power converters commonly used nowadays include storage
elements which introduce size, weight and failure possibilities
in the system.

An alternative to the converters with storage elements is
the matrix converter (MC) which is shown in Fig. 1. The MC
is a simple and compact power circuit that directly connects
the AC-source with any arbitrary AC-load without the need
for large storage elements, making this topology suitable for
many applications where weight and size are important issues
[28]–[30].
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Fig. 1. Power topology of the conventional direct matrix converter.



With MC topologies the generation of output voltages of
any different amplitude and frequency, sinusoidal input and
output current waveforms, as well as operation with unity
displacement power factor and regenerative capability are
all possible. One of the challenges of MCs used to be the
commutation of current between the bidirectional switches,
but this issue has been solved with multi-step commutation
techniques [31]. Due to these characteristics, in recent years
MCs have shown continuous and fast development related
to the development of new topologies and control methods,
including industrial applications with standard units forhigh
and medium voltage using cascade connections [32], [33].

The main goal of this paper is to contribute to the energy
development of the country by proposing and studying new
configuration of power converters based on multiport modular
power converter structures.

II. T HE USE OFMATRIX CONVERTERS FORGRID

INTERCONNECTIONSYSTEMS

Different modulation and control methods for MCs can be
found in the literature [34]–[37]. These methods have different
implementations and different levels of complexity, but all
have dynamic behavior which is acceptable in a variety of
applications. As reviewed in [38], the most used techniquesare
Venturini, carrier-based pulse width modulation (PWM), space
vector modulation (SVM) and direct torque control (DTC)
[38]–[43]. Other methods that have been applied to MCs in
specific applications are fuzzy control, neural networks and
genetic algorithms [44]–[46]. Predictive control has shown to
be a very interesting alternative for control MCs because the
use of the discrete nature of power converters and its simplicity
for implementation and intuitive approach [36], [37], [47].

Matrix converters have emerged as a flexible and efficient
alternative to manage energy in specific applications such as
military, aerospace, wind generation systems among others.
However, they have not been deeply studied in applications for
grid interconnection of microgrids, generation systems and/or
loads. The work done in [48] has considered a modified matrix
converter topology for grid integration of two AC sources to
the utility, demonstrating that “this converter is very suitable
to integrate two AC type power sources into the utility grid”
[49], [50].

In order to use the matrix converter in high power ap-
plications, new multilevel topologies have appear in the last
years. These new configurations allow “high power quality,
high-voltage capability, low switching losses and low EMI
issues” [51]. In [52], a multimodular matrix converter for
wind power generation applications is proposed. The same
idea has been presented in [33] and [53] for other applications
such as blowers, pumps, extruders, mixers, kilns, etc., where
the basic block of the modular matrix converter is a three-
input one-output module with six bidirectional switches. This
structure allows the use of low voltage power semiconductors,
with low switching frequency and also the generation of
high-quality output waveforms. The common modulation and
control strategies developed for these topologies are PWM and
SVM techniques.

III. POWER CONVERTER TOPOLOGIES WITHMF/HF
ISOLATION FORGRID INTERCONNECTIONSYSTEMS

It is well known that the most of the present Chilean
architecture network is only in one direction: the electricity is
generated from the power stations and transmitted to the users
through high voltage transmission systems. Recent initiatives
of the Chilean government and recent research have focussed
on “providing a more flexible and modular power electronics
interface able to connect different kind of sources and loads
including medium voltage electrical networks, renewable en-
ergy sources, and energy storage systems”, such as the one
illustrated in Fig. 2 which requires a flexible power manage-
ment control in order “to ensure proper and secure operation
of the networks” and bidirectional power flow [54].

Some requirements for the future electricity network are:
• Galvanic Isolation.
• Multi-directional power flow capability.
• Flexibility and scalability.
• Easy maintenance and low cost.
• Compact power conversion and low weight.
• High efficiency and reliability.
The general structure for grid interconnection shown in Fig.

2 can be formed by two different configurations:
1) Two AC/DC stages and a DC/DC stage with isolation

medium or high frequency (MF/HF) transformers. In this
case single phase H-bridge converters are used (Fig. 3).

2) Two AC/AC stages with isolation MF/HF transformers.
In this case single phase matrix converters are used (Fig.
4).

Both configurations use the advantages of multimodular
structures based on single phase power converters (shown in
Fig. 5) in a cascade connection to provide a more flexible and
modular power electronic interface to connect different types
of microgrids and generation systems including medium volt-
age electrical networks, renewable energy sources and energy
storage systems. Some characteristics of both architectures are:

• Both configurations are modular structures, allowing easy
replacement of the cells in case of failure.

• Both configurations have the same number of semi-
conductor devices. In each cell of the first architecture
there are four H-bridges, which implies 16 semiconductor
devices. In the second configuration, there are two single
phase matrix converters, which have also 16 semiconduc-
tor devices.

• Both configuration schemes are able to operate with
multi-directional power flow.

• Different from the first configuration structure, the second
alternative topology does not include energy storage
elements, reducing the weight and size.

• Because the second configuration architecture does not
include energy storage elements, there is no need for DC-
link controllers and the potential for failure is reduced.

Recent investigations have been focused in to propose
microgrid clusters and generation systems based on dif-
ferent power converter configurations when used for non-
conventional renewable energies. Such configurations must
ensure an optimal active and reactive power flow control
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Fig. 2. General structure of the universal and flexible modelfor grid interconnection.
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AA

X X

S1 S3

S1

S2

S3

S4C
vdc

+

-

v+

v−

a) b)

Fig. 5. Basic topologies: a) H-bridge; b) single phase matrix converter.

and flexibility to be adapted to different load/users/grid con-
ditions such as parameter variations, load changes, voltage
imbalances, harmonic content, resonances and others. In order
to achieve all these requirements, different modulation and
control strategies have been proposed in the literature. Among
them, pulse width modulation (PWM), space vector modu-
lation (SVM), fuzzy control, predictive control and others,
are currently the most popular [55], [56]. But, despite the
several advances in new technologies and control strategies
for microgrids and generation systems when working in stand-
alone mode or grid interconnected, there is still need for novel
improvements to make them more reliable, smart, cooperative
and an open system to the inclusion of new generation systems.

A. Modulation of single phase AC/MF/AC

A Dual-CBM configuration for AC/MF/AC solution is
shown in Fig. 7. In Dual-CBM, a low frequency input voltage
is modulated to a medium/high frequency voltage waveform
and then it is demodulated to low frequency output voltage
as shown in Fig. 8. The shown solution works well when
demanded frequency is equal to input frequency i.e. fi=fo
and is a good alternative in this case for grid interconnection
applications. Due to the single phase nature of the solution,
output voltage frequency is limited to only integral multiples
of the input voltage frequency. For instance, with an input
voltage at 60Hz, it is only possible to generate 30Hz, 20Hz,
15Hz and so on. This constraint can be formulated as:
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fo =
fi

n
, ∀ n ǫ Z+, Z+

= 1, 2, 3... (1)

Some countries are utilizing 60Hz while others are utilizing
50Hz as grid frequency and the interconnection of said grids
via Dual-CBM is not feasible as 50 is not an integral multiple
of 60, therefore violating the constraint. This can be validated
Fig. 9, when 50Hz output is generated from a 60Hz input.
Furthermore, it is important for the converter in MMPC to be
fully able to generate any frequency at the output.

B. New AC/MF/AC topology for grid interconnection systems

Now, it is clear that the single phase solution has some
drawbacks as:

• Its failure in the applications interconnecting two systems
at different frequencies e.g. interconnection of 60Hz and
50Hz grid.

Fig. 7. Dual-CBM configuration
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Fig. 10. A new 3-phase to 1-phase isolated AC/AC topology using three Dual
CBMs
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• It is not a viable solution for the applications requiring
frequency regulation e.g. v/f control of drives.

The reasons of mentioned drawbacks are that converter has
single phase input i.e. output is limited to single phase input
in terms of selection. A possible solution for this limitation
consist of increasing the input options of the converter i.e.
utilizing the concept of matrix converters. The topology can
be modified to Fig. 10 therefore, utilizing three-phase input
in a way to have three input options at any time and at the
same time also providing modularity, galvanic isolation, bi-
directional power capability etc. With the new topology of Fig.
10, it is possible to generate, at the output, the non-integral
multiples of the input i.e. 40Hz output voltage is generated
from 50Hz input voltage as shown in Fig. 11. Not only that but
the new topology also provides excellent output grid frequency
regulation even when validated with an exaggerated variation
in input grid frequency i.e. 50Hz to 86Hz at t=1s as shown
in Fig. 12. Eventually, a three phase to single phase AC/AC
isolated converter system can be extended to three phase to
three phase system as shown in Fig. 13. It is important to
mention that the input and output voltage and currents of
the three phase to three phase topology, shown in Fig. 14,
are similar to that of classical matrix converters. This new
converter topology can be a step forward, considering the
utilizing of bi-directional switch based converters, in the grid
interconnection applications.

IV. CONCLUSIONS

The growing technological development has increased the
demand of more available energy. It is necessary a safe and
efficient energy development, with reasonable prices, thattake
advantage of the renewable resources in a sustainable and non-
polluting way. There are several power converter topologies for
micro-grid applications.

Potential of isolated AC/AC direct converter topologies has
been discussed. Identification of problem in a single cell i.e.
in a single phase to single phase topology. Modification of
the topology comes at the cost of an increased number of
switching devices while keeping modularity intact as well as
bi-directional power flow. This new AC/AC isolated topology
will have a wider range of applications e.g. grid applications,
AC drives etc.
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