
Padmanaban, Sanjeevikumar and Blaabjerg, Frede and 
Wheeler, Patrick and Ojo Olorunfemi, Joseph and 
Maroti, Pandav Kiran (2016) A novel double quad-
inverter configuration for multilevel twelve-phase open-
winding converter. In: 2016 IEEE 6th International 
Conference on Power Systems (ICPS), 4-6 March 2016, 
New Delhi, India. 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/39041/1/A%20novel%20double%20quad-inverter
%20configuration%20for%20multilevel%20twelve-phase%20open-winding%20converter.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may 
be reused according to the conditions of the licence.  For more details see: 
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/76974681?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk


                             

A Novel Double Quad-Inverter Configuration for 

Multilevel Twelve-Phase Open-Winding Converter 
 

Sanjeevikumar Padmanaban 
Research & Development,  

Ohm Technologies,  

Chennai, India. 

sanjeevi_12@yahoo.co.in 

Frede Blaabjerg 
Center for Reliable Power Electronics 

(CORPE), Dept. of Energy Technology, 

Aalborg University, Denmark. 

fbl@et.aau.dk 

Patrick William Wheeler 
Power Electronics, Machines and Control Group 

(PEMC), Dept. of Electrical & Electronics Engg., 

Nottingham University, UK. 

pat.wheeler@nottingham.ac.uk 
 

Joseph Olorunfemi Ojo 
Dept. of Electrical & Computer Engg., Tennessee Technological University, USA.  

Eskom Centre of Excellence in HVDC Engg., University of KwaZulu-Natal,  

Durban, South Africa.  

jojo@tntech.edu 

 

Pandav Kiran Maroti 
Dept. of Electrical and Electronics Engg.,  

Marathwada Institute of Technology, 

Aurangabad, India.    

kiranpandav88@yahoo.co.in 

 
Abstract—This paper work articulates the novel proposal of 

double quad-inverter configuration for multilevel twelve-

phase open-winding ac converter. Modular power units are 

developed from reconfigured eight classical three-phase 

voltage source inverters (VSIs). Each VSI has one additional 

bi-directional switching device (MOSFET/IGBT) per each 

phase and linked neutral with two capacitors. An original 

modified single carrier five-level modulation (MSCFM) 

algorithm is developed and modulates each 2-level VSIs as 

equivalent to ones 5-level multilevel inverter. Observed set of 

results are presented with model based numerical simulation 

software’s (Matlab/PLECS) developments. Further, the results 

confirm the good agreement to the developed theoretical 

background. Proposed converter suits the need of low-

voltage/high-current applications such as ac tractions and 

‘More-Electric Aircraft’ propulsion systems. 

 

Keywords—Dual six-phase inverter, twelve-phase inverter, 

multilevel inverters, multiphase drives, multiple space vectors, 

pulse-width modulation. 

I.  INTRODUCTION 

Multiphase ac drives technologies had proven the 
eminent solutions for limited rating (MOSFET/IGBT) 
device configurations. Benefits includes, reliability, 
redundant structure, limited dc link ripple, increased power 
density, fault tolerant, and reduced per-phase of inverter 
rating [1-7]. To exploit the above advantages, this article 
developed a twelve-phase (double quad or dual six-phase) 
multilevel inverter configuration for open-winding loads. 
Configured by two adjacent phases are spatially shifted by 
30

0
 (symmetrical type) [1-6] or by 15

0
 (asymmetrical) [1-2, 

7]. Advantage, feasibility to split the phases and driven by 
multiple standard VSIs as multiphase inverter [2-7]. 
Topologies are termed as dual-, triple-, quadruple and 
double quadruple three-phase ac drives and applicable to 
several low-voltage/high current ac traction and ‘More-
Electric Aircraft’ applications (MEA) [8-9]. Multiphase ac 
drives are applied as the replacement for the hydraulic and 

 
 
Fig. 1. Proposed configuration of quad-inverter system for symmetrical (twelve-phase) dual six-phase open-winding multilevel converter for medium power 
application (low-voltage/high-current). 

 



 

pneumatic actuators, highly reliable in fault conditions and 
improve overall aeronautic propulsion in MEA [9].  

On other hand, the viability of ac drives are improved by 
the multilevel inverters (MLIs) for high voltage synthesis 
done by the sources and limited rating switching devices. 
Benefit by reduced total harmonic distortion (THD), and 
dv/dt in the output voltages [10]. But potential vulnerability 
still persists in multilevel inverters, leading to total failure. 
Failures are occurred by the power parts (31-37.9) % by the 
mechanism of IGBT devices for high-power applications 
[11]. Also, failures addressed with capacitors and gate 
control techniques [11-12]. Eventually, the combination of 
both multi-phase and multi-level inverter configuration 
becomes the solution for obtains high power ratings with 
limited rated devices [1, 3-7]. Still, the standard VSIs are 
reliable and reconfigured as both multi-phase and multi-
level inverter by multiple VSIs proper arrangements [3-7].  
Generally such topology referred as three-phase dual 
inverters, the two standard 3-Φ VSI (two-level) are 
connected at each ends of the open-windings [3-6]. The 
potential difference across each phases of two single 
inverter’s leg generates the multilevel output voltages when 
modulated 3-level VSIs. To be noted, dual inverters 
compromises the benefit of standard MLIs and common-
mode currents are limited by the PWM strategies or by 
isolated dc sources [3-7]. All cases the dual inverters are 
restricted with output voltage levels, each leg are limited to 
three-levels. [1-7].  

Motivation is set to above facts; in perspective view this 
paper work articulates a novel configuration for dual six-
phase (double quad or twelve-phase) symmetrical/ 
asymmetrical multilevel converter as shown in Fig. 1 [3-7]. 
Topology fits star-winding/open-winding loads, low-
voltage/high-current medium power and ‘MEA’ 
applications. Also, this work developed an original modified 
single carrier five-level modulation (MSCFM) scheme 
(independent modulation for each VSI) and generates 5-
level outputs [13]. Modular converter consist of eight 
classical three-phase voltage source inverters (VSIs H and 
L) with one bi-directional (IGBT) switch per each phases 
and each VSIs is connected across each ends of open-
windings [3-6]. Linked to the two capacitors with neutral 
connection with VSIH

(1), VSIL
(1), VSIH

(2), VSIL
(2), VSIH

(3), 
VSIL

(3)
, VSIH

(4)
, and VSIL

(4)
 for ensuring 5-level in each leg 

phases [13]. Since, all eight dc source are isolated and no 
circulation of homo-polar/zero-sequence currents [5]. The 
proposed converter holds redundant advantage that each VSI 
generates 5-level in their outputs irrespective of open-
winding and/or star-winding structure. Overcomes the 
drawback of standard dual inverter topologies addressed in 
the literatures. Moreover, the total power among the eight dc 
sources and double quadrupling the power capabilities of 
each VSIs (H and L). Reliable under faulty condition one or 
two or three….VSIs fails and with single healthy VSI still 
propagates but with reduced power ratings. Also, 
compromised the standard MLIs benefits but with high 
reliability, easy to scale more than 12-phases and redundant 
structure with fault tolerant [6, 10-12].  

To verify the performances, the proposed symmetrical ac 
converter is numerical modelled with Matlab/PLECs 
simulation software’s.  Packages and tested under balanced 
conditions. Observed set of simulation results are presented 
in this paper version to show the effectiveness of the 
converter in symmetrical operating conditions and response 
shown always a close conformity with theoretical 
background. 

II.  SPLIT-PHASE DECOMPOSITION SPACE VECTOR 

TRANSFORMATION  

The twelve-phase system can be represented by 
stationary rotating multiple space vectors as [1, 3-7]: 
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Where, α = exp (j2π/12), symmetrical converter version, 
displacement between windings [7]. The multiple space 

vectors
 1 5 7 11, , ,x x x x  are the four rotating vectors and 

3 9,x x
 
are the zero sequence components. Exposed in the 

zones of d1-q1, d5-q5, d7-q7, d11-q11 and d3-q3, d9-q9 sub-
spaces respectively. Now, to introduce split-phase space 
vector decomposition transformation to dual six-phase 
open-windings supplied by eight isolated dc source VSIs. 
The twelve-phase system can be split into four three-phase 
sub-systems {1}, {2}, {3}, {4} as [5-7]: 
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The arbitrary rotating space vectors
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x ,
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x , 
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x and 

the zero-sequence components
(1)
0x ,

(2)
0x ,

(3)
0x , 

(4)
0x are 

defined for four three-phase sub-system {1}, {2}, {3} and 
{4} as: 
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Now, multiple space vectors and split-phase space vectors 
are related by substituting Eq. 3 and Eq. 2 in Eq. 1 and 
emphasized as below: 
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Inverse to Eq. 4 is given by: 

{
{
{
{
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(5) 

Noted, where the symbols “*
”
 and “·”denote complex 

conjugate and scalar (dot) product, respectively.  

III.  DOUBLE QUAD-INVERTER SINGLE CARRIER BASED 

FIVE-LEVEL MODULATION ALGORITHM 

The P total power of the dual six-phase inverter can 
expressed as the sum of power of the four three-phase 
windings {1}, {2}, {3}, and {4} (VSIH

(1)
, VSIL

(1)
, VSIH

(2)
,  

VSIL
(2), VSIH

(3), VSIL
(3), and VSIH

(4),  VSIL
(4)) [5]: 

(1) (2) (3) (4)
P P P P P= + + +

 
(1) (1) (2) (2) (3) (3) (4) (4)3 3 3 3

2 2 2 2
P v i v i v i v i= ⋅ + ⋅ + ⋅ + ⋅  

 
(6)  

  

By neglecting the bi-directional switch per phases and two 
capacitors with neutral point in the Fig. 1, results in four 
standard two-level inverters. Further, the modulations are 
carried out as like standard VSIs. By space vector theory, 

the output voltage vector v  of the dual six-phase inverter 

can be expressed as the sum of the voltage vectors of four 

three-phase windings {1}-
(1)v , {2}-

(2)v , {3}-
(3)v , and 

{4}-
(4)v  by the eight three inverters (VSIH

(1)
, VSIL

(1)
, 

VSIH
(2)

, VSIL
(2)

, VSIH
(3)

, VSIL
(3)

, VSIH
(4)

,  VSIL
(4)

) and  given 
below as [5-7]: 

(1) (2) (3) (4)
v v v v v= + + +  (7) 

By splitting twelve-phase windings into standard four three-
phase windings then Eq. 7 by considering Eq. 3 then the 

modulating vectors can represent for first-, second-, third- 
and fourth three-phase windings as below:
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By considering Eq. 4, then Eq. 8 to Eq. 10 for inverters 
VSIH

(1)
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, VSIH
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,  

VSIL
(4) , the modulating vectors can be expressed as: 
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Now, by considering Eq. 12 to Eq. 15, the Eq. 8 the 
modulating vector of twelve-phase windings can be written 
as below:  
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(16) 

Therefore, now the arbitrary modulating vector for the dual 
six-phase inverter can be predicted by information of each 
single VSI [3-6]: 

For single dual three-phase VSI (VSIH
(1)

 and VSIL
(1

), the 
switching states, upper-states are {SH, SH1, SH2, SH3}, lower-
states are {SL, SL1, SL2, SL3} = {1, 0} of the legs. Zero-
sequence currents are null, if assumed the system is 
balanced conditions, then Eq. 16 can be rewritten as eight 
separate three-phase VSIs. For the purposes of simplified 
investigation, the analyses on the proposed converter are 
performed with single carrier based 5-level modulation 
[13]. The modulating reference signals are compared 
against standard triangular carrier to provide maximum 
utilization of dc buses and ability to generate multilevel 
operation.   



Fig. 2 shows the single carrier (MSCFM)
algorithm for VSIH

(1), and VSIL
(1) generate 5-level across the 

leg-phase ‘a’. The same strategy is applied to all other leg
phases (b, c, d, e, f, g, h, i, j, k, l) of VSIs (VSI
VSIH

(3), VSIL
(3), VSIH

(4), VSIL
(4)). But note, keeping proper 

phase-shift between reference modulating signals

by α = exp (j2π/12), symmetrical converter 

(jπ/12), asymmetrical converter operation. 
switch SHa and SLa to be modulated throughout the 
fundamental cycle, i.e. swaps between {1, 0} with 
switching cycle. Switch SH1 modulated half of the 
fundamental period (first-half) as ON and retains 
second half. Applicable in reverse to the switch 
modulated half of the fundamental period (first
OFF and retains ON second half.  To be noted, same 
strategy is applied to other phases (b, c, d, e, f
to generate five-level outputs. A switch pattern of the 
proposed 5-level modulation for inverters 
VSIL

(1) are shown in the Fig. 3 for the modulation index of 
0.8.  

IV.  NUMERICAL SIMULATION RESULTS AND 
 

TABLE I.  MAIN PARAMETERS OF DUAL SIX-PHASE MULTILEVEL 
 

Dc Bus  VDC  = 200Volts

Load Resistances R = 8 Ω 

Load Inductances  L = 10mH

Fundamental Frequency F = 50Hz

Switching Frequency  FS = 5 KHz

Capacitors  VC = 2200µF
 

Table I gives the elaboration of the parameters 
for testing and to verify the effectiveness 

symmetrical (α = exp (j2π/12)) ac drive system 

Fig. 2. Multilevel modulation scheme with one carrier for phase ‘a’

inverter VSIH
(1). 

 

 

Fig. 3.  PWM pattern of inverters VSIH
(1) (top-three) and 

three) modulation Index = 0.8). 

 
Fig. 2 shows the single carrier (MSCFM) modulation 

level across the 
strategy is applied to all other leg-

VSIH
(2)

,  VSIL
(2)

, 
keeping proper 

reference modulating signals as given 

converter or α = exp 

. For phase ‘a’, 
to be modulated throughout the 

fundamental cycle, i.e. swaps between {1, 0} with 
modulated half of the 

and retains OFF 
to the switch SL1 

ndamental period (first-half) as 
To be noted, same 

is applied to other phases (b, c, d, e, f, g, h, I, j, k, l) 
witch pattern of the 

rs VSIH
(1)

 and 
modulation index of 

ESULTS AND DISCUSSION 

PHASE MULTILEVEL VSIS. 

00Volts 

10mH 

50Hz 

5 KHz 

2200µF 

he parameters utilized 
verify the effectiveness the complete 

ac drive system is 

numerically developed in Matlab/
software package. The test conducted 
conditions by setting modulation index of 
VSIL

(1)
, VSIH

(2)
,  VSIL

(2)
, VSIH

(3)
,  VSI

to 0.8 and overall modulation index of 
inverter is 0.8. Fig. 4 and Fig. 5 describe 
behavior of the proposed multiphase converter system

 Fig. 4(A) and Fig. 4(B) are the generated line
voltage of inverters VSIH

(1)
 and VSIL

(1)

windings {1}. Fig. 4(G) and Fig. 4(H
line-line voltage of inverters VSIH

(2)
 and VSI

three-phase windings {2}. Correspondingly, depicted 
its fundamental components and shown equal in amplitude
and proven balanced operation. It is observed that they
out of phase with respect to each other
spatial phase displacement between VSIs of first {1} and 
second {2} three-phase open-windings is observed and it is 
as expected. Further, confirms that each 
modulated in 5-level by the developed modified single 
carrier five-level modulation (MSCFM) algorithm
overcomes the drawback of addressed dual inverter 
configurations [3-6].   

Fig. 4(C) and Fig. 4(D) are the artificially 
phase ‘a’ voltage of inverters VSIH

(1)

three-phase windings {1}. Fundamental component
depicted in the same figures and are in agreement to Eq. 1
Fig. 4(I) and Fig. 4(J) are the artificially 
voltage of inverters VSIH

(2)
 and VSI

phase windings {2}. Fundamental component
in the same figures and are in agreement to Eq. 1
observed that phase voltages of the VSI H and L are
levels of stepped waveforms which are
Further, it is verified that the phase voltages g
of same amplitudes shown by fundamental components,  
and the balanced smooth operation is ensured 
index = 0.8). It is observed that phase voltages
phase with respect to each other VSIs H and L, 30
phase displacement between VSIs of first {1} and second 
{2} three-phase open-windings is observed and it is as 
expected. 

Fig. 4(E) and Fig. 4(K) are the generated phase
of the first three-phase open-winding 
the second three-phase open-winding (
with its fundamental component. First, it is confirmed that 
the voltage generated are 7-levels in both open
{1} and {2}. Obtained fundamental amplitude is the vector 
addition of phase voltages of inverters
(VSIH

(2), VSIL
(2)) and in agreement with Eq. 8

Second the fundamental components confirm
voltages are equal in amplitude, 
displacement is observed between voltages of open
windings {1} and {2}. Hence balanced smooth propagation 
is ensured with dual six-phase converter with modulation 
index=0.8.  

First three-phase {1} and second three
winding currents are shown in Fig. 4(F
Generated currents are sinusoidal in nature, balanced with 
same amplitude with proper phase shifts of 30
between first three-phase windings {1} and 
phase windings {2}. Conformity is sh
converter each VSIs are modulated sinusoidal in the open
windings {1} and {2}, balanced conditions
Hence, the results discussed proven the requirement set by 
the theoretical developments for first and second three
phase open-windings are in good agreement.
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spatial phase displacement between VSIs of first {1} and 
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that each single VSIs are 
level by the developed modified single 

level modulation (MSCFM) algorithm. Hence, 
overcomes the drawback of addressed dual inverter 
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(A). Line–line voltage of inverter VSIH

(1). [X-axis: Volt age, Y-axis: Time]. (G). Line–line voltage of inverter VSIH
(2). [X-axis: Volt age, Y-axis: Time]. 

   
(B). Line–line voltage of inverter VSIL

(1). [X-axis: Volt age, Y-axis: Time]. (H). Line–line voltage of inverter VSIL
(2). [X-axis: Volt age, Y-axis: Time]. 

   
(C). Artificially first-phase voltage of inverters VSIH

(1). [X-axis: Volt age, Y-axis: Time]. (I). Artificially first-phase voltage of inverters  VSIH
(2). [X-axis: Volt age, Y-axis: Time]. 

  
(D). Artificially first-phase voltage of inverters VSIL

(1). [X-axis: Volt age, Y-axis: Time]. (J). Artificially first-phase voltage of inverters VSIL
(2). [X-axis: Volt age, Y-axis: Time]. 

  
(E). First-phase voltage across the open-winding  {1}. [X-axis: Volt age, Y-axis: Time]. 

 

(K). Fourth-phase voltage across the open-winding {2}. [X-axis: Volt age, Y-axis: Time]. 
 

       
(F). First three-phase currents of the open-windings {1}. [X-axis: Current Y-axis: Time]. (L). Second three-phase currents of the open-windings {2}. 

 

Fig. 4. Numerical simulation test behavior of the proposed multiphase-multilevel open-winding converter. Modulation index = 0.8, kept for balanced operation. 

Voltages are depicted with its corresponding time averaged fundamental components. Left: First three-phase open-windings {1}. . Right: Second three-phase open-windings {2}. 



 

   
(A). Line–line voltage of inverter VSIH

(3). [X-axis: Volt age, Y-axis: Time]. (G). Line–line voltage of  inverter VSIH
(4). [X-axis: Volt age, Y-axis: Time]. 

   
(B). Line–line voltage of inverter VSIL

(3). [X-axis: Volt age, Y-axis: Time]. (H). Line–line voltage of inverter VSIL
(4). [X-axis: Volt age, Y-axis: Time]. 

   
(C). Artificially first-phase voltage of inverters VSIH

(3). [X-axis: Volt age, Y-axis: Time]. (I). Artificially first-phase voltage of inverters VSIH
(4). [X-axis: Volt age, Y-axis: Time]. 

  
(D). Artificially first-phase voltage of inverters VSIL

(3). [X-axis: Volt age, Y-axis: Time]. (J). Artificially first-phase voltage of inverters VSIL
(4). [X-axis: Volt age, Y-axis: Time]. 

  
(E). Seventh-phase voltage across the open-winding  {3}. [X-axis: Volt age, Y-axis: Time]. 

 

(K). Tenth-phase voltage across the open-winding {4}. [X-axis: Volt age, Y-axis: Time]. 
 

      
(F). Third three-phase currents of the open-windings {3}. (L). Fourth three-phase currents of the open-windings {4}. 

 

Fig. 5. Numerical simulation test behavior of the proposed multiphase-multilevel open-winding converter. Modulation index = 0.8, kept for balanced operation. 

Voltages are depicted with its corresponding time averaged fundamental components. Left: Second three-phase open-windings {1}. . Right: Fourth three-phase open-windings {2}. 



 

Fig. 5(A) and Fig. 5(B) are the generated line-line 
voltage of inverters VSIH

(3)
 and VSIL

(3)
, of third three-phase 

windings {3}. Fig. 5(G) and Fig. 5(H) are the generated 
line-line voltage of inverters VSIH

(4)
 and VSIL

(4)
, of fourth 

three-phase windings {4}. Correspondingly, depicted with 
its fundamental components and shown equal in amplitude. 
Also, here it is observed that they are out of phase with 
respect to each other VSIs H and L, 30

0 
spatial phase 

displacement between VSIs of third {3} and fourth {4} 
three-phase open-windings is observed and it is as expected. 
Further, confirms that each single VSIs are modulated in 5-
level by the developed modified single carrier five-level 
modulation (MSCFM) algorithm. Hence, it is confirmed all 
the four three-phases are modulated in 5-level, with equal 
amplitude of fundamental components and proves balanced 
operation between all four VSIs.  

Fig. 5(C) and Fig. 5(D) are the artificially measured 
phase ‘g’ voltage of inverters VSIH

(3)
 and VSIL

(3)
, of third 

three-phase windings {3}. Fundamental components are 
depicted in the same figures and are in agreement to Eq. 14. 
Fig. 5(I) and Fig. 5(J) are the artificially calculated phase ‘j’ 
voltage of inverters VSIH

(4)
 and VSIL

(4)
, of fourth three-

phase windings {4}. Fundamental components are depicted 
in the same figures and are in agreement to Eq. 15. Also, it 
is observed that phase voltages of the VSI H and L are 7-
levels of stepped waveforms which are actually predicted as 
like open-windings {1} and {2}. Further, it is verified that 
the phase voltages generated are of same amplitudes shown 
by fundamental components, and the balanced smooth 
operation is ensured (modulation index = 0.8). It is 
observed that phase voltages are out of phase with respect 
to each other VSIs H and L, 30

0 
spatial phase displacement 

between VSIs of third {3} and fourth {4} three-phase open-
windings is observed and it is as expected like open-
windings {1} and {2}. 

Fig. 5(E) and Fig. 5(K) are the generated phase voltage 
of the third three-phase open-winding (phase ‘g’) {3} and 
the second three-phase open-winding (phase ‘j’) {4} along 
with its fundamental component. First, it is confirmed that 
the voltage generated are 7-levels in both open-windings 
{3} and {4}. Obtained fundamental amplitude is the vector 
addition of phase voltages of inverters (VSIH

(3)
, VSIL

(3)
) and 

(VSIH
(4)

, VSIL
(4)

) and in agreement with Eq. 10 and Eq. 11. 
Second the fundamental components confirm, the phase 
voltages are equal in amplitude, 30

0 
spatial phase 

displacement is observed between voltages of open-
windings {3} and {4}. Hence balanced smooth propagation 
is ensured with dual six-phase converter with modulation 
index=0.8 among all four windings.  

Correspondingly, third three-phase {3} and fourth three-
phase {4} open-winding currents are shown in Fig. 5(F) and 
Fig. 3(L). As expected generated currents are sinusoidal in 
nature, balanced with same amplitude with proper phase 
shifts of 30

0
 is observed between third three-phase windings 

{3} and fourth three-phase windings {4}. Conformity is 
shown by the proposed converter each VSIs are modulated 
sinusoidal in the open-windings {3} and {4}, balanced 
conditions is propagated. Hence, the results discussed 
proven the requirement set by the theoretical developments 
for third and fourth three-phase open-windings are in good 
agreement. Finally, it is confirmed from the depicted test 
results that, the voltages and currents are spatially phase 
shifted by 300 as expected between four three-phase 
windings. Hence the set proposal are verified and shown the 
double quad multilevel inverter is effective solution for 
low-voltage/high current applications. 

V.  CONCLUSION 

A novel double quad (twelve-phase) multilevel inverter 
configured from the multiple standard three-phase VSI 
articulated by this paper work. An original modified single 
carrier five-level modulation (MSCFM) algorithm also 
developed. The PWM strategy modulates each single VSI 
(H and L) as ones equivalent to 5-level outputs and 
compromises the benefit of standard multilevel inverters. 
Confirmatory results are obtained by numerical simulation 
software’s modeling and shown with balanced power 
operations among eight isolated dc sources. Proposed 
multiphase-multilevel inverter effectively utilized for 
multiple batteries or fuel-cells fed system, for medium 
power, ac tractions and ‘More-Electric Aircraft’ (MEA) 
applications. Reliable under circumstances of asymmetrical 
available dc sources without affecting its multilevel 
operation subjected to quadrupling the power by eight VSI. 
Investigation is still kept under developments to frame a 
proper optimized multilevel (5-level) based on carrier based 
or space vector modulation PWM generation techniques for 
near future works. 
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