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Abstract 

A range of coatings from water suspension of anatase has been prepared by suspension high velocity 

oxy-fuel spraying with the aim to study effects of heat power of the flame on phase composition, 

microstructure and surface topography. Three most commonly used approaches of quantitative phase 

analysis have been scrutinized with respect to their applicability and as some of the coatings showed 

presence of preferred orientation it was argued that quantitative Rietveld refinement is the most accurate 

method for phase composition determination. Coatings had a layered duplex anatase/rutile 

microstructure with fraction of rutile increasing exponentially with heat power. Spraying at the lower 

heat power led to a lower surface roughness and higher power resulted in surfaces with pronounced 

humps, which were distributed homogeneously on the surface. The emergence of humps is related to 

an increase in macroscopic surface area of up to 30 % with respect to the flat coating. 
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1. Introduction 

Thermal spraying of powders dispersed in suspension, most often ethanol or water, has facilitated 

deposition of nanosized particles [1] and thus, production of coatings with novel structure, 

microstructure and properties. The contributions of this technique towards production of coatings with 

low thermal conductivities [2], unique microstructural features such as high specific surface area [3] or 

simply thin coatings to bridge the gap between traditional thin film and conventional thermal sprayed 
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coatings have already been demonstrated. There are still many opportunities for further expansion of 

suspension based thermal sprayed coatings and to understand the relationships between processing 

parameters and microstructure [4]. 

 Suspensions of oxide ceramics such as alumina, zirconia and titania have been widely sprayed 

employing both plasma jets and HVOF techniques. Owing to titania being the favourite photocatalytic 

material [5], suspension sprayed titania have been investigated from the viewpoint of different 

suspension injectors [6], spray distance [7], coating hardness [8] and tribological behaviour of the 

coating [9]. One of the main factors which was studied and taken into consideration was the phase 

transformation between the two titania phases of anatase and rutile, and more rarely also brookite and 

titania suboxides. When anatase powder and/or suspension is deposited, it is reasonable to expect both 

transformation into rutile during thermal spraying due to the fact that it is the more stable phase [10] 

and the preservation of anatase, likely due to its less constrained molecular structure in comparison to 

rutile. Traditionally, titanium dioxide is a prime semiconductor photooxidative catalyst material and 

anatase has been generally considered to exhibit higher photocatalytic activity [11] and thus tunability 

of anatase/rutile ratio has been of prime interest [12]. However, it was shown a decade ago that 

multiphase TiO2 with addition of rutile [13] and/or brookite [14] or even a rutile/brookite mixture [15] 

can possess better photocatalytic properties than pure anatase mainly due to phenomena connected with 

electron and hole transfer between the phases. Furthermore, rutile-rich titania is considered as a better 

choice for sonophotocatalytic reaction of water (see e.g. page 211 in [16]) embodying another important 

application area aside from the self-cleaning and self-sterilizing surfaces [17]. Moreover, in the 

transformation from tetragonal anatase of the I41/amd space group into tetragonal rutile with P42/mnm 

space group (more on differences between these two crystal structures can be found e.g. in a review by 

Linsebigler et al. [18]), oxygen vacancies play a prominent role by promoting the transformation and 

lack of oxygen leading, under certain conditions [19], in creation of the nonstoichiometric Andersson-

Magnéli titania phases [20] which have been singled out as promising thermoelectric materials [21].  

 Among the methods employed for titania coatings quantitative composition of constituent 

phases, powder X-ray diffraction (PXRD) has had a prominent place. However, computation of 

quantities from PXRD pattern is not a straightforward task and traditionally phenomenological 



3 

 

approaches [22] [23] have been used for quantification of phases in thermally sprayed coatings and 

even in sol-gel prepared powders [24].  Such approaches usually take into account only selected 

reflections and not the entire measured spectrum, which lead to erroneous results when crystallographic 

texture or nanosized phases are present in the irradiated volume. Texture, or preferred orientation, 

cannot be ruled out in thermally sprayed coatings due to inherent directionality and, hence, anisotropy 

of the deposition process. Specifically for titania, it was reported that plasma spraying led to textured 

titania coatings [25].  

 Besides phase composition there are three other crucial parameters which determine the 

photocatalytic and/or sonophotocatalytic activity of TiO2, namely the presence of defects, surface area 

[26] and crystallite size [27]. Surface area of powder materials is commonly assessed by specific surface 

area defined as total area to mass of the solid sample and principles of Brunnauer-Emmett-Teller theory 

[28] are used for its measurement. When the effect of specific surface area on the (sono)photocatalytic 

activity of TiO2 is investigated, Langmuir-Hinshelwood behaviour [29] is often reported for the rate of 

photocatalytic reactions [30] and, thus, linear dependence of mass of the adsorbent on the photocatalyst 

surface (page 30 in [16]) is expected. Effectively, larger specific surface area leads to higher 

photocatalytic activity. At the same time, there is a correlation between smaller crystallite size and  

higher photocatalytic activity [27]. For coatings, (sono)photocatalysis takes place on the surface 

exposed to the outer environment and any maximization of exposed surface area is beneficial, 

analogically to powders. Furthermore, the ability to spray finer particles in suspension thermal spraying 

processes will contribute to obtaining a coating with smaller crystallite sizes.   

 The aim of this study was to investigate the phase composition quantitatively as a function of 

processing parameters. Since it has been established that the rate at which rutile transforms to anatase 

is an exponential function of temperature [10], we have investigated the effects of heat power onto the 

anatase/rutile ratio in coatings determined by quantitative Rietveld refinement [31] employing 

principles of Hill and Howard [32] and a whole powder pattern modelling approach [33] to refinement 

of crystallite sizes and microstrain values. The impact of processing parameters on the outer surface 

area of the coating is established from analysis of surface topography data.  
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2. Experimental 

2.1. Materials  

A commercially available 20 wt.% water based anatase suspension (D50 = 180 nm, Millidyne, Finland) 

was used in this study. Laser diffractometry data (Beckman Coulter laser diffractometer) provided by 

the supplier showed a bimodal size distribution with one range between 10 - 500 nm with a median of 

~180 nm and another range between 1- 10 µm with a median of ~5 µm. The larger size distribution was 

due to formation of agglomerates in the manufacturing process (i.e., additives to stabilise the 

suspension). The suspension was sprayed onto stainless steel substrates of dimensions 60×25×2 mm3. 

The AISI 304 stainless steel had a nominal composition of Fe-19.0Cr- 9.3 Ni- 0.05 C (in wt.%).  

 

2.2. Sample manufacturing  

The samples were grit-blasted using F100 brown alumina with size range from 0.125 to 0.149 mm, 

cleaned in an ultrasonic bath to remove any embedded alumina particles and finally, cleaned in acetone. 

The samples were then mounted onto a carousel rotating at 73 rpm with a vertical axis of rotation. The 

rotation speed was set to impart a surface velocity to the substrates of approximately 1 m/s across the 

spray path. A modified UTP/ Miller Thermal High Velocity Oxy Fuel (HVOF) system with a direct 

injection at the centre of the gas mixing block was used to spray the suspension. The Suspension High 

Velocity Oxy Fuel (SHVOF) setup has a modified mixing block and a modified gun back body without 

any modification to the combustion chamber and the nozzle. The suspension injector had a diameter of 

0.3 mm to inject the suspension into the centre of the combustion chamber. A 22 mm long combustion 

chamber with 110 mm long barrel nozzle was used in this study. The suspension was fed using a 

pressurised 2 litre vessel equipped with a mechanical stirrer after being homogenised before spraying 

for 90 minutes using a mechanical stirring system. The pressure of the feeding system was fixed at 3 

bar during the spray giving a flow rate of ~80 ml/min. At the end of each spray run de-ionised water 

was supplied to clean the nozzle.  

The gun was mounted on a z-axis traverse unit in front of the rotating carousel and it was set to 

a stand-off distance from the surface of the substrate of 85 mm. The gun was scanned vertically up and 

down at 5 mm/s to build up a coating of the required thickness. In all spray conditions, 10 spray passes 
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were used. During and after the spray run, compressed air jets were directed towards the substrates to 

provide cooling. Hydrogen was used as a combustion fuel and the flow rates were set using a volume 

control system for fuel gas and oxygen. The main reason for using hydrogen as fuel was that it results 

in the cleanest combustion products and the chance of carbon contamination in the coating is 

significantly reduced. Furthermore, a trace amount of contamination can have a large impact on 

photocatalytic behaviour in functional coatings.  

  There are a large number of processing variables in suspension HVOF spraying, and the present 

samples form a sub-set of a matrix of experiments, designed to identify the influence of process 

parameters on coating compositions. The hydrogen and oxygen flow rates during the spray are reported 

in Table 1. These were all sprayed at 100% oxygen stoichiometry, since the influence of excess oxygen 

in the flame on the oxide ceramic feedstock was not a main focus of our study. All the rest of the 

parameters were held constant during the spray runs. The theoretical flame energy for each spray 

condition was calculated using standard combustion formulae and the samples are labelled according 

to their theoretical flame energy values throughout the paper. 

 

Table. 1 Gas flow rates and calculated heat power of the combustion flame.  

Coating 
O2 flow rate 

[l/min] 

H2 flow rate 

[l/min] 

Total flow rate 

[l/min] 

Flame heat power 

[kW] 

TG40 244 122 367 40 

TG56 338 169 508 56 

TG72 438 219 657 72 

TG85 517 259 776 85 

TG101 611 306 917 101 

     

2.3. Coating characterization  

An FEI XL30 (FEI Europe, Eindhoven, The Netherlands) SEM operated at 20 kV was used to 

investigate the feedstock suspension and coating microstructure in cross-section and on the as-sprayed 

surface. Secondary electron (SE) and backscattered electron (BSE) images were used to form images 

as required. The samples were sectioned transversely with a SiC slitting wheel in a precision cutting 

saw, mounted in conductive resin and ground and polished to 1 µm surface finish. Metallographic 

specimens were carbon coated prior to SEM investigations. 
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An Alicona Infinite Focus G5 (Alicona, Germany) areal topography measurement instrument 

based on focus-variation, optical technology was employed for scanning the coating top surface. Data 

were processed according to ISO 25178 [34] supplying the height parameters Sp (maximum height of 

peaks) and (arithmetical mean height of the surface). The analysis of height parameters was done for 

each coating in five areas, by using a 5× objective, with field of view: 2.82 mm × 2.82 mm, and sampling 

at 7.8 μm lateral resolution. Topography was filtered with 2 μm and 0.8 mm S and L nesting indices 

respectively (these are cut-off frequencies to remove high and low-frequency texture components, as 

detailed in ISO 25178). For a more detailed characterization of surface topography a finer resolution is 

needed, hence, we made five measurements in five different places on the coatings with a 50× objective 

(field of view 0.244 μm × 0.244 μm, and sampling at 2.1 μm lateral resolution. Topography was filtered 

with 0.5 μm and 80 μm S and L nesting indices respectively. In this configuration, the ISO 25178 hybrid 

parameter: developed interfacial area ratio Sdr was computed. The actual Sdr values are given in 

percentages, so that Sdr = 0% reflects a flat area while e.g. Sdr = 10% means that the gain in surface 

area is 10 % in respect to the ideal flat.  

 As-sprayed coatings were analysed by a D500 Siemens powder X-ray diffractometer in Bragg-

Brentano θ-2θ geometry equipped with copper anode X-ray tube and a scintillation point detector. The 

2θ range scanned by CuKα radiation was from 20º to 90º with 0.05º step size and 5 s of counting time 

in each step. Guidelines from [35] were meticulously followed both during measurement and during 

Rietveld refinement procedure which was carried out in TOPAS V5 software package. Considering the 

refinement, we aimed for determination of the following structural and microstructural parameters of 

both anatase and rutile: (i) lattice parameters a and c, (ii) quantities in wt.% according to Hill and 

Howard [32], (iii) average sizes of coherently scattering domains, i.e. average crystallite sizes, and (iv) 

microstrains. Crystallite sizes and microstrains were refined under the assumption that small crystallites 

contribute to Lorentzian broadening while the presence of microstrains, or 2nd order residual stresses, 

lead to Gaussian broadening [36]. The broadening was characterized by FWHM (Full Width at Half 

maximum) values rather than with integral breadths due to issues connected with general applicability 

of integral breadth methods in cases when effects of both the crystallite sizes and microstrains are 

expected [37]. In this manner, the entire measured 2θ range was used for determination of the above 
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mentioned parameters from PXRD patterns. The instrumental broadening was accounted for by 

employing a fundamental parameters approach [38] where the details of experimental set-up such as 

radiation source, slits, detector, etc. are used for instrumental function calculations instead of its direct 

determination by measuring sample without any physical broadening effects. The rutile and anatase 

quantities obtained from Rietveld refinement were compared to those computed following a rather 

simple approach, which has been somewhat dominant in the thermal spraying community dealing with 

titania materials. Using integral intensities of only (101) anatase (I(101)A) and (110) rutile (I(110)R) 

reflections, Berger-Keller et al. [22] obtain the anatase volume fraction with the formula: 
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 which was recalculated into weight fraction using 3.78 g/cm3 and 4.23 g/cm3 for densities of anatase 

and rutile respectively. 

Eventually, since the two most widely used methods of quantitative phase analysis [39] are 

quantitative Rietveld refinement (QRR) and rather semi-quantitative Reference Intensity Ratios (RIR) 

method, we also computed phase quantities following a normalized RIR method [40] using star quality 

PDF entries for both phases, namely entries with reference code 21-1272 for anatase (RIR = 3.30) and 

21-1276 for rutile (RIR = 3.40).  

 Since both the RIR approach and equation (1) assume random orientation of crystallite 

aggregates in the irradiated volume, Lotgering factor F(hkl) [41] was computed for the three 

theoretically most intensive rutile reflections of (110), (101) and (211). The Lotgering factor represents 

a simple qualitative measure to assess whether any preferred orientation in the irradiated volume is 

present by comparing peak or integral intensities of the measured PXRD pattern and those of a randomly 

oriented powder sample. Instead of powder sample, relative intensities from PDF entries can be used. 

The comparison is made for the intensity of selected (hkl) (Ihkl) and the intensities I in a chosen 2θ range 

in the following manner: 
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where 0 denotes the intensities of samples with random orientations, either measured or from PDF 

entries. Lotgering factor of 0 corresponds to a completely random distribution while the value of 1 

would indicate a complete orientation of the chosen (hkl) planes in the sample. Due to overlap of anatase 

and rutile reflections in measured PXRD patterns, Lotgering factor was computed using peak intensity 

values after background level subtraction of the measured data and I0 were taken from the rutile powder 

diffraction file with entry 21-1276. The considered rutile reflections in the chosen 2θ range were (110), 

(101), (200), (111), (210), (211), (220) and (310). 

 

 

3. Results 

3.1. Coating microstructure and topography 

In order to observe microstructure of the titania powder dispersed in suspension, it was dried for 2h at 

150 ºC. The images presented in Fig. 1 shows substantial particle agglomeration. However, it is not 

clear whether such agglomeration occurs also in the readily sprayed suspension. The sizes of individual 

particles forming the agglomerate were in the range of 100 to 250 nm, and the average crystallite size 

determined from PXRD pattern was 154 ± 6 nm with the assumption of shape factor k = 0.89 commonly 

used for spherical crystallites. The size of the agglomerates from the laser diffractometry data 

corresponds well to the SEM images. 
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Fig. 1 Feedstock particles as observed in SE mode in SEM showing particle agglomeration (A) and 

the size of individual crystallites (B).  

 

 SE SEM images of the as-sprayed coating surfaces are shown in Fig. 2. The coatings can be 

divided into two groups according to the morphologies of the as-sprayed surfaces. The first group 

comprises coatings TG40 and TG56 sprayed with lower heat power, while the other group is comprised 

of the remaining coatings. For the lower heat power group, smooth coating surfaces were obtained as 

seen in Fig. 2, while the coatings sprayed with higher heat power have distinctive bulges or bumps on 

the as-sprayed surface. These bumps are mostly rounded in morphology and their size range is between 

50-100 m. These features are distributed uniformly over the entire top surface of the TG72, TG85 and 

TG101 coatings. Fig. 3 shows the SEM cross-section image of such a bump in coating TG 85. There 

are indications on the cross-sectional images that these bumps are associated with the creation of voids 

underneath them. It is clear that the bump appears as a cone-shaped structure with a void as the starting 

point. The void was formed during the spray run as a localised defect in the coating and no aggregates 

of unmolten particles was detected at the base of the cone. The void in the BSE image is around 15 µm. 

The clusters of porosity near their base were common to all the observed surface bumps. It was also 

noticed that the bumps have inter-pass porosities. No surface bumps were observed in TG40 and TG56 

coatings. During thermal spraying, the surface roughness continually changes with each subsequent 

pass of the spray gun. The coating deposition begins with a relatively smooth grit blasted surface and 

the accumulation of individual splats as they are piled up in succession will alter the surface roughness 

for the next pass of the spray gun.  
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Fig. 2 Secondary electron images of the top surface morphologies of the as-sprayed surfaces; top row 

illustrates the emergence of humps in TG72, 85 and 101 with detailed features shown in bottom row. 

 

 Fig. 4 shows the detailed microstructure of the surface of coatings sprayed at low power flame 

(TG40) and coating sprayed at high flame power (TG85). The surface of the TG40 coating shows tiny 

agglomerated, sub-micron and nanosized particles resulting from unmelted or partially melted particles. 

When the suspension was sprayed with the low power spray conditions, a lower level of heat was 

transferred from the combustion flame to the particles, resulting in a higher amount of nano-sized 

particles retained from the suspension. Whereas, in the top surface of TG85 coating, the splats are 

mostly micron sized (with a small number of sub-micron splats) and they appear flattened due to the 

particle impact during deposition. The larger splat sizes indicate there was good heat transfer from the 

higher power combustion flame to the particles and the particles were in a molten state during impact. 

However, there are large inter-splat porosities present on the coating top surface. 
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Fig. 3 Presence of voids underneath the bumps in TG85 coating observed in SE (A) and BSE (B) 

mode. 

 

Fig. 4 SE images of the topography of as-sprayed TG40 and TG 85 coatings. Agglomeration of 

unmolten particles is observed in TG40 and the flattening of molten splats is noticeable in TG85.  

  

The Sp and Sa height parameters from surface topography measurements and Sdr parameter 

are summarized in Fig. 5.  Representative height maps for TG85 coating are shown in Fig. 6A,B. Closer 

scrutiny of height and area parameters reveals that the coatings can be divided into two groups with 

TG40 and TG56 comprising one and TG72, 85, 101 forming the other. Taking errors into account the 

maximum height of peaks Sp is the same for TG40 and TG 56, but increases monotonously with flame 

energy for the other group, approaching ~60 μm in TG101. The same behaviour is applicable to an 

overall parameter Sa which characterizes arithmetic mean height of the surface with monotonous 

increase with flame energy from 7.7 ± 0.3 μm to 9.6 ± 0.3 μm for the TG72, 85, 101. 
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Fig. 5 Maximum height of peaks (Sp), arithmetical mean height of the surface (Sa) and surface area 

gain parameter Sdr.  

 

 The parameter Sdr, reflecting the gain in surface area with respect to the ideal flat plane, does 

not follow the same behaviour as Sp. In Fig. 4, the Sdr reaches about 10% for TG40, which is also the 

thinnest at 20 μm, and the impact of substrate grit-blasting will be more pronounced than in the other 

coatings. If only the TG56 to TG101 coatings are compared regarding the Sdr parameter, the gain in 

surface area is less than 2% for TG 56 and thus negligible, but reaches approximately 20% for TG72 

and TG85 and 30 % for TG101. The comparatively large Sdr errors for TG72 to TG101 coatings reflects 

the fact that with higher magnification, the topography becomes more varied, meaning topography may 

change significantly between one image and the next one, leading to more significant variations of the 

Sdr parameter in the five regions it was sampled from. Higher magnification pictures from SEM in Fig. 

2 testify to these variations in particular for the three coatings with humps. Whereas SEM pictures of 

the as-sprayed surface in Fig. 4 testify to submicrometric fine features, the surface topography results 

present a more macroscopic view that mirrors complex surface shapes of valleys and humps and the 

macroscopic gain in surface area due to their presence.  
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Fig. 6 Topography maps of a selected area on as-sprayed TG85 represented as a 3D surface (A) and as 

a 2D image (B). 

 

The microstructures in the cross-sections (Fig. 7) demonstrate that titania coatings are well-

bonded to the stainless steel substrate judging from the absence of cracks in the substrate/coating 

interface. In these coatings there were no horizontal cracks present, normally caused by cooling stresses 

in the coatings. These cracks are typically observed in titania sprayed at shorter stand-off distances. The 

coatings were also free from vertical cracks (except in TG 56), which suggests lower relaxation stresses 

in these coatings. In particular TG72, TG85 and TG101 have a layered microstructure which has already 

been reported for suspension HVOF sprayed titania coatings [9], [42]. 
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Fig. 7 BSE images of microstructures in cross-sections with pronounced particle agglomeration at lower 

energy (white arrow) and nanoscale porosity (black arrow). The occurrence of porosity especially at 

TG85 appears to be interpass in nature.  

 

Since the contrast in BSE images is a function of mean atomic number, the brighter areas have 

higher average Z and as we can expect only titanium and oxygen atoms, the difference can be attributed 

either to a significant presence of vacancies or to the difference in Ti/O ratio in those regions. It should 

be noted that in rutile, atoms in the unit cell occupy less space than in anatase and, consequently, rutile 

has approximately 10% higher density. Thus we assume that the brighter regions correspond to rutile. 

The increase in volume fraction of the brighter regions with increasing heat power, corresponding to an 

increase in rutile/anatase ratio, is clearly visible in the lower row images of Fig. 7.  The lower energy 

flame shows particle agglomeration especially for TG40 coatings, which is also the thinnest of all, 

namely 10 passes resulting in a ~20 µm thick coating. TG40 shows a bimodal coating microstructure 

which contains light grey structure with well-melted particles and dark grey structure of un-melted and 

agglomerated nanoparticles. As the combustion power increases these agglomerated nanoparticles 

decreased in the coatings due to better particle heating. The black areas on the coatings represent 

nanoscale porosity with TG101 coatings having clearly the lowest porosity among all; the decrease of 

porosity in titania thermally sprayed coatings with increasing power has already been documented [43]. 

As the total gas flow rate increases the gas velocity in SHVOF process also increases resulting in higher 

average particles velocities. It is well established that higher particle velocities result in lower porosity 

in the coatings and hence the degree of porosity gradually decreases from TG40 to TG101. 
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3.2. Phase composition and Rietveld refinement 

The results presented in this section are representative for the volume irradiated during the PXRD 

experiment. Since the sizes of the slits were fixed, the measurement mode was “constant volume” when 

the irradiated surface area diminishes with increasing incident angle of primary X-ray beam, but the 

effective penetration depth increases in the scanned range from ~2 μm at 20° to ~7.5 μm at 90°.  

PXRD patterns measured on the as-sprayed surfaces are compared with the dried powder 

pattern in Fig. 8 and document that the anatase to rutile transformation took place, which is commonly 

achieved during titania thermal spraying. The inset in Fig. 8 gives evidence about the decrease in 

intensity of (101) anatase reflection and increase of (110) rutile reflection intensity with higher heat 

power. 

 

Fig. 8 PXRD patterns of powder and coatings with rutile reflections denoted by R, the unlabelled 

reflections are from anatase (powder pattern is pure anatase); the inset shows anatase and rutile 

reflections with intensity in absolute units. 

 

 Standard tetragonal structures of anatase and rutile were taken from the Inorganic Crystal 

Structure Database (ICSD) and used in Rietveld refinement. Only in the case of TG40 were other phases 

of titania detected by X-rays, namely weak reflections α-Fe and γ-Fe. This coating was thinner than 20 

µm and, thus, X-rays penetrated also to the stainless steel substrate and the most diffracting (111)γ and 

(110)α lines are observed in the fit of TG40 in Fig. 9. The quantities from Fig. 9 are compared in Tab. 

3 with values obtained using eq. 1 and the RIR method. The issue of error calculation is a complex one 

for all three used approaches of quantitative phase analysis. In general only QRR gives error values, 
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which are relevant to the mathematical process of fitting the measured data [39] and not the general 

accuracy. The RIR values are given without errors in the PDF database and the intensities in equation 

(1) are also computed without errors. Thus only QRR values in Tab. 3 have errors.   

 

Table. 3 Quantities and semi-quantity of anatase in wt.% according to 3 approaches. 

Coating Rietveld 

refinement 

Equation (1) RIR 

TG40 79.9 ± 0.2 79 88 

TG56 69.1 ± 0.3 63 78 

TG72 58.8 ± 0.4 67 78 

TG85 44.2 ± 0.4 55 67 

TG101 20.5 ± 0.7 34 49 
 

Regarding the first two rutile (110) and (101) reflections at ~27.5 and ~36 º2θ, their relative 

intensities should be 100% and 50% according to star quality PDF card no. 21-1276, but the intensity 

of (101) is higher than (110) for samples TG72, TG85 and TG101. Therefore, Lotgering factors were 

computed for these two reflections and are shown in Tab. 4. 

 

Table. 4 Lotgering factors for (101), (110) and (211) rutile reflections calculated according to 

eq. (2).  

Coating F(110) F(101) F(211) 

TG40 0.11 -0.01 -0.01 

TG56 0.08 0.01 0.00 

TG72 -0.22 0.11 0.07 

TG85 -0.25 0.19 0.04 

TG101 -0.22 0.15 0.02 
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Fig. 9 Results of coatings PXRD patterns Rietveld refinement. 

 

Considering the PXRD patterns from a profile analysis viewpoint, rutile reflections become 

broader as higher heat power is used for the coating’s deposition. Since the crystallite size decreases 

with an increase in broadening, the average rutile crystallite is 85 ± 5 nm in the TG40 coating while it 

is 18 ± 1 nm in TG101. Average crystallite sizes of anatase and rutile in Fig. 10 show that TG72, TG85 

and TG101 are similar  with anatase having ~80 nm size crystallites across this range and rutile about 

20 nm, and hencee crystallite sizes are not affected by flame energies on the higher energy level. 

Therefore, SHVOF spraying of ~150 nm anatase crystallites leads to coatings with even smaller 
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crystallites whose sizes can be controlled via energy of the flame. As the assumption of purely 

Lorentzian broadening due to small crystallites could be considered too stringent [44], we also 

attempted to refine crystallite sizes by simultaneous consideration of Lorentzian and Gaussian 

functions. In all cases, the improvement in fit was negligible and, more importantly, the change in 

calculated crystallite sizes and microstrains was virtually non-existent. The consideration of microstrain 

in rutile has not improved the structural fit in Rietveld refinements, but led to an appreciable 

improvement in the anatase case. All coatings except for TG40 have anatase with moderate microstrains 

exceeding 1×10-3, or one milistrain, and the microstrain in rutile are either negligible or non-existent. 

 

Fig. 10 Average crystallite sizes (D) and microstrain in anatase as obtained by Rietveld refinement. 

 

4. Discussion 

4.1. Quantitative phase composition  

Selection of the most appropriate method for phase quantities calculation in the thermally sprayed 

coatings must be done with respect to the conditions which the particular method assumes on the state 

of the irradiated volume. In this paper, we have used three of the most common approaches [39] for 

evaluation of quantitative phase composition from PXRD data. 

Both the RIR method and computations based on eq. 1 are dedicated to powder samples with 

the assumption of random orientation of powder particles which is, however, not fulfilled by the 

coatings analysed within the frame of this study. The simple preferred orientation characterization by 

Lotgering factors of selected rutile reflections in Tab. 4 reveals a certain degree of preferred orientation 
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of (110) planes in all the samples and of (101) planes in three coatings sprayed with higher energies. 

The negative values of F(110) for TG72, TG85 and TG101 coatings indicate that the measured intensity 

is less than in the randomly oriented sample [45]. On the other hand F(101), for the same three coatings, 

reach ~0.2 values which are virtually the same as reported for plasma sprayed TiO2 coatings by Li and 

Ding [25] and reflect the existence of preferred orientation in these samples. Lotgering factors as such 

are a reliable method of validating preferred orientation in coatings, but by themselves cannot pinpoint 

relation between process parameters and texture. Nevertheless, these factors are useful when the 

applicability of the suitable method for phase quantity computation is to be verified. In particular, for 

quantitative phase composition in systems with two phases determined from classically measured 

intensities of diffraction profiles such as in eq. (1), the effect of texture is very strong and leads to 

substantial discrepancies between reality and obtained values [46].   

In Rietveld refinement, two approaches can be used when the need arises to account for 

preferred orientation, either the so-called March-Dollase method [47] or employment of the spherical 

harmonics function as described in detail by Popa [48]. Upon performing the refinement, it becomes 

clear which reflections are not well matched in terms of intensity and for these reflections, the March-

Dollase method can be applied to every phase in the irradiated volume considering up to two preferred 

orientation directions according to [49]. In order to get a significant improvement in the refined 

structural model, preferred orientation in anatase had to be considered for all coatings bar the ones with 

extreme amounts of anatase. Employment of March-Dollase method for rutile was necessary in the case 

of TG72, TG85 and TG101 coatings, using two preferred orientation directions of (101) and (111). 

Hence, it is suggested that quantitative Rietveld refinement is applied for phase quantity calculations in 

thermally sprayed coatings when Lotgering factors indicate presence of preferred orientation. 

In general, rutile reflections become more intensive as higher heat power is used for the 

coating’s deposition. This is mirrored by determined quantities listed in Tab. 3. While the normalized 

RIR method and eq. (1) take into account only one reflection from each anatase and rutile, the Hill and 

Howard algorithm incorporated in Rietveld refinement uses all reflections. Moreover, since the 

preferred orientation is present in agglomerates of rutile grains, only Rietveld refinement can take this 
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feature into account and is, thus, more accurate than the other two approaches and the quantities 

determined by QRR are considered in the following discussion. 

 

4.2. Anatase to rutile transformation during SHVOF  

Owing to the facts [10] that (i) rutile is the more stable TiO2 phase at all temperatures and that (ii) the 

transformation rate from anatase to rutile is an exponential function of temperature, the increasing 

presence of rutile in coatings sprayed with a higher heat input is expected, and indeed, verified by the 

obtained results. With the aim of finding the relation between rutile quantity R and energy of the flame 

E, the five data points don’t follow linear behaviour and are fitted better by a simple exponential 

function R(E) = k1·e k2·E, with constants k1 = 7.74 and k2 = 0.02 and R-squared of 99.2%. Hence, 

within the number of coatings in this study, the rutile amount is an exponential function of heat input.  

 The anatase to rutile transformation during SHVOF leads to a distinctively layered coating 

microstructure seen in Fig. 7 where the areas with darker contrast correspond to occurrence of anatase 

whereas the lighter areas are rutile-rich. The existence of a time dependent temperature gradient during 

spraying is most likely the main driving force between the alternating presence of anatase and rutile in 

the layers, i.e. when a flame with higher energy and, thus, higher thermal input is used, the 

transformation to rutile is favoured.    

Due to the spatial distribution of rutile and anatase crystallites, it is reasonable to expect a non-

homogeneous field of macroscopic residual stresses, microstrains and possibly the crystallite sizes also 

follow a certain pattern within the coatings. Lacking the beam size necessary for such detailed analysis, 

we nevertheless attempted line profile analysis [50] aimed at determination of average microstrains and 

average crystallite sizes (or coherently scattering domains) whose results are presented in Fig. 10. For 

three higher heat powers, the crystallite sizes barely change whereas the anatase quantity decreases from 

60 to 20 wt.%. It is therefore possible that the mechanism of critical titania particle size, similar to the 

one proposed by Reidy et al. [24], is also in play during SHVOF process. As for microstrains, their 

larger values in anatase as compared with rutile bear similarities to the findings in titania nanopowders, 

in which anatase is expected to have larger microstrains [51].       
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Another important feature of SHVOF spraying of titania is the production of a particular coating 

surface topography with an array of humps for higher energies of 72, 85 and 101 kW as seen in Figs. 2, 

3 and, in particular, Fig. 6. The humps bear resemblance to the so called cauliflower or broccoli surface 

morphologies [52] obtained during suspension plasma spraying of yttria stabilized zirconia or alumina. 

However, the columnar structure usually associated with the cauliflower/ broccoli morphology was not 

observed in the coatings here and, instead, creation of voids took place. Analysis of small particle 

plasma sprayed alumina coatings by Trice and Faber [53] documented formation of similar humps. The 

formation of humps was attributed to small perturbations developed from splashing and subsequent 

impact of melted particles, which were divided by the perturbations, leading to formation of porosity 

on the boundaries between the hump area and the surrounding environment (for detailed explanation 

see Fig. 9 in [53]). While the authors sprayed nominally 9 μm sized alumina particles, we sprayed much 

smaller particles from suspension. On the other hand, Stiegler et al. in a study of suspension HVOF 

sprayed hydroxyapatite coating [54] reported the formation of humps in their coatings and attributed 

these to the aggregates of unmolten particles at the base of the humps. In theory, both mechanisms can 

be responsible for the formation of humps observed in our study. It is clear from the cross-sections in 

this study that the base of all the humps have either voids ranging from ~5-15 µm or surface 

irregularities caused by grit blasting of the substrate. The smaller particles used in this experiment can 

easily replicate the surface anomalies of the grit blasted surface resulting in cone shaped structure. Now 

moving onto the voids at the base of the cone, these voids or porosities can be easily created due to 

insufficient bonding of particles during the layer to layer deposition. Another hypothesis is that a large 

aggregate of unmolten particles created a surface asperity and the incoming molten splats was divided 

into several segments upon impacting the asperity. This poorly bonded large aggregate of unmolten 

particles can be successively removed by incoming hot gas jet from the gun. Once a defect is formed 

the growth of the cone relies on successive particle deposition which exaggerates the defect. The smaller 

particles in SHVOF tend to follow the gas flow characteristics due to their low inertia. In addition, the 

smaller particles in SHVOF have lower Stokes numbers and a lower Stokes number indicates the 

smaller particle can be affected by the turbulent flow due to the presence of the substrate and deflected. 
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The deflected particle having velocity component parallel to the substrate can stick to the asperities and 

subsequent preferential growth of the humps. 

Hence we can expect substantial gains in surface area when TiO2 coatings are prepared via the 

SHVOF route employing higher heat powers of the flame, which has been confirmed by topographical 

measurements with the Sdr parameter pointing to ~30 % macroscopic area gain in TG101. The higher 

surface area and asperities may prove beneficial in applications where a larger surface area is required.  

 

5. Conclusions 

SHVOF spraying of water based suspension from ~180 nm anatase particles leads to coatings with 

duplex anatase/rutile composition which can be tuned by spraying parameters; an increase in flame 

power leads to more rutile in the coating. It was found that within the frame of the number of analysed 

coatings, the rutile amount in the coatings is an exponential function of heat input of the flame. 

 It is suggested that preferably quantitative Rietveld refinement is used for quantitative phase 

analysis in titania thermally sprayed coatings, because the technique can take into account the existence 

of preferred orientation originating due to the inherent anisotropy of the deposition process. Higher 

flame power, i.e. corresponding to 72, 85 and 101 kW, does not affect the crystallite size of anatase 

(~80 nm) and rutile (~20 nm). Also, spraying with higher power leads to the presence of microstrains 

in anatase of 10-3 magnitude; whereas, microstrains in rutile are either negligible or non-existent.  

Origination of rutile is connected with emergence of preferred orientation and, thus, the rutile 

crystallites are not randomly oriented in the coating.  

 Coatings sprayed with lower energies have relatively smooth as-sprayed surfaces while for 

higher energies (72 kW and above), typically humps are seen on the surface. The formation of these 

humps was associated with surface irregularities at the base of the cone shaped features. The emergence 

of these humps lead to a substantial increase of surface area of the TiO2 coating and added about 30 % 

area with respect to the ideally flat coating when the highest heat power of the flame was used. 
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