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An improved algorithm based on the method of lines for modelling of Q-switched fluoride glass based erbium doped 
fiber lasers is presented. The algorithm uses finite difference method to reduce partial differential equations to a set 
of ordinary differential equations. Unlike the method of characteristics the ratio of the temporal and spatial step is 
not fixed. Thus computationally efficient algorithms with an adaptive step control for the solution of a set of ordinary 
differential equations can be directly applied. The performance of the improved algorithm against the standard one 
is compared. The results obtained show that the improved algorithm is significantly more computationally efficient. 
© 2016 Optical Society of America 
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1. INTRODUCTION 
Mid Infrared (MIR) light sources have many applications in medicine, 

environment monitoring, and defense. For these applications a variety 
of MIR sources have been developed. Of particular importance for 
practical applications are laser sources. Many types of MIR lasers have 
been developed: gas lasers, solid state lasers, fiber lasers and quantum 
cascade lasers. The fiber lasers when compared with other technologies 
are robust, reliable, compact, and offer high quality of the output beam. 
So far wavelengths as long as 3.9 m have been achieved by fiber lasers 
using liquid nitrogen cooled ZBLAN fiber doped with holmium ions [1]. 
In recent years the development of the erbium doped fluoride fiber laser 
sources turned out to be particularly successful [2-8]. These lasers are 
typically operating at approximately 3 m, operate at room 
temperature and have a simple pumping mechanism, which relies on 
the use of standard 980 nm pump semiconductor lasers that are robust, 
reliable and can deliver high power at a relatively low cost. Further, 
erbium doped fluoride fibers are commercially available from several 
manufacturers at a moderate cost per meter. So far, the Er3+ doped fiber 
lasers have been demonstrated to be capable of operating at room 
temperature with output wavelength as long as 3.6 m [7]. Under CW 
(continuous wave) operation the Er3+ doped fiber lasers have reached 
the output power of 24 W using a fiber immersed in the fluorocarbon 
liquid in a configuration using bulk optics elements [2] while in all fiber, 
passively cooled configuration 20 W was obtained [4]. The slope 
efficiency of CW erbium doped fluoride fiber lasers has reached so far 

51 % [5]. Also a number of Q-switched pulsed lasers were developed 
using erbium doped ZBLAN fibers. The highest average power achieved 
so far in using Q-switching is 12 W with the pulse energy up to 0.1 mJ [3] 
while the highest peak power achieved so far is 10 kW with the pulse 
energy exceeding 0.5 mJ [6]. Finally, it is noted that the ZBLAN 
fibers have been successfully applied in ultrafast fiber lasers [8]. 

 
With the increasing number of successfully realized various erbium 

doped fluoride fiber lasers the design and optimization becomes 
increasingly important, especially when attempting to convert erbium 
doped fluoride fiber lasers from experimental laboratory setups into 
commercial products that can compete on the market with other types 
of lasers. The design of fluoride glass based erbium doped fiber lasers 
has therefore attracted significant attention. Several models were 
developed for modelling erbium doped fluoride fiber lasers and 
amplifiers [9-14]. These laser models rely on solving the rate equations 
and the propagation equations for the pump and signal waves in the 
time domain and are closely related to models used for time domain 
simulations of Q-switched silica glass based fiber lasers [15] and Raman 
fiber amplifiers [16]. In [9-14] the partial differential equations (PDEs) 
that describe the propagation of forward and backward travelling 
waves for the pump and signal in these models were reduced to a set of 
ordinary differential equations (ODEs) using the method of 
characteristics (MOC). However, for MOC the spatial and temporal step 
ratio is fixed and has to be kept at a constant value equal to the optical 
wave group velocity for the transient results to preserve their physical 
meaning. This significantly affects the algorithm efficiency since the 
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benefit of applying adaptive step algorithms for the integration of the 
ODEs cannot be fully taken advantage of. Therefore, in this contribution 
a different approach is pursued. The finite difference method and the 
method of lines (FD-MOL) is used to reduce the PDEs for the forward 
and backward travelling waves to a set of ODEs. It is shown that this 
allows a direct application of computationally efficient algorithms with 
an adaptive step control for the integration of ODEs, which are readily 
available from the standard numerical libraries. Thus the model 
development turns into a comparatively simple task.  A standard first 
order accurate algorithm is presented that was adapted from the field of 
semiconductor laser modelling [17]. Then the concept of the Extended 
Taylor Series (ETS) [18-21] is applied to derive second order finite 
difference (FD) approximations and develop a FD-MOL algorithm for 
modelling Q-switched erbium doped fluoride glass fiber lasers. It is 
shown that the FD-MOL using second order finite difference 
approximations is significantly more efficient than the one using the first 
order approximations.  

 
The paper is divided into four sections. In second section the 

equations are provided that describe the level populations’ 
distributions and the distribution of the photon density in the cavity and 
provide the derivation of the first and second order FD approximations. 
In the third section the results are discussed and a concise summary is 
provided in the last section.  

2. THEORY 
Let’s consider a simple fiber laser cavity pumped at z = 0 with the 

output signal collected from the other end of the fiber at z = Lfib (Fig.1a). 
The evolution of the pump and signal powers (Pp and Ps respectively) is 
described by the equations [9, 11, 14]: 
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The partial differential equations 1 are solved subject to the following 
boundary conditions: 

         pumppppp PzRzPzRzP 01000    (2a) 

      fibpfibpfibp LzPLzRLzP  
 (2b) 

      000   zPzRzP sss  (2c) 

      fibsfibsfibs LzPLzRLzP  
 (2d) 

where Lfib is the fiber length, Rp and Rs is the facet power reflectivity for 
the pump and signal waves, respectively, while Ppump stands for the 
pump power launched at the fiber. First the cavity is unfolded following 
on the concepts outlined in [22]. The concept of unfolding the cavity is 
illustrated in Fig.1b and Fig.1c. In the standard approach the 
computational domain for forward and backward propagating waves is 

separate. When unfolding the cavity both domains are combined and 
the reflection coefficient is effectively replaced by the transmission 
coefficient of the same value. For the unfolded cavity one obtains the 
following equations for the pump and signal waves: 

    






















pppp

g

PgP
tvz


1

 (3a) 

    






















pppp

g

PgP
tvz


1

 (3b) 

    






















ssss

g

PgP
tvz


1

 (3c) 

    






















ssss

g

PgP
tvz


1

 (3d) 

So, the equations for forward and backward propagating waves have 
the same form, which reduces the amount of algebra necessary for 
deriving the finite difference approximations. When using the unfolded 
cavity approach one needs to map appropriately the backward 
propagating wave onto the domain of the level populations (Fig.1c – 
dashed lines).  

     In order to derive finite difference approximations for the spatial 
derivatives in (3) first a longitudinal discretization within the 
computational domain (Fig.1c) is introduced. At z = 0 the sample of 
signal or pump power for the forward propagating wave is not held 
since it is related through the boundary conditions (2) with the value of 
the power for the backward propagating wave (this is marked 
schematically by a black disc and a circle in Fig.1c). Similarly, the value 
of the power for the forward propagating wave is stored only at z = Lfib. 
Keeping this in mind the Extended Taylor Series (ETS) is derived for the 
part of the computational domain containing the discontinuity. 
Assuming that the value of the pump power on the left hand side (LHS) 
of the discontinuity is related to the value of the power at the right hand 
side (RHS) via (c.f. equations 2):  

   pumpPRTTRPP   1; 00  (4a) 

one obtains the following continuity conditions for the spatial 
derivatives of the power: 
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It is noted that for the signal power T0, T1 and T2 are equal to zero. 

For higher order derivatives one obtains a generic form of the continuity 
condition: 
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Fig. 1.  Schematic diagram of the fiber laser cavity -a); the distribution 
and mapping of the finite difference sampling points within the 
computational domain before -b) and after unfolding the cavity -c). 

 
The exact form of the ETS relating the power values at two distinct finite 
difference nodes depends on the position of the discontinuity within the 
stencil. With using up to three nodes one can have three possible 
situations (Fig.2). Consistently with Fig.1c the pump and signal power 
samples are kept to the left of the position of discontinuity and place the 
discontinuity coincidently with a finite difference node (Fig.2). Thus 
following the methodology outlined in [20] one obtains the following 
ETS approximation for Fig.2a: 
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where D is the differentiation operator: d/dz. Similarly, for Fig.2b 
one has: 
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and for Fig.2c: 
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Using expansions 5 the following backward finite difference 
approximations are obtained: 
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where O(z) designates terms containing first and higher powers of z 
while O(z2) terms containing second and higher powers of z.     

a)                                                b) 

                 

c) 

 

Fig. 2.  Schematic diagram showing the position of the discontinuity 
within the three point backward finite difference stencil: first node -
a); second node -b) and third node -c). 

 

Equations 6a, 6b and 6d give 2nd order accuracy whilst equations 6c and 
6e are 1st order accurate. It is also noted that equations 6d and 6e are the 
standard finite difference approximations, which apply at all nodes 
when the finite difference stencil does not cross a discontinuity position. 



Using the finite difference approximations 6 one can convert partial 
differential equations 3 into a set of ordinary differential equations 
(ODEs). Due to the presence of strong oscillations during the switch on 
process [12] ODE integration schemes suitable for stiff systems need to 
be applied. 

3. RESULTS 
An erbium ion model is considered that includes 5 distinct energy 

levels (Fig.3) [14]. The levels 4F7/2, 4H11/2 and 4S3/2 are considered to be 
in a thermal equilibrium due to phonon coupling and hence are 
represented by one level – N4. Similarly, the levels 4I9/2 and 4I11/2 are 
represented by the level N2, which is at the same time the upper lasing 
level.  The following equations describe the level population dynamics 
(c.f. Fig.3):  
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 It is assumed that the up-conversion to all other levels is negligible 
and hence:  

 ErNNNNNN  43210  (8) 

where NEr is the erbium ion dopant concentration. The symbols i 
denote level i lifetime and ij are the branching ratios for the levels i and 
j. W11 and W22 denote the coefficients for energy transfer upconversion 
from the 4I13/2 and 4I11/2 energy levels, respectively [9]. The ground state 
absorption rate and the stimulated emission rate are calculated from 
[9]: 
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When solving equations 7 in the time domain one needs to keep in 
mind that the initial values of level populations need to satisfy the 
condition 8 in order to obtain a physically meaningful solution.  Tables 
1 and 2 list the modelling parameters [9]. The branching ratios were 
slightly adjusted when compared with [9] so that they add up to 1. This 
is relevant to the consistency of the time domain calculations.  

 

Fig. 3. Schematic diagram of the energy level model used in the 
simulations. 

 
Table 1 Modelling parameters 

parameter Unit value 
b1/b2  0.1/0.16 
W11 m3/s 1x10-24 
W22 m3/s 0.3x10-24 

p m 976x10-9 

s m 2.8x10-6 

GSA m2 2.1x10-25 

SE m2 4.5x10-25 

NEr 1/ m3 9.6x1026 
L m 2.5 

p  0.009 

s  1.0 

p 1/m 23x10-3 

s 1/m 3.0x10-3 

Rp(z=0)  0 
Rp(z=L)  0.04 
Rs(z=0)  0.96 
Rs(z=L)  0.04 
Aeff m2 314x10-12 
 
Table 2 Branching ratios and level lifetimes 

parameter Unit value 

1 ms 9.0 

2 ms 6.9 

3 s 10 

4 s 120 

2120  0.37, 0.63 

323130  0.99, 0.0, 0.01 

43424140  0.85, 0.006, 
0.004, 0.14 

 
First the calculation of the steady state solution using the developed 

time domain model is discussed. The steady state solution provides a 
self-consistent initial state, which needs to be calculated before the 
shape of Q-switched pulses can be obtained numerically. For this 
purpose first the reference values of the output signal power are 
calculated using the steady state model based on the relaxation method 
(RM) [23]. The calculated values of the output power at four selected 
values of pump power are given in Table 3 and are believed to be 
accurate on twelve digital places. Also in order to shorten the time 
domain calculation time RM is used to calculate the initial signal and 
pump power distributions and level populations for the time domain 
(TD) model. The simulation time was selected to be equal to 30 ms, i.e. 
several times larger than the upper state radiative life time.  It is also 



noted that all calculations have been carried on a PC using a single 
processor clocked at 3.4 GHz within Matlab programming environment. 

 
Table 3 Reference values of the output power and the CPU time 

required to calculate them 
Pump power(z=0)/W Output power 

(z=Lfib) /W 
CPU time/s 

5 1.39527600015 78.76 

10 3.11902141885 85.94 

15 4.85305182935 86.19 

20 6.55663433930 84.27 

 

Fig. 4. Dependence of the CPU time -a) and the absolute error -b) on 
the spatial step size for the calculation of the steady state solution at 
5 W input pump power for the 1st and 2nd order FD-MOL. This results 
were obtained for t = 30 ms. 

Fig.4a shows the dependence of the CPU time needed to complete the 
TD simulations using the 1st and 2nd order FD approximation on the 
spatial discretization step. The CPU time for the 1st order method is 
significantly larger than in the case of 2nd order FD-MOL. Fig.4b shows 
the dependence of the absolute error, which was calculated using the 
reference values from Table 3, on the spatial discretization step. These 
results show that the 2nd order FD-MOL achieves much lower values of 
the absolute error than the 1st order FD-MOL. Also the inclination of the 
lines representing the error values for both methods is different. Table 
4 shows the values for the error line inclination calculated at 4 values of 
the pump power. These results confirm that the derived FD 

approximations show truly 1st and 2nd order accuracy as expected. 
Lastly, one might find it surprising, that it takes more CPU time to obtain 
the results using the 1st order method when compared with the 2nd 
order method. The explanation of this fact can be extracted from the 
results presented in Fig.5. One can observe the presence of very strong 
oscillations in the dependence of the signal power on time (Fig.5d).  It is 
also noted that the results shown in Fig.5e confirm that even though the 
level 4I11/2 has a longer life time than that of the level 4I13/2 the population 
inversion can still be achieved. This is due to the fact that in heavily 
erbium ion doped ZBLAN glass the energy transfer upconversion 
process (4I13/2,4I13,2) -> (4I15/2,4I9/2) is faster than (4I11/2,4I11,2) -> 
(4I15/2,4F7/2) [14]. 
 

Fig.6. shows the results from Fig.5d in magnification. The oscillations 
for the signal power are very strong. For an adaptive step ODE algorithm 
in order to preserve the low value of the set error tolerance whilst 
performing integration over these oscillations the time step has to be 
kept very small. This results in a long calculation time. For comparison 
Fig.7 shows the results obtained using the second order FD-MOL. There 
are only tiny oscillations of the signal power, which can be seen in more 
detail in Fig.8. An adaptive step ODE solver can perform the integration 
in such case with much longer time step and hence much shorter 
calculation time in the case of the 2nd order FD-MOL. The cause of strong 
oscillations in the case of the 1st order FD-MOL is its low accuracy and 
the fact that the accurate solution calculated by RM is used as an initial 
seed. Since the steady state solution of the 1st order FD-MOL differs 
significantly from the accurate one calculated by RM, it is perceived as a 
strong deviation from the steady state equilibrium intrinsic to the 1st 
order FD-MOL. Since 2nd order FD-MOL is significantly more accurate 
the accurate solution calculated using RM differs much less from the 
intrinsic steady state solution of the 2nd order FD-MOL. Hence, the time 
dependence of the signal power during the transition has much less 
structure. Finally, to avoid any confusion it is noted that the transition 
observed in Fig.6 and Fig.8 is a numerical artefact essentially caused by 
the discrepancies between the numerical solution of the steady state 
model and the numerical solutions of the time domain models. 

 

Fig. 5. Dependence on time of the level populations -a) and -b) and the 
pump -c) and signal power -d) at selected longitudinal positions; the 
final distribution of the level populations -e) and of pump and signal 
power -f) obtained for t = 30 ms. These results were calculated at 5 W 
input pump power using the 1st order FD-MOL. 

 



Table 4 Finite difference approximation order extracted from the 
simulation results 

Pump power/W 
1

st

 order 2
nd

 order 
5 0.996  1.973  

10 0.997  1.998  

15 0.997  2.026  

20 0.995  2.044  

 

 

Fig. 6. Dependence of the signal power on time at selected 
longitudinal positions within the cavity. These results were 
calculated at 5 W input pump power using the 1st order FD-MOL. 

Once the initial state is calculated self-consistently one can calculate the 
pulse shape emitted by the fiber laser during Q-switching. The operation 
of the Q-switch is approximated by varying in time the reflectivity of the 
mirror positioned at z = Lfib (Fig.9). The Q-switch is switched on for 1 s 
with 100 ns transition time along a sine squared leading edge shape 
(Fig.10). Fig.11a shows the dependence of the signal power on time at 
selected positions within the cavity calculated by the 2nd order FD-MOL. 
The pulse peak power is approximately equal to 2 kW and the full width 
half maximum (FWHM) is ~ 100 ns, which are typical values for pulses 
generated by an erbium doped fluoride fiber Q-switched laser [6].  
Fig.11b compares the dependence of the calculated pulse peak power 
on the spatial discretization step for both methods. These results 
confirm that the 2nd order FD-MOL converges much faster than the 1st 
order FD-MOL. In fact with the 2nd order FD-MOL the results do not vary 
significantly for dz ≤ 0.02 m. In the case of the 1st order FD-MOL even at 
dz = 0.004 m the results have still not converged. Fig.11c shows the CPU 
time needed to obtain the results shown in Fig.11b. Again the 2nd order 
FD-MOL results can be obtained much faster than the 1st order ones. In 
fact it takes approximately 3 minutes to obtain the  results using the 
second order FD-MOL with dz = 0.02 m, which is sufficient for obtaining 
good accuracy. For the 1st order method at dz = 0.004 m one needs 
nearly 10 hours to complete the calculations, without achieving a 
satisfactory accuracy. The reason for the long calculation time of the 1st 
order method is mainly the long time needed to calculate self-
consistently the initial state of the laser. Fig.11d shows the dependence 
of the CPU time needed to calculate the pulse evolution only within the 
1 s temporal window set by the Q-switching pulse (c.f. Fig.10). The 
calculation time for the 2nd order FD-MOL is slightly larger than for the 
1st order FD-MOL, which can be attributed to an additional 
computational overhead required for calculating numerically the FD 
approximations to a higher degree of accuracy. 

 

 

 

Fig. 7. Dependence on time of the level populations -a) and -b) and the 
pump -c) and signal power -d) at selected longitudinal positions; the 
final distribution of the level populations -e) and of pump and signal 
power -f) obtained for t = 30 ms. These results were calculated at 5 W 
input pump power using the 2nd order FD-MOL. 

 

 

Fig. 8. Dependence of the signal power on time at selected 
longitudinal positions within the cavity. These results were 
calculated at 5 W input pump using the 2nd order FD-MOL. 

 

 

Fig. 9. Schematic diagram of a Q-switched fiber laser cavity. 

 



 

Fig. 10. Time dependence of the right mirror (z = Lfib) reflectivity. 

 

 

 

 

Fig. 11. Signal power pulse shape at selected positions within the 
cavity calculated using 2nd order FD-MOL for dz = 0.008 m -a); 
comparison of the dependence of signal pulse peak power on the 
spatial step for the 1st and 2nd order FD-MOL -b); comparison for the 
dependence of the overall CPU time -c) and the CPU time needed for 
the pulse shape calculation -d) on the spatial step for the 1st and 2nd 
order FD-MOL. The pump power is 15 W. 

 

4. CONCLUSION 

A method of lines for the analysis of Q-switched fluoride glass fiber 
lasers was developed, which is based on the finite difference method. It 
was demonstrated by comparing with the results obtained using the 
relaxation method that the developed finite difference approximation 
has a truly second order accuracy with respect to spatial discretization 
step. When compared with the standard first order FD-MOL the 
developed second order FD-MOL is superior both in terms of accuracy 
of the calculated results and the CPU time needed to complete the 
calculations. Unlike the time domain methods based on the method of 
characteristics, the developed FD-MOL can be easily implemented using 
the standard ODE algorithms with an adaptive step control. 
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