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Title: Functionally-Relevant White Matter Degradation in Multiple Sclerosis: A Tract-

Based Spatial Meta-Analysis 

Manuscript Type: Original research. 

Advances in Knowledge: 

1. There are differential and only minimally-overlapping distributions of lower 

fractional anisotropy relating to clinical disability and cognitive impairment. 

Low anterior callosal and thalamic fractional anisotropy has specific 

importance to cognitive status, whereas low posterior callosal and deep 

parietal fractional anisotropy has specific importance to physical disability 

(uncorrected p<0.005, z>1, cluster extent≥10 voxels). 

2. Cerebral white matter degradation may be more relevant to cognitive than 

physical disability: 2.3 times as many voxels had a significantly lower 

fractional anisotropy in relation to cognition (753 voxels) than to physical 

disability (323 voxels) and the z-scores for those clusters were higher for 

cognition than for physical disability (2.532 and 1.701, respectively). 

Implications for Patient Care:  

1. Widespread white matter damage measured by diffusion tensor imaging 

occurs in multiple sclerosis; our meta-analysis reveals differential and only 

minimally-overlapping distributions of white matter damage relating to both 

cognitive and physical disability. 

Summary Statement: Our voxelwise meta-analysis of studies relating tract 

fractional anisotropy to cognitive and physical disability in multiple sclerosis reveals 

minimally-overlapping distributions and a possible greater relevance to cognition 



than to physical disability.



Abstract 

Purpose 

To identify statistical consensus between published studies for distribution and 

functional relevance of tract white matter degradation in multiple sclerosis (MS). 

Materials and Methods 

By systematically searching online databases, we identified tract-based spatial 

statistics (TBSS) studies which (1) compare fractional anisotropy (FA; a marker for 

white matter integrity) in MS patients to healthy controls, (2) correlate FA in MS 

patients with physical disability, or (3) correlate FA in MS patients with cognitive 

performance. We performed voxelwise meta-analyses using the Signed Differential 

Mapping technique for each comparison. Moderating effects of mean age, mean 

physical disability score, scanner magnet strength, lesion load and number of 

diffusion directions were assessed by meta-regression. 

Results  

Data from 495 patients and 253 controls across 12 studies were meta-analysed. MS 

diagnosis was significantly associated with widespread lower tract FA (9 studies; 

largest cluster: 4379 voxels, Z=7.1, p<0.1×10-8). Greater physical disability was 

significantly associated with lower FA in the right posterior cingulum, left callosal 

splenium, right inferior fronto-occipital fasciculus and left fornix crus (6 studies; 323 

voxels, Z=1.7, p=0.3×10-4). Impaired cognition was significantly associated with 

lower FA in the callosal genu, thalamus, right posterior cingulum and fornix crus (7 

studies; largest cluster: 980 voxels, Z=2.5, p<0.1×10-8).  

Conclusion  



White matter damage is widespread in MS with differential and only minimally-

overlapping distributions of low FA relating to physical disability and cognitive 

impairment. The higher number of clusters of lower FA in relation to cognition and 

their higher Z-scores suggest that cerebral white matter damage may have a greater 

relevance to cognitive dysfunction than physical disability in MS, with low anterior 

callosal and thalamic FA having specific importance to cognitive status.    



Introduction 

Magnetic resonance imaging (MRI) has been used extensively in research aimed at 

elucidating mechanisms underlying disability in multiple sclerosis (MS)1, 2. Cerebral 

white matter (WM) has been a target for investigation, given the propensity of MS to 

affect WM. Studies performing quantification and mapping of macroscopic WM 

lesions have identified associations between lesion distribution and disability3-8, but 

fail to take into account widespread diffuse damage present in normal-appearing WM 

(NAWM). A technique which is sensitive to this damage9,10, diffusion tensor imaging 

(DTI), allows quantification of fractional anisotropy (FA), a marker of ultrastructural 

WM integrity that has been used for more than a decade to study both lesional and 

NAWM damage in MS9-14.   

Since its description in 2006, tract-based spatial statistics (TBSS)15, has been 

applied to multisubject spatial analysis of DTI data examining neurological and 

cognitive correlates of WM degradation in MS15-32. These studies broadly support the 

suggestion that disconnection of cortical or subcortical grey matter by diffuse and 

focal damage of interconnecting white matter may be an important factor contributing 

to physical disability and cognitive dysfunction in MS18. However, results from these 

studies demonstrate differences in patterns of tract-based functionally-relevant FA 

change (i.e.tract-based  correlations between FA and measures of clinical disability 

or cognitive function) even where there are significant methodological and 

demographic overlaps, and this heterogeneity limits interpretation. Some sources of 

such heterogeneity may include cohort age and level of disability, scanner magnet 

strength and the number of diffusion gradient directions used.  



From published studies, some common findings are apparent; for example, reduced 

FA and increased mean diffusivity (MD) associated with greater physical disability 

has been reported in the corpus callosum and pyramidal tracts15, 19, 21, 22, 31. An 

association between worse cognitive performance and lower FA in the corpus 

callosum, posterior thalamic radiation and posterior cingulum has also been 

reported18, 20, 21, 23, 24, 30, 31. Given that the sensitivity of DTI varies by brain region 

depending on the direction and density of nerve fibres33, meta-analysis of DTI data 

could potentially increase statistical power enough to identify important regions of 

interest which would otherwise go unnoticed, for example those in smaller tracts. We 

aimed to identify statistical consensus between published studies for distribution and 

functional relevance of tract WM degradation in MS. 



Methods 

This study was financially supported by a studentship grant from the UK MS Society 

(Registered Charity No. 1139257). The authors retained full control of the data and 

information submitted for publication. 

Literature Search 

The literature search was performed separately by two researchers (TW: expertise in 

computer science (6 years) and radiological science (2 years); DK: expertise in 

medical sciences (3 years) and radiological science (1 year)). MEDLINE and Web of 

Knowledge databases were searched, as well as Google Scholar, using the search 

term: “”multiple sclerosis” AND ((TBSS OR “tract-based spatial statistics”) OR (DTI 

OR “diffusion tensor”))”. Results were not restricted to a particular language but were 

filtered to include only results during or after 2006 (the date of publication of the 

original TBSS paper15). Abstracts and, where necessary, full texts of the identified 

articles were first screened to select only those that performed TBSS analysis of DTI 

data. The remaining articles then underwent further screening to identify articles that 

included one or more of the following voxelwise analyses: 

1. Group comparison of fractional anisotropy (FA) in MS patients to FA in healthy 

controls; 

2. Correlation of FA in MS patients to scores on the Expanded Disability Status 

Scale (EDSS)34, a general measure of disability comprising 8 functional systems 

which is heavily weighted toward ambulation; 

3. Correlation of FA in MS patients to a general or summary score of cognition. 

This included studies performing voxelwise correlation of paced auditory serial 

addition task (PASAT)35 scores,  a sensitive but relatively non-specific measure 



of cognitive performance36 that tests functional domains including sustained 

attention, calculation ability, processing speed and working memory, and is used 

as the summary cognitive measure in the Multiple Sclerosis Functional 

Composite (MSFC)37. 

Studies were excluded if they focussed on a region-of-interest instead of performing 

a whole-brain analysis, or if they correlated whole-brain summary DTI measures 

(e.g. mean FA) with test scores instead of performing voxelwise correlations. Where 

multiple articles reporting TBSS results from a single cohort or overlapping cohorts 

was suspected, this was checked directly with the authors and duplicate data 

excluded. Reference lists of articles identified by the search were hand-searched to 

identify any other relevant papers. We recorded from each included article: the 

number of subjects, the included MS subtypes, the sample origin, the sample mean 

age, the number of diffusion directions and which voxelwise correlations had been 

made. Primary authors were contacted by e-mail to request the unthresholded 

statistical maps required for voxelwise meta-analysis. We were also supplied with 

additional unpublished data for the correlation of FA to EDSS scores from two of the 

cohorts in the included published studies18, 31. 

Quality Assessment 

The methodological quality of each article was assessed against a set of nine 

weighted criteria, based on those of Kmet et al38 and adapted to meet the needs of 

this review by TW (Table e-1). Weightings were set such that there was an emphasis 

on image quality. Articles scoring less than a pre-defined threshold of 50% (fewer 

than 9 of the available 17 points), corresponding to three of the higher-weighted 

criteria were excluded from the meta-analysis. 



Meta-Analysis 

Three separate spatial meta-analyses were performed (by TW) using the Signed 

Differential Mapping (SDM) software39 (v 4.12): one for each of the three 

comparisons listed above. For each, the t-statistic images were converted to 

unbiased effect size and variance maps using the method of Peters et al40: "(1) 

retrieval of a mass number (e.g, 5000) of low-thresholded local peaks from the 

statistical maps, (2) incorporation of these peaks to the SDM peak-based 

preprocessing procedure to reconstruct the effect-size maps”. The SDM software 

then created an SDM map for each study and permuted the location of the voxels to 

create randomised SDM maps. With this method, we ensured that all effect size 

maps overlapped properly with the TBSS template. A 20mm half-width Gaussian 

kernel was applied using the peak coordinates to recreate signed effect size maps, 

as recommended by the authors of SDM39. Voxels closer to a peak were therefore 

assumed to have a higher effect size. Using a random-effects model, a voxelwise 

mean of the study maps was created, which was weighted by the mean of the 

inverse of each study’s variance and the inter-study heterogeneity. This approach 

meant that the results accounted for study size and for brain regions having a large 

variance between studies. A voxel-based permutation test determined statistical 

significance. Based on an empirical validation by the authors of SDM39, we used the 

recommended thresholds (uncorrected p<0.005, z>1, cluster extent≥10 voxels), 

which were found to optimally balance sensitivity and specificity, and to 

approximately correspond to an equivalent corrected p-value of 0.05. To assess the 

effects of false positive results, we also ran the meta-analyses with the more 

stringent p-value threshold of 0.00001. We conducted jack-knife (leave-one-out) 

sensitivity analyses in which multiple repeats of the meta-analysis were performed, 



but leaving out one study each time, allowing assessment of the robustness of the 

results. 

Meta-Regressions 

The moderating effects of mean age, mean EDSS score, scanner magnet strength, 

lesion volume and number of diffusion directions were assessed by meta-regression 

(by TW). In line with previous meta-analyses and recommendations by the authors of 

SDM41, we used a low probability threshold of 0.0005, only included abnormalities 

that were apparent in both the slope and in one extreme of the regressor, and 

ignored abnormalities that were not also present in the main analysis. 



Results 

Literature Search 

Figure 1 shows a summary of the results of the literature search. Of 127 search 

results, 36 articles (28%) were duplicates from searches in the other databases. Of 

the 91 unique search results, 68 articles (75%) were excluded based on review of 

their titles and abstracts because they did not analyse diffusion data from MS 

patients using TBSS. A further 5 papers were excluded following full reviews 

because they did not meet the inclusion criteria. Corresponding authors of 18 articles 

were contacted. Of those, one article32 was excluded because it reported the same 

dataset as that reported in another included study15. We received responses from all 

corresponding authors, but for 5 studies17, 26-29 the required t-statistic images were 

unavailable. The resulting dataset (table 1) comprised 495 MS patients and 253 

healthy controls from 12 studies15, 16, 18-25, 30, 31. The dataset included subjects 

originating in 10 countries across 3 continents.   

Quality Assessment 

Table e-1 shows the results of the quality assessment. The mean quality score was 

76.7% (13 of 17 available points; SD ± 14.1%). All articles surpassed the minimum 

quality threshold. 

FA in MS Patients and Healthy Controls 

The comparison of FA in MS to FA in healthy controls was reported in 9 of the 

articles, whose combined sample numbered 398 MS patients and 233 healthy 

controls. Voxelwise meta-analysis revealed widespread supra-threshold white matter 

abnormalities in MS patients compared to controls, predominantly occurring in the 



corpus callosum, periventricular white matter and fornix (figure 2, table e-2). There 

was one large cluster (which contained all of those regions; 4379 voxels, Z=7.1, 

p<0.1×10-8) and 7 smaller clusters. One cluster of lower FA negatively associated 

with MS diagnosis was present in the right posterior internal capsule (24 voxels, Z=-

1.3, p=0.9×10-6). 

[Figure 2 here] 

FA and Physical Disability 

An FA-to-physical disability comparison was reported in 6 of the articles, whose 

combined sample numbered 200 MS patients. All included studies measured 

physical disability using EDSS34. More severe disability was associated with lower 

FA in one large cluster including  the posterior body and splenium of the corpus 

callosum, left fornix crus, left thalamus, right thalamus, posterior thalamic radiation 

and stria terminalis (323 voxels, Z=1.7, p=0.3×10-4). There were no clusters where 

lower FA was associated with lower levels of physical disability (figure 3, table e-3). 

FA and Cognition 

An FA-to-cognition comparison was reported in 7 of the articles, whose combined 

sample numbered 417 MS patients. All comparisons were based on scores on the 

PASAT35, except the study of Schoonheim et al30, which used a composite measure 

(‘average cognition’) derived from 7 cognitive domains, and the study of Mazerolle et 

al24, which used the Symbol Digit Modalities Test42 (SDMT). More impaired cognition 

was associated with lower FA in one large cluster comprising the thalami and 

fornices bilaterally, corpus callosum (with anterior predominance), right cingulum and 



right posterior thalamic radiation (1073 voxels, Z=2.5, p<0.1×10-8). There were no 

clusters showing lower FA associated with better performance (figure 3, table e-4). 

Meta-Regressions and Sensitivity Analyses 

Meta-regression analyses showed that the number of diffusion directions used in the 

scan had a significant moderating effect on the correlation between EDSS and FA in 

MS patients, with more clusters being detected in scans with more diffusion 

directions, specifically in one cluster in the posterior cingulum (13 voxels, Z=2.4, 

p=0.9×10-5; table e-5). No other significant moderating effects of mean age, mean 

EDSS score, scanner magnet strength, lesion load or number of diffusion directions 

were found for any comparison. Sensitivity analysis showed that, for the group 

comparison, our results were consistent, with most analyses retaining 100% of the 

significant cluster groups (9 of 9) when one study was excluded (table e-6). In the 

correlation of lower FA to physical disability, although only one cluster group was 

detected, it survived 66% of the tests (4 of 6; table e-7). In the correlation of lower FA 

to impaired cognition, the results were partly sensitive to the exclusion of two 

studies20, 30 (table e-8). 

When running the meta-analyses with a lower p-value threshold of 0.00001, the 

largest clusters in the meta analyses of FA in patients and controls and FA and 

cognition remained significant, while in the FA and EDSS meta-analysis, the were no 

significant clusters. 



Discussion 

Our voxelwise meta-analysis of studies relating tract fractional anisotropy to 

cognitive and physical disability in multiple sclerosis reveals minimally-

overlapping distributions and a possible greater relevance to cognition than to 

physical disability. These findings provide the first statistical neuroimaging 

consensus for distributions of altered FA in the cerebral white matter associated with 

the diagnosis of MS, cognition and physical disability, and may aid in understanding 

the mechanisms underlying disability in MS.  

While some studies had reported the posterior cingulum and splenium as having 

lower FA in patients with greater physical disability19, 22, our results suggest that 

further, previously unassociated, areas are implicated. Ultrastructural damage to 

NAWM, both as a direct result of the disease process and as a result of Wallerian 

degeneration secondary to distal lesions43, may have gone undetected in individual 

analyses but, in combination, reached significance in our analysis. An additional 

advantage of our approach is that the relatively large combined sample sizes 

reduced the risk of observing false positive results. The meta-analysis confirms the 

relationship between structures known to play key roles in subcortical cognitive 

circuits such as the thalami, fornices44, and right posterior cingulum:  the posterior 

cingulum has a role in mild cognitive impairment and Alzheimer’s disease45, and its 

integrity is important to several task-relevant aspects of cognition including sustained 

attention and working memory46. Our analysis of cognitively-relevant tract injury has 

confirmed the importance of callosal involvement24, 47, 48 and shows an anterior-

posterior gradient, with a greater cognitive relevance of lower FA in the genu and 

anterior body of the corpus callosum. The higher z-scores associated with clusters 

relating to cognitive performance and FA relative to the physical disability and FA 



analysis indicates that cerebral white matter damage may be more relevant to 

cognitive impairment than to physical disability.  

While both physical disability and cognitive dysfunction in MS are multifactorial, 

being mediated by injurious or adaptive changes at multiple sites in the central 

nervous system (including grey matter and spinal cord damage in addition to 

cerebral white matter), this meta-analysis supports the notion that disconnection of 

grey matter regions by white matter damage is an important mechanism contributing 

to the symptomatology of MS, particularly cognitive dysfunction. Recent research 

explores the disconnection of widespread brain networks by other approaches 49, 50 

and is consistent with the structural disconnection phenomenon demonstrated here 

in suggesting that cognition may be mediated by brain networks’ functional 

connectivity. For example, graph-theoretic analyses with fMRI51, 52 and EEG53 have 

shown that lower long-range regional integration and altered topological network 

properties are associated with disease diagnosis, disability and cognition54, 55. 

Our study was limited by three main factors. First, our meta-regressions, as well as 

being inherently less powerful than the main meta-analyses, were based on the 

reported mean values from the individual articles rather than the raw values; as 

such, their results are less accurate than they could be and should, in particular, be 

interpreted with caution. Second, our analysis of cognitively relevant WM FA 

alteration included studies that used different tests of cognition, based on the overlap 

in cognitive domains tested by them. The structure and range of this data may vary 

between cognitive tests, which could have impacted the final result. Finally, although 

SDM uses a p-value threshold considered to be equivalent to FDR, the impact of 

false positives on this type of study is not well-understood. False positive results are 

a recognised problem in meta-analysis56, but our approach has two advantages: the 



use of t-statistic maps instead of reported coordinates and the reduced number of 

statistical tests involved when focussing only on the white matter tracts. 

Nonetheless, to attempt to control false positives we performed a secondary analysis 

with a more conservative threshold than that recommended by the authors of SDM, 

in which the results of the group comparison and the comparison of FA and cognition 

retained significance. 

Given the concern about false positives, further work is needed to establish the 

validity of the SDM method; for example, in comparison with other popular methods, 

such as ALE. One major issue in that regard is that SDM offers no way to control the 

proportion of false positives at the cluster level. Future work should explore further 

the relationship of other DTI indices to brain function: while our study focussed on 

the FA diffusion metric because it is a sensitive measure of microstructural 

neuropathology57 that is an established marker of white matter degradation in MS 

and a commonly reported metric in TBSS studies, there is evidence that it does not 

fully describe the tensor shape or distribution, and thus may not sufficiently describe 

the underlying cellular changes57. Several studies have used the axial diffusivity 

(AD), radial diffusivity (RD) and MD metrics, noting widespread higher values 

corresponding to lower values of FA, and, in some cases, that they were better 

predictors of physical disability scores than FA16, 20-23, 29-31; however, further work is 

needed in this area to establish a consensus view. 

In conclusion, this meta-analysis confirms that WM damage is widespread in MS and 

that distributions of lower FA related to cognitive impairment and physical disability 

are spatially distinct from one another. Our findings highlight a possible greater 

importance of cerebral WM damage to cognition than to physical disability.
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Table 1. Studies included in the final meta-analyses.  

     Study     

 MS  Control      Comparisons 

Reference N Age %F EDSS  N Age %F  Country Subtypes Scanner 

T 

Diffusion 

Directions 

FA-

cognition 

FA-

physical 

disability 

MS-

controls 

16 14 15.0 73 0.75  14 14.7 73  Germany - 3 20   ✓ 

18 37 43.5 88 3.00  25 36.4 66  UK 35 RR, 2 SP 3 15 ✓ ✓ ✓ 

19 45 29.0 64 1.50  0 - -  Austria 45 RR 1.5 6  ✓  

22 41 36.8 54 2.00  41 34.6 54  China 41 RR 1.5 6  ✓ ✓ 

23 67 39.5 64 1.50  26 36.0 65  Spain 67 RR 3 30 ✓  ✓ 

25 8 37.0 63 3.50  12 40.0 58  Romania - 1.5 25   ✓ 

30 131 40.5 67 1.50  49 41.0 59  Netherlands 114 RR, 8 

PP, 9 SP 

3 30 
✓  ✓ 

15 15 43.0 53 2.50  0 - -  UK 13 RR, 2 SP 1.5 60  ✓  

31 37 40.9 84 2.25  20 34.0 80  USA 37 RR 3 15 ✓ ✓  

24 20 42.4 100 2.25  20 42.5 100  Canada 20 RR 1.5 55 ✓  ✓ 

20 55 50.2 55 4.0  30 44.5 63  Netherlands 39 RR, 16 

SP 

1.5 60 
✓  ✓ 

21 25 37.0 76 1.7  16 34.0 81  USA 25 RR 3 12 ✓ ✓ ✓ 

Abbreviations: RR = relapsing-remitting; SP = secondary progressive; PP = primary 

progressive. 



 

Supplemental Table e-1. The quality assessment criteria and scores. 

Criterion W
e
ig

h
t 

B
la

s
c
h
e
k
 2

0
1
3
 

D
in

e
e
n
 2

0
0
9
 

G
io

rg
io

 2
0
1
0
 

L
iu

 2
0
1
2
 

L
lu

fr
iu

 2
0
1
3
 

O
n
u
 2

0
1
2
 

S
c
h
o
o
n
h
e
im

 2
0
1
3
 

S
m

it
h
 2

0
0
6
 

Y
u
 2

0
1
2
 

M
a

z
e
ro

lle
 2

0
1
3
 

H
u
ls

t 
2
0
1
3
 

K
e
rn

 2
0
1
1
 

Did the authors have a clear a priori hypothesis and 
design? 

3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Did all members of the MS group have a clinically-
definite diagnosis? 

1 ✓ ✓ N ✓ ✓ ? ✓ ✓ ✓ ✓ ✓ ✓ 

Were the treatments currently being received by 
members of the MS group recorded? 

1 ✓ ✓ ✓ ✓ N N ✓ N N ✓ ✓ ✓ 

Did the authors justify their chosen FA threshold? 1 ✓ ✓ N N N N ✓ ✓ ✓ N N N 

Did the DTI protocol use 20 or more diffusion 
directions? 

3 ✓ N N N ✓ ✓ ✓ ✓ N ✓ ✓ N 

Did the scanner used have a magnet strength of 3 
Tesla or greater? 

3 ✓ ✓ N N ✓ N ✓ N ✓ N N ✓ 

Did members of the MS group undergo clinical 
assessment at the time of participation? 

1 ✓ ✓ ✓ ✓ N ✓ ✓ ✓ ✓ N ✓ ✓ 

Did all subjects receive the same intervention using the 
same facilities? 

2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Were the data processing steps appropriate 
considering the hypothesis? 

2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Total 17 17 14 9 10 14 11 17 13 13 12 13 13 

Percent  100 82 53 59 82 65 100 77 77 71 77 77 

 

Legend: ✓ = the criterion is met; N = the criterion is not met; ? = information for this 

criterion was not reported. Abbreviations: MS = multiple sclerosis; DTI = diffusion 
tensor imaging. 

 

 

 

 

 

 



Supplemental Table e-2. Significant regional correlations between FA and MS 

diagnosis. 

Cluster Group Name & 
Sub-Clusters 

(a)
 

MNI 
Coordinates 

SDM Z-
Value 

(b)
 

P-Value 
(c)

 
Number of 
Voxels 

(d)
 

Cluster Breakdown (Number of 
Voxels) 

(d)
 

      

Lower FA associated with 
MS diagnosis (patients < 
controls) 

    
 

Corpus callosum body 16, -26, 32 7.139 <0.000000001 4379 Corpus callosum body (531) 
     Corpus callosum genu (307) 
     Corpus callosum splenium (304) 
 

    
R posterior thalamic radiation 
(159) 

     BA 20 (138) 
     L posterior thalamic radiation (128) 
     L anterior corona radiata (125) 
     BA 18 (125) 
     L thalamus (102) 
     R posterior corona radiata (97) 
     BA 37 (92) 
     R anterior corona radiata (91) 
     R sagittal stratum (88) 
     BA 20 (81) 
     L fornix crus / stria terminalis (80) 
      
Cerebellum 4, -56, -18 4.997 0.000001 160 Middle cerebellar peduncle (40) 
     R inferior cerebellar peduncle (12) 
     BA 37 (11) 
     BA 18 (11) 
      
BA 10 14, 58, 10 4.704 0.000008 48 BA 9 (16) 
     BA 31 (11) 
      
BA 43 56, -10, 24 4.561 0.00001 54 BA 47 (13) 
      
BA 9 -10, 36, 46 4.415 0.00002 44 BA 31 (12) 
     BA 9 (11) 
      
BA 47 -46, 14, 12 4.314 0.00004 59 BA 47 (23) 
     BA 5 (15) 
     BA 47 (11) 
      
R cerebellum lobule VI 8, -68, -24 4.080 0.0001 20 R cerebellum lobule VI (14) 
      
BA 22 58, -30, 10 3.984 0.0001 20 BA 41 (10) 
     BA 22 (10) 
      

Higher FA associated with 
MS diagnosis (patients > 
controls) 

    
 

R posterior internal 
capsule 

26, -16, 14 -1.322 0.0000009 24 
R posterior internal capsule (21) 

      

(a) Cluster group names assigned by SDM are illustrative and do not necessarily 
describe contiguous clusters. 

(b) Voxel probability threshold: p = 0.005. 
(c) Peak height threshold: z = 1. 
(d) Cluster extent threshold: 10 voxels. Regions with fewer than 10 voxels are not 

included in the cluster breakdown. Cluster breakdown only includes the 15 
largest regions where more than 15 exist. 

 



Supplemental Table e-3. Significant regional correlations between FA and EDSS 

scores in MS patients. 

Cluster Group Name 
(a)

 
MNI 
Coordinates 

SDM Z-
Value 

(b)
 

P-Value 
(c)

 
Number of 
Voxels 

(d)
 

Cluster Breakdown (Number of 
Voxels) 

(d)
 

      

Lower FA associated with 
greater disability (FA < 
EDSS) 

    
 

L Fornix crus / stria 
terminalis 

-30, -22, -8 1.701 0.00003 323 
Corpus callosum splenium (96) 

     L fornix crus / stria terminalis (37) 
     L thalamus (26) 
     Corpus callosum body (25) 
     R posterior thalamic radiation (18) 
     BA 18 (12) 
     R thalamus (11) 
      

Lower FA associated with 
less disability (FA > EDSS) 

    
 

(none)      
      

(a) Cluster group names assigned by SDM are illustrative and do not necessarily 
describe contiguous clusters. 

(b) Voxel probability threshold: p = 0.005. 
(c) Peak height threshold: z = 1. 
(d) Cluster extent threshold: 10 voxels. Regions with fewer than 10 voxels are not 

included in the cluster breakdown. 

 

 

 

 

 

 

 

 

 



Supplemental Table e-4. Significant regional correlations between FA and cognitive 

test scores in MS patients. 

Cluster Group Name 
(a)

 
MNI 
Coordinates 

SDM Z-
Value 

(b)
 

P-Value 
(c)

 
Number of 
Voxels 

(d)
 

Cluster Breakdown (Number of 
Voxels) 

(d)
 

      

Lower FA associated with 
poorer performance (FA < 
test scores) 

    
 

Fornix crus / stria 
terminalis 

-24, -34, 4 2.532 <0.000000001 980 
Corpus callosum genu (211) 

     Corpus callosum body (199) 
     L thalamus (103) 
     Corpus callosum splenium (75) 
     R thalamus (68) 
     R cingulum (36) 
     L fornix crus / stria terminalis (31) 
     R fornix crus / stria terminalis (19) 
     BA 22 (14) 
     L cingulum (13) 
     BA 48 (12) 
      
R posterior thalamic 
radiation 

28, -64, 14 2.013 0.00003 19 
R posterior thalamic radiation (16) 

      
L posterior thalamic 
radiation 

-34, -58, 14 1.998 0.00004 42 
L posterior thalamic radiation (12) 

      
BA 20 -44, -10, -

30 
1.900 0.0001 20 

BA 20 (13) 

      
BA 41 56, -36, 16 1.724 0.0009 12 BA 41 (11) 
      

Lower FA associated with 
better performance (FA > 
test scores) 

    
 

(none)      
      

(a) Cluster group names assigned by SDM are illustrative and do not necessarily 
describe contiguous clusters. 

(b) Voxel probability threshold: p = 0.005. 
(c) Peak height threshold: z = 1. 
(d) Cluster extent threshold: 10 voxels. Regions with fewer than 10 voxels are not 

included in the cluster breakdown. 

 

 

 

 

 



Supplemental Table e-5. Relevance of WM degradation in MS to EDSS score: meta 

regression analyses. 

 
MNI 
Coordinates 

SDM Z-
Value 

(a)
 

P-Value 
(b)

 
Number of 
Voxels 

(c)
 

Cluster 
Breakdown 
(Number of 
Voxels) 

(c) 

      

EFFECTS OF MEAN AGE      
(none)      
      

EFFECTS OF MEAN EDSS SCORE      
(none)      

      

EFFECTS OF NUMBER OF DIFFUSION 
DIRECTIONS 

    
 

Greater FA-EDSS correlations specific to 
patients who were scanned with many diffusion 
directions (many diffusion directions > few 
diffusion directions) 

    

 

      
Posterior Cingulum -18, -40, -4 2.380 0.000009

 
13 L BA 27 (11) 

      

(a) Voxel probability threshold: p = 0.0005 for the slope and one intercept. 
(b) Peak height threshold: z = 1. 
(c) Cluster extent threshold: 10 voxels. 

 

 

 

 

 

 

 

 

 



Supplemental Table e-6. Significant assocaiations between FA and MS diagnosis: 

sensitivity analysis. 

 Lower FA associated with MS diagnosis  
Higher  FA 
associated with 
MS diagnosis 

 

Excluded study 
Corpus 
callosum 
body 

Cerebellum 
BA 
10 

BA 
43 

BA 
9 

BA 
47 

R cerebellum 
lobule VI 

BA 
22 

 
R posterior 
internal capsule 

Number of cluster 
groups surviving when 
excluding  the study 

            
Blaschek Yes Yes Yes Yes Yes Yes Yes Yes  Yes 9 of 9 
Dineen Yes Yes Yes Yes Yes Yes Yes No  Yes 8 of 9 
Liu Yes Yes No Yes Yes No Yes No  No 5 of 9 
Llufriu Yes Yes Yes Yes Yes Yes Yes Yes  Yes 9 of 9 
Onu Yes Yes Yes Yes Yes Yes Yes Yes  Yes 9 of 9 
Schoonheim Yes Yes No Yes Yes Yes Yes Yes  Yes 8 of 9 
Mazerolle Yes Yes Yes Yes Yes Yes Yes Yes  Yes 9 of 9 
Hulst Yes Yes No Yes Yes Yes Yes Yes  Yes 8 of 9 
Kern Yes Yes Yes Yes Yes Yes Yes Yes  Yes 9 of 9 
            
Number of jack-knife 
analyses survived by the 
cluster group 

9 of 9 9 of 9 
6 of 
9 

9 of 
9 

9 of 
9 

8 of 
9 

9 of 9 
7 of 
9 

 8 of 9  

 

The table shows, by excluding each study from the meta-analysis one-by-one, which 

cluster groups were retained in the result. Each cluster group detected in the signed 

differential map is a column. A “Yes” indicates that the cluster in that column was still 

present in the result when re-running the meta-analysis with the study in that row 

excluded. 

 

 

 

 

 

 

 



Supplmental Table e-7. Significant regional correlations between FA and EDSS 

scores in MS patients: sensitivity analysis. 

 
Lower FA associated with greater 
disability 

 

Excluded study L fornix crus / stria terminalis 
Number of cluster groups surviving when 
excluding  the study 

   
Dineen Yes 1 of 1 
Giorgio Yes 1 of 1 
Liu No 0 of 1 
Smith Yes 1 of 1 
Yu Yes 1 of 1 
Kern No 0 of 1 
   
Number of jack-knife analyses survived by 
the cluster group 

4 of 6  

 

The table shows, by excluding each study from the meta-analysis one-by-one, which 

cluster groups were retained in the result. Each cluster group detected in the signed 

differential map is a column. A “Yes” indicates that the cluster in that column was still 

present in the result when re-running the meta-analysis with the study in that row 

excluded. 

 

 

 

 

 

 

 

 

 



Supplemental Table e-8. Significant regional correlations between FA and cognitive 

test scores in MS patients: sensitivity analysis. 

 Lower FA associated with poorer performance  

Excluded study 
Fornix crus / stria 
terminalis 

R posterior 
thalamic radiation 

L posterior 
thalamic 
radiation 

BA 
20 

BA 
41 

Number of cluster groups 
surviving when excluding  the 
study 

       
Dineen Yes No Yes Yes Yes 4 of 5 
Llufriu Yes Yes Yes No Yes 4 of 5 
Schoonheim No No Yes Yes No 2 of 5 
Yu Yes Yes Yes No Yes 4 of 5 
Hulst No No Yes No Yes 2 of 5 
Kern Yes Yes Yes Yes No 4 of 5 
Mazerolle Yes Yes Yes Yes Yes 5 of 5 
       
Number of jack-knife analyses 
survived by the cluster group 

5 of 7 4 of 7 7 of 7 
4 of 
7 

5 of 
7 

 

 

The table shows, by excluding each study from the meta-analysis one-by-one, which 

cluster groups were retained in the result. Each cluster group detected in the signed 

differential map is a column. A “Yes” indicates that the cluster in that column was still 

present in the result when re-running the meta-analysis with the study in that row 

excluded. 



 

Figure 1. Flowchart summarising the literature search process. 

 

Figure 2. Comparison of FA in MS to FA in healthy controls. The images show the 

weighted mean across studies overlaid on the 1mm MNI 152 brain. Red voxels show 

areas in which lower FA for individuals with MS was significantly associated with 

disease status, and blue voxels, higher FA (from left to right, the slice coordinates 

are: z=75, z=90, z=98, x=100).  

 

Figure 3. Significant regional correlations between FA and measures of physical 

disability and cognition. The images show the weighted mean across studies 

overlaid on the 1mm MNI 152 brain. In part A, red voxels show areas in which lower 

FA was significantly associated with greater physical disability (from left to right, the 

slice coordinates are: z=72, z=88, z=95, x=90). In part B, red voxels show areas in 

which lower FA was significantly assoicated with more impaired cognition (from left 

to right, the slice coordinates are: z=73, z=82, z=95, x=90). Part C shows, in pink, 

the significant (positive) voxels common to both physical disability and cognition 

correlations (from left to right, the slice coordinates are: z=78, z=86, z=100, x=102). 
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