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ABSTRACT

An asphalt mixture is combined of different sizes of aggregate, filler, and bitumen

for application on the most common road construction materials. In asphalt pave-

ment material there are different types of distress such as permanent deformation

(rutting), fatigue cracking, ravelling, potholes, stripping, etc. There are many rea-

sons for these types of distress, some of them related to the pavement structure, e.g.

whether the underlying layers are weak, others related to the mixture properties.

Other causes could be related to external conditions such as high temperature, high

axle load, long duration of load application, etc. This research has focused on the

permanent deformation (rutting) as a function of aggregate gradation.

The aggregate gradations of more than twenty asphalt mixtures, manufactured

with different gradations, were analysed by using the Bailey method of gradation

analysis. The analysis was performed in relation to Repeated Load Axial Test

(RLAT) testing results to study the performance of each mixture. The results

showed that the Bailey method is not capable on its own to define the differences

between the gradations of each mixture. Therefore, three more packing ratios were

introduced to adequately describe the aggregate gradation. The aggregate particle
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packing was extensively studied through these packing ratios and it was shown

how the different particle sizes interact with each other. Images were taken for two

mixtures to validate the theory behind the ratios. The five packing ratios (two of

Bailey and three new ratios) were used in Artificial Neural Network (ANN) and

Adaptive Neuro-Fuzzy Inference System (ANFIS) techniques for all the mixtures

as input data to predict the mixture performance (RLAT permanent deformation

and Indirect Tensile Stiffness Modulus ITSM stiffness modulus) and they showed

good prediction capability.

After establishing the impact of aggregate packing on the performance, six mix-

tures were re-manufactured and re-tested with different variables; the selection of

the mixtures was made to cover a range of different gradations (ratios). The aim of

this step was to understand the effect of these variables on the asphalt mixture in

the light of the packing ratios. The variables that were used were binder content,

testing temperature and compaction effort. The binder content results showed an

interesting effect on the permanent deformation and stiffness of the asphalt mix-

ture. The packing of aggregate was very helpful in understanding the different

mixture behaviour with different binder content. The effect of aggregate packing

was not shown at relatively low testing temperature, but as the temperature rises

the aggregate packing effect starts to appear. The effect of compaction which was

represented by the number of gyrations in gyratory compactor was inconsistent;

results show over-compaction can lead to poor performance.

Finally, a linear viscous method was introduced aiming to predict the rutting

in an asphalt mixture. The method was based on using a multilayer linear pro-
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gramme (BISAR) and using viscous parameters of the mixture as input. The

non-linear properties of the material were incorporated by using the RLAT test.

For this purpose, six mixtures were used and tested in a wheel tracking machine.

The predicted results were compared with the wheel tracking rut depth in the lab-

oratory and showed good agreement at different temperatures. However, at high

temperature (50 °C) the material properties in the RLAT test did not behave as

linear viscous, which resulted in a much poorer prediction. Trials were made to

predict field rut but it was found that special requirements were needed for the

approach which were not available at the time of the research. However, for the

available field data, the method was found to be a good predictor.
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Chapter 1

Introduction

1.1 Background

It is essential to provide an efficient transport system for economic and quality-of-

life reasons. Roads are one of the important elements of the transportation system.

Early roads were made for wagons; therefore, most were not well paved and had

an inadequate drainage system. In the 18th century further developments in con-

structing roads were made in France by Tresaguet and in the UK by Thomas Telford

(1757-1834) and John Loudon McAdam (1756-1836) (Figure 1.1) in response to the

increase in traffic volume and weight (Read, 1996). Telford focused on providing

a solid base to the pavement while McAdam emphasized the provision of thinner

pavement layers by using small angular material (Croney and Croney, 1991). Fig-

ure 1.2 shows the change in pavement layer thickness during the different centuries

(Pavement Interactive, 2008).

At the end of the 19th century asphaltic materials became more popular when
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(a) Telford’s

(b) McAdam’s

Figure 1.1: Schematic Diagram showing Telford and McAdam Different Construc-
tion Practices (Read, 1996)

more vehicles were used on the road, and dust free roads were required (Taherkhani,

2006). Tar was used in the beginning, but later bitumen refined from petroleum

became most commonly used in pavement field.

Figure 1.2: Change in Pavement Layer Thickness during Centuries (Pavement In-
teractive, 2008)

In general, roads are built to carry traffic safely and economically throughout

their design life. The structure of a road pavement comprises a number of layers
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to provide a dry, skid resistant, stiff and even surface for vehicles. There are three

types of pavement depending on the material used to construct it: flexible pave-

ment, rigid pavement, and composite. A flexible pavement is composed of asphaltic

materials while a rigid pavement includes a concrete slab; a composite is a com-

bination of both types. A typical flexible pavement is shown in Figure 1.3, where

individual asphalt layers are named surface course, binder course, and base coarse

(Read, 1996).

Figure 1.3: A Typical Flexible Pavement
(Taherkhani, 2006)

Surface Course

The duty of the surface course is to give a protected and smooth surface for vehicles

with sufficient skid resistance. It additionally shields the sub-layers from the en-

trance of water. Skid resistance relies upon the microtexture and macrotexture of

the surface layer. This layer is designed to be resistant to permanent deformation
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and fatigue cracking.

Binder Course

The binder course provides a level laying substrate to the surface course layer and

ensures that the traffic loads are distributed to the sub-layers. It is also designed

to resist permanent deformation and fatigue cracking caused by traffic load.

Base Layer

This layer is considered as the main structural layer, and it prevents the sub-layer

from being overstressed. The layer should also be designed to resist permanent

deformation and fatigue cracking. It provides the pavement a protection from

moisture and it provides stable construction platform

Sub-Base

This is composed of granular material only and is part of the road foundation. The

layer is well compacted to distribute the traffic load to the subgrade and to give

a foundation on which to construct the asphaltic layers. This layer is also used to

provide a drainage system to prevent excessive water from reaching the subgrade.

1.2 Problem Statement

An asphalt pavement has the function of carrying traffic safely, smoothly, and eco-

nomically between locations. However, there are certain factors that can negatively
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affect the performance of asphalt such as construction quality control, traffic and

environment, and material properties. These factors can cause a reduction to the

pavement’s original smoothness and serviceability, which leads to either failure or

severe damage. The two primary forms of failure caused by the load applied to

a flexible pavement are cracking and rutting. Rutting is defined as a longitudinal

depression in the wheel path (as shown in Figure 1.4), with or without transverse

displacement. It prevents the drainage of water to the sides of the road making it

accumulate in the ruts which increases the possibility of accidents related to hy-

droplaning (as shown in Figure 1.5). A 0.5 in. (12.5 mm) rut depth is considered by

Mallick and El-Korchi (2013) as rutting failure, although, this value is dependent

on the type of road and design speed. Therefore, each country or specifications

may have their own judgement, not following to a specific failure value.

Figure 1.4: Rutting in road pavements [Google Images]
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Figure 1.5: Hydroplaning problems in road pavements [Google Images]

In addition, deep rutting causes difficulties in steering for vehicles. This may

cause loss of car control which then leads to an accident (Khanzada, 2000). In hot

countries, asphalt pavements can rut after about one year following construction

due to high temperature (e.g. pavement temperature over 50 C °) and heavy axle

loads.

One of the main factors that affects rutting is aggregate gradation. There is a

lack of knowledge on how aggregate gradation affects the rutting of asphalt mixtures

and how a change in the gradation will cause a change in the performance of the

asphalt mixture.
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1.3 Why Aggregate Gradings?

As Aggregate gradations are strongly affecting the performance of the asphalt mix-

ture, specifications allow some limits for the gradations. These limits are based

on either field experience or from the behaviour achieved from laboratory testing.

Each layer in the pavement has gradation limits and it depends on the performance

required for that layer. The limits are found because it is not possible to force the

contractor to develop an asphalt mixture with exact particle distribution in the

field to achieve a particular behaviour.

In practice, the contractors use these limits to design their mixtures with, there-

fore there are indefinite possibilities of aggregate gradations within specification

limits. Gradations that lie beyond lower limit will have high amount of coarse

particles and low amount of fine particles and this will lead to segregation and

difficulties in mixing, aggregate surface coating, and compaction. Gradations that

lie above the upper limit will have high amount of fine material and low amount of

coarse particles and this will require high amount of binder content which results in

poor performance. It is beneficial to have these gradation limits to allow flexibility

in designing the mixture, however, not any combination of aggregate size particles

resulting in good behaviour. Contractors usually success in designing the mixture

according to the specifications but it is noticed that some roads gain permanent de-

formation (rutting) after a short period of construction. After the evaluation of the

asphalt mixture, it is usually found that the contractor followed the specifications

required; therefore, they recommend to resurface the road.
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In the same manner, Superpave specification introduced areas in the gradation

limits that are recommended not to pass the gradation curve through it. There are

a plenty amount of research showed that there is no negative effect of passing the

restricted zone. Sánchez-Leal (2007) studied the effect of aggregate gradation and

suggested that the gradation limits make no sense, and developed gradation charts

for designing asphalt mixtures. All these limitations can lead to the fact that the

use of aggregate gradation limits are controversy.

1.4 Aims and Objectives

The aim of this research is to extend the understanding of the effect of aggregate

gradation on asphalt mixture performance and to predict the permanent defor-

mation caused by repeated load in laboratory test. The analysis is based on the

aggregate gradation as the main variable and other variables will also be discov-

ered. The research also aims to predict the rut depth caused by wheel loading on

an asphalt mixture by using a linear viscous analysis. To achieve these aims the

following steps were taken:

� Conduct a survey of the literature on the causes of permanent deformation

and packing of aggregate particles. The review focuses on the effect of ag-

gregate packing on asphalt mixtures and investigates the Bailey method of

gradation and the Dominant Aggregate Size Range (DASR) method. These

two methods concern the arrangement and packing of aggregate particles.

� Select a broad range of asphalt mixtures with different aggregate gradations
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to cover the whole range of asphalt concrete mixtures and the combination

of upper and lower limit of the specification.

� Test the mixtures in the laboratory to determine the permanent deformation

of each.

� Use the Bailey method of analysis to evaluate the mixtures’ performance

based on the results from the Repeated Load Axial Test (RLAT). The benefit

of using the RLAT test is that it is simple, available, and it represent the

frequent passage of vehicles in the road by applying repeated load. The Bailey

method was established to provide a high quality mix design by providing

good aggregate interlock and at this stage, more analysis ratios were added.

� Use image processing to distinguish and prove the theoretical principles of the

new and Bailey ratios. The images were used to help the understanding of

aggregate interlock and there was no calculations obtained from the images.

� Include more testing variables in the laboratory testing to investigate their

effects in the light of aggregate packing. The variables that were found im-

portant are the binder content, testing temperature, and compaction effort.

� Use soft computing techniques (ANN and ANFIS) to predict the permanent

deformation of asphalt mixtures.

� Perform wheel tracking tests for six mixtures to measure their rut depth,

and use a linear viscous approach to predict the rut depth by making use of

multi-layer linear viscous analysis.

9



1.5 Thesis Organisation

This thesis consists of seven chapters. Chapter 2 presents a review of permanent

deformation and the role of each component in the asphalt mixture. The chapter

also presents a review of the packing theory of aggregate particles, and how the

coarse and fine aggregate particles are specified. Finally, the chapter reviews rut-

ting prediction methods used in the past by using elastic, viscoelastic, and viscous

approaches.

Chapter 3 briefly explains the principle of the two soft computing techniques

which are used in later chapters. The chapter also reviews the applications of these

techniques in the pavement field.

Chapter 4 investigates the effect of aggregate packing on permanent deformation

of asphalt mixtures. In this chapter, different mixtures were selected to cover a

wide range of aggregate gradations, and the Bailey method of analysis was used to

understand the behaviour of each mixture. At this stage, more analysis ratios were

added, and soft computing techniques used to predict the permanent deformation

of each mixture.

Chapter 5 shows the effect of binder content, testing temperature, and com-

paction effort on different asphalt mixtures in the light of packing ratios. The

results are also analysed using ANN and ANFIS to predict the permanent defor-

mation of these mixtures.

Chapter 6 introduces a linear viscous approach to predict the rut depth of wheel

tracked slabs. The approach uses the non-linear properties of the asphalt mixture

10



taken from the repeated load axial test (RLAT); field data are then used to validate

the approach. Finally, Chapter 7 states the conclusions achieved from this research

and gives recommendations for future work.

1.6 Research Implications

This study has focused on the impact of aggregate gradation on the permanent

deformation of asphalt mixtures. The research also introduced a linear viscous

method to predict the rut depth of the asphalt mixtures. The implications of this

research are summarised as follows:

� In most cases, when field investigations are required to explore the failure

reasons in road pavements it is recommended to resurface the road. Inves-

tigations require material analysis (aggregate gradation, binder content) to

check if specifications were followed. Sometimes no reason appear (after pave-

ment structure analysis) to be the cause of failure and they resurface the road

and the same problem occurs in a period of time. Using the method presented

in this thesis helps to understand the packing of aggregate particles and to

judge if an adjustment to the gradation is required, and no other resurfacing

is required.

� The method of packing ratios presented in this thesis could also be used in

designing the asphalt mixture to expect what performance will be achieved.

Certain distribution of aggregate particles might be accepted to be within the

specification limits but not necessarily to be of good performance when using
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the packing ratios concept. The soft computing techniques model could also

be used in predicting the mixture performance.

� The linear viscous approach presented in this research is ready to use in

predicting the rut depth in road pavement especially it incorporates the non-

linear properties of the material. The method could also be used in assessing

pavement layers and see which one of them is more susceptible to rutting

when field investigations are required.
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Chapter 2

Permanent Deformation in

Asphalt Mixtures

2.1 Introduction

This chapter presents a review of different issues related to permanent deformation.

The first section discusses the performance evaluation of the binder, aggregate, and

asphalt mixture. The asphalt mixture behaviour was evaluated in terms of the re-

sistance to permanent deformation, aggregate gradings, and volumetric properties.

The following section will review the laboratory tests that are most commonly used

to evaluate permanent deformation in the asphalt mixture. In the third section,

the theory of packing will be introduced and it will be shown how it has been em-

ployed in the asphalt mixture characterisation. The Bailey method and Dominant

Aggregate Size Range (DASR) will be reviewed in this section as well. Finally,

stress-strain behaviour of asphalt mixture will be considered and the different con-
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stitutive model theories and applications will also be presented.

2.2 Performance Evaluation

2.2.1 Binder Behaviour

In general, bitumen behaves as visco-elastic material. Early understanding at-

tempts showed that the mechanical performance of asphalt mixtures is highly de-

pendent on the binder properties (Lee, 2006). Research on bitumen mechanical

properties started around the 1960’s when Van der Poel proved that the stiffness

of an asphalt mixture could be related to the binder properties (penetration and

softening point) (Poel and Der, 1954; Van der Poel, 1955), as shown in Figure 2.1.

Van der Poel (1954) condensed his findings of bitumen mechanical behaviour

as a function of loading time and temperature into the ‘Van der Poel nomograph’.

Following his findings, researchers tried to simulate the conduct of the bitumen

as linear viscoelastic using rheological models, (Jongepier et al., 1969; Hall, 1972).

However, their assumptions were only applicable for small strains and stresses.

The stress-strain behaviour of pure bitumen has been described as very complex by

several researchers, Ossa (2005); Cheung (1995); Cheung and Cebon (1997a,b,c).

Bitumen behaves as an elastic solid at low temperature and high loading time, and

as a viscous liquid at high temperature and low loading time, Brown and Sparks

(1958); Gaskins et al. (1960); Moavenzadeh and Stander Jr (1967). Visco-elastic

behaviour has been observed in the transition zone. So the temperature plays
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a vital role in the consistency of the bitumen and this phenomenon is known as

viscosity.
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Figure 2.1: Van der Poel Nomograph
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2.2.2 Aggregate Behaviour

Many types of aggregate are used to produce asphalt mixtures. There are three

categories of aggregate depending on its origin: natural aggregate, processed ag-

gregate, and synthetic aggregate. The primary aim of the aggregate in asphalt

mixtures is to resist shear stresses that develop from repeated traffic load. Perma-

nent deformation is related to the resistance of aggregate particles in the mixture to

the applied load. If the aggregate is overloaded then shear planes will form in the

aggregate structure and allow permanent deformation to develop in the mixture,

as shown in Figure 2.2. This happens when the shear stress in the shear plane is

greater than the shear strength of the aggregate. Because there is zero cohesion in

dry aggregate, shear strength depends on the movement, packing, and internal fric-

tion of aggregate particles. Cubical aggregate is preferred more than the rounded

particles because they tend to lock together resulting in a stronger mass, while

rounded aggregate particles slide over each other, as shown in Figure 2.3.

Figure 2.2: Behaviour of Shear Loading in Aggregate, Asphalt Institute (1996)

The effect of aggregate on asphalt mixtures is a matter of study by researchers.

Aggregate particle size distribution plays an important role in influencing the per-

17



Figure 2.3: Aggregate Stone Skeleton, Asphalt Institute (1996)

manent deformation of hot mix asphalt. Golalipour et al. (2012) studied the effect

of aggregate gradation on the performance of rutting in asphalt pavements. They

selected aggregate gradations with a nominal size of 19mm, and used three different

gradations, the upper limit, the lower limit, and a middle gradation according to

The Asphalt Institute. They tested the three different gradations with two tests,

Marshall test, and Dynamic Creep test. The results from the Marshall test showed

that the upper limit of the gradation had the highest value of stability, and the

lower limit of gradation had the lowest. For the dynamic creep test, the results

showed that the asphalt mixture at the upper limit had the lowest permanent de-

formation and cumulative strain. This was because the upper limit had more fine

particles than the two other gradations and it had higher density, and fewer air

voids. However, Ahmed and Attia (2013) showed that coarser aggregate resists

permanent deformation better than fine aggregate by using four types of aggre-

gate gradation and conducting a wheel tracking test. The mixtures used named

coarse gradation, fine gradation, open graded, and dense gradation according to

the Egyptian specifications.
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2.2.3 Asphalt Mixture Behaviour

Permanent deformation is considered as one of the main types of distress that occurs

in flexible pavements when subjected to traffic load. It is caused by a combination

of densification (volume change) and shear deformation. Concerning densification,

poor compaction while constructing the layers may cause the aggregate skeleton to

become more closely packed during the early life of the structure. Shear deforma-

tion is the main subsequent cause of rutting and it can result in the formation of

shoulders on either side of the rut; it occurs because of the viscous behaviour of

the material. Many factors can cause permanent deformation to occur in asphalt

mixtures, such as aggregate gradation, type of aggregate, binder type and content,

compaction level, compaction method, and temperature, Cai (2013). There are two

broad types of rutting in pavements namely structural rutting and non-structural

rutting, as shown in Figure 2.4. Structural rutting is caused by a weak material

under the asphalt layer (generally the subgrade) even if the surface layer is very

stiff. The second form of rutting (which this thesis focuses on) is the type that con-

cerns asphalt mixture designers; it is related to the properties of the mixture, and

it occurs because of the lack of shear strength to withstand the vertical repeated

load.

When a wheel load is applied to an asphaltic pavement, it creates a deformation

in the material elements. The properties of the material, temperature, load level

and loading time are factors that determine the magnitude of the deformation. As

the load is removed, some of this deformation will be recovered but a part will
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Figure 2.4: Structural and Non-Structural Rutting, Gibb (1996)

remain in the material. The recovered part is due to the elastic and delayed elastic

components of the material while the remainder is due to the plastic and viscous

components. The accumulation of deformations for each load applied can result

in high deformation in asphaltic material, as shown in Figure 2.5. Hofstra and

Klopm (1972) measured the densities of asphalt mixture samples under a rutted

wheel track and outside the wheel track, and they found that both sets of samples

had equal densities. They concluded that the deformation accumulated due to the

shear flow of material, not densification.

Asphalt mixtures carry three main types of load in the field: vertical compressive

load on the pavement surface and transmitted through the asphalt layers, tensile

stresses acting horizontally in the bottom of the asphalt layer, and shear stresses,

see Figure 2.6. The asphalt mixture should be designed to withstand the vertical

compressive stresses within the asphalt layers and prevent permanent deformation
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Figure 2.5: Accumulation of Permanent Deformation under Repeated Wheel Load-
ing, Taherkhani (2006)

taking place; it should also be designed to resist the tensile stresses at the bottom

of the layer (prevent fatigue cracking). The asphaltic layers are also subjected to

temperature change stresses and it should be designed for these stresses (prevent

thermal fatigue cracking), Asphalt Institute (1996).

Resistance to Permanent Deformation

As mentioned earlier, the permanent deformation of asphaltic mixtures is influenced

by the properties of binder and aggregate, their proportions, compaction level and

environmental conditions. The resistance to permanent deformation is very depen-

dent on the type of mixture. In some types of mixture such as Hot Rolled Asphalt

(HRA), the deformation resistance relies on the stiffness of binder and mortar,

while in Asphalt concrete (Dense Bitumen Macadam (DBM)) or Stone Mastic As-

phalt (SMA), the resistance to deformation relies on the particle interlock and is

less dependent on the bitumen. Brown and Cooper (1984) tested DBM mixtures

in the repeated load triaxial test at 30 °C and found that the binder grade had
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Figure 2.6: Stresses induced in a Pavement due to a Moving Load (Mallick and
El-Korchi, 2013)

no effect on the deformation of asphalt mixtures. To give more understanding of

this, Gibb (1996) performed a fascinating study on which component of the asphalt

mixture material resists the permanent deformation. He selected two types of as-

phalt mixture, DBM and HRA, and conducted compressive cyclic uniaxial tests at

different temperatures; two types of binder were used (40/60 and 160/220) for the

two mixtures. He found that at conditions where the binder has low stiffness (high
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testing temperatures) the aggregate structure provided the resistance to permanent

deformation more than the binder and the DBM showed better resistance than the

HRA. On the other hand, at higher binder stiffness (low testing temperatures), the

HRA resisted the deformation better than the DBM. The large permanent defor-

mation that occurred in the dense mixture (DBM) was due to the plastic strain

that came from the movement of aggregate particles when repeated load was ap-

plied. He concluded that the permanent deformation resistance is dominated by

the binder to a certain level of binder stiffness; if the binder stiffness is below that

level then it will have less contribution to the deformation resistance, and the role

of aggregate structure starts to be more dominant.

Brown and Snaith (1974) also found that the role of binder viscosity in resisting

permanent deformation is dependent on the contribution of aggregate resistance.

They also found that at high temperatures the aggregate structure is more dominant

in providing permanent deformation resistance. Therefore, under such conditions

the binder content in the mix plays a significant role affecting the packing of ag-

gregate structure. The more the binder in the mix the less the aggregate interlock

resulting in less resistance to deformation, while a lower binder content in the mix

leads to more aggregate interlock, therefore, resistance increases. They also found

that at lower temperatures, a medium bitumen content (4.0 %) will maximise the

contribution of both aggregate interlock and binder viscosity in resisting the per-

manent deformation. However, an optimum binder content needs to be judged to

give a reasonable performance at different temperatures in the field.
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Brown and Cooper (1984) concluded that aggregate gradation plays an impor-

tant role in resisting the permanent deformation of asphalt mixtures by testing

continuous and gap-graded mixtures at 30 °C. They also found that continuously

graded mixtures had more resistance to permanent deformation than gap-graded

mixtures. However, gap-graded mixtures with a proportion of coarse aggregates,

such as SMA, can give good resistance to permanent deformation due to their

greater particle interaction. Gibb (1996) also compared the results of permanent

deformation resistance between rounded and angular aggregate particles in asphalt

mixtures. He found that mixtures with spherical particles achieved higher defor-

mation than those with angular particles under repeated loading test.

Sousa et al. (1991) summarised the factors that affect permanent deformation

in asphalt mixtures, as shown in Table 2.1.

Table 2.1: Factors affecting Permanent Deformation in Asphalt Mixtures, Sousa
et al. (1991)

Factor
Change in

Factor

Effect of Factor
change on

Rutting Resistance

Aggregate

Surface texture Smooth to rough Increase
Gradation Gap to continuous Increase

Shape Rounded to angular Increase

Size
Increase in

maximum size
Increase

Binder Stiffness Increase Increase

Mixture
Binder content Increase Decrease

Air void content Increase Decrease
VMA Increase Decrease

Test Field
Conditions

Temperature Increase Decrease

State of stress/strain
Increase in tire

contact pressure
Decrease

Load repetitions Increase Decrease
Water Dry to wet Decrease if mix is water
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Aggregate Gradings

Gradation of aggregate is the particle size distribution of an asphalt mixture and

is determined in terms of percent of passing each standard sieve. Designers are

concerned with aggregate gradation since they are looking for certain performance

requirements. The Superpave mix design specifies band within gradation named as

the ‘restricted zone’; it recommends that the gradation should not violate the re-

stricted area to achieve good resistance to permanent deformation. The restricted

zone lies along the maximum density line and between the intermediate particle

size (4.75 or 2.36 mm, depending on the nominal maximum particle size) and the

0.3 mm, Kandhal and Cooley Jr (2001). Although the restricted zone was rec-

ommended by Superpave, there is some research that has showed that passing the

gradation through the zone can result in better mixture performance. Kandhal and

Cooley Jr (2001) conducted laboratory testing for different gradations and nominal

maximum particle sizes to investigate the effect of the restricted zone on perma-

nent deformation of dense-graded Hot Mix Asphalt (HMA) mixtures. They used

two nominal maximum sizes (9.5 and 19.0 mm) and five gradations; three of the

gradations passed through the restricted zone and the others did not. They used

three tests to evaluate the permanent deformation, namely the Asphalt Pavement

Analyzer (APA), Superpave shear tester, and repeated load confined test. They

found that mixtures with gradations passing through the restricted zone performed

similarly to or better than those falling outside the restricted zone for both nom-

inal maximum sizes. Another study was done by Kandhal and Mallick (2001) to
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compare asphalt mixtures made up of different gradations but of a similar type of

aggregate and also mixtures with similar aggregate mineralogy but with different

gradations. The asphalt mixtures were composed of granite, limestone, and gravel

passing below, through, and above the Superpave restricted zone. Results showed

that for the granite and limestone aggregate type mixtures, gradations that passed

below the restricted zone had the highest amount of rutting, with a better perfor-

mance for gradations passing through the zone, while the best performance was

found when a grading passed over the restricted zone. The behaviour of the mix-

tures with gravel particles showed exactly dissimilar performance. In later chapters

of this thesis, an extensive study of aggregate gradation and how the particles are

packed together will be presented and interpreted by using selected packing ratios.

Volumetric Properties

The volumetric properties of an asphaltic mixture play a crucial role in the perfor-

mance of the mixture. Percentage air voids and voids in mineral aggregate (VMA)

are the main two factors that determine the volumetric properties of the mixture.

Mixtures with low VMA are good at resisting permanent deformation because the

aggregate particles (especially large sizes) have enough room to be in contact with

each other. However, very low VMA will tend to make the mixture susceptible to

permanent deformation because the mortar (binder and filler) will have a chance to

lie in between particles and will reduce the contact points between particles, (Gibb,

1996); very low VMA might be a result of high binder content in the mixture. The

high bitumen content will result in a thick film thickness around the aggregate par-
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ticles and this will decrease the resistance to permanent deformation, Taherkhani

(2006).

Compaction Methods

Marshall Compaction Marshall compaction was developed in 1939 by Bruce

Marshall. The method is usually used for mixtures with high amount of fine graded

aggregate with a maximum aggregate size of 25 mm, Swiertz et al.. The specimen

is compacted by using compressive impact load by a loading hammer on each side

of the sample and for several number of blows. The main disadvantage of Marshall

compaction is that it focuses on getting the optimum values of air voids, binder

content, strength, and durability of the mixture when using a mix design. Currently,

Marshall compaction is not widely used in the pavement work because it does not

simulate the compaction in field precisely.

Roller Compactor The purpose of a roller compactor of asphalt mixtures is to

ensure that the compaction is representing the compaction in the field. Although

the roller compactor simulates the field compaction, the use of it is limited due to

several reasons: the size of the compactor is relatively large, the compactor is not

portable, and it is expensive. Moreover, there are some difficulties in controlling

the air voids of the sample, and the compaction process is time consuming.

Superpave Gyratory Compactor The gyratory compactor was developed in

response to the need for a portable and easy to use device. There are some design

principles need to be applied to achieve the required compaction: angle of gyra-
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tion is one of the important factors that help to create vertical and shear forces

which results in better compaction. Vertical pressure is another factor of gyratory

compaction and is recommended by the Superpave to be 600 kPa as an estimate

to field loading conditions. The gyratory compactor is currently very widely used

because of its simplicity and efficiency among other compaction methods. For this

reason it is used in this research as the compaction method for the samples.

2.3 Laboratory Tests for Measuring Permanent

Deformation

Generally, the aim of testing asphalt mixtures is to simulate the field performance

as closely as possible to understand the behaviour of the material. Figure 2.6

presented earlier showed the different stresses induced in a pavement, and it is

not easy to find a laboratory test to represent all these loading types. Over the

years, several simplified tests have been developed to investigate the permanent

deformation behaviour of asphalt mixtures and also used towards the development

of constitutive models. The main laboratory tests are listed below:

� Static uniaxial and triaxial test

� Cyclic uniaxial and triaxial test

� Wheel tracking test
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2.3.1 Static Uniaxial and Triaxial Test

The static uniaxial test is considered as the simplest test used for evaluating the

deformation behaviour of viscoelastic materials such as asphalt mixtures. It was

developed by the Shell organisation in Amsterdam for testing bituminous mixtures

in the 1970’s (Hills, 1973). The test can be conducted either by applying a constant

stress (creep test) or constant strain rate in tension or compression. The sample

used for this test is usually cylindrical in shape and a friction reduction system

between the specimen and loading plates is used. Figure 2.7 shows a typical test

result for loading and unloading phases; the figure shows the initial strain which

comprises elastic and plastic behaviour which is known as time independent strain

and occurs when the load is applied. This stage is followed by the time dependent

strain which is also known as delayed elastic and viscous strain.

Although the creep test is used to estimate the performance properties of asphalt

mixtures there are some differences between static loading and real load in the field.

The main and most important differences are that the actual loading condition is

cyclic while in a creep test it is static, and the pavement in the field is confined and in

the creep test, it is unconfined (uniaxial). Many researchers in the past have shown

that the cyclic loading of the sample produces greater permanent deformation than

static load (Gibb, 1996; Bolk and Van de Loo, 1979; Graham et al., 1980; Monismith

and Tayebali, 1988). The triaxial test was found to be an acceptable simulation

of confined pavement elements in the field. Brown and Foo (1994) compared the

results of unconfined to confined creep test for a dense-graded HMA mixture, and
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Figure 2.7: Typical Strain Results from Creep Testing (Mallick and El-Korchi,
2013)
where εT : Total strain; εe: Elastic Strain; εp: Plastic strain; εve: Viscoelastic
Strain; εvp: Viscoplastic Strain.

they concluded that the confined creep test represents the field more accurately.

2.3.2 Cyclic uniaxial and triaxial test

The cyclic uniaxial creep test or Repeated Load Axial Test (RLAT) was developed

to investigate the behaviour of asphalt material under more realistic loading con-

ditions (see Figure 2.8 for sample setting). The load is repeatedly applied for a

particular loading time and a rest period may also be implemented after each load-

ing pulse. The loading can be carried out in different waveforms such as sinusoidal,

square, triangular, and trapezoidal. Brown (1976) found that the sinusoidal shape

of loading is most simulative of field loading; Loulizi et al. (2002) had the same

finding. Researchers usually select the loading time to correspond to the desired
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speed of the vehicle. Although the frequency of load on the sample is an essential

element in the laboratory test, there are few researchers who have investigated the

correlation of loading time to vehicle speed in the field (Al-Qadi et al., 2008).

Figure 2.8: Sample Setting in Uniaxial Cyclic Test

A finite element model using elastic theory was used by Barksdale (1971) to

estimate the pulse width of compressive stress as a function of speed and depth.

He found that the pulse shape varies with the depth of pavement, and that it is

sinusoidal in the surface layers, triangular in the bottom layers. Finally, he pro-

duced a chart to relate the loading time to vehicle speed and depth of pavement.

Following this, Brown (1973) also found a relationship to correlate loading time to

vehicle speed and pavement depth; his calculated loading time was about half of

that calculated by Barksdale (1971). Although the cyclic uniaxial test does not

exactly simulate the real load in field, Gibb (1996) suggested that it gives more

reliable permanent deformation behaviour than static creep when comparing dif-

ferent asphalt mixtures.

Permanent vertical and horizontal strain can be measured by Linear Variable Dif-
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ferential Transformers (LVDTs) which are located on the loading ram and lateral

strain gauges are glued to the specimen if a triaxial test is conducted. Typical

RLAT test results are shown in Figure 2.9.

Figure 2.9: Typical Repeated Axial Load Test Result

2.3.3 Wheel Tracking Test

The wheel tracking test is widely used to simulate the field conditions in the pave-

ment. There are different types of wheel tracking test that have been established for

various purposes, such as Georgia loaded wheel tester, asphalt pavement analyser

(APA), the Hamburg wheel tracking machine, the French wheel tracker, the Not-

tingham pavement testing facility, etc. The test is conducted at full scale, medium

scale, or small scale. The specimen is loaded through either a real tyre or a small

scale pneumatic or solid rubber tyre depending on which test is to be considered.
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The specimen is repeatedly loaded by moving the loaded wheel on the specimen

at large, or medium scale, or at small scale, the specimen is moved forward and

backwards under the loaded pneumatic tyre; a schematic of the test apparatus is

shown in Figure 2.10.

Figure 2.10: Wheeltracking Apparatus (Gibb, 1996)

The specimen size at small scale varies depending on which standard is followed.

The test can be conducted at a desired temperature by placing the apparatus in a

temperature controlled chamber. The wheel is loaded along the centre of the slab

specimen for a predetermined number of passes or cummulative rut depth. As the

wheel tracking test is considered as simulative of the field, researchers have used it

to validate their rutting prediction methods (e.g (Taherkhani, 2006)).

2.4 Packing of Aggregate

According to Lira Miranda (2012), a good gradation of an asphalt mixture is typi-

cally one that gives the densest packing of particles, which leads to increasing the
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stability by increasing the number of contact points between particles and by re-

ducing air voids. Many attempts have been made in the past to understand the

best gradation of particles to achieve the densest possible packing. Mixing various

combinations of stones and sand particles to give the densest concrete was first

examined by Fuller and Thompson (1907). The aim of their study was to relate

the sand particle size to the coarse particle size and they proposed that the sand

particle diameter should not exceed one-tenth of the coarse particle diameter to

achieve a dense mixture. They concluded that the coarser the aggregate that was

used, the coarser the sand particle that was required. Following their work, Talbot

and Richart (1923) studied the gradation (size distribution) of aggregate to achieve

the maximum density of a mixture. A slope of 0.5 on a straight line when plotting

percent passing a sieve versus the particle size on logarithmic scales was considered

to give maximum density. The formula for obtaining the maximum density line

was:

P = 100

(
d

D

)n

(2.1)

where P is the percentage of material by weight passing a specific sieve with an

opening size d; D is the maximum particle size; and n is a parameter affecting the

coarseness or fineness of the gradation.

Nijboer (1948) studied the effect of particle size and shape in asphalt mixtures.

He confirmed the idea of the maximum density line given by a straight line on loga-

rithmic scales of percent passing a sieve versus sieve size. He empirically proved that

with typical crumbed rock particles the maximum density line has an approximate
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slope of 0.45.

2.4.1 Theory of Packing in Particles

The arrangement of aggregate particles in a certain volume influences the inter-

action strength between them. In the past several years, researchers have studied

the packing of granular materials by using computer simulation algorithms (Tory

et al., 1968; Powell, 1980; Suzuki and Oshima, 1985; Isola, 2008). In most cases

previous researchers used solid spheres to simulate the packing of particles and to

model the behaviour of contacts between them, Isola (2008).

It is necessary to understand how the arrangements of spherical particles are

organised to help to understand the packing of real particles. The packing of

spheres was firstly investigated by Kepler in 1611 (mentioned in Yideti (2014)).

He suggested that there is no arrangement of equally sized spheres filling a space

with a greater average density than that of cubic close packing; this occupies 74%

of a particular volume. The density is defined as the ratio of the volume of space

filled by spheres to the whole volume of space. The three-dimensional arrangement

can be expressed by placing the spheres in layers and the densest possible packing

is achieved by placing the second layer of spheres in the dimples of the bottom

layer (Szpiro, 2003). Figure 2.11 shows the densest possible packing arrangement

of spheres called hexagonal close packing (HCP) (cubical close) and its packing

density reaches about 74%.

Generally, by looking at a two dimensional view there are two different types of
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Figure 2.11: Densest Arrangment of spherical particles, Yideti (2014)

layers, a square and rhombic layer (Figure 2.12)

Figure 2.12: Types of layers. A) Square layer; B) Rhombic layer (Lira Miranda,
2012)

By combining these two layers in a three-dimensional space, six arrangements

can be achieved; Guarin (2009) showed the shape of these arrangements by using

single sized spheres; see Figure 2.13. The void structure is dependent on the shape

of packing arrangement rather than the size of the spheres. It is then significantly

important to fit particles in the voids between large spheres to obtain maximum

packing density and this will be explained later.

Two-dimensional analysis of aggregate shape and contact between particles is

based on four combinations of possible geometries, and the dimensional relation-

ships are as follows (Vavrik, 2000):
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Figure 2.13: Top and Panoramic view of regular packing arrangements. A) Sim-
ple cubical, B) Hexagonal loose, C) Face-centred cubical, D) Orthorhombic, E)
Tetragonal, F) Hexagonal close.

� All particle faces are round, shown in Figure 2.14a, this produces a ratio of

0.15
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� Two particles have round faces and one has a flat face, shown in Figure 2.14b,

this produces a ratio of 0.2

� One particle is round-faced and two have flat faces, presented in figure 2.14c,

this provides a ratio of 0.24.

� All particle faces are flat, shown in Figure 2.14d, this produces a ratio of 0.29

These particle shape combinations are used to characterise the void size between

three adjacent particles. The average value (0.22) of the four cases has commonly

been taken as the void size between particles and many researchers have confirmed

that it is a good representation of the average conditions (Lira Miranda, 2012;

Guarin, 2009; Vavrik, 2000; Mamat, 2008; Alshamsi, 2006; Kim, 2006; Kim et al.,

2006). In reality, there are different possible void sizes based on the shapes of

particles used. However, the value of 0.22 is reasonable to cover a broad range of

cases.

2.4.2 Aggregate Gradation

In general, aggregate properties in a mixture are defined by its particle size distribu-

tion. In soil mechanics, designers usually look for the best particle size distribution

to achieve a required performance level such as resistance to permanent defor-

mation, shear strength, and hydraulic properties. The requirement of aggregate

gradation differs from one country to another based on the properties of the local

available unbound material. Therefore, specifications usually require the gradation

to lie in between two limits to achieve a certain level of performance. The aggregate
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(a) Void diameter = 0.15D (b) Void diameter = 0.20D

(c) Void diameter = 0.24D (d) Void diameter = 0.29D

Figure 2.14: Average Void size Calculation

is sifted through standard sieves ranging from large opening sizes (20 or 32 mm) to

small (0.063 mm), and the percentage passing each sieve is then determined. Differ-

ent combinations of aggregate gradation produce different mixture classifications;

the most common classifications are summarised below, Yideti (2014):

� Dense or well-graded: a gradation that has a broad range of particle sizes and

all sizes are represented.

� Poorly-graded: a gradation that does not have a proper representation of all
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particle sizes.

� Uniform-graded: a gradation in which the majority of the particles are of

similar size.

� Gap-graded: a gradation that has, at least, one particle size missing.

� Open-graded: a gradation that contains only very few particles of small size

aggregate.

The aggregates used in asphalt mixtures are naturally occurring and they can

not be packed together to fill a unit volume completely; voids will exist between

the particles. The aggregate packing to fill a certain volume depends on:

� Shape of aggregate particles: the shape of aggregate particles plays an im-

portant role in the density of the mixture. Rounded particles tend to form a

more dense arrangement than elongated particles.

� Compactive energy: several compaction methods are used to compact a

blend of an aggregate mixture such as Marshall hammer, gyratory compactor,

kneading, and static pressure. The more compaction energy is applied, the

denser the mixture becomes; however very high compaction energy may result

in particle breakdown.

� Surface texture of aggregate particles: this can also affect the final density

of the mixture because of the friction between particles. Smooth particles

will tend to be reconfigured to the densest arrangement while rough particles

resist the sliding of one particle on another resulting in low density.
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� Aggregate particle gradation: the different types of aggregate gradation have

a considerable impact on the density of the mixture. Single-sized gradations

will not be packed as dense as gradations with two sizes.

Coarse vs Fine Aggregate

The coarse aggregate particles are considered as the main component that resists

deformation in the asphalt mixture. When a load is applied to the pavement,

the aggregate particle interlock forms a path for the load to be transmitted to the

underlying layers. Therefore, it is necessary to provide a good aggregate interlock to

obtain good resistance to deformation. Mixtures with low aggregate interlock would

resist low load levels only. The fine aggregate particles in the mixture complete

the aggregate structure by filling the voids between coarse particles. If the fine

particles were not present in the mixture, then the mixture would remain open and

contain a high percentage of air voids. The fine particles need to be in a compacted

state to minimise the permanent deformation due to shear flow and to prevent

any densification from occurring. Mineral filler is included in a mixture to develop

mastic and the mastic contributes to the properties of the mixture. Mineral filler

as part of the aggregate blend is considered as filling the voids created by fine

aggregate particles. These combinations of aggregate particles filling each other

were described by Vavrik (2000) and developed into a design method known as The

Bailey Method. The concept of the Bailey method will be explained in the following

section.
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2.4.3 Bailey Method of Gradation Analysis and Asphalt

Mix Design

One of the methods developed to analyse HMA gradations is the Bailey method.

The method is based on selecting an appropriate volume of coarse and fine particles

to provide aggregate interlock. The method was presented by Vavrik (2000) and it

aims to provide a high-quality mix design and this requires understanding of two

concepts:

1. A more fundamental approach to distinguish between coarse and fine particles

needs to be developed.

2. The aggregate particles need to be combined by volume to ensure good ag-

gregate interlock coarse particles.

Traditions identify the coarse particles as particles larger than 4.75 mm and

fine particles are those smaller than that (Vavrik, 2000). Vavrik (2000) suggested

to change this definition to ensure that the mixture was properly analysed and

to determine the aggregate interlock of the mixture. The role of coarse and fine

particles presented in the previous section is mainly suggested by him to develop

the concept. He defined the coarse and fine particles as:

� Coarse Aggregate: Large particles that when placed in a unit volume create

voids.

� Fine Aggregate: Aggregate particles that fill the voids created by coarse ag-

gregate.
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It can be seen from the definition that there is no absolute size associated with

the definition of coarse and fine aggregate. This could lead to some of the particles

traditionally defined as coarse being considered as fine and vice versa.

Control Sieves

Vavrik (2000) used control sieves to design a mixture and then used the control

sieves to find ratios to evaluate the performance of the asphalt mixture. This study

focuses on the ratios for evaluating mixture performance.

Primary Control Sieve (PCS): this is the sieve that identifies the range of

particles sizes considered as coarse aggregate. Vavrik et al. (2001) introduced the

definition of PCS as the break point between the coarse and fine aggregate. The

PCS can be determined by multiplying the closest standard sieve to the Nominal

Maximum Particle Size (NMPS) by 0.22. The value of 0.22 was presented in the

previous section where it was shown that it is the size of the void that is created

between three particles in two-dimensional space. Therefore, each asphalt mixture

has its own PCS according to the NMPS of the aggregate blend. The NMPS is

defined in Superpave as one sieve larger than the first sieve that retains more than

10%. PCS can be calculated by:

PCS = NMPS × 0.22 (2.2)

Vavrik (2000) presented a list of the PCS’s that correspond to the US standard

sieves and particle sizes as shown in Table 2.2.
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Table 2.2: Standard Sieve sizes and Associated Primary Control Sieves, Vavrik
(2000)

Particle Size Particle Size × 0.22 Primar Control Sieve

US Std. mm mm US Std. mm
1-1/2” 37.5 8.25 3/8” 9.5

1” 25 5.5 #4 4.75
3/4” 19 4.18 #4 4.75
1/2” 12.5 2.75 #8 2.36
3/8” 9.5 2.09 #8 2.36
#4 4.75 1.05 #16 1.18
#8 2.36 0.52 #30 0.600
#16 1.18 0.26 #50 0.300
#30 0.600 0.13 #100 0.150
#50 0.300 0.07 #200 0.075

The PCS separates the particle gradation curve into two fractions (fine and

coarse) and by a similar process the fine fraction is also divided into two further

fractions.

Secondary Control Sieve (SCS): this provides a further breakdown of the fine

fraction of a combined gradation. The PCS is multiplied by 0.22 to obtain the

closest standard sieve in order to fully define the structure of the gradation.

SCS = PCS × 0.22 (2.3)

Tertiary Control Sieve (TCS): this gives a further breakdown to the very fine

particles filling the voids.

TCS = SCS × 0.22 (2.4)

Figure 2.15 shows a schematic diagram explaining the divisions of the aggregate

blend.
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Figure 2.15: Schematic Diagram of Control Sieves, Vavrik (2000)

Evaluation Ratios

Certain ratios are then introduced to evaluate the performance of the asphalt mix-

ture. These ratios are based on the control sieves presented in the previous section.

Coarse Aggregate Ratio (CA): this ratio is used to evaluate the coarse portion

of the aggregate gradation, to evaluate the void structure in the coarse aggregate.

For this purpose, a Half Sieve is introduced (Vavrik, 2002). The Half Sieve (HS) is

defined as half of the NMPS (NMPS × 0.5). Those particles smaller than the HS

and larger than the PCS are termed “interceptors”. Interceptors play an important

role in mixture volumetric properties. By changing the proportions of interceptors,

the VMA will be modified. Interceptor particles do not fill the voids created by the

larger particles because of their relatively large size compared to the voids created.

However, the shape, elongation and orientation of the particles are all factors af-

fecting the filling of the voids between coarse particles and interceptors. The CA
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ratio is given by:

CA =
%PassingHS −%PassingPCS

100%−%PassingHS
(2.5)

The packing of coarse aggregate has an important impact on the performance

of the mixture. Vavrik (2000) suggested a range of values for the CA ratio between

0.40 to 0.80 for a dense graded mixture to ensure “balance” in the coarse portion of

the aggregate structure. He also stated that a CA ratio below 0.40 allows the fine

aggregate in the mixture to be over-compacted because of the smaller voids created

in the coarse aggregate. Therefore, mixtures with low CA ratio require a larger

amount of fine material to maintain sufficient mixture volumetric properties. He

also reported that higher values of CA ratio imply excessive amounts of interceptor

particles which might lead to segregation of the particles larger than the PCS. This

would lead to a non-compactible mix. However, it will be proven in the following

chapters that definite conclusion cannot be drawn on how the mixture will behave

unless other factors are taken into account.

Coarse Portion of Fine Aggregate (FAc): this ratio describes the fine aggre-

gate, which are particles smaller than the PCS. The fine particles of the aggregate

gradation can also be presented as a blend of aggregate containing coarser and finer

materials. The coarser portion of the fine aggregate will also create voids between

particles and the finer particles will fill these voids. FAc describes the interlock of

the coarse portion in the fine aggregate. A very low value of this ratio (less than

0.40) gives an indication that the coarse portion of the fine aggregate is gap graded,

46



Vavrik (2000). He suggested a reasonable value of this ratio to be less than 0.50

because if this ratio increases the fine portion if the fine aggregate tries to push

apart the coarse portion of the fine aggregate. He also reported that if this ratio

reaches 0.55, the mixture will be ‘tender’, have over-compaction, and would suffer

early failure under traffic. This ratio has a considerable effect on the VMA of the

mixture, and can be determined from the equation below:

FAc =
%PassingSCS

%PassingPCS
(2.6)

Fine Portion of Fine Aggregate (FAf): this ratio represents the content of

the very finest material (including filler) in the mix and is important for certain

aspects of mixture behaviour (e.g. voids in fine fraction, binder demand). However,

this ratio will not be considered here as this study has focused on coarse aggregate

effects on permanent deformation.

Researchers have investigated the effect of changing the evaluation ratios on

the performance of asphalt mixtures. Thompson (2006) studied the effect of the

ratios on the rut depth, and he found that decrease in CA and FAc ratio would

result in a reduction in rut depth resistance of an asphalt mixture. Mohammad and

Shamsi (2007) also investigated performance by using eight different mixtures. The

aggregate structure was designed using the Bailey method of aggregate gradation

evaluation. They found that the CA ratio has the strongest correlation with mixture

volumetric properties while FAc was less sensitive to them. The CA ratio was found

to be correlated with the result of the Hamburg wheel tracking test.
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Khosla and Sadasivam (2005) studied the effect of permeability of asphalt mix-

tures on their performance. The permeability was investigated in the light of Bailey

ratios of gradations and it was shown that it is highly affected by certain aggregate

sizes (#4, #8 and #16). Bailey guidelines recommended low proportion of #4

size aggregate and high of #8 and #16 to give low permeability mixture. They

validated the the permeability guidelines by permeability test in the laboratory.

2.4.4 Dominant Aggregate Size Range (DASR)

In 2006 a conceptual and theoretical approach was introduced by Kim (2006) to

investigate the coarse aggregate structure based on the gradation. The method

was developed to identify which size range (DASR) of aggregate in the asphalt

mixture is carrying the load. He used the porosity of the mixture as a criterion for

aggregate interlock, and it was concluded from soil mechanics that the porosity of

granular material in a loose state is approximately constant between 45% and 50%

regardless of the size and distribution of particles, Lambe and Whitman (1969).

He concluded that this applies to the aggregate material in an asphalt mixture and

that as long as the porosity was no greater than 50% the particles would still be in

contact with each other. He found a theoretical approach to determine the DASR;

the DASR must have coarse enough particles with porosity smaller than 50% to

achieve a mixture with good resistance to deformation and cracking. Particles

which are smaller than the DASR were considered to fill the voids created by the

DASR (these particles were named as Interstitial Components IC and their volume
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is Interstitial Volume IV). Particles larger than the DASR will float in a DASR

matrix and will not have a significant role in the aggregate structure. This concept

is shown in Figure 2.16 for different mixture types.

Figure 2.16: Dominant Aggregates and Interstitial Volume, Kim (2006)

The DASR could either be composed of single sized particles such as in SMA

or of multiple sizes. The determination of DASR was less clear for dense graded

mixtures because no single size of particles is dominant in the mixture. Therefore,

a system was developed by Kim (2006) to estimate which contiguous sizes are

interacting as a unit to form the DASR. Although he developed the system for

contiguous sizes and it was applicable he reported that the system needs more data

to prove the reasonableness of the approach, and more study is required.

Guarin (2009) studied the effect of changing the IC on the performance of as-

phalt mixtures. He conducted laboratory tests to evaluate the rutting and cracking
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(a) Stable (b) Critically Stable (c) Disrupted

Figure 2.17: Local Disruption to DASR

of asphalt mixtures and showed that the IC have a significant impact on the re-

sults. Based on particle packing theory, he introduced a factor named Disruption

Factor (DF) to evaluate the potential of IC to disrupt the DASR. The disruption

factor is simply the ratio of IC volume to DASR volume (volumes are calculated

theoretically). He classified the DASR disruption into two categories: local and

global disruption. Local disruption is related to the effect of one IC particle being

bigger than the DASR void and, in a close packed configuration of equal spheres,

this is illustrated in Figure 2.17. Global disruption concerns the evaluation of the

overall stability of the DASR structure.

The concept of determining the DF is to find an optimal DF range to obtain

better performance of the asphalt mixture regarding rutting and cracking. If the

DF is low, then the IC particles will not participate in transferring the load between

DASR particles. However, if DF is in an optimal range, then better performance of

the mixture will be achieved because the IC particles are engaging in transferring

the load to the DASR. Finally, if the DF is very high then the DASR particles will

be disrupted and this will have negative impact on the performance of the asphalt

mixture, these three cases are shown in Figure 2.18.

Although the DASR approach has been used by several researchers, it will not be
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(a) Very Low DF (b) Optimal DF (c) Very High DF

Figure 2.18: Disruption Factor Representation, Guarin (2009)

used in this study because the approach is mainly based on theoretical calculations

and theoretical sphere packing assumptions, and also its applicability to dense

graded mixtures is not as clear as to more open-graded mixtures. However, the

principle of the DASR and disruption factor will be used to explain the different

aggregate gradations in subsequent chapters.

There are some researchers that have used these concepts to analyse aggregate

gradations of asphalt mixtures. Denneman et al. (2007) assessed the potential

benefits of these two techniques for HMA performance in South Africa. They stated

that the main difference of the studied mixtures are lie in the coarse aggregate

portion and this defines the performance of the mixture. They found that there

is an advantage of DASR method over the Bailey method because the analysis

in DASR is independent on the control sieves. However, they did not show why

the change in Bailey ratios are affecting the performance, and they stated that the

mixtures with coarser particles did not mean they have better resistance to rutting,

however this needs evidence.

51



2.5 Prediction of Permanent Deformation

Generally, it is well known that the response of an asphaltic mixture depends on

loading time and temperature. Asphalt concrete mixtures behave as linear visco-

elastic materials under low temperature conditions (or short loading times), while

they behave as non-linear elasto-viscoplastic materials under high temperature con-

ditions (or long loading times). When asphaltic mixtures behave as linear visco-

elastic materials, they can be modelled using one of the physical models in which

the model components are arranged as springs and daspots either in parallel or

in series to best fit test results. Some of these physical models and their applica-

tions will be introduced in this section. This type of modelling supposes that the

rutting in asphalt mixtures forms primarily from shear flow, and the permanent

deformation is dependant on the viscous properties and independent of the elastic

properties in the pavement materials (Khanzada, 2000).

2.5.1 Elastic Model

The elastic model is considered as the simplest constitutive model. Burmister

(1943) introduced the theory of elasticity for a two layer pavement which was

later developed to three and more layers. The material is identified as elastic

and the loading curve is identical to the unloading curve and all of the strain is

recovered when the applied load is removed. The stress and strain relationship can
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be expressed by means of Hooke’s law as:

{σ} = [D]× {ε} (2.7)

where {σ} and {ε} are stress and strain tensors, respectively, and [D] is the stiffness

matrix that includes two material constants (Young’s modulus, E, and Poisson’s

ratio, ν) and it is expressed as:

[D] =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

0 1− ν ν 0 0 0

0 0 1− ν 0 0 0

0 0 0 0.5− ν 0 0

0 0 0 0 0.5− ν 0

0 0 0 0 0 0.5− ν



(2.8)

In the use of asphaltic material, Young’s modulus is replaced by “stiffness modulus”

(Lee, 2006; Lu, 1998). The elastic model can be used to simulate asphalt mixture

behaviour at low temperature and short loading times, and it gives an accurate

prediction of real behaviour. A computer programme designed by Shell has been

extensively used for elastic analysis of pavement structures, the programme being

named Bitumen Stress Analysis in Roads (BISAR). Several researchers have applied

the linear elastic approach in flexible pavement design and behaviour evaluation in

the past (Eisenmann et al., 1977; Peutz et al., 1968; Ullidtz et al., 1987).
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Layer-Strain Approach

Many of the permanent deformation models developed in the 1970s were based

on the Layer-Strain approach (Khanzada, 2000). This consists of predicting the

rutting depth by using the permanent deformation characteristics which are de-

termined from laboratory tests and the analysis procedure for the structure of the

pavement uses either linear or non-linear elastic theory, Sousa and Weissman (1994).

The general principle of this approach was first proposed by Barksdale (1972) and

Romain (1972). The prediction of rut depth in the pavement for a given number of

wheel load applications can be obtained by dividing the pavement into sub-layers

directly beneath the wheel load. An assumption of linear or non-linear relationships

between the elastic stress field and permanent deformation allows calculation of the

permanent deformation. Obviously, non-linear elastic theory should give more ac-

curate results (Brown and Bell, 1979). However, non-linear analysis has not been

very widely used because of its added complexity (Albayati, 2006). Knowing the

average stress state at the centre of each sub-layer, the corresponding axial plastic

strain can be derived from laboratory results. After that the total rut depth can

be calculated by summing up the plastic strains obtained at the centre of each

sub-layer, considering the sub-layer thickness, by using the equation:

4P =
n∑

i=1

[(εpi)(4Zi)] (2.9)

where: 4P : total rut depth; εpi: average plastic strain in the centre of the ith

sub-layer; 4Zi : thickness of the ith sub-layer; n: the total number of sub-layers.
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Using layer-strain is a good approach for rut depth prediction as it permits the

use of linear and non-linear elastic analysis. However, it has the disadvantage that

this approach suggests that the permanent deformation is dependent on the elastic

stress only while it is independent of the material viscosity (Khanzada, 2000). The

following paragraphs present a review on the use of the layer-strain approach.

Romain (1972) developed a computer programme for prediction of permanent

deformation based on the layer-strain method. The layers of the pavement were

divided into sublayers, and he produced model elements sufficiently thin to be

considered as homogeneous in terms of vertical stress state. The stresses in each

element were calculated by elastic theory and were then used with experimental

stress-strain data to calculate the deformation in each element by applying a number

of vehicle passages. He summed up the elemental deformation to produce the total

surface deformation.

McLean and Monismith (1974) also used elastic theory to estimate the perma-

nent deformation of a two layer system consisting of an asphalt layer and subgrade.

They assigned a constant stiffness modulus for each layer and they subdivided the

asphalt layer at 25 mm intervals. They calculated the stresses at the centre of each

sublayer underneath the axle load based on the theory of elasticity. The stresses

were then used to obtain the permanent deformation by using an empirical equa-

tion derived from the triaxial repeated load test, and they then summed up the

permanent deformation for each sublayer to obtain the total permanent deforma-

tion. They compared their results with test track data obtained by Hofstra and

Klopm (1972) and they found that the distribution of permanent strain were dif-
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ferent from their results. The main reason for this difference was considered to be

the assumption of constant stiffness with depth; in reality by increasing the loading

time the stiffness is reduced.

Morris et al. (1974) developed a rutting model for the asphaltic layers where

the characteristics of permanent deformation were determined from triaxial tests.

Tension and compression stress modes were applied to the samples to evaluate the

behaviour of the bituminous material. Comparison of the predicted rut depths

with real measured values from Brampton Test Road in Canada were carried out

by plotting a relationship between the total yearly permanent deformations over a

period of 7 years. The model predicted that the permanent deformation occurred

in the tension zone due to the lateral distortion of the material, which was the

same as in the test section. Based on their model prediction they concluded that if

the tensile stresses exist in the field the mechanism of rutting is due to the lateral

distortion in the tension zone and the resistance to the stresses is provided by the

binder only.

Monismith et al. (1977) developed a model to predict the rut depth in asphalt

mixtures under repeated traffic loading. They used triaxial compression test to

derive a constitutive relationship. They found that the time of loading in the

triaxial test was a very sensitive factor affecting rut prediction. They computed

the stresses and strains by using the elastic multi-layer system ELSYM (computer

programme) and they calculated the total rut depth by summing up strain from
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each layer. The plastic deformation was also calculated using the following equation:

ε = R

[
σz −

1

2 (σxσy)

]
(2.10)

where: σx, σy, and σz: Normal Stress Components; R: Total effective strain ratio

to equivalent stress.

They assumed the Poisson’s ratio to be 0.5 for the asphaltic layers. The predicted

rut depths were verified with real data from road sections in San Francisco, and

the difference between the predicted and measured rut depth was approximately

2.5 mm.

Meyer and Haas (1977) developed a rutting model based on the approach in

Morris et al. (1974). They included unbound granular materials into the model

to make it more realistic. They characterised the permanent deformation char-

acteristics for asphalt and unbound layers by carrying out dynamic triaxial tests

to simulate field conditions with a variety of temperatures, densities, and loading

rates. The model was verified against field results, and they used the same material

as that used to construct Brampton Test Road in Canada. Based on the stresses

obtained from finite element analysis, rut depths were calculated in some typical

pavements. From the results they had, they found that the primary cause of rut-

ting comes from the stiffness of subgrade material, thickness and stiffness of the

bituminous layers, and the number of wheel repetitions.
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2.5.2 Viscoelastic Methodology

The term viscoelastic is applied to material that exhibits time-dependent behaviour

in a stress-strain relationship. Van der Poel (1954) defined the stiffness modulus

of asphalt mixture as a function of loading time and temperature. After that

researchers started to describe the behaviour of asphalt using linear viscoelastic

models. The models have two main elements, a spring (which is purely elastic) and

a dashpot (which is purely viscous), combined to form a mechanical model and to

produce a stress-strain relationship as a function of time. By combining these two

elements in series, a Maxwell model is formed, and by combining them in parallel, a

Kelvin model is produced. Ossa et al. (2005) proved that these mechanical models

can simulate the experimental results at low-stress level. The Maxwell model is

shown in Figure 2.19 and the stress-strain relationship of each element is described

as:

σ = Rε2 (2.11)

σ = ηε̇ (2.12)

The strain-time relationship with different stress conditions is achieved by:

ε(t) =
σ0
R

+
σ0
η
t (2.13)

where: σ: stress; R: linear spring constant; ε: strain; η: coefficient of viscosity; ε̇:

strain rate; t: time.
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Figure 2.19: Maxwell Model and its Behaviour, Rabbira (2002)

By using the equation 2.13, it can be noticed that by applying σ0 at time (t) =

0, the model will behave as elastic only. The Kelvin model is shown in Figure

2.20, and the stress-strain relationship for each element presented in Maxwell is

applicable.

Figure 2.20: Kelvin Model and its Behaviour, Rabbira (2002)

The strain obtained from this model is described by:

ε =
σ0

R

(
1− e−R

t
η

)
(2.14)
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The initial response of the Kelvin model when applying a stress value is that the

whole stress value will be carried by the viscous element, η, but as the dashpot

elongates the load will be transferred to the elastic element, R. Therefore, at the

end of the load application the entire stress will be carried by the elastic element

and this behaviour is called delayed elasticity, Rabbira (2002). The combination of

Maxwell and Kelvin models connected in series produces the four-element Burger’s

model shown in Figure 2.21. Figure 2.22 shows the response of different mechanical

model with real behaviour.

Figure 2.21: Burger’s Model, Antes et al. (2003)

Applications to Viscoelastic Models

In the last few decades, the time and temperature dependence of the mechanical

properties of asphalt mixtures have been attempted to be characterised within the

work frame of linear viscoelasticity. This type of model assumes that the primary
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Figure 2.22: Schematic Response of Different Mechanical Models and Real Be-
haviour, Taherkhani (2006)

cause of rutting comes from the shear flow of the pavement materials (Khanzada,

2000). In this section, some of the past researchers work will be presented.

Monismith and Secor (1962) conducted their research on the viscoelastic be-

haviour of asphalt mixtures, which shows the time dependence of the stress-strain

relationship. They used a Burgers model (four-element model) to fit the results of

triaxial tests. They found that the four-element mechanical model was inadequate

in predicting the actual results, but it was useful for identifying the properties of

the mixture up to a point. The poor prediction result might have been because the

model did not incorporate plastic deformation.
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Gardner and Skok (1967) used the viscoelastic concept to evaluate laboratory

test results and field performance. They incorporated the same Burger’s model that

was used by Monismith and Secor (1962) and they tested asphalt concrete samples

under static and dynamic stress in the laboratory. From the static creep result,

they found that the strain was not directly proportional to the stress at any time.

They concluded from the dynamic load test results that the strain was dependent

on the frequency of the load (the higher the frequency, the smaller the strain) and

the lateral confining pressure. The main conclusion drawn from their research was

that the four-element viscoelastic model can be used to predict the response of

the material under given loading conditions. However, because the four-element

viscoelastic theory does not incorporate the plastic behaviour of the material, it

might not be able to predict under a very wide range of loading.

A two layer viscoelastic model was proposed by Battiato et al. (1977) to predict

permanent deformation in asphalt mixtures. They assumed that the subgrade is

elastic and the asphaltic layers were simulated with a Maxwell model (spring and

dashpot in series). They used the Unconfined Creep Test to find the material

properties to fit to the model. The ridge formed adjacent to the wheel path can be

accounted for in this model. Their results showed that the assumption of elastic

behaviour of the subgrade led to the result of the permanent deformation due to

the passage of a single wheel being independent of the stiffness of the subgrade.

A linear viscoelastic theory for permanent deformation calculation in a layered

pavement system was proposed by Huschek (1977). He assumed that the unbound

material is elastic and the bituminous layers have time-dependent material prop-
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erties which he modelled by using the Maxwell model. Conventional and cyclic

unconfined compression creep tests were used to estimate the material properties.

Four factors were considered in material property estimation in the laboratory test:

the distribution of temperature, the magnitude and number of repetitions of wheel

loads, the transverse passage of wheel loads and the vehicle speed. He also reported

that the specimen was confined to better include the influence of internal friction of

aggregate. The stress and strain distribution in the material were calculated by us-

ing BISAR (elastic multi-layer computer programme) under a standard wheel load

(600 kPa pressure). The rut depth was obtained by summing up the permanent

deformation values through the different viscoelastic layers. The theoretical results

were evaluated against real rutting data from a test road in Switzerland and good

agreement was achieved between the two approaches.

2.5.3 Comparison of Layer-Strain and Viscoelastic Method-

ologies

The layer-strain method is considered to be a “reasonable” approach to predict

rut depth in asphalt mixtures because of its flexibility in incorporating linear or

non-linear elastic analysis. Although the viscoelastic theory is more attractive,

it is more complex to apply and results often showed poor agreement with mea-

sured rut depths; therefore, it does not have a significant advantage over the layer-

strain method (Sousa et al., 1991). Concerning characterising the longitudinal ridge

formed adjacent to the wheel path, the layer-strain approach is not able to predict
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it while the viscoelastic approach does. The material properties are usually de-

termined from triaxial testing in the layer-strain method while they are calculated

from confined or unconfined creep test in the viscoelastic method (Khanzada, 2000).

2.5.4 Linear Viscous Approach

Permanent deformation in asphalt mixtures is due to the movement between adja-

cent particles, surrounded by a thin layer of bitumen. The rheological properties

of this binder film govern the deformation in the mixture (Hills et al., 1974). Nunn

(1986) presented a viscous method to predict the permanent deformation in an as-

phalt mixture. The method was based on the use of the viscous part of the material

behaviour; steps to predict the rut depth were as follows:

1. A plot of mixture stiffness (Sm(t)) against loading time was derived from

creep testing.

2. The binder properties (softening point and penetration) were used to produce

binder stiffness (Sb(t)) against loading time by using Van der Poel Nomograph

(as shown previously in Figure 2.1).

3. The two curves were then combined to generate a plot of Sm(t) versus Sb(t).

4. An equivalent loading time for a given number of commercial vehicle passes

was then calculated at an effective temperature and used to derive the Sm(t),

and then the axial viscosity.

5. The axial viscosity was then utilised in a multi-layer linear viscous analysis to
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calculate the permanent deformation accumulated in each increment of the

number of commercial vehicles passes (new loading time).

The equation to determine the axial viscosity of the mixture (λ) was as follows:

λm(t) =
σ

ε̇
=

1
d
dt

(
1

Sm(t)

) (2.15)

He used the axial viscosity with the deformational Poisson’s ratio in a multi-

layer linear viscous analysis to determine the average rate of permanent strain and

the accumulated permanent deformation in the whole pavement layer. A uniaxial

creep test was conducted at 30 °C to measure the deformation of the mixture and

a constant stress of 100 kPa was used. The predicted results showed an accuracy

of ± 30 % compared to the measured deformation.

A new modified approach based on this analysis will be shown in a subsequent

chapter to estimate the axial viscosity of the mixture in a more reliable approach.

The modified method gave reasonable prediction as will be shown later.

2.6 Summary and Research Needs

The permanent deformation of asphalt mixtures in the top layers of a pavement can

make a significant contribution to rutting. Many factors were shown to significantly

affect the asphalt mixture and decrease the resistance to permanent deformation.

Therefore, developing approaches to predict permanent deformation needs a good

understanding of the deformation performance and the most important contributing
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factors.

Laboratory tests that are used intensively to measure the resistance of asphalt

mixtures to rutting were presented. There are different test protocols and conditions

to measure the permanent deformation depending on what is required from the test.

The theory of aggregate packing was presented and studied extensively and

it was shown how the different aggregate particle orientations and structures can

affect the performance of the mixture. The Bailey method for asphalt mixture

design and evaluation was presented and it was shown how the ratios were used to

evaluate the mixture. More research and investigation into these evaluation ratios

was found to be required to describe precisely the aggregate gradation and its real

effect on the performance of the mixture. The literature showed that the evaluation

ratios were mainly used for compactibility issues.

The DASR method was also presented and it was shown that it is a theoretical

approach to define which size range of aggregate is carrying the load. The method

has been extended by researchers to investigate how the dominant particles are

disrupted by the interceptors and how this will affect the performance negatively.

The stress-strain behaviour of asphalt mixtures shows different performance

at different temperatures and loading conditions. The elastic and viscoelastic be-

haviour were introduced and it was shown how their constitutive models perform.

A review of the use of the two approaches (layer-strain and viscoelastic approaches)

was presented and their advantages and disadvantages were discussed. The linear

viscous approach is based on incorporating the viscous behaviour of the material

into the analysis; it has shown reasonable results. An easy, efficient, and practical
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way of predicting rut depth is required and this is one of the tasks of this research

that will be developed in subsequent chapters.
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Chapter 3

Soft Computing Techniques

3.1 Introduction

Soft computing techniques are information processing tools, and they are usually

used for performance prediction and evaluation. Human type processing comprises

logical and intuitive information processing while conventional computer process-

ing is suitable for logical information only (Chattopadhyay, 2006). Soft computing

techniques are developed to include human-like information processing by adding

more features compared to conventional techniques, and they are used to solve

complex problems. There are two main soft computing techniques: Artificial Neu-

ral Networks (ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS). The

behaviour of asphalt mixtures is very sensitive to the change of variables such as

aggregate gradation, binder content, temperature, etc. This chapter presents a brief

explanation of how ANN and ANFIS work. Furthermore, the chapter will present

applications of both techniques in the pavement field.
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3.2 Artificial Neural Network (ANN)

Artificial neural networks (ANN) are considered as effective tools to solve complex

problems. This section gives a brief summary of the ANN concept; information pre-

sented is mostly summarised from Gershenson (2003). The ANN model comprises

inputs which are multiplied by weights (representing the strength of the relevant

input). The inputs are then processed by a mathematical function which calcu-

lates the activation of the neuron. Another computational function is required to

determine the output of the artificial neuron; the ANN combines artificial neurons

to process information.

Figure 3.1: An Artificial Neuron

The weights are considered as an important part of the network describing the

strength of the input. The higher the weight of a single artificial network, the

more influential the input, which is multiplied by it, will be. The weights affect

the computation of the neurons; therefore, the weights of an artificial network need

to be adjusted until a required output is obtained. The process might be easy

when only one or two neurons are used in the network, but when a large number
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of neurons are used the process of adjusting the weights will be very complicated.

Therefore, algorithms are required to perform the adjustment process; this process

is called learning or training.

Backpropagation is the most regularly utilized algorithm type, used in training

the neurons’ weights (Rumelhart et al., 1986). It is used when the ANN network

is organised in layers; it sends a signal “forward”, and the error is then propagated

backwards. The inputs are supplied to the network by neurons in the input layers,

and the output by neurons in output layers ; there will be one or more than one

hidden layer between input and output layers. The process of backpropagation

uses supervised learning, which means that the users provide the network with

examples of inputs and outputs they want the network to determine. The error is

then computed (which is the difference between real and predicted results). The

principle of backpropagation is to minimize this error until the ANN has learnt

fully from the training data. The training process usually starts with random

values of weights, and then these random values will be adjusted and the error

reduced. ANNs are designed to learn from information supplied to them (Zaman

et al., 2010; Ceylan et al., 2009).

3.2.1 Applications of ANN in Pavement Field

In the past few years, several researchers have been successful in using the ANN

techniques to simulate complex problems in the pavement engineering field (Demir-

can et al., 2010; Kutay et al., 2010; Xiao et al., 2011; Xiao and Amirkhanian, 2009;
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Far et al., 2009). Lacroix et al. (2008) used previous prediction method results that

predicted dynamic modulus from resilient modulus and implemented them in an

ANN training model. The results showed that the ANN was an excellent tool for

predicting the dynamic modulus, and the model was verified with four 12.5 mm

surface course mixtures with different binder and aggregate types, and one 25.0

mm base mixture. Far et al. (2009) and Ceylan et al. (2008) similarly found that

ANN is a useful tool for predicting the dynamic modulus of asphalt mixtures by

using a four-layer neural network to construct the system and a backpropagation

algorithm to train the data.

Xiao and Amirkhanian (2009) used an ANN to predict the stiffness behaviour

of rubberised asphalt concrete mixtures with reclaimed asphalt pavement (RAP).

They also used statistical regression analysis to predict the stiffness via seven input

variables, and they found that by using ANN the input variables were reduced

to five only and better prediction results were achieved. They used a three-layer

neural network to construct the system, and a backpropagation algorithm was used

to train the experimental data.

Xiao et al. (2011) developed a series of ANN models to predict the viscosity

values of crumb rubber-modified (CRM) binders. They used four input variables

which were: the type of binder, the size of rubber crumb, mixing duration, and

rubber content. Their results indicated that the ANN-based models were able to

predict the viscosity of CRM binders, and also, the models are applicable for other

types of rubber. The ANN models were constructed with a three-layer feedforward

neural network, and a backpropagation algorithm was used to train the experi-
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mental data. They performed a sensitivity analysis and showed that the mixing

duration is relatively less important than other input factors.

Singh et al. (2012) predicted the dynamic modulus of asphalt mixtures based

on the shape of aggregate parameters by using ANN tool. The aggregate shape pa-

rameters were determined by an automated aggregate image measurement system

for coarse and fine aggregates; the shape parameters included angularity, texture,

and sphericity. They constructed the model with a four-layer feedforward neural

network and used a backpropagation algorithm to train the data. The shape pa-

rameters were used with loading frequency, asphalt viscosity, and air voids as input

variables to the ANN.

Mirzahosseini et al. (2013) investigated the applicability of using ANN modelling

to predict the rutting performance of dense asphalt mixtures. They used six input

parameters to the network: percentage of coarse aggregate, filler, bitumen, air

voids, VMA, and Marshall Quotient. They used statistical measures to evaluate

the efficiency of the predictive tool. The ANN-based prediction model was found

to be an excellent tool for predicting the flow number (a measure of repeated load

permanent deformation) of asphalt mixtures. Figure 3.2 shows their predicted

results compared to measured.

An ANN technique was also used by Shafabakhsh et al. (2015) to predict the

permanent deformation of asphalt concrete mixtures modified by Nano-additives,

and good results were achieved. Tapkın et al. (2010) used ANNs to predict Mar-

shall test results for polypropylene modified dense bituminous mixtures, and Ozgan

(2011) used it to predict the Marshall stability of asphalt concrete under different
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Figure 3.2: Predicted vs experimental results of Flow number (Fn) (Mirzahosseini
et al., 2013)

temperatures. The indirect tensile strength of different asphalt mixtures containing

anti-stripping agents was well predicted by Gandhi et al. (2009) using an ANN.

In 1999 an equation to ease the process of using an ANN model was used by

Juang and Chen (1999). They transferred their successfully trained three-layer

ANN data to a spreadsheet, and the predicted output was calculated by using the

following equation (Jang, 1993):

Output = f2

B0 +
n∑

j=1

[
Wj × f1

(
BHj +

m∑
i=1

WijPi

)] (3.1)

where Bo = bias for the output layer; Wj = weight of connections between neuron

j of the hidden layer and the output layer neuron; BHj = bias at neuron j of the

hidden layer (j=1,n); Wij = weight of connection between input variable i (i = 1,

m) and neuron j of the hidden layer; Pi = input parameter i; f2 = transfer function

for the output layer; f1 = transfer function for the hidden layers.
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3.3 Adaptive Neuro-Fuzzy Inference System (AN-

FIS)

An ANFIS is a combination of a Fuzzy inference system and an ANN; therefore, a

brief introduction to Fuzzy inference systems is required.

3.3.1 Fuzzy Logic System

Concept

A fuzzy set is known as the extension to the crisp (classical) set which allows either

complete membership or no membership to its elements (see Figure 3.3).

Figure 3.3: Representation of a crisp (classical) set (Selvi, 2009)

The fuzzy concept defined partial membership, a fuzzy set A on a universe U is

represented by a membership µA(x) which takes values between [0,1] as shown in

Figure 3.4 (Selvi, 2009).

There are different forms of fuzzy membership functions, however triangular

and trapezoidal are considered practical and preferred as simple linear functions

(Tayfur et al., 2003). Figure 3.5 shows examples of different forms of membership
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Figure 3.4: Representation of a fuzzy set (Selvi, 2009)

function.

(a) Discrete membership function (b) Gaussian membership function

(c) Triangular membership function (d) Trapezoidal membership function

Figure 3.5: Example of Membership Function Forms

To utilize a fuzzy logic technique, the following steps are required to be per-
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formed (also see Figure 3.6):

� Fuzzification: convert classical data to Membership Functions (MFs).

� Production of Rules: truth value of each rule is computed.

� Fuzzy Inference Process: combine MFs with control rules to derive the output.

� Defuzzification: convert each aggregated fuzzy output set into a single value.

Figure 3.6: Schematic diagram of fuzzy inference system

In general two processes represent the fuzzification step: create MFs for in-

put and output data, and represent them in linguistic labels. Fuzzy sets usually

represent common sense linguistic labels such as low-medium-high, cold-warm-hot,

poor-good-excellent, etc.

Fuzzy rules are represented as a sequence of IF-THEN form of the input pa-

rameters and leading to algorithms defining what the output label is (low-medium
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high). There are two main types of fuzzy rule, namely, Mamdani fuzzy rules and

Takagi-Sugeno fuzzy rules (Mehran, 2008). Takagi-Sugeno (called Sugeno) is widely

used because it defines the output in the rule as a function of all input variables as

expressed in the equation below:

If x1 is M1 AND x2 is M2 AND x3 is M3 THEN u1 = f(x1, x2, x3), u2 = g(x1, x2, x3)

where x1, x2, x3: input parameters; u1, u2: Outputs; M1,M2,M3: fuzzy sets; f()

and g() are functions of any type.

3.3.2 ANFIS

Jang (1993) used the advantages of artificial neural networks (which can self-learn

the data and self-improve the output) and the fuzzy inference system (which uses a

linguistic expression) and combined them in one technique named Adaptive Neuro-

Fuzzy System (ANFIS). The idea behind developing ANFIS is to design a network

that uses a fuzzy system to represent information in an interpretable way, and is

also capable of learning from the data provided from the ANN and can adjust mem-

bership functions and linguistic rules to minimize the error between predicted and

measured data (Wang et al., 2006). ANFIS is a hybrid system which uses Sugeno

(uses type-3 fuzzy reasoning1 as shown in Figure 3.7a) fuzzy inference system to

generate fuzzy rules from the provided input and output data (Negnevitsky, 2005).

The ANFIS architecture involves a five-layer feedforward neural network shown

in Figure 3.7b which includes two inputs x and y and one output f. The functions

1Type-3 fuzzy reasoning is also called Takagi-Sugeno type fuzzy system and is preferred for
modelling linear and non-linear system (Mehran, 2008)
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of the nodes in each layer are similar and defined by Jang (1993) as:

� Layer 1: This layer is know as the input layer where each node i is repre-

sented as a square node with a node function

O1
i = µAi (x) (3.2)

where x is the input to node i ; Ai is the logical label (low, medium, or high) of

the membership function; O1
i is the membership function of Ai and it specifies

the degree to which the given x satisfies the quantifier Ai.

� Layer 2: In this layer each node is represented as a circle and labelled as Π

which multiplies the received signals and sends the product out to the next

layer:

wi = µAi (x)× µBi (y) , i = 1, 2 (3.3)

Each output from nodes in this layer represents the firing strength (wi) of a

rule.

� Layer 3: This layer is represented as circles and labelled as N. The output of

layer 2 needs to be normalized in this layer to give normalized firing strength

(w̄i). This can be achieved by determining the ratio of the ith firing strength

(wi) to the sum of all firing strengths:

w̄i =
wi

w1 + w2

, i = 1, 2 (3.4)
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(a) Type-3 Fuzzy Reasoning

(b) Equivalent type-3 ANFIS

Figure 3.7: Adaptive Neuro-Fuzzy Inference System (ANFIS) (Jang, 1993)

� Layer 4: Nodes in this layer are represented as square nodes with a mem-

bership function (O4
i ):

O4
i = w̄ifi = w̄i (pix+ qiy + ri) (3.5)

where w̄i is the output of layer 3, and (pi, qi, and ri) are the parameter set

referred to as consequent parameters

� Layer 5: This layer contains a single circle node labelled as (
∑

) which de-

termines the overall output (O5
1) as the summation of all received signals:
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O5
1 =

∑
i

w̄ifi (3.6)

Applications of ANFIS in the Pavement Field

In the last ten years, the ANFIS technique has been used by researchers to model

and predict the performance of pavement material (Moghaddam et al., 2015; Shafabakhsh

and Tanakizadeh, 2015; Bianchini and Bandini, 2010; Özgan et al., 2012; Gopalakr-

ishnan and Ceylan; Pourtahmasb et al., 2015). It was used by Moghaddam et al.

(2015) to predict the rutting performance of asphalt mixtures modified with Polyethy-

lene Terephthalate (PET). They constructed the system with three input variable:

PET percentage, stress level, and temperature. They selected three bell-shaped

membership functions for each input. They used fuzzy IF-THEN rules of a Takagi-

Sugeno type. The evaluation of the system was based on RMSE (Root Mean

Squared Error), and they found that ANFIS could learn and predict the accumu-

lated permanent strain of PET modified asphalt mixtures.

Shafabakhsh and Tanakizadeh (2015) used ANFIS to investigate the effect of

loading features on the resilient modulus (mr) of asphalt mixtures. The mr of

asphalt mixtures was determined in the laboratory by using the indirect tensile test

at four different temperatures. The load was applied in two forms, haversine and

square, and loading time was taken at five levels, and three ratios of the rest period

to loading time (R/L) were considered. Therefore, the input layer to the ANFIS

included temperature, loading time, and R/L ratio; resilient modulus was in the

output layer in constructing the ANFIS model. A Sugeno IF-THEN rule type was
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used, and results showed that ANFIS is a very useful tool in predicting resilient

modulus. In the same manner but by using a triangular membership function,

Özgan et al. (2012) predicted stiffness of asphalt concrete mixtures at different

temperatures and exposure time, and the ANFIS also showed good agreement with

the measured stiffness.

Tapkin et al. (2012) investigated the potential of using the ANFIS technique

to predict rutting in polypropylene modified asphalt mixtures by using dynamic

creep test results. The test was carried out at different load values and certain

temperature. They found that the Sugeno fuzzy rule system adequately predict

the rutting of the modified mixture. Serin et al. (2013) used the ANFIS to predict

the Marshall stability of lightweight asphalt concrete containing clay. They used

bitumen content, transition speed of ultrasound and unit weight of mixtures as

input variables to the model. They found that the constructed ANFIS model has

a strong potential to predict the Marshall stability.

Kandil (2013) developed an ANFIS model to predict the Marshall stability and

flow of the asphalt mixture based on the aggregate gradation and binder content.

The model was constructed by using Sugeno type fuzzy inference system and a

Gaussian function was selected to build the membership functions. He used the

percent of passing of each sieve and binder content as input variables and he found

that the ANFIS is a very good tool to predict the Marshall stability and flow. There

are a considerable number of researchers that have used ANFIS as a prediction tool

in the pavement field and found that it is useful to simulate the performance of

asphalt mixtures (Tabatabaei et al., 2013; Yilmaz et al., 2011).
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Chapter 4

Effect of Aggregate Packing on

Permanent Deformation

4.1 Introduction

Aggregate gradation plays a vital role in the performance of an asphaltic mixture.

Many researchers have examined the packing of particles, to understand how the

aggregate can be structured. Starting with the maximum density of a single sized

aggregate, studies have been made on the effect of particle gradation and calculation

of maximum density. Regarding asphalt mix design, aggregate gradation will affect

all mechanical properties. However, permanent deformation is critically affected by

gradation, and this chapter will, therefore, focus on the effect of changing aggregate

gradation on the permanent deformation of an asphalt mixture. The Bailey method

of gradation analysis is used in this chapter to characterize asphalt mixtures. New

gradation ratios are introduced to adequately describe the aggregate gradation. For
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this purpose, several asphalt mixtures were selected and tested in the Repeated

Load Axial Test (RLAT). This chapter aims to show how the different particle

distributions affect on the permanent strain of the mixtures.

An imaging analysis will also be presented to clarify the interaction between the

sizes of different aggregate particles, mainly coarse particles. After that regression

analysis will be performed and it will be shown whether it is a suitable tool to

predict the strain based on the aggregate gradation of the mixture or not. Following

that, a model will be built using an artificial neural network (ANN ) to make the

prediction. Finally, an Adaptive Neuro-Fuzzy Inference System (ANFIS) will be

used for more accurate prediction results. This chapter aims to make a prediction

of asphalt mixture RLAT permanent strain based on the aggregate gradation of

the mixtures.

4.2 Material Selection

4.2.1 Bitumen

In this study, a conventional 40/60 penetration grade binder was used because it

is widely used in asphalt pavement engineering. According to EN (2007a) and EN

(2007b), the penetration grade and softening point were found to be 44 dmm and

54.70 °C respectively.
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4.2.2 Aggregate

The only type of aggregate used in this study was Bardon Hill Granite. The

aggregate found in five batches named 20mm, 14mm, 10mm, 6mm, and dust. The

dust is defined as range of particles sizes smaller than 4 mm and the filler used was

limestone filler and was defined as passing sieve 0.063 mm (63µm). The particle

densities are shown in Table 4.1

Table 4.1: Particle Densities of Bardon Hill Aggregate

Aggregate Size Particle density of aggregate

20mm 2.78
14mm 2.81
10mm 2.83
6mm 2.84
dust 2.80
filler 2.660

The gradation of aggregate was mostly selected to be within the asphalt concrete

British standard EN (2005) limits of 14mm maximum aggregate size. Thirteen

different aggregate gradations, most of them were chosen to cover variable ranges

of Bailey ratios, were selected to understand the different particle structures in the

mixtures (see figure 4.1). The British standard recommends a binder content of

5.1% for this range of aggregate gradations, so this percentage was used. Following

EN (2004), the aggregate mixtures were heated up to 160 ± 5 °C for a minimum

period of 8 hours; at the same time, the binder was also heated up to 160 ± 5 °C

but for 3 − 5 hours only. The aggregate blends and binder were then mixed in

the mechanical mixer at 160± 5 °C for approximately 3 minutes. After the mixing

process was completed and the aggregate particles were well coated with binder, the
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(a) Mix 1, 2, and 3 (b) Mix 4, 5, and 6

(c) Mix 7,8, and 9 (d) Mix 10, 11, 12, and 13

Figure 4.1: Aggregate Gradations for the Thirteen Mixtures

loose mixture was placed in the 100 mm diameter gyratory mould and compacted

by the gyratory compactor at 150 °C. The mould was initially heated up, and the

internal faces were lubricated with silicone grease. The compaction was performed

at 0.6 MPa vertical pressure and the internal angle 1.25°. Target air voids of 5%

were selected for all the mixtures. Most of the mixtures did not reach the target

void content (height) so the gyratory compactor was stopped after 300 gyrations.

None of the samples had a large increase in density after 200 gyrations (as shown in

Figure 4.2). Three samples of each gradation were manufactured for repeatability.

The samples were trimmed to a height of 60 mm so the resulting samples were

100mm diameter × 60mm height.
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Figure 4.2: Number of Gyrations vs Densities for different mixtures

4.2.3 Volumetric Properties

The samples were then weighed and wrapped in foil to determine their air voids

content. The air voids and VMA are shown in Figure 4.3 and 4.4
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Figure 4.3: Air Voids of the 13 different asphalt mixtures

Figure 4.4: VMA of the 13 different asphalt mixtures
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4.3 Repeated Load Axial Test (RLAT)

The RLAT test measures the permanent deformation that occurs in a sample after

applying a certain stress and frequency. The test was initially conducted with

standard test stress conditions of 100 kPa and 1800 cycles. The results showed

little differences between the deformations which made evaluation difficult. To

overcome these small differences and to better simulate the high stresses in the

field, the axial stress and the number of cycles were increased to 300 kPa and

5000 cycles respectively. Each cycle comprised a 1-second load application and

1-second rest period; the testing temperature was fixed at 40 °C. The selection of

40 °was based on the recommendation by the standards and also it is an estimate

of an average yearly temperature in hot countries which the rutting is sensitive in.

Both ends of each sample were coated with a thin layer of silicone grease and then

with graphite powder. A typical test result, which is a relationship between total

cumulative permanent strain and number of cycles, consists of three stages: primary

stage, secondary stage, and tertiary stage, as shown in Figure 4.5. In the primary

stage, the permanent strain accumulates rapidly and then the rate of increase in

permanent strain per cycle starts to decrease until it reaches a constant value; this

will be the starting point of the secondary stage. After that, the sample begins

to gain strain again and the rate of strain accumulation starts to increase rapidly;

this is considered to be the onset of the tertiary stage (Zhou et al., 2004). There

is considerable research focusing on modelling these three stages, but it is beyond

the scope of this research. Some of the samples had good resistance to permanent
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deformation and did not reach the tertiary stage. The final accumulated strain is

the parameter that this research will consider; Figure 4.6 shows the results of the

13 asphalt mixtures.

Figure 4.5: The three Stages of RLAT Test
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Figure 4.6: Accumulated Permanent Strain resulted from RLAT

4.4 Bailey Method

As mentioned earlier in chapter 2, the Bailey method introduces certain ratios to

evaluate aggregate gradation. These ratios have been used in this research to assess

the mixture performance in terms of mechanical properties. Permanent deformation

is the main mixture property that will be evaluated by using these ratios; however,

stiffness will also be assessed in the following chapter.

4.4.1 Control Sieves and Evaluation Ratios

Bailey control sieves are dependent on the Nominal Maximum Particle Size (NMPS),

which is defined by Superpave as one sieve larger than the first sieve on which more

than 10% of the aggregate is retained. Since all the mixtures have an NMPS of
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14mm, then all the mixes have the same control sieves. After the calculation of the

control sieves and using the factor of 0.22, the closest standard sieve was selected

to be the control sieve.

PCS = NMPS × 0.22 = 3.08, sieve size 2.8mm was selected.

SCS = PCS × 0.22 = 0.616, sieve size 0.5mm was selected.

TCS = SCS × 0.22 = 0.11, sieve size 0.125mm was selected.

HalfSieve(HS) = 0.5×NMPS = 7, sieve size 8mm was selected.

This research is not focusing on the effect of fine particles, so the TCS was not used

in the analysis. The two Bailey ratios were calculated based on the selected control

sieves, see Table 4.2. The third ratio (FAf ) represents the content of the very

finest material (including filler) in the mix and is important for certain aspects of

mixture behaviour (e.g. voids in fine fraction, binder demand). However, this ratio

will not be considered here as this study has focused on coarse aggregate effects on

permanent deformation.

Table 4.2: Bailey Ratios for the 13 Mixtures

Bailey Ratio Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8 Mix 9 Mix 10 Mix 11 Mix 12 Mix 13

CA 0.82 0.66 1.06 2.23 2.01 0.84 1.22 0.58 1.58 0.81 0.52 0.53 0.44
FAc 0.49 0.49 0.40 0.43 0.37 0.34 0.34 0.39 0.39 0.34 0.34 0.35 0.37

4.4.2 Limitations to Bailey Ratios

The CA ratio represents the interaction of the interceptor particles with the coarse

aggregate (larger than 8mm) to evaluate the voids structure in the large particles.

The FAc, in turn, represents the interlock between particles in the fine fraction.

These two ratios, however, do not show the interlock of fine to coarse particles,
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in other words, how the interceptor particles are supported by the finer material.

They also do not show the amount of coarse particles that the interceptors are

supporting. For instance, in Table 4.2 Mix 1 and 6 have similar values of CA,

so they both have the same level of interaction between the interceptors and large

particles. However, it is not clear if this ratio is achieved from a high or low content

of either interceptors or large particles. Another example is seen in Mix 1 and 10,

which also have close values of CA but with different FAc. Figure 4.6 shows entirely

different deformation behaviour between the two mixes and one cannot explore the

particle packing of these two mixtures to know the reason behind it simply by using

Bailey ratios. For these omissions, it has been found that it is necessary to add

more packing ratios to give a full understanding of the particle structure.

4.4.3 New Ratios

To overcome this inability to understand the full gradation curve, three ratios have

been introduced based on the theory of Bailey. Firstly it was necessary to define

the fine-coarse particles interlock, so a ratio has been developed as:

Cf/Fc =
%PassingPCS −%PassingSCS

%PassingHS −%PassingPCS
(4.1)

where Cf : the coarse particles of the fine fraction; Fc: the fine particles of the

coarse fraction.

This ratio plays a vital role in understanding the performance of the mixture.

For instance, by evaluating the previous example of mix 1 and 10 one can find that
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the main reason for such a difference in deformation results is that this ratio (Cf/Fc)

shows a large difference between the two mixes, 0.35 and 1.19 respectively, as shown

in Table 4.3. The values of this ratio mean that the interceptor particles in Mix 1

are not well supported by the finer particles while they are in Mix 10. Up to this

point, it is known the degree of which Mix 1 and 10 have interlock between large

particles, fine particles, and fine-coarse particles. However, additional information

is required to see the amount of large particles within these two mixtures. The

reason for this is that if Mix 10 was taken as an example, it has an excellent fine-

coarse particle interlock but two options are present themselves: either it has only

a small amount of large particles in which case the interceptors and fine particles

are carrying the load and high deformation is expected; or it has a large amount of

large particles so that the mixture has a good interlock between all particle sizes.

This needs the introduction of another ratio representing the percentage of coarse

portion of coarse aggregate in the mix (CC). The coarse portion is defined as

particles larger than the Half Sieve (sieve size 8mm).

Finally, the ratio between the whole fine fraction to the whole coarse fraction

(F/C) was calculated to understand what the particle size range of the majority

of the mixture is. These three new ratios (shown in Table 4.3) and the Bailey

ratios (Table 4.2) will be used to define the full gradation curve and to predict

the performance of the asphalt mixture in terms of permanent deformation (in

this chapter) and stiffness modulus (later chapters). Figure 4.7 shows schematic

diagram explaining the calculation of each ratio.

The understanding of aggregate structure will be further explored by assessing
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Figure 4.7: Determination of the Packing Ratios

Table 4.3: The New Ratios for each Mixture

New Ratio Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8 Mix 9 Mix 10 Mix 11 Mix 12 Mix 13

Cf/Fc 0.35 0.56 0.53 0.25 0.51 1.22 0.62 0.74 0.80 1.19 1.54 1.59 1.81
F/C 0.37 0.47 0.50 0.31 0.58 0.90 0.58 0.52 0.83 0.84 0.85 0.91 1.23
CC 0.42 0.42 0.33 0.24 0.22 0.29 0.30 0.44 0.21 0.31 0.37 0.36 0.37

three mixtures. The results showed that those mixtures with higher values of Cf/Fc

have better resistance to permanent deformation. However, all five ratios should be

considered first to explain and define the behaviour of each gradation. For instance,

by comparing Mix 1, Mix 8 and Mix 13 it can be noticed that Mix 1 has a CA

value of 0.82 which means that the coarser part of the gradation (larger than the

HS) is filled with more interceptors (particles smaller than the HS and larger the

PCS) than Mix 8 or 13, which have CA ratios of 0.58 and 0.44 respectively. From

this ratio one can predict that Mix 1 has fewer voids in the coarser part of the

gradation than the others. However, by examining the other ratios one can observe

that the Cf/Fc ratio in Mix 1 is significantly lower than in the other two mixes. As

a result, Mix 1 has insufficient fine material to fill the voids between larger particles
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and there will be a lack of fine particle to coarse particle interaction. The same

phenomenon can be seen concerning the F/C ratio. According to such analysis, it

can be predicted that Mix 8 and 13 are denser and more permanent deformation

resistant than Mix 1.

4.5 Image Analysis

To examine the arrangement of the large particles in asphalt mixtures, x-ray scan-

ning has been carried out for two mixtures (Mix 1 and Mix 13). This process was

aimed at building a 3D analysis of the mixtures but, after taking the x-ray scans,

it was found that dealing with slices in a 2D mode is adequate. Therefore, x-ray

images near the top, bottom, and in the middle of each mixture were used. These

images were taken to demonstrate the phenomena of ratios related to the coarse

particles. The images were then processed through Avizo Fire 8.1 software. This

software is used to visualize and analyse 2D and 3D material science images, Avizo

(2014).

4.5.1 Image Processing

The images were processed with the software by using the following steps:

� Feed Avizo with the raw image.

� Apply the Non-Local Means Filter (if required depending on the image). This

filter is considered to be very efficient for noisy data and is used in 2D mode.

The only drawback is that it is time-consuming, (Avizo, 2014).
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� Edit New Label Field and choose a proper threshold value, (minimum value 70

maximum value 120 for an image resolution of 600×600 pixels). The threshold

range was used for separating aggregate particles from air and mastic.

� Use the Separate Object function: it is a module used to separate connected

particles when the image is noisy, and the threshold is not able to distinguish

the boundaries of each particle. The principle is to compute watershed lines

on a distance map, (Avizo, 2014).

� Label the particles with different colours by applying the Labelling function.

The above steps are visualized in Figure 4.8. This process was applied to Mix 1 and

Figure 4.8: The Steps of Image Processing
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13, and the resulting images clearly support the explanation made earlier in the

previous section. Figure 4.9 shows the difference in aggregate structure between

Mix 1 and 13. Mix 1 has large particles, and they are supported by the interceptors;

however, there is little fine material visible between the interceptors. It can be seen

in Figure 4.9 that Mix 13 has radial segregation. The large particles accumulated

towards the outer part of the sample and a small area in the middle has more fine

material. This segregation might be due to the method of compaction which pushes

the large particles aside through the fine material. This did not happen in Mix 1

due to the dominance of the interceptors.

Consequently, Mix 1 has more voids than Mix 13 and most of these voids are

located between the interceptors and the large particles. On the other hand, Mix

13 has a broad range of particle sizes forming a good aggregate structure. If one

can imagine applying a load on both mixes, the voids in Mix 1 will tend to be filled

as the material deforms and also the load will be mainly carried by the interceptors

rather than the large particles as there are few direct contacts between them. Mix

1 will, therefore, develop high permanent deformation. Meanwhile, in Mix 13 the

large particles are dominating and there are fewer voids between the particles so it

will develop less permanent deformation.
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Figure 4.9: Difference between the aggregate structure of the two mixes

4.6 Prediction Modelling

The results obtained from the RLAT test were used to establish a model which can

predict the behaviour of the mixtures. The modelling started with linear regression

and then moved to the more advanced tool of intelligent networking, due to the
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limitations of regression analysis.

4.6.1 Linear Regression Model

The thirteen asphalt mixtures were firstly used in regression analysis aiming to

predict the value of their permanent strain when 300 kPa is applied for 5000 cycles

by using Minitab 17 statistical software based on the packing ratios. To achieve

the most accurate results, each sample with a high strain value in the RLAT test,

which may be considered to have failed, was assigned a 5.0 % permanent strain

in building the statistical model. Therefore, if the model output results showed

permanent strain close to 5.0 %, this means the sample is expected to have high

deformation. Before the regression modelling, a multicollinearity analysis between

the input variables, the five packing ratios, was performed to check if there is any

correlation between them. The main parameter used in evaluating this analysis was

the Variance Inflation Factor (VIF)1. A first round was performed by considering

the five ratios as input parameters and the permanent strain as the output. It was

found that there is collinearity between CA and CC and also between Cf/Fc and

F/C because they have VIF values more than 5.0 and have values close to each

other. Table 4.4 shows this analysis in detail.

Therefore, a second round was carried out by excluding CC, the results showed

a better VIF value for CA, but the VIFs for the other pair remained high. A third

round was conducted by eliminating both CC and F/C, and the final VIF values

1VIF measures the seriousness of multicollinearity in regression analysis. It gives a record
that measures how much the variance of an expected regression coefficient is increased due to
collinearity (Kutner et al., 2004).
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Table 4.4: Round one of Multicollinearity Analysis in Minitab 17

Term Coef SE Coef T-Value P-Value VIF

Constant -6.62 6.85 -0.97 0.366
CA 0.50 1.93 0.26 0.802 19.74
Fac 26.86 8.97 3.00 0.020 3.63

CF/Fc 1.97 2.00 0.98 0.357 16.40
F/C -3.58 3.84 -0.93 0.383 16.12
CC -4.0 14.6 -0.27 0.793 19.23

for all the input variables were then less than 5.0 (Table 4.5) which indicates that

there is no correlation between them and that each is therefore independent.

Table 4.5: Round three of Multicollinearity Analysis in Minitab 17

Term Coef SE Coef T-Value P-Value VIF

Constant -8.51 3.70 -2.30 0.047
CA 0.713 0.623 1.14 0.282 2.30
Fac 25.58 6.74 3.80 0.004 2.30

CF/Fc 0.205 0.919 0.22 0.829 3.86

After running this last regression analysis the statistical model gives an R2 of

79.23%, and the model equation was as follows:

ε = −8.51 + 0.713CA+ 25.58FAc + 0.205Cf/Fc (4.2)

Figure 4.10 shows the predicted strain from the regression model. Some of the

mixtures were relatively poorly predicted, suggesting limitations of linear regres-

sion analysis. To enlarge the database, some of the thirteen mixtures were re-

manufactured but with a slight change (within 1-2 %) in the gradation due to

changes in the laboratory aggregate stocks. Because of the very small change in

density when the number of gyrations increased above 200 (see Figure 4.2), some

of these samples were also compacted with only 200 gyrations. Their air voids and
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Figure 4.10: Regression Prediction Model

permanent deformation results were close to but not the same as those from the

original sample set, mainly because of the slight change in aggregate gradation and

the new batch of aggregate may have different aggregate shape. Two other mixtures

were also added to create a proper understanding of mixtures other than asphalt

concrete; these mixtures were Stone Mastic Asphalt (SMA) and Porous Asphalt.

Data from all of these samples were firstly used in a standard regression model, and

it was found that the model was not able to predict the results of the enlarged data

set satisfactorily. These samples were then used to build a new regression model to

check whether linear regression was a suitable tool for further consideration. Un-

fortunately, it was found not to give satisfactorily good prediction as can be seen

in Figure 4.11. This is seen in the large residuals of the new set of data compared

to the previous (see Figure 4.12), where the residual (e) is the difference between
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the observed and predicted values.

e = εobserved − εpredicted (4.3)

Figure 4.11: Predicted Strains for the large data set

It could be concluded that linear regression is not the right tool for building a

model to predict the permanent deformation of asphalt mixtures. Therefore, other

options should be considered.
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Figure 4.12: Differences in Residuals of the Predicted strains

4.6.2 Artificial Neural Network (ANN)

An artificial neural network is considered as a good intelligent network that is used

in training data to build a model in various fields. An ANN was utilised in this

study to overcome the limitations of regression modelling. Initially, the three ratios

that the regression analysis recommended were used but this failed to give a good

model of prediction after several ANN trials. Therefore, all five ratios were used

once more to get a full understanding of the gradation details.

Construction of ANN Model

The structure of the network used consisted of 1 layer of input with 5 nodes (5

ratios), 1 output layer with 1 node (strain), and three hidden layers with 5, 15,

and 5 nodes respectively, see Figure 4.13. Each of the neurons in the hidden and
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output layers has two functions: the first is to deal with assembling the weights and

the second is to develop a transfer function to process the output. The accuracy

of the ANN depends on the network structure; however there is no definite rule for

choosing the number of hidden layers and number of neuros in each hidden layer,

Tarefder and Zaman (2005). Trial iterations were made with single hidden layer,

but good results were not achieved. Therefore, the number of hidden layers and

neurons in each layer were selected not according to any rule but because they gave

reasonable results; a different combination may also have given consistent results.

Juang and Chen (1999) have produced an equation to represent the three-layer

Figure 4.13: Structure of ANN

neural network. Their equation was used to ease the process of using the model by

implementing it in a spreadsheet. In the same process, a four-layer neural network

equation has also been derived by Lacroix et al. (2008). The output is a function

of an aggregation of weights, transfer function and biases. In the same manner,

an equation for a five-layer neural network has been derived following the previous

two equation models. The network output is RLAT permanent strain and can be

calculated by using Eq 4.4 and 4.5. A hyperbolic tangent sigmoid transfer function

(tansig) function was used as a transfer function for the hidden and output layer.

This function was considered to be best to simulate the network shown in Figure
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4.14.

ε = fo

Bo +
r∑

l=1

Wlfh

Bl +
q∑

k=1

Wklfh

Bk +
n∑

j=1

Wjkfh

(
Bj +

m∑
i=1

WijPi

)
(4.4)

fo,h (T ) = 2/(1 + e−2T )− 1 (4.5)

where Bo = bias for the output layer; l = subscript for hidden layer 3; k = subscript

for hidden layer 2; j = subscript for hidden layer 1; i = subscript for the input layer;

r = number of nodes in hidden layer 3 (i.e., 5); q = number of nodes in hidden

layer 2 (i.e., 15); n = number of nodes in hidden layer 1 (i.e., 5); m = number of

nodes in the input layer (i.e., 5); Wl = weight factors for the output layer (size:

1× q); Wkl = weight factors for hidden layer 3 (size: r × q); Wjk = weight factors

for hidden layer 2 (size: k× j); Wij = weight factors for hidden layer 1 (size: j× i);

Bl = bias for hidden layer 3 (size: r× 1); Bk = bias for hidden layer 2 (size: q× 1);

Bj = bias for hidden layer 1 (size: n × 1); fo= transfer function for the output

layer; fh= transfer function for the hidden layers.

Backpropagation is a supervised learning algorithm which allows for training

and adjusting the network by minimizing the error between the network and target

output. Random numbers of weights and biases are used to initiate the network

training process, after which the inputs will be introduced to the system. The error

is calculated as the difference in values of network output and target output and

then propagated backwards through the neural network. The weights and biases of
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each layer are adjusted to minimize the error for the next round of calculation. This

is an ongoing process until a target error is reached. For this study, the training

algorithm used was the Levenberg-Marquardt backpropagation algorithm (named

“trainlm”) which is one of the most efficient and fastest, and 75% of the data were

selected for training and 25% for testing. The ANN code (shown in Appendix

A)was produced using an academic version of MATLAB 2015.

Figure 4.14: Processing of Backpropagation Algorithm
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ANN Model Results and Discussion

The performance of the model was evaluated by using an R2 value and the Root

Mean Squared Error (RMSE). An R2 value, which is a measure of correlation be-

tween predicted and measured values, close to 1 reflects a good agreement between

the predicted values from the ANN model and measured values. The lower the

RMSE value the lower the error in the prediction; therefore good prediction is

achieved with higher R2 and lower RMSE.

R2 =

∑
(o− t)2∑

(o− omean)2
(4.6)

RMSE =

√∑n
i=1(oi − ti)2

n
(4.7)

where: n= total number of data points, o= network output, t= target output,

omean= average of network output. The ANN model showed good agreement be-

tween the predicted and the measured strains. The predicted values are shown in

Figure 4.15.

Figure 4.15 shows that the ANN predictions were very close to the line of equal-

ity (LOE), and it was evident that the ANN tool was better at predicting the

strain values than regression modelling. The R2 and RMSE values for the model

are shown in Table 4.6

Table 4.6: Performance of ANN Model

Training Testing All Data

RMSE 1.86E-10 1.059 0.553
R2 1 0.938 0.983
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(a) Training

(b) Testing

(c) Training and Testing

Figure 4.15: ANN Prediction Results
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It is expected that the error for the testing data will be larger because the model

did not train itself on these data. Figure 4.15b shows that the porous mixture strain

was overpredicted, and Mix 4 was under-predicted. However these two mixtures

had high values of strain in the RLAT test, taking them into so-called ‘tertiary

stage’ of strain accumulation, where a specimen approaches failure. This region is

inevitably much harder to predict with confidence, and the R2 and RMSE values

were highly affected by these two mixtures.

Sensitivity Analysis

A sensitivity analysis for the input parameters was conducted by establishing a

network for each parameter with the permanent strain. R2 and RMSE were used

to evaluate the degree of correlation strength between each input and the strain. A

new ANN model was made for each input variable, and it was trained and tested.

The structure of each network was the same structure as for the previous ANN

model (one input layer, three hidden layers, and one output layer). Table 4.7

summarizes the statistics of each ANN model for the training and testing phases.

The large aggregate particles related ratio, CC, was found to have the strongest

correlation with the strain with the highest R2 and lowest RMSE compared to

other ratios. The ratios that are related to the fine-coarse material, Cf/Fc and

F/C were found to have the poorest correlation with strain according to their R2

and RMSE values. However, when one of these ratios (Cf/Fc) was combined with

one of the others (CA), it gave a strong correlation, better than either individually.

It is therefore concluded that all the ratios are significant and important to build
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a proper understanding of the aggregate particle structure and, in turn, to develop

a good understanding and prediction of the performance.

Table 4.7: ANN Sensitivity Analysis

Input Parameter R2 RMSE

ANN Model Training Testing Training Testing
CA 1-5-15-5-1 1 0.965 2.54E-11 1.255
FAc 1-5-15-5-1 1 0.947 9.64E-12 1.234
Cf/Fc 1-5-15-5-1 1 0.64 1.5E-13 1.171
F/C 1-5-15-5-1 1 0.869 1.95E-11 2.265
CC 1-5-15-5-1 1 0.979 1.3E-10 1.220

CA,Cf/Fc 2-5-15-5-1 1 0.972 3.11E-12 1.080

4.6.3 Adaptive Neuro-Fuzzy Inference System (ANFIS)

It is always desirable to look for a more accurate way to predict permanent strain.

ANFIS is a multi-layer adaptive neural network-based fuzzy inference system which

was developed by Jang (1993). This method was used in parallel with the ANN

aiming to provide a more accurate prediction. As in the ANN, all the five ratios

were used to build the model, but each ratio has a membership function that defines

the range of each input value.

Construction of ANFIS Model

The structure of the model consisted of five input parameters,the inference system,

and the output, as shown in Figure 4.16. In constructing the ANFIS model, the

training and testing data selection is not random as in ANN. The input parameters

need to be defined as membership functions (MF), so each input parameter was

defined to have three membership functions named low, medium, and high. The

110



range of MFs is based on the range of each input value, so the mixtures with the

minimum and maximum values of each ratio were included in the training process,

and its membership functions were defined accordingly. This allows the model to

train itself on all the critical values. Therefore, the training and testing data are

not necessarily the same sets as in the ANN. The membership functions for Cf/Fc

are shown in Figure 4.17 as an example. The membership functions that are used

are a triangular function, and the ANFIS model was based on a Sugeno type fuzzy

inference system which is widely used in asphalt mixture related analysis. The

output membership function could be either constant or linear. A typical Sugeno

type fuzzy inference system rule is: If Input 1 = x and Input 2 = y, then output

z = ax + by + c , for a linear membership function; if constant MF is used then

(a = b = 0). For simplicity and to reduce running time the constant function

was employed in this analysis. The number of rules generated by this model was

243 based on the if-then system. In this system the input variables are fuzzified,

and the fuzzy rules are then applied. After that, the weights are determined for

each corresponding rule, and then the average weights for all output membership

functions are calculated to evaluate the final output value (strain).

Sixteen data sets were used to train the system, and six datasets were used to

test the model. In the training phase, initial values of fuzzy inference parameters

(which are associated with layer 1 in the ANFIS system and are also called premise

parameters) are assumed to predict the strain after being processed through the

rules. The initially predicted strain is then compared with the actual value, and

if the error is high, then the system will restart the process with adjusted values
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Figure 4.16: Structure of ANFIS

Figure 4.17: Membership function of Cf/Fc

of fuzzy inference parameters until the error is minimized. The parameters are

adjusted by a hybrid technique which uses the least square estimate and the gradient

descent method.

ANFIS Results and Discussion

The model performance was also evaluated by using the R2 and RMSE values. The

ANFIS model produced excellent and more precise predictions of the permanent

strain of the mixtures. The main reason behind this is that an ANFIS generates
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logical rules to understand the output. Figure 4.18 shows the network output

for the training and testing data respectively. The R2 and RMSE values are

presented in Table 4.8 which shows that the ANFIS network is better at predicting

the permanent strain than the ANN, seen in the lower RMSE and the higher R2.

Table 4.8: Performance of ANFIS Model

Training Testing All Data

RMSE 6.48E-5 0.786 0.411
R2 1 0.974 0.991

The analyses also include the relationship between the input parameters and

the output. Figure 4.19 shows the relationship surface between the inputs and

output. Firstly Figure 4.19a displays the effect of CA and Cf/Fc on the strain;

generally, it can be seen that when both ratios are maximized the strain will be

minimized. This proves what has been explained earlier in this chapter; a higher

CA ratio means healthy interaction between interceptors and coarse aggregate. So

the combination of good coarse aggregate interaction (high CA) and real fine-coarse

aggregate interaction (Cf/Fc) results in small values of permanent strain. It can

also be seen that as the CA decreases with a constant high value of Cf/Fc, the strain

starts to increase; however vice versa (when Cf/Fc decreases and CA is constant)

is not the same performance. On the other hand, if both ratios are low then

the mixture is voided (from an earlier discussion) so the resistance to permanent

deformation will be poor. Figure 4.19b shows the relationship with the two coarse

aggregate related ratios CA and CC, it shows that the higher the CA, the lower

the strain regardless of the CC ratio value. However, as both ratios decrease the
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(a) Training

(b) Testing

Figure 4.18: ANFIS Prediction Results

resistance to permanent deformation will also start to fall. This is because the

mixture will have little coarse aggregate and the main load is maintained by the

finer materials, (note: negative values in this figure are related to the model training

process and are not applicable to the results). The shapes of the surfaces in Figure

4.19 are clearly not uniform, and this is because it is not possible to use only one

or two ratios to understand the performance of the mixture.
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(a) Cf/Fc and CA vs Strain

(b) CC and CA vs Stain

Figure 4.19: Relationship Surface between the Inputs and Output

4.7 Conclusions

The permanent strain of asphalt mixtures has been evaluated in this chapter by

using the Repeated Load Axial Test (RLAT). The primary variable which was

investigated is the aggregate gradation of each mixture to discover how the change
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in aggregate particle distribution will alter the packing of the particles and affect

the performance. An extension to the Bailey method was used in the analysis.

Several conclusions can be drawn:

� The aggregate gradations were firstly evaluated using Bailey ratios which

represent the interaction between different coarse fractions and the interaction

between different fine fractions. It was found that these ratios do not give a

full understanding of particle interaction for the whole gradation curve. For

example, it was shown that two mixtures may have a similar value of Bailey

ratios, but they do not behave similarly in the laboratory. Therefore, it was

necessary to introduce new ratios to fully understand the gradation curve.

Three new ratios were added to cover the interaction between the coarse-fine

particles and to give an indication of the percentage of coarse aggregate in

the mix.

� Image analysis was performed by taking images from three slides in two mix-

tures and by using image analysis software. The analysis helped to investigate

how well the ratios describe the particle arrangement in the mix. The images

showed good agreement with the concept of the ratios, and they contributed

to an understanding of mixture performance.

� The test results for thirteen mixtures were analysed through these ratios and

a linear regression analysis used to predict the strain. A multicollinearity

analysis for the input parameters showed a correlation between two pairs of

ratios; therefore, two ratios were omitted from the regression analysis accord-

116



ingly. The regression model showed reasonable prediction of strain, but when

the number of mixtures increased and small changes in aggregate gradation

were included, the regression analysis resulted in relatively poor prediction.

� Artificial intelligence techniques were used to predict the permanent strain

from the packing ratios. An artificial neural network (ANN) was used first,

and it showed good prediction when using all five packing ratios. Sensitivity

analysis between input parameters and output showed that some of the ratios

were strongly correlated with the strain and others less. However, it indicated

the importance of all ratios in the analysis.

� The second intelligence technique was an adaptive neuro-fuzzy inference sys-

tem (ANFIS) which uses certain rules to process the output. This technique

provided the best prediction compared to other techniques (ANN and regres-

sion) and gave a lowest error.

117



Chapter 5

Effect of Different Variables on

Mechanical Properties of Asphalt

Mixtures

5.1 Introduction

The aggregate packing ratios gave real ability to understand and predict the be-

haviour of asphalt mixtures within certain conditions as presented in chapter 4.

This chapter will investigate whether these ratios have the power to predict the

stiffness of asphalt mixtures. In the next section, the theory of aggregate packing

ratios will be used in the same manner as presented in the previous chapter but in

relation to stiffness. The stiffness will be evaluated by making use of the packing

ratios in linear regression modelling and artificial neural networks and a compari-

son with an existing stiffness prediction model will also be shown. The effects of
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different variables on the performance of asphalt mixtures will also be presented in

the light of packing ratios. The variables include binder content, testing tempera-

ture, and compaction effort; all these variables will be used with the packing ratios

to predict the stiffness and permanent deformation of asphalt mixtures. Artificial

Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) tools

will be used for this purpose.

5.2 Effect of Aggregate Packing on Stiffness Mod-

ulus

As the packing of aggregate particles showed a significant effect on the permanent

strain in the previous chapter, their effect on stiffness will also be studied. The

reason for presenting such analysis is to establish the importance of using the pack-

ing ratios in understanding and predicting the stiffness of the asphalt mixtures.

Therefore, the same mixtures as presented in chapter 4 (including SMA, Porous as-

phalt and several repeated mixtures) will be evaluated in this section. The results

of the ITSM test showed agreement with the explanation of ratios detailed in the

previous chapter, in that the more packed the aggregate particles, the stiffer the

asphalt mixture. Mix 13 which shows a dense packing of aggregate had a higher

stiffness value than Mix 1. Figure 5.1 shows the ITSM results for all the mixtures

related to their densities. There is a good correlation between the density of most

of the mixtures and the stiffness, although Mix 12 is an outlier.
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Figure 5.1: Effect of Density on the Stiffness

5.2.1 Prediction of Stiffness

Researchers in the past have found that the Voids in Mineral Aggregate (VMA)

is the most influential parameter in relation to stiffness. For example, a stiffness

model related to VMA was proposed by Brown (1978):

Emix = Ebinder

[
1 +

257.5− 2.5VMA

n(VMA− 3)

]n
(5.1)

where

n = 0.83 log

[
4× 104

Ebinder

]
(5.2)

Brown’s model (Equation 5.1 and 5.2) was fitted to the mixture stiffness data

by assuming the binder stiffness to be 140 MPa (the value that best matched the

data set as a whole). Figure 5.2 shows the predicted and measured stiffness using
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Brown’s model.

Figure 5.2: Measured and predicted stiffness for Brown’s model

Browns model depends mainly on the VMA of the blend. However, the VMA

does not represent the proportions of the particles in the mixture. For instance, Mix

12 and 13 have a small difference in the values of VMA, 17.4 and 16.0 (Figure 4.4)

respectively, and they gave close values of predicted stiffness as shown in Figure 5.2.

However, in reality, the two mixes have quite different measured stiffness values.

The VMA can be reached with various particle distributions as can be seen from

Mixes 12 and 13, so it may not be the best parameter to depend on. Moreover,

Brown’s model also showed poor stiffness prediction for Mix 4.

Regression Analysis

A statistical analysis was performed on the five ratios and the stiffness, and it was

concluded that the same correlation between input variables as shown in Table
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4.4 and 4.5 applied. Therefore, the same final three ratios were used in the linear

regression analysis in Minitab 17 and the regression model is shown in Eq 5.3.

Emix = 9181− 765CA− 8464FAc + 1401Cf/Fc (5.3)

where Emix: ITSM stiffness of the asphalt mixture (MPa).

The regression model showed some improvements in the prediction of Mix 13 and

4, but it predicted Mix 12 poorly. In general, the model was a useful tool for

prediction apart from Mix 12 as shown in Figure 5.3. The reason that Mix 12 is

stiffer than Mix 13 is because the fine material of Mix 13 is supporting much coarser

material than that of Mix 12 (as shown in gradation curves in Figure 4.1 in the

previous chapter). For this reason, the interlock of particles in Mix 12 is better, and

they have nearly same permanent deformation resistance (as shown in the previous

chapter). These details of comparison did not appear clearly in the ratios which

make Mix 12 poorly predicted. To compare the performance of Brown’s model

and this regression model, the R2 and RMSE were calculated and these showed

that Brown’s model has a higher R2 but also higher RMSE than the packing ratio

model. The performance of the two models is shown in Table 5.1.

Table 5.1: Performance of Brown’s and Packing Ratios Stiffness Models

Parameter Brown’s Packing Ratios

RMSE 1163 916
R2 0.734 0.647

It can be noticed from the equation that the coarse-fine aggregate ratio (Cf/Fc)

and the proportions of the fine particles in the fine aggregate (FAc) are dominant
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Figure 5.3: Measured and Predicted Stiffness for Aggregate Packing Regression
Model

and make the greatest contribution to the result. However, these two ratios have

opposite effects on the stiffness. The Cf/Fc has a +ve sign which indicates that as

the interceptors are more supported by the finer particles, the stiffness increases. In

contrast, the FAc has a −ve sign which indicates that as the fine material increases

the stiffness decreases. The excluded two ratios are also still needed (although not

in the regression model) to describe and understand the interlock between particles.

Artificial Neural Network ANN

An artificial neural network was used to train the stiffness data with the packing

ratios. The five ratios were used for this purpose, and the same ANN construction

model presented in the previous chapter for permanent deformation were utilized

in this section. The model results are shown in Figure 5.4. The model was trained

on 75% of the data and tested on 25%; the results showed a good ability of the
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packing ratios to predict the stiffness of the mixtures. The performance of the ANN

stiffness model is presented in Table 5.2

Table 5.2: Performance of the ANN Stiffness Model

Training Testing All Data

RMSE 8.62E-07 744.2 363
R2 1 0.884 0.95

This section has showed that the aggregate packing ratios presented in chapter

4 are also significant for the prediction of mixture stiffness and the ANN model

showed better performance than either Brown’s model or regression analysis. A

further study will now be presented to evaluate the effect of different variables

on both permanent deformation and stiffness of asphalt mixtures in the light of

aggregate packing ratios.
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(a) Training

(b) Testing

(c) Training and Testing

Figure 5.4: ANN Prediction Results of ITSM Stiffness based on the Aggregate
Packing Ratio
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5.3 Material Selection and Testing

Asphalt mixture mechanical properties were evaluated using different variables that

are believed to be influential on mixture performance. The mechanical properties

were investigated for six mixtures which were chosen (to cover the range of different

aggregate gradation) from the thirteen asphalt mixtures presented in chapter 4. The

mixtures that were selected are Mix 1, 3, 4, 6, 7, and 13; their gradations are shown

in Figure 5.5, the mixture blending procedure was the same as presented in chapter

4.

Obviously, the six mixtures have different aggregate packing characteristics ac-

cording to the ratios presented in Table 5.3. Some of the mixtures, such as Mix 1,

were slightly changed in their aggregate gradations in this phase of testing due to

changes in some of the aggregate stocks, and the packing ratios therefore changed

accordingly. The new gradation for Mix 1 also has good interaction between the

interceptors and the coarse aggregate, and the interceptors are slightly better sup-

ported by the finer particles than the old mixture. Mix 4 has a very high ratio

of interceptors (CA=2.23) to support the low amount of coarse particles, and also

the interceptors are not well maintained by the fine material (Cf/Fc=0.25). This

combination of ratios makes the mixture voided and influences negatively on its

performance. On the other hand, the interceptors in Mix 13 are well supported by

finer material (Cf/Fc=1.81) and in their turn, they support a reasonable amount

of coarse aggregate. This combination makes Mix 13 denser than Mix 4, and better

performance is expected. To evaluate the asphalt mixtures in the light of these
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(a) Mix 1, 3, and 4

(b) Mix 6, 7, and 13

Figure 5.5: Aggregate gradation of the Six Mixtures

packing ratios, three further variables were considered: binder content, testing

temperature, and compaction effort.

5.3.1 Testing

Two main tests were carried out on these asphalt mixtures: the Repeated Load

Axial Test (RLAT) for measuring the permanent deformation and Indirect Ten-

sile Stiffness Modulus (ITSM) for measuring the stiffness. The RLAT test was
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Table 5.3: Packing Ratios for each Mixture

Packing Ratio Mix 1 Mix 3 Mix 4 Mix 6 Mix 7 Mix 13

CA 0.77 1.06 2.23 0.84 1.22 0.44
FAc 0.41 0.40 0.43 0.34 0.34 0.37
Cf/Fc 0.53 0.53 0.25 1.22 0.62 1.81
F/C 0.48 0.50 0.31 0.90 0.58 1.23
CC 0.41 0.33 0.24 0.29 0.30 0.37

conducted under the same test conditions as presented in the previous chapter

(stress level, conditioning period, sample preparation). However, the effect of test-

ing temperature on permanent strain was explored by expanding the range of test

temperatures (30, 40, and 50 °C).

The ITSM test was conducted on all the asphalt mixtures (three for each grada-

tion) at 20 °C different variables (number of gyrations and binder content). The

test was carried out according to BS EN 12697-26, 2004 and the samples were

conditioned for at least 7 hours at 20 °C. Standard test conditions were used: 5µm

target horizontal deformation, 124 ms rise time and a Poissons ratio of 0.35 was

assumed. In the next sections, the results of ITSM and RLAT test will be presented

and evaluated.

5.4 Binder Content

Binder content is known to be one of the key factors that affects the performance

of asphalt mixtures. In the light of the aggregate packing ratios, the behaviour of

the six mixtures was studied using different binder contents. Three binder contents

were used (4.1%, 5.1%, and 6.1%) which represent the standard binder content ±
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1.0% to represent the extreme behaviour of mixtures by making this high increment

of binder content. The six mixtures were tested in the Repeated Load Axial Test

(RLAT) and Indirect Tensile Stiffness Modulus test (ITSM). Firstly, Figure 5.6

shows how the air voids content changed with binder content for the different

mixtures. It can be seen that the increase in binder content leads to a lower air

voids content in the asphalt mixtures. This is expected because the excess binder

in the mix will fill the voids between aggregate particles. The decrease in air voids

content does not necessarily mean a good mixture performance, and Figure 5.7

shows the effect of binder content on the permanent deformation (RLAT strain).

Figure 5.6: Effect of Binder Content on Density

The permanent deformation of asphalt mixture was evaluated in the same man-

ner as presented in Chapter 4 by using the RLAT test for 5000 cycles and at a

testing temperature of 40 °C.

The effect of binder content on the strain can be classified into four categories
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Figure 5.7: Effect of Binder Content on Permanent Strain; NOTE: Numbers shown
in figure are the number of cycles reached at 8% strain

(see Figure 5.7 ):

1. Some of the mixtures were not greatly affected by the change in binder con-

tent. Mixes 7 and 13 have a good aggregate interlock based on the explanation

of the aggregate packing ratios. Mix 7 has a reasonable amount of large ag-

gregate, and it is over supported by the interceptors (CA=1.22). However,

because of the medium percentage of dust in the mix (Cf/Fc), the excess

amount of interceptors is supported by the dust. Meanwhile, Mix 13 also has

a good amount of large particles, but they are less supported by the intercep-

tors (CA= 0.44); however the proportion of dust in the mixture is enough to

form proper interaction and fill voids between large particles. The increase in

binder content in both mixtures causes no substantial change in the perma-

nent strain because the extra binder has plenty of room i.e. does not disturb

the large aggregate packing. However, in both cases, the increase in binder
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content decreased the stiffness of the mixtures.

2. Some of the mixes showed a vast increase in permanent strain when the

percentage of binder increased from 5.1% to 6.1%. Mixes 3 and 6 exhibited a

high permanent strain after increasing the binder content. The reason behind

this is that both mixes have reasonable support from interceptors to the large

particles (CA), but they both have a high amount of fine material (FAc for

Mix 3 and F/C for Mix 6). The excess amount of fine material is mixed with

the excess amount of binder (when the binder is 6.1%) and forms the mastic.

This excess mastic will impact negatively on the resistance to permanent

deformation and the stiffness of the mix. It can be noticed that Mix 6 has

much greater increase in the permanent strain than Mix 3 because it has fewer

large particles and more fine material.

3. Some of the mixes are poor whatever the binder content. Mix 4 suffered from

poor deformation resistance over the range of binder content from 4.1% to

6.1% because the aggregate interlock in the mixture is poor. Mix 4 has a

very high proportion of interceptors supporting a small percentage of large

aggregate particles (CA and CC respectively). Moreover, it has a small

amount of fine material, so this mixture is made up mainly of the interceptors

with inadequate support by the fine material.

4. Some mixtures show a gradual increase in permanent strain as the binder

content increases. Mix 1 has a good interlock between interceptors and large

particles, and the amount of smaller particles is not very large compared

131



to Mix 13 for instance. However, the percentage of filler is high, so that

the increase in binder content increases the percentage of mastic which will

increase the strain and decrease the stiffness.

With regard to the ITSM stiffness of the mixtures, as a general behaviour, the

increase in binder content decreased the stiffness of the mixtures, see Figure 5.8.

The reason behind this is mainly that as the binder content increases in the mixture

there will be an excess amount of binder (mastic), so the deformation will be higher.

Figure 5.8: Effect of Binder Content on Stiffness

The 4.1 % binder content showed small improvement performance for some

mixes than 5.1 %. However, the air voids content of the mixes that have 4.1 %

binder content is higher than the other two binder content. Meanwhile, the mixtures

that contain 6.1 % binder content performed poorly for most of the mixtures. As

a balanced evaluation to have reasonable performance and air voids and also from

the economical point of view, 5.1% binder content is considered to be relatively the
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optimum value for all the mixes.

5.5 Temperature

The effect of temperature was studied in relation to the permanent deformation

only. In general, the change in temperature will change the viscosity of the binder

used, so when the temperature increases the viscosity of the binder decreases. Three

different temperatures were used, 30, 40, and 50 °C and the results are shown in

Figure 5.9. In general, the resistance to permanent deformation decreased as the

temperature was increased. Because of the low stiffness of binder at 50 °C, the

aggregate is dominant in maintaining the load applied, and all the mixtures reached

maximum strain when tested in the RLAT except Mix 13. Mix 13 has an excellent

aggregate interlock as explained in the previous section. At lower temperature (30

°C), although there are huge differences in aggregate packing between the mixtures,

there were no substantial differences in resistance to permanent deformation. In

other words, all mixtures performed similarly, and this supports the fact that the

permanent deformation resistance is governed by the binder to a certain level of

binder stiffness. As the temperature increased to 40 °C, the differences in aggregate

packing started to appear in the performance of the mixtures; because it is believed

that in this stage both the binder and aggregate are contributing in resisting the

permanent deformation. Mix 4 showed very apparent poor behaviour, compared to

the other mixes, by obtaining higher strain in RLAT test and Mix 1 also showed a

significant increase in permanent strain.
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This section showed the importance of aggregate interlock on the performance

of asphalt mixtures at high testing temperature.

Figure 5.9: Effect of Temperature on Permanent Strain, (NOTE: Numbers shown
in the figure are the number of cycles reached to the corresponding strain.)

5.6 Compaction Effort

Asphalt mixture properties are highly affected by compaction effort. Compaction

effort affects the density of the mixture and how the particles are packed together.

For this reason, it was necessary to understand its effect on performance in the

light of aggregate packing ratios. Three levels of compaction were considered 100,

200, and 300 gyrations.

It can be seen in Figure 5.10 that most of the mixtures had lower air voids when

the number of gyrations in the gyratory compactor increased. Mix 1 had lower air

voids when the number increased from 100 to 200, but interestingly it increased
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again when the number of gyrations was 300. It is not very clear why this happened

to Mix 1 but, may be because it has a high proportion of coarse aggregate (CC),

and these are well supported by interceptors (CA), but the interceptors are not

very well supported by the finer particles (Cf/Fc). This makes the increase in the

number of gyrations cause a high contact pressure between interceptors and large

particles, and this might result in particle breakdown. Other mixtures such as Mix

3 and 6 were not highly affected by the change in the number of gyrations.

Figure 5.10: Effect of Number of Gyrations on %Air Voids

The effect of different numbers of gyrations on mixture performance is shown

in Figure 5.11. It can be seen from the figures that the increase from 100 to 200

gyrations noticeably improved the resistance to permanent deformation. However,

for all the mixtures the increase from 200 to 300 gyrations did not to any signif-

icant extent further increase the resistance to permanent deformation. This gives

an indication that the samples had reached their optimum compaction at or before
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200 gyrations. Two things could influence the optimum number of gyrations; the

first is the packing of aggregate and the second is the compaction temperature.

Concerning the packing of aggregate, the well-graded mixtures could reach their

target density in relatively few gyrations. However poorly graded mixtures could

not achieve the target density, and aggregate lock will have occurred. Consequently,

the increase in the number of gyrations will have little effect on the mixture. Re-

garding the compaction temperature, when the sample was left in the compactor for

300 gyrations, the mixture will have cooled down and will therefore not improve its

performance or density. However, there is no direct evidence on how much the tem-

perature decreased. The stiffness was also measured for mixtures with a variable

number of gyrations. By increasing the number of gyrations from 100 to 200, there

was no large effect on the stiffness results. However, there was no clear pattern to

how the different mixtures performed when changing the number of gyrations from

200 to 300.
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(a)

(b)

Figure 5.11: Effect of the Number of Gyrations on Performance of Asphalt Mixtures

5.7 Prediction Modelling for Different Variables

The permanent strain and ITSM data were also used to build a prediction model

by using the ANN and ANFIS methods as explained in earlier chapters.
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5.7.1 Artificial Neural Network ANN

An artificial neural network was used to train the data presented in this chapter.

The ANN model was aimed at predicting the permanent strain obtained from

the RLAT by using several inputs. The inputs used were the packing ratios of

each mix, binder content, testing temperature, and the number of gyrations in the

gyratory compactor. The model construction parameters used were similar to those

presented in Chapter 4, and 51 mixtures were used. The ANN model prediction

results are shown in Figure 5.12; the testing results in 5.12b cover all the input

variables. The results showed good agreement with the measured values in the

laboratory for some of the mixtures; for others, the model poorly predicted the

strain. The performance of the model was evaluated by using the R2 and RMSE

values as shown in Table 5.4. The ITSM stiffness data for the mixtures were also

used to build an ANN model based on the packing ratios, binder content and the

number of gyrations. The number of mixtures that were used for this purpose

was 33, and each measured ITSM value is the average of 3 mixtures; 75% of the

data were used for training the network and 25% for testing. Figure 5.13 shows

the model results, and it can be noticed that the ANN model has a real ability to

perform the prediction, and the performance of the model is shown in Table 5.4.

By comparing the performance of this ANN permanent strain model (Table 5.4)

with that developed in Chapter 4 (Table 4.6), it can be seen that adding these new

input parameters does impact negatively on some of the predicted strains in the

model.
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(a) Training

(b) Testing

(c) Training and Testing

Figure 5.12: Different Variables ANN Prediction Results of RLAT Strain
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Table 5.4: Performance of ANN Model for the Different Variables

Strain
Training Testing All Data

RMSE 2.66E-03 1.38 0.699
R2 1 0.931 0.983

Stiffness
RMSE 7.086E-07 829.6 408.5
R2 1 0.85 0.941

Sensitivity Analysis

A sensitivity analysis between the input variables and the strain was conducted.

The sensitivity analysis presented in the previous chapter for the five packing ra-

tios was also applicable to this model. There is a need to add the effect of other

added parameters (binder content, testing temperature, and the number of gyra-

tions) although their impact on the performance of the mixtures are well known

to investigate whether the ANN can predict by including the other variables. The

analysis performed in the same way presented in the previous chapter which is to

build a new ANN model for each input parameter. However, the sensitivity analysis

for the five packing ratios was studied with respect to the strain. Therefore, each

variable, binder content, testing temperature, and compaction effort will be used

individually with the five packing ratios to investigate which of the input variables

is negatively affecting the ANN model. Table 5.5 shows the performance of the

sensitivity analysis models. It can be seen in the table that the compaction effort

had the poorest performance compared to others in terms of R2 and RMSE. The

analysis was then performed by excluding the compaction effort and including all

the input data. The results (in Figure 5.14) showed improvement in the model
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(a) Training

(b) Testing

(c) Training and Testing

Figure 5.13: Results of the ANN Prediction Model for ITSM Stiffness
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prediction compared to the original model that was presented in Figure 5.12. To

ensure that the compaction effort is negatively affecting the performance, it was

decided to show how it behaves with each variable (binder content and testing tem-

perature) separately and the five packing ratios. The results, presented in Table

5.5, showed poorer performance when combining binder content with compaction

effort than combining testing temperature with compaction effort. However in all

cases and whatever the values of performance parameters are, the final judge will

depend on the measured and predicted plot for each one of them. Figures 5.14,

5.15, and 5.16 showed the predicted results of the testing phase for the three mod-

els. Although the combination of testing temperature and binder content with the

compaction effort had reasonable performance, there were some poorly predicted

strains which are shown in Figures 5.15, and 5.16. Therefore, it was evident that

the compaction effort affected the model negatively. In fact, it was not very clear

how the compaction effort can affect the permanent deformation in some cases as

shown in a previous section.

Table 5.5: ANN Sensitivity Analysis for the Different Variables

Input Parameter R2 RMSE

ANN Model Training Testing Training Testing

Binder Content 6-5-15-5-1 1 0.9831 0.00303 0.8969
Compaction Effort 6-5-15-5-1 1 0.6757 0.003 2.41

Testing Temperature 6-5-15-5-1 1 0.9894 0.00211 1.1898
Binder Content and Testing Temperature 7-5-15-5-1 1 0.9636 0.0025 1.409
Binder Content and Compaction Effort 7-5-15-5-1 1 0.8673 0.0031 1.483

Testing Temperature and Compaction Effort 7-5-15-5-1 1 0.964 0.0027 1.047
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Figure 5.14: ANN Sensitivity Model for Packing Ratios, Binder Content, and Test-
ing Temperature

Figure 5.15: ANN Sensitivity Model for Packing Ratios, Binder Content, and Com-
paction Effort
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Figure 5.16: ANN Sensitivity Model for Packing Ratios, Testing Temperature, and
Compaction Effort

5.7.2 Adaptive Neuro-Fuzzy Inference System ANFIS

ANFIS was also used to train and test the data presented in this chapter aiming

to develop a more precise prediction. In contrast to previously, ANFIS did not

precisely predict the permanent strain and stiffness. Although the performance of

the permanent strain is good based on the R2 and RMSE values (Table 5.6), the

model did not predict the strain as well as with ANN (model results are shown

in Figure 5.17). Several trials have been conducted to build the model, using

the same model construction parameters as previously, but it was noticed that the

mixtures with high values of strain (i.e. larger than 8%) negatively affect the model.

Therefore, each mixture with high strain was assumed to have 8% strain for model

construction consideration. In fact the mixtures in the RLAT test that reached this

level of strain were badly deformed and any higher strain achieved was due to the
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collapse of the mixture under the applied stress. So any value of predicted strain in

Figure 5.17 close to 8% is considered as highly deformed. The Mixtures permanent

strains predicted in Figure 5.17b were chosen to cover variation in all the input

variables. The model under-predicted the permanent strain for most of the test

data and after several trials, it was found that including more data in the testing

phase reduces the efficiency of the model. The reason behind the non-precise results

of ANFIS might be because of the small amount of the new variables data which

did not allow the model to train itself on a broad range of data, especially as ANFIS

treats the inputs as membership functions and produces rules based on that. A

way to overcome and improve the results of the ANFIS model could be through

choosing a different shape of the MFs and increasing their number, and selecting

a linear membership function for the output, but all of these new parameters need

high computational effort and long duration of processing.

Table 5.6: Performance of Permanent Strain ANFIS Model for the Different Vari-
ables

Training Testing All Data

RMSE 5.3E-05 0.998 0.442
R2 1 0.931 0.98

ANFIS was also not able to produce a good model for the stiffness when the

new variables were added; after several trials with ANFIS the performance of the

stiffness model was reduced and it seems that the network does not have enough

data to produce the right rules for estimating the stiffness. Therefore, it was decided

to rely on the ANN model for the use of stiffness prediction when using different

variables.
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(a) Training

(b) Testing

(c) Training and Testing

Figure 5.17: Results of the ANFIS Prediction Model for RLAT Strain
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5.8 Conclusions

Aggregate particles play an important role in the performance of asphalt mixtures.

The establishment of the effect of aggregate packing ratios on the stiffness of asphalt

mixtures was presented earlier in this chapter, followed by the impact of other

variables. The conclusions of this chapter can be summarised as follows:

� Several aggregate gradations including SMA and porous asphalt were used to

study the effect of aggregate packing ratios on the ITSM stiffness of asphalt

mixtures. Three ratios were used to build a regression analysis and model.

The regression model of the aggregate packing ratios was compared with a

previously established model and found to have lower root mean squared error

(RMSE). An artificial neural network was also used for this purpose, and it

helped to predict more precisely with larger R2 and smaller error (RMSE).

Therefore, aggregate packing ratios were found to be a good tool to predict

stiffness.

� Different variables were used to study their impact on the performance of

asphalt mixtures in the light of aggregate packing ratios for six gradations.

These variables were binder content, testing temperature, and compaction

effort. The tests carried out were RLAT and ITSM

� Binder content showed a fascinating effect on asphalt mixtures regarding per-

manent strain and stiffness. Mix 7 and 13 were not greatly affected by the

change of binder content due to the good interaction between particles. Mix
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3 and 6 showed a large difference in performance as the binder content was

increased. Meanwhile Mix 4 performed poorly at all binder contents due to

the poor interaction of particles, and Mix 1 showed a gradual deterioration

in their performance.

� Temperature effects were also evaluated, and it was found that at relatively

low temperature the packing of aggregate does not greatly affect the perfor-

mance of mixtures due to the high viscosity of bitumen. As the temperature

increased, packing ratio effects started to appear. Some of the mixtures that

have good aggregate interaction performed better than others. At higher tem-

peratures, 50 °C, all the mixtures behaved poorly due to the relatively low

viscosity of the binder; only Mix 13 performed well due to its good aggregate

packing interlock. The 40 °C testing temperature was considered to be the

most appropriate temperature to allow a good comparison between the mix-

tures’ aggregate packing ratios. This variable shows explanation presented in

Chapter 2 that when binder has high stiffness, it will be dominant in resisting

the load and this is shown at 30 °C. While at 50 °C the binder has less stiffness

and aggregate is maintaining the load, therefore high deformation occurred.

At 40 °C it was considered as a balance stage where the two components

(binder and aggregate) are contributing in resisting the applied load.

� Three compaction levels were used in the gyratory compactor. Due to their

particle arrangements, some of the mixtures had poor performance at rela-

tively high gyration number due to high contact pressure between particles
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which may resulted in particle breakdown. Other mixtures reached optimum

compaction level at 200 gyrations and no improvement in the performance

was recorded at higher compaction effort.

� Prediction modelling was performed using Artificial Neural Network (ANN)

and Adaptive Neuro-Fuzzy Inference System (ANFIS) aiming to make perma-

nent strain and stiffness prediction. The input variables were the five packing

ratios, binder content, testing temperature, and the number of gyrations.

Both techniques showed poor ability for prediction for some of the mixtures;

sensitivity analysis showed negative impact of the compaction effort on the

model. The inability of the techniques to precisely predict the performance is

expected to be due to the limited amount of data supplied to them, especially

in using these three important variables.

Table 5.7 summarises the findings of this chapter in brief.
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Table 5.7: Brief Summary of the Different Variables Results

Variable Values considered Effect of changing the variable on strain

Binder Content
4.1% - Mix 7 and 13 did not change

- Mix 3 and 6 had higher strain when binder content increased from 5.1% to 6.1%
- Mix 4 always poor
- Mix 1 has a gradual increase in strain as binder content increases.

5.1%

6.1%

Temperature C °

30 - At 30 C °there was no clear effect on strain.
- At 50 C °all mixtures behaved poor except Mix 13
- At 40 C °there was clear difference in results between mixtures to allow understanding of aggregate packing effect.

40
50

Compaction Level (number of gyrations)
100

Performance improved when compaction level increased from 100 to 200 gyrations. While at
300 gyrations, mixture performed poorly.

200
300
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Chapter 6

Rut Depth Prediction

6.1 Introduction

The main form of permanent deformation in asphalt mixtures is rutting. Many

studies have investigated the mechanism of rutting formation and how to optimise

material proportions to avoid it. Permanent deformation is a key issue in asphalt

pavement design especially in places with high temperatures, and it can be de-

termined by using triaxial testing (Brown and Bell, 1977; Haas and Papagianakis,

1986; Monismith et al., 1977). Rutting needs to be predicted to avoid major defor-

mation to the pavement.

Several prediction methods were introduced in Chapter 2, and others will be

presented in the next section. The non-linear properties and behaviour of asphalt

mixtures make the process of prediction complicated. The non-linearity needs ad-

vanced tools for estimating material properties and analysing the distribution of

stresses throughout the pavement. A simple linear viscous approach will be in-
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troduced in this chapter by using a multilayer linear elastic computer program

(BISAR). This chapter aims to predict the rut depth generated in laboratory tests

and then apply the method to predict field rutting.

6.2 Formulation of Theoretical Model

The two most commonly used approaches for predicting asphalt mixture rutting,

as presented in Chapter 2, are the layer-strain method and the viscoelastic ap-

proach. The layer-strain method can predict the life until rutting failure in asphalt

mixtures by assuming a linear or non-linear relationship between the elastic stress

field and vertical permanent deformation in each selected layer. This approach

is only dependent on the elastic properties of the mixture and does not directly

use the material viscosity (Khanzada, 2000). Prediction models based on the vis-

coelastic approach invariably include a time-dependant response to the wheel load

(Khanzada, 2000). This type of rutting prediction model assumes that the ruts

accumulate mainly from the shear flow of the pavement material. The viscoelastic

approach is, unlike the layer-strain approach, purely dependent on the viscous char-

acteristics of the asphalt and independent of the elastic properties. The viscoelastic

properties of asphalt mixtures are, typically, measured from confined or unconfined

creep testing. The method of linear viscoelastic asphalt material simulation and

rutting prediction of asphalt concrete mixtures has been investigated by several

researchers, (Battiato et al., 1977; Collop et al., 1995; Monismith and Secor, 1962;

Moavenzadeh and Carnaghi, 1966; Nunn, 1986; Pagen, 1972; Thrower, 1977). The
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asphalt mixtures are assumed to behave as linear viscoelastic materials in this type

of model, and this is considered as the main drawback of the approach. In real-

ity, asphalt mixtures behave non-linearly at high temperatures and stress levels.

However, the implementation of the non-linear properties of asphalt mixtures in

modelling demands a more advanced tool to be utilised. The aim is to develop

a practical and usable method by modifying the simple linear viscous multi-layer

model, to enable the prediction of wheel track rut depth. The modified approach

incorporates the non-linear properties of the asphalt mixture into the analysis. The

principle of linear viscous analysis is analogous to linear elastic, except that elastic

parameter (Young’s modulus) is replaced by the equivalent viscous parameter (vis-

cosity)(Thrower, 1977). A study made by Collop et al. (1995) used this approach

and showed how it has beneficial features regarding the accurate distribution of

permanent deformation through the layers, effect of vehicle speed (loading time)

and dynamic loads, and the effect of temperature by using different values of vis-

cosity in layers near the surface. The accuracy of this approach mainly depends

on the estimate of the viscous properties of the asphalt mixtures. Therefore, the

next sections will show a method of determining these parameters and how to ap-

ply them in linear viscous analysis to make asphalt concrete mixture predictions

based on data obtained from the Repeated Load Axial Test (RLAT) presented in

Chapters 4 and 5.
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6.3 Material and Testing Programme

6.3.1 Material

Six different aggregate gradations have been chosen, from those previously pre-

sented in Chapters 4 and 5, within the limits of 14 mm maximum aggregate size

Asphalt Concrete according to EN (2005). The selected mixtures were chosen to

cover range of possible variations. The aggregate used was granite; the aggregate

blend for each gradation was mixed with a 5.1% binder content of 40/60 pene-

tration grade at 160 °C. The aggregate gradation details are shown in Figure 6.1.

The aggregate and binder were heated up and mixed at the required temperatures

(mentioned in Chapter 4) and then compacted by roller compactor at 150 ± 5 °C

with target air voids of 5% to make a slab of 306× 306× 50 mm. The slabs were

then tested in a wheel tracker machine and core subsequently taken from areas

outside the wheel path.

6.3.2 Testing Programme

Wheel Tracking Test

Each slab was tested in the wheel tracker according to EN (2003). The temperature

used was 40 °C and the load applied was 690 N; the test duration was 20000 passes

(10000 cycles); Figure 6.2 shows wheel track testing machine.
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(a) Mix 1, 3, and 5

(b) Mix 7, 10, and 13

Figure 6.1: Aggregate Gradations for Asphalt Mixtures

Repeated Load Axial Test (RLAT)

The RLAT (or dynamic creep) test simply consists of a vertical stress repeatedly

applied to the cores that were taken from the outer region of rut line in the slab.

The core dimensions were 100 mm diameter by 50 mm height. The test applies a

stress for 1 second to the sample followed by a 1 second rest period. In this study,
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Figure 6.2: Wheel Tracking Machine

the cores from each slab were tested under a stress level of 300 kPa and at 40 °C

for 5000 cycles (10000 seconds). The test procedure was performed according to

British Standards Standard (1996), and testing machine is shown in Figure 6.3
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Figure 6.3: RLAT Testing Machine

6.4 Methodology

The method used to predict asphalt concrete wheel track rut depth in this chapter

is based on using the strain-dependent properties of the asphalt mixture in a multi-

layer linear viscous analysis. The methodology can be summarised as follows:

1. Produce the laboratory rut depth curve by testing the slab samples in the

wheel tracking machine.

2. Four cores are then taken from the tested slab (from regions outside the rut

line as shown in Figure 6.4) and tested in the RLAT under a value of stress

(300 kPa) close to that applied during wheel tracking.
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Figure 6.4: Schematic diagram of slab coring (dimensions in mm)

3. Calculate the strain rate (ε̇) for each RLAT cycle by using the following

equation:

ε̇ =
ε2 − ε1
t2 − t1

(6.1)

where t2 and t1 are the time (in seconds = number of cycles) corresponding

to strains (ε2 − ε1)

4. Determine the viscosity (η) of the mixture, as a function of strain. Viscosity

is computed by dividing the stress (σ) in MPa by the strain rate (ε̇) (Nunn,

1986)

η =
σ

ε̇
(6.2)

A plot of mixture viscosity vs strain is then produced and used to establish the

viscous material properties for rutting prediction. A typical plot representing
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a mixture showing all three stages of creep (primary, secondary, and tertiary)

is shown in Figure 6.5).

Figure 6.5: Typical Plot of Viscosity vs Strain for an asphalt mixture

5. After that, an initial material viscosity is determined from the viscosity-strain

curve by extrapolating to zero strain. This initial value is then used in the

first deformation analysis increment.

6. The asphalt slab is then modelled in BISAR as three layers with thicknesses

of 10, 20 and 20 mm, in order to model the wheel tracking test, see Figure

6.6.

The load input data to BISAR is as follows:

� Vertical stress (kPa): 300. This value corresponds to the stress in the

wheel tracking test.
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Figure 6.6: Slab Model Layers divided in BISAR

� Radius (m): 0.0250. This is the tire width in the wheel tracking test.

7. The three layers of asphalt are assigned viscosity values. A final very stiff bot-

tom layer is added (effectively ∞ viscosity). All the four layers are assumed

to be incompressible (Poissons ratio of 0.5) to ensure that the deformation

is due to viscous flow not densification, and full friction between layers is

adopted.

8. The analysis is then performed and the strain rate (strain/second = strain/-

cycle) in the middle of each layer under the centre of the load is used in

further calculations.

9. A surface deformation increment of 0.1 mm is applied and the layer strains
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and the number of cycles to cause this increment are determined.

10. The new layer strains require new corresponding viscosities from the strain

viscosity curve (Figure 6.5) established earlier in the process giving new vis-

cosities for each layer; these are used in BISAR for the following deformation

increment.

11. Continue this loop until a specified deformation is reached.

No adjustment was made to the loading time because it was similar in both cases

(RLAT and wheel track). In the RLAT the stress was applied for 1 second and in

the wheel tracking test the rate of loading was 26.5 cycles/minute and each cycle

consisted of two passes. To clarify the above methodology, see the flow chart in

Figure 6.7.
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Figure 6.7: Methodology Flow Chart
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6.5 Analysis of Results

Six slabs were manufactured for six different gradations. The slabs were all tested

in the wheel tracking test, and four cores were taken from each slab. This section

presents (in Figures 6.8 - 6.13) the results of the prediction process and compares

these prediction results to the wheel tracking rut depth. The viscosity-strain curves

will also be shown for each mix, and a trend line is fitted to the primary stage of

each. The best option found was an exponential curve, and it has been used to

estimate the values of viscosity where strain is lower than the first point on the

curve. After the first data point, linear interpolation was assumed between each

two points.

The prediction based on RLAT data for Mix 3 and 5 showed, in Figures 6.9

and 6.10 respectively, an underestimation compared to the real wheel track curve

by about 0.4 mm.

All these results were based on the properties of material determined at 40 °C

in RLAT tests modelling the same conditions in the wheel track test. Although

the stress distribution in the wheel track test is complex and the assumption in

BISAR that the model has an infinite width is incorrect, nevertheless the RLAT

test provides a reliable and convenient approach to characterising the properties

of the asphaltic materials. The reasonable agreement between the predicted and

measured deformations confirm the argument that the permanent deformation can

be predicted from the viscous properties of the material.
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(a)

(b)

Figure 6.8: (a) Viscosity-Strain Curve. (b) Rut Depth Prediction. For Mix 1

6.5.1 Temperature

As the linear viscous analysis showed good agreement with the experimental data

at 40 °C, it was decided to investigate the validity of the method at other temper-

atures. Two temperatures were selected, 30 °C and 50 °C. The whole process and

experimental work were performed again at 30 °C for all six mixtures and repeated

at 50 °C for one of the mixtures only because the others were expected to fail in
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(a)

(b)

Figure 6.9: (a) Viscosity-Strain Curve. (b) Rut Depth Prediction. For Mix 3

the RLAT test at 50 °C under 300 kPa stress.

Prediction at 30 °C

Six asphalt mixture slabs were manufactured and tested in the wheel tracking

machine at 30 °C under the same load of 690 N, and a frequency of 26.5 ± 1.0 load

cycles/minute. The slabs were then cored in the region outside the rut line, and

cores were tested in the RLAT at 30 °C. The results of predictions at 30 °C are
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(a)

(b)

Figure 6.10: (a) Viscosity-Strain Curve. (b) Rut Depth Prediction. For Mix 5

shown in Figures 6.14 - 6.19, and it can be seen from the figures that, as expected,

the values of viscosity are higher than those determined at 40 °C, and also there

is less data scatter than found previously. These two points helped to generate a

good set of predictions of wheel tracking rut depth at 30 °C. Mix 1, 3, and 7 are

the most affected by the change in viscosity values compared to results at 40 °C,

and it can be seen from the results that their predictions were all reasonably good.
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(a)

(b)

Figure 6.11: (a) Viscosity-Strain Curve. (b) Rut Depth Prediction. For Mix 7

Prediction at 50 °C

The higher testing temperature was also examined aiming to validate the method-

ology. The samples were expected to approach collapse under the 300 kPa dynamic

stress in the RLAT at 50 °C. Therefore, only one of the mixtures was selected. The

selected Mixture was Mix 13 because it is expected to have good aggregate inter-

lock as presented in Chapters 4 and 5. Consequently, one slab was manufactured
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(a)

(b)

Figure 6.12: (a) Viscosity-Strain Curve. (b) Rut Depth Prediction. For Mix 10

and tested in the wheel tracking machine at 50 °C and cores were taken from the

outer region and tested in the RLAT at the same temperature (50 °C). As expected,

the mixture had high strain values in the RLAT, resulting in small values of vis-

cosity. Figure 6.20 shows the viscosity-strain curve having a decrease in viscosity

values at high strains, signifying the high temperatures the mixture behaviour lies

in areas where linear viscous does not work, and the aggregate is more dominant

in maintaining the applied load, therefore, it is clear that this has resulted in an
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(a)

(b)

Figure 6.13: (a) Viscosity-Strain Curve. (b) Rut Depth Prediction. For Mix 13

unrealistically high rut prediction.
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(a)

(b)

Figure 6.14: (a) Viscosity-Strain Curve. (b) Rut Depth Prediction. For Mix 1 at
30 °C
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(a)

(b)

Figure 6.15: (a) Viscosity-Strain Curve. (b) Rut Depth Prediction. For Mix 3 at
30 °C
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(a)

(b)

Figure 6.16: (a) Viscosity-Strain Curve. (b) Rut Depth Prediction. For Mix 5 at
30 °C
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(a)

(b)

Figure 6.17: (a) Viscosity-Strain Curve. (b) Rut Depth Prediction. For Mix 7 at
30 °C
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(a)

(b)

Figure 6.18: (a) Viscosity-Strain Curve. (b) Rut Depth Prediction. For Mix 10 at
30 °C
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(a)

(b)

Figure 6.19: (a) Viscosity-Strain Curve. (b) Rut Depth Prediction. For Mix 13 at
30 °C
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(a)

(b)

Figure 6.20: (a) Viscosity-Strain Curve. (b) Rut Depth Prediction. For Mix 13 at
50 °C
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6.6 Field Rut Depth Prediction

6.6.1 Data Collection

The above analysis has also been applied to real road rut depths to check its validity

further. Field data were obtained from Aecom related to a particular rutted road in

the UK. The asphaltic layer consisted of three sublayers: 40 mm thickness of 0/10

mm Stone Mastic Asphalt (SMA) surface course, 50 mm thickness of 0/20 mm

Dense Bitumen Macadam (DBM) binder course, and 135 mm thickness of 0/32

mm Hot Rolled Asphalt (HRA) base layer. It was noted that rutting to depths of

10-60 mm had taken place within two years of constructing the pavement, so a site

investigation was performed, and cores were taken from outside the rutting area,

and the cores showed the above thicknesses of each sublayer. The cores were then

tested in the RLAT to measure the permanent deformation in each layer and the

results were made available to this research. They were tested at 40 °C under a

stress of 100 kPa for 3600 cycles according to Standard (1996).

6.6.2 Use of Field Data

The field data report shows an assessment of the three layers to predict which

layer is more susceptible to rutting by using an analytical tool called Permanent

Deformation Program (PDP). PDP is based on the approach described in Chapter

2 by Nunn (1986) and it incorporates the RLAT data, initial penetration grade and

softening point of binder used in each asphalt layer, and the traffic loading. The

RLAT data from two core locations were utilised for the three sublayers. Viscosity-
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strain curves were produced for all the asphalt layers, although none reached a

viscosity peak. This is because of the relatively low stress applied (100 kPa) and the

lower number of cycles compared to the data in the previous section. An exponential

function was fitted to the viscosity-strain curves to allow an initial viscosity to be

estimated, as shown in Figure 6.22. The pavement was then modelled in BISAR

in three layers with the real thicknesses and a standard wheel load of 40 kN on a

radius of 150 mm. The same process as presented in section 6.4 was applied but with

extrapolation using the exponential function and 1 mm deformation increments.

Two issues were considered in performing the analysis: the loading time (speed

of the vehicle), and temperature. For the loading time, a previously developed

model by Brown (1973) was used to relate the loading time to vehicle speed and

rut depth:

log(t) = 0.5d− 0.2− 0.94 log(v) (6.3)

where: t = loading time (sec); d = pavement depth (m); and v = vehicle speed

(km/h). The RLAT loading time of 1 second was used in the above equation with

the real depth to obtain an equivalent vehicle speed of 0.81 km/hr in the BISAR

prediction. The prediction results were compared with a PDP prediction at 1

km/hr. Concerning temperature, an approximate estimate was made to convert

the results from 40 to 26 °C (stated by Aecom as the effective field temperature).

The temperature shift factor evaluation was based on previous RLAT data at 30,

40, and 50 °C; the initial parts of the 30 and 50 °C RLAT curves were shifted

with respect to 40 °C by factors of 1.6 and 0.7 respectively, as shown in Figure
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6.21. Extrapolation was made to 26 °C based on these factors assuming linear

behaviour. The extrapolated shift factor for results from 26 °C to 40 °C was found

to be 1.84. Therefore, all the predicted rut depths in BISAR were multiplied by a

factor of 0.54 ( 1
1.84

) to convert the predicted data from 40 to 26 °C.

Figure 6.21: Shifting RLAT data to 40 °C

6.6.3 Prediction Results and Discussion

The prediction process was performed for 2 locations in the field, taken from a

region outside rut line. The prediction of the rut is shown in Figure 6.23 and

compared with the PDP prediction after considering the temperature shift factor.

By way of comparison the field rut depth was measured to be 10-60 mm after two

years of construction. The form of loading is entirely different in the BISAR and

PDP analyses compared to a real load application. The actual wheel load includes
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(a) Surface Layer

(b) Binder Course

(c) Base Layer

Figure 6.22: Viscosity-Strain curve of Core 4 in Field
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the rotational principle stress effects while BISAR and PDP do not. This has a

very definite effect on unbound material and may also have an impact on asphalt

mixtures, however it did not show effects on the prediction of wheel track prediction

results presented earlier. The BISAR prediction matched PDP regarding the shape

of the rut curve (the two stages primary and secondary); however, the process

clearly underestimated the total rut depth.

The reason for this underestimation is that the viscosity-strain curve never

reached a peak; and the fitted exponential function assumes that the viscosity

keeps increasing. This produced very stiff layers of asphalt which then require a

high number of Standard Axle (SA) to develop a 1 mm deformation. This is clearly

shown in Figure 6.23 where the BISAR curves end in a very flat trend.

To overcome this problem, it was planned to fit a Gaussian function to the RLAT

data to generate the peak of the viscosity-strain curve. Matlab 2015 was used to

fit the RLAT data to the Gaussian function, but unfortunately, it has been found

that the function could not be fitted to the data with any confidence. The reason

is that the RLAT test was performed under a stress of 100 kPa and a duration

of 3600 load applications; these parameters do not allow the sample to reach the

tertiary stage; therefore, the function was not able to identify the peak. A trial was

performed to estimate the strain value which corresponded to the peak viscosity

for each layer but it was found that it was difficult to estimate it accurately and

poor prediction was obtained.
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(a) Core 2

(b) Core 4

Figure 6.23: Field Prediction Results

6.6.4 Limitations and Specific Data Required

From the above discussion, it was noted that the data supplied was not enough

to make a precise prediction. It is believed that to obtain an improved prediction
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compared to the field, the RLAT data should fulfil specific requirements. Firstly,

the sample should be left in the RLAT until high deformation is reached; this will

allow the sample to reach the tertiary stage, and consequently the peak will be

detected, allowing Gaussian function fitting. Secondly, the temperature used in the

RLAT should be the ‘design’ temperature in the field to avoid the assumption of

linear viscous behaviour in determining the shift factor and to obtain more precise

prediction. Ideally, the loading time in the RLAT should be consistent with the

design speed for the road; however in most test equipment it is accepted that this

may not be practical and so an adjustment may therefore be required. These

suggestions for RLAT testing are recommended to be considered if the method in

this chapter is to be used to predict a field rut accurately.

6.7 Conclusions

The main type of permanent deformation in asphalt mixtures is rutting. Rutting

appears in asphalt layers due to many reasons, such as very slow movement of

a heavy vehicle, mixture properties and high temperature during loading. This

chapter introduced an approach to predict rutting in asphalt mixtures, and several

conclusions can be drawn:

� A linear viscous method was introduced aiming to predict the permanent

deformation of the asphalt mixture. The method was based on using a mul-

tilayer linear computer program (BISAR) and inputting viscous parameters

rather than elastic parameters. The information used to input to the program
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was the nonlinear properties of the mixtures derived from RLAT test data,

specifically the viscosity of the asphalt mixtures as a function of strain.

� Six asphalt concrete slabs with different aggregate gradations were manufac-

tured for this purpose and were tested in the wheel tracking test to generate

the rut depth. After that samples were cored from outside the rut line and

tested in the RLAT at the same loading stress, loading time, and testing

temperature.

� Three temperatures were used 30, 40, and 50 °C to verify that the approach is

applicable. The approach shows good ability to predict the wheel tracking rut

depth at 30 and 40 °C for all the mixtures. At 50 °C, only one dense sample

was manufactured, and as expected the approach gave a poorer prediction

than at other temperatures (because the analysis lies in areas where linear

viscous does not work) due to the uncertainty inherent in the tertiary stage

of deformation.

� Field data were also analysed, and asphalt layers were simulated in BISAR.

Cores were taken from outside the rut line in the field and tested in the RLAT

but at a different temperature than the weighted average field temperature, a

low stress level and a low number of cycles. The prediction of field rut depth

was relatively poor and, the reason was mainly due to having insufficient

RLAT data to determine the non-linear properties. It is recommended that if

this approach is to be used to predict real rutting, then specific requirements

for RLAT test conditions need to be met.
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� Finally, the effect of aggregate packing ratios was studied for the samples

cored from each slab at different aggregate gradations and the results showed

good agreement with the theory developed in Chapter 4.
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Chapter 7

Conclusions and

Recommendations

7.1 Introduction

One of the major forms of distress in asphalt pavement is permanent deformation.

Permanent deformation is highly affected by the distribution of aggregate parti-

cles in the mixture. This research has focused on the effect of aggregate gradation

on permanent deformation and stiffness of asphalt mixture by incorporating the

theory of aggregate packing. A Surface course layer with 14 mm maximum aggre-

gate size was selected to examine the effect of aggregate packing on the permanent

deformation and stiffness. More than 20 asphalt mixtures with different aggre-

gate gradations were manufactured for this purpose. The repeated load axial test

(RLAT) was used to evaluate the performance of the mixtures in terms of perma-

nent deformation and the indirect tensile stiffness modulus (ITSM) test for stiffness
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evaluation.

Rutting depth was predicted by using a linear viscous approach. For this pur-

pose wheel tracking tests were performed, for six mixtures, giving a measured rut

depth and cores were taken from each slab and tested in the RLAT. By using the

BISAR programme, the rut depth was predicted by introducing an approach to

consider the non linear properties of the material.

7.2 Conclusions

The main conclusions of this thesis can be summarised in two areas:

7.2.1 Aggregate Packing

� It was shown that Bailey ratios are not adequate to evaluate the interaction

of aggregate particles in the asphalt mixture. Therefore, three more ratios

were introduced to define the whole aggregate gradation of each mixture. It

was found that these three ratios combined with the two Bailey ratios provide

a good understanding of the performance of the mixture.

� It was explained in theory what each ratio in the mixture represents. For

example, CA ratio represents how the coarse particles are supported by the

interceptors, and Cf/Fc represents how the coarse particles of the fine fraction

support the fine particles of the coarse fraction. According to these ratios, the

mixtures were determined to be either voided, to have too much fine material,

too much coarse, to have coarse material but not supported by the fines, fine
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materials but with no coarse material to carry the load, etc.

� To prove the applicability of these ratios in understanding the performance

of the mixture, two mixtures were selected and images were taken for them

in three locations top, middle, and bottom of the sample. It was shown that

the ratios were applicable to the mixture and could estimate its performance.

They showed whether the coarse aggregate particles were floating in a matrix

of interceptors, or if they were well supported by other particles.

� The ANN and ANFIS techniques were found to be suitable tools to use these

ratios to predict the permanent deformation (from RLAT) and stiffness mod-

ulus (from ITSM). Models were constructed in Matlab by feeding them the

properties of each mixture (the five ratios) as input and data from the RLAT

and ITSM tests as output.

� More variables were added to the models related to testing parameters. These

variables were binder content, testing temperature, and compaction effort.

The five packing ratios were able to explain why the changes in these vari-

ables affected the performance of the asphalt mixture. Mixtures with good

aggregate interlock as recognized by the packing ratios were not hugely af-

fected by changes in binder content. The effect of the packing ratios did not

appear at relatively low temperature and they started to be more influential

when temperature was increased. The increase in compaction effort produced

no change in the performance of some mixtures because they has reached op-

timum compaction at a certain level. Other mixtures had poor performance
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at higher compaction effort due to the high contact pressure developed be-

tween coarse particles and this may have led to particle breakdown, although

there is no clear evidence on this.

� Models were also constructed for these new variables by using the ANN and

ANFIS techniques to predict the permanent deformation and stiffness mod-

ulus. The ANN approach showed better prediction results in estimating the

performance when these variables were used as input parameters.

7.2.2 Rut Depth Prediction

Conclusions are drawn from the prediction of rut depth by using a linear viscous

approach:

� The linear viscous approach and the implementation of viscosity presented in

Chapter 6 is considered as a good approach to predict wheel track rut depth.

The approach is based on data from RLAT tests on cores taken from tested

asphalt slabs from regions outside the rut line.

� The prediction was performed at a testing temperature of 40 °C for six mix-

tures, and results showed good agreement with the measured rut line. After

that the same procedure was repeated at 30 °C testing temperature and it

also showed good agreement with the laboratory tested slabs. A final pre-

diction set at 50 °C was performed but this showed poor prediction because

the behaviour of asphalt mixtures lies in outside the areas of linear viscous
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approach work. The high strain in RLAT test is mainly because the aggregate

is more dominant than binder.

� The approach could be used for field rut prediction if appropriate data were

supplied. Field data were provided by Aecom and were also analysed in

BISAR. The predicted results were compared with PDP (another prediction

programme) results and they were found to give lower rut depths. The concern

about the data was that the RLAT test was not performed at the same average

temperature as assumed in the field, and the load duration was different from

the design speed in the field. Finally, the RLAT test was stopped before

reaching the tertiary stage, and this could lead to inaccurate prediction results

because the start point of the tertiary stage is difficult to estimate. The

difficulty of estimating the start point of the tertiary stage is because there

is no previous data that could be a base to predict the behaviour. The

samples used in the lab cannot be used for this purpose because they are not

under the same conditions of material preparation and testing (stress applied,

compaction, aggregate gradation, binder content, volumetric properties, etc).

7.3 Recommendations for Future Work

The effect of aggregate gradation on the performance of asphalt mixtures has been

investigated in this thesis. The aggregate packing ratios presented in this research

showed good ability to describe the performance of the mixture and to characterise

the mixture properties. However, there are some issues that need to be investigated
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in future work, summarised as:

i. The effect of aggregate angularity on particle packing is a very important as-

pect to examine. In this research only one type of aggregate was used (one

angularity) to establish the the use of packing ratios. Other types of aggre-

gate could also be used and this will tacitly affect the angularity, shape and

strength of the aggregate. However, in theory the packing ratios give the same

understanding on any other type of aggregate because they are related to the

arrangement of particles.

It is very recommended to meet industrial needs by implementing RAP to the

aggregate and check if the packing ratios are also applicable.

ii. This research focused on the prediction of permanent deformation in asphalt

mixtures, therefore rutting related tests were carried out and stiffness modulus.

It is strongly recommended to investigate how these packing ratios affect the

cracking characteristics by performing fatigue tests. In fatigue tests there are

big differences in the number of cycles taken to reach failure and the reason

behind this is often not clear. The packing ratios may give improved under-

standing of this.

iii. Although asphalt concrete mixtures, stone mastic asphalt, and porous asphalt

were used to validate the use of packing ratios in understanding the perfor-

mance of the mixture, it would be beneficial to investigate other mixtures such

as hot rolled asphalt (HRA).
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iv. The Discrete Element Method (DEM) is an efficient tool to study the arrange-

ment of particles in a mixture. Different arrangements could be assumed and

different aggregate angularity could be used to study the behaviour of the mix-

ture and compare it with laboratory results.

v. The compaction used in this study was only by means of the gyratory com-

pactor. It would be worth using other types of compaction and see if the

aggregate is packed differently by other compaction methods.

Regarding the prediction of rutting in an asphalt pavement the approach showed

good correlation with the measured rut depth in the laboratory. However there are

some issues that need to be investigated in future work, summarised as follows:

i. The use of BISAR is a time consuming process because each deformation in-

crement needs a separate run. Therefore investigations are recommended using

the equations of the Method of Equivalent Thicknesses (MET), implementing

them into a spreadsheet to ease the process.

ii. At high temperatures the approach is less precise due to the plastic deformation

of the sample and the linear viscous approach is not valid. This needs extra

investigations in terms of the optimal stress in RLAT testing to use and the

use of the finite element method may be helpful.

iii. The field data was not very well predicted due to reasons listed in Chapter

6. It is strongly recommended to either perform a large scale rutting test (if

available) and use the linear viscous approach to predict the rut depth or use
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real rut data from the field and take cores from the same road. Then test the

cores in the RLAT under the same field conditions in terms of average annual

temperature and loading time, ensuring that the sample reaches the tertiary

stage in the RLAT test.
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Appendix A

Matlab Code for ANN

1 % Note: open file for input and output

2 for m=1:1:20;% Make an iteration until arrive to the target of ...

(R-sequ.)

3 % Solve an Input-Output Fitting problem with a Neural Network

4 % This script assumes these variables are defined:

5 % Input - input data.

6 % Output - target data.

7 inputs = Input;

8 targets = Output;

9

10 % Create a Fitting Network

11

12 hiddenLayerSize =[5 15 5];% number of hidden ...

layesr=========================

13 net = fitnet(hiddenLayerSize);
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14 % Choose Input and Output Pre/Post-Processing Functions

15 net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};

16 net.outputs{2}.processFcns = {'removeconstantrows','mapminmax'};

17 % Setup Division of Data for Training, Validation, Testing

18 % For a list of all data division functions type: help nndivide

19 %[trainInd,valInd] =divideind(47,1:40,41:47);

20 %net.divideFcn = 'dividerand'; % Divide data randomly

21 net.divideMode = 'sample'; % Divide up every sample

22 net.divideParam.trainRatio = 75/100;% training data

23 net.divideParam.valRatio = 0/100; % validation data

24 net.divideParam.testRatio = 25/100;% testing data

25 % For help on training function 'trainlm' type: help trainlm

26 % For a list of all training functions type: help nntrain

27 net.trainFcn = 'trainlm'; % for trainig Levenberg-Marquardt ...

was used

28 % Choose a Performance Function

29 % For a list of all performance functions type: help nnperformance

30 net.performFcn = 'mse'; % Mean squared error

31 % Choose Plot Functions

32 % For a list of all plot functions type: help nnplot

33 net.plotFcns = ...

{'plotperform','plottrainstate','ploterrhist','plotregression', ...

'plotfit'};

34

35 % Train the Network;

36 [net,tr] = train(net,inputs,targets);

37
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38 % Test the Network;

39 outputs = net(inputs);

40 errors = gsubtract(targets,outputs);

41 performance = perform(net,targets,outputs);

42 %Recalculate Training, Validation and Test Performance

43 trainTargets = targets.* tr.trainMask{1};

44 valTargets = targets.* tr.valMask{1};

45 testTargets = targets .* tr.testMask{1};

46 trainPerformance = perform(net,trainTargets,outputs);

47 valPerformance = perform(net,valTargets,outputs);

48 testPerformance = perform(net,testTargets,outputs);

49

50 %View the Network

51 %view(net)

52

53 wb = formwb(net,net.b,net.iw,net.lw);%net.b= baise, net.IW= ...

input weight, net.LW= layer weight.

54 [b,iw,lw] = separatewb(net,wb);%net.b= baise, net.IW= input ...

weight, net.LW= layer weight.

55 %if regression(valTargets,outputs)>0.980 ;% the target of ...

R-square is 0.95

56 if regression(targets,outputs)>0.95;% the target of R-square is ...

0.95

57 break;

58 end;

59

60 R(m,1)=regression(targets,outputs);
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61

62 m;

63 end;

64

65 % Plots

66 % Uncomment these lines to enable various plots;

67 %figure, plotperform(tr);

68 %figure, plottrainstate(tr);

69 %figure, plotfit(net,inputs,targets);

70 %figure, plotregression(targets,outputs);

71 %figure, ploterrhist(errors);

72 %performance = perform(net,targets,outputs)

73 %Rs=regression(targets,outputs)

74 MAX=max(R(:,1));

75 %--------------------------------------------------------------------------

76 for I=1:1:length(Input);

77 DATA(I,1)=Output(1,I);%experementals values

78 DATA(I,2)=outputs(1,I);%modelled valeues

79 end;

80 m;

81 %sim(train(net,inputs,targets),SAMPLE)
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Appendix B

Weights and Biases for ANN and

ANFIS

B.1 ANN
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Table B.1: Strain ANN Weights for Packing Ratios Model

Input Layer
Node 1 Node 2 Node 3 Node 4 Node 5
0.994 -0.738 -0.676 -0.523 1.158
-0.059 1.144 1.357 -0.362 -0.047
-1.138 -0.150 0.155 1.028 -1.122
-0.916 -0.663 0.368 -0.972 1.062
-0.621 0.037 -1.700 -0.724 -0.757

Hidden Layer 1 Hidden Layer 2
Node 1 Node 2 Node 3 Node 4 Node 5 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9 Node 10 Node 11 Node 12 Node 13 Node 14 Node 15
-0.862 1.262 1.647 0.754 -0.527
-0.818 0.031 1.247 -1.585 -1.041
1.389 -0.925 1.469 -0.518 -0.302
0.385 -0.068 1.132 0.278 2.067
-0.922 -1.473 0.798 0.538 -1.617
-0.914 -1.118 1.428 -0.117 1.166 0.421 -0.004 -0.752 -0.166 0.967 0.260 -0.213 0.098 0.496 0.415 0.464 -0.083 -0.484 -0.495 0.511
1.258 0.249 0.566 -1.306 -1.352 -0.382 0.407 0.267 -0.263 -0.754 -0.017 0.416 0.422 0.384 0.180 0.579 -0.333 -0.056 -0.292 -0.533
0.154 -2.422 -0.218 0.330 -0.058 0.033 0.573 -0.130 0.519 0.211 -0.506 0.758 -0.036 0.531 0.113 -0.360 0.026 -0.525 -0.515 -0.551
1.215 0.446 0.394 -1.909 -0.502 -0.500 -0.199 -0.324 0.352 -0.488 0.526 0.106 0.468 -0.615 0.609 -0.213 -0.025 0.357 0.011 0.455
1.297 -1.389 0.753 1.046 0.610 0.470 0.374 0.474 -0.424 -0.710 0.055 0.596 0.528 0.631 -0.006 0.130 0.553 0.065 -0.373 0.436
0.830 -1.092 -1.647 1.051 0.271
0.110 1.197 1.143 0.050 1.694 Hidden Layer 3
-0.425 1.913 -0.125 1.171 0.349 Node 1 Node 2 Node 3 Node 4 Node 5
-0.026 -1.937 0.895 0.393 1.051 -0.490 0.652 -0.587 0.598 1.203
0.266 -1.408 1.726 -0.775 0.018
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Table B.2: Strain ANN Biases for Packing Ratios model

Hidden
Layer 1

Hidden Layer 2 Hidden Layer 3 Output

2.37638
2.04729
-1.9271
-1.3882
1.0983

-1.9819 0.94191 -1.3624
1.14645 -0.4652 0.77298
0.09008 -0.0483 -0.0013 -0.2909
-0.9305 0.33398 -0.7264
-1.883 0.759 1.53198

1.04442
-1.5182
-1.7146
-2.0597
2.43689
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Table B.3: Strain ANN Weights for Packing Ratios and Different Variables Model

Input Layer
Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8
-1.238 1.893 0.922 1.135 0.540 -0.634 -2.087 -0.404
0.035 -3.484 0.914 2.102 -1.416 -0.007 -1.703 0.391
-1.810 1.426 -1.560 -1.054 -0.225 -0.981 -1.705 1.306
0.808 0.265 -0.971 0.561 -2.164 -0.277 -1.272 1.852
1.783 -1.255 -0.100 -0.170 0.431 1.417 0.575 -1.080

Hidden Layer 1 Hidden Layer 2
Node 1 Node 2 Node 3 Node 4 Node 5 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9 Node 10 Node 11 Node 12 Node 13 Node 14 Node 15
0.272 -1.667 0.454 0.247 2.618
-0.569 1.038 -1.139 -1.526 1.362
-0.726 0.045 1.457 -0.495 1.842
-0.164 2.662 1.196 -0.724 -0.616
0.764 -1.193 -0.807 -1.164 -1.025
-0.388 1.849 1.265 0.442 -2.262 0.553 0.578 0.765 -0.264 0.221 0.758 0.878 -0.953 -1.405 -0.201 -0.743 0.233 -0.237 1.047 1.023
1.791 0.607 0.348 2.162 0.070 1.293 -0.176 -0.190 -1.118 -0.381 0.287 -0.041 -0.177 -0.965 1.104 -0.267 -0.057 -0.072 0.398 0.148
0.117 -1.025 0.150 1.287 -2.136 0.297 -0.143 0.735 -0.196 -0.441 -0.244 0.680 -0.207 -0.395 -0.970 -0.280 0.698 0.344 0.181 0.737
-0.811 2.408 0.680 0.543 1.832 0.352 -0.364 -0.038 -0.399 -0.134 -1.570 -0.090 0.456 -1.675 -1.086 0.732 -0.482 -1.230 -0.384 0.098
-1.481 0.236 0.739 1.203 -1.720 1.378 -0.665 -0.645 1.010 0.712 -1.435 1.884 0.203 -0.393 -0.646 0.530 0.054 -0.529 -0.492 -0.773
-0.545 1.163 -0.807 -1.610 -0.603
0.117 -0.104 1.435 -1.664 1.023 Hidden Layer 3
-1.685 -1.124 1.333 -0.940 0.077 Node 1 Node 2 Node 3 Node 4 Node 5
0.349 0.969 -1.220 1.338 1.135 -0.431 1.048 0.377 0.799 -0.985
0.834 -1.138 0.407 -1.198 1.435
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Table B.4: Strain ANN Biases for Packing Ratios and Different Variables Model

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3 Output
-2.204828683
1.996538052
2.547200511
1.096737045
-1.654271435

1.646346289 -0.335848112 -0.930364867
0.20308558 0.274961926 -0.871561486
1.304789094 -0.669505259 0.13940708 0.119534105
-0.749363942 0.642136285 0.705837222
0.228394626 -1.31742977 1.351610711

-1.647498124
1.413512651
-1.80336181
2.330028779
2.852786317
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Table B.5: Stiffness ANN Weights for Packing Ratios and Different Variables Model

Input Layer
Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7
-1.556 -0.537 -1.137 -0.666 -0.149 -1.019 0.836
1.983 1.541 -1.672 -1.204 0.176 0.768 -3.168
0.837 1.224 1.502 0.501 -2.350 -0.476 1.803
0.528 1.572 -1.209 -1.921 -2.025 -2.157 -0.684
0.736 0.881 -2.021 1.915 -0.702 -0.081 2.413

Hidden Layer 1 Hidden Layer 2
Node 1 Node 2 Node 3 Node 4 Node 5 Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7 Node 8 Node 9 Node 10 Node 11 Node 12 Node 13 Node 14 Node 15
-0.785 1.764 1.782 1.023 -1.384
-0.360 -1.719 1.376 0.633 -0.017
-0.490 0.540 -1.507 -0.891 -1.841
1.425 0.017 -1.140 -0.937 1.566
-0.535 -0.814 1.317 -1.667 0.458
0.548 0.324 2.649 -0.873 -0.990 0.665 -0.746 1.667 -0.269 -1.164 -0.381 -0.747 0.250 -0.717 0.278 -0.429 1.066 -0.046 0.428 -0.212
-0.124 -0.418 -1.842 1.186 -1.059 -0.975 0.089 0.870 0.759 -0.786 -0.064 -0.846 -0.653 -0.711 -0.547 -1.139 -1.340 -0.841 -0.287 0.088
-0.584 1.128 -1.148 2.059 -0.479 1.295 -0.214 0.396 -0.918 -0.053 -0.023 0.777 -0.412 -1.039 -0.050 -0.873 -0.538 -0.286 -1.004 0.046
-1.174 -0.742 1.055 0.973 1.499 -0.020 0.136 -0.477 -0.254 -0.661 -1.065 -0.406 0.646 -0.313 0.739 0.868 1.195 -0.463 0.568 0.849
-1.477 -1.079 -0.257 1.359 -0.631 2.000 0.146 0.051 -1.462 -0.180 0.428 -0.424 -0.124 0.451 -0.258 -0.166 1.210 0.630 -0.144 -0.781
-0.395 0.002 -0.757 2.257 1.223
-0.778 0.321 -2.013 1.511 -1.402 Hidden Layer 3
0.239 -1.287 0.630 1.977 -0.383 Node 1 Node 2 Node 3 Node 4 Node 5
-1.642 -1.185 0.888 0.208 0.695 -0.962 0.793 0.974 2.901 0.598
-0.806 -1.417 -1.081 -0.560 -0.789
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Table B.6: Stiffness ANN Biases for Packing Ratios and Different Variables Model

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3 Output
2.005129325
1.909145178
1.448832689
-1.616056382
1.040353516

3.272547626 -0.503922928 1.415190474
-0.398990876 0.382909162 1.516667144
0.872407675 0.200275279 0.329679 1.001297533
-0.103649955 -0.469313444 -1.044456973
-0.357595449 -0.784737872 1.69291865

-1.215335232
-1.419585325
1.762101314
-2.245452956
-2.352290962

B.2 ANFIS

Source codes, Functions and System files for All Packing Ratios Model

1 [System]

2 Name='final'

3 Type='sugeno'

4 Version=2.0

5 NumInputs=5

6 NumOutputs=1

7 NumRules=243

8 AndMethod='prod'

9 OrMethod='probor'

10 ImpMethod='prod'

11 AggMethod='sum'
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12 DefuzzMethod='wtaver'

13

14 [Input1]

15 Name='input1'

16 Range=[0.369916312 2.007203154]

17 NumMFs=3

18 MF1='in1mf1':'trimf',[-0.2369503675 0.369669062227676 ...

0.975750739624839]

19 MF2='in1mf2':'trimf',[0.370247991640055 0.976465116872959 ...

1.58286489367843]

20 MF3='in1mf3':'trimf',[0.976576627028935 1.58357904614528 ...

2.1905163505]

21

22 [Input2]

23 Name='input2'

24 Range=[0.271508028 0.48759609]

25 NumMFs=3

26 MF1='in2mf1':'trimf',[0.163463997 0.271359429541806 ...

0.379273989174918]

27 MF2='in2mf2':'trimf',[0.277411557641705 0.378909673888802 ...

0.48051820077889]

28 MF3='in2mf3':'trimf',[0.380136819880285 0.487102303346997 ...

0.595640121]

29

30 [Input3]

31 Name='input3'

32 Range=[0.348764403 2.168343026]
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33 NumMFs=3

34 MF1='in3mf1':'trimf',[-0.5610249085 0.348693368779104 ...

1.2582076455365]

35 MF2='in3mf2':'trimf',[0.349636659981002 1.25846769090146 ...

2.1683371743299]

36 MF3='in3mf3':'trimf',[1.25851721156848 2.16832803662236 ...

3.0781323375]

37

38 [Input4]

39 Name='input4'

40 Range=[0.262146124 1.300702499]

41 NumMFs=3

42 MF1='in4mf1':'trimf',[-0.2571320635 0.262538635668114 ...

0.781575066815497]

43 MF2='in4mf2':'trimf',[0.264040284988717 0.781843941384744 ...

1.30070536050123]

44 MF3='in4mf3':'trimf',[0.781538489611184 1.30072961721663 ...

1.8199806865]

45

46 [Input5]

47 Name='input5'

48 Range=[0.2143015 0.5404065]

49 NumMFs=3

50 MF1='in5mf1':'trimf',[0.051249 0.214912477748511 0.37826640099706]

51 MF2='in5mf2':'trimf',[0.214792548759294 0.378510640381034 ...

0.540533881967115]

52 MF3='in5mf3':'trimf',[0.379355243737009 0.540952162632522 0.703459]
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53

54 [Output1]

55 Name='output'

56 Range=[0.945216667 15.1]

57 NumMFs=243

58 MF1='out1mf1':'constant',[-0.000628292076036838]

59 MF2='out1mf2':'constant',[2.46136407852949]

60 MF3='out1mf3':'constant',[0.837860604309635]

61 MF4='out1mf4':'constant',[0.0649302944159856]

62 MF5='out1mf5':'constant',[0.639836428490079]

63 MF6='out1mf6':'constant',[0.293059506169673]

64 MF7='out1mf7':'constant',[0.0221254533710595]

65 MF8='out1mf8':'constant',[0.0212012967117338]

66 MF9='out1mf9':'constant',[0]

67 MF10='out1mf10':'constant',[-0.0154891238643098]

68 MF11='out1mf11':'constant',[0.398893501071379]

69 MF12='out1mf12':'constant',[0.347342540909675]

70 MF13='out1mf13':'constant',[1.05514875965356]

71 MF14='out1mf14':'constant',[-1.40467518870887]

72 MF15='out1mf15':'constant',[0.121490416170112]

73 MF16='out1mf16':'constant',[-0.0998029558784106]

74 MF17='out1mf17':'constant',[0.603708247691]

75 MF18='out1mf18':'constant',[0]

76 MF19='out1mf19':'constant',[0]

77 MF20='out1mf20':'constant',[0]

78 MF21='out1mf21':'constant',[0]

79 MF22='out1mf22':'constant',[-0.198414937754411]
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80 MF23='out1mf23':'constant',[1.74458915610732]

81 MF24='out1mf24':'constant',[3.49700731783121e-08]

82 MF25='out1mf25':'constant',[-0.246350961922909]

83 MF26='out1mf26':'constant',[0.37000023214352]

84 MF27='out1mf27':'constant',[0.00634061374954542]

85 MF28='out1mf28':'constant',[-0.00103707334545574]

86 MF29='out1mf29':'constant',[4.8305002187799]

87 MF30='out1mf30':'constant',[0.615903610992692]

88 MF31='out1mf31':'constant',[0.0885139831256964]

89 MF32='out1mf32':'constant',[5.36213992659359]

90 MF33='out1mf33':'constant',[-0.935252128916187]

91 MF34='out1mf34':'constant',[0.0308071071178912]

92 MF35='out1mf35':'constant',[0.0295203270140624]

93 MF36='out1mf36':'constant',[0]

94 MF37='out1mf37':'constant',[-0.025566703952891]

95 MF38='out1mf38':'constant',[-2.18650251835102]

96 MF39='out1mf39':'constant',[-4.16398931415117]

97 MF40='out1mf40':'constant',[2.39197894815522]

98 MF41='out1mf41':'constant',[-0.0148037712507594]

99 MF42='out1mf42':'constant',[-1.5244922631668]

100 MF43='out1mf43':'constant',[0.544885689729886]

101 MF44='out1mf44':'constant',[1.76259081711547]

102 MF45='out1mf45':'constant',[0]

103 MF46='out1mf46':'constant',[0]

104 MF47='out1mf47':'constant',[0]

105 MF48='out1mf48':'constant',[0]

106 MF49='out1mf49':'constant',[0.101671380257337]
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107 MF50='out1mf50':'constant',[3.55673892480193]

108 MF51='out1mf51':'constant',[1.17881906466633e-07]

109 MF52='out1mf52':'constant',[-0.0802857061215568]

110 MF53='out1mf53':'constant',[1.47938278505216]

111 MF54='out1mf54':'constant',[0.0213738082038617]

112 MF55='out1mf55':'constant',[0]

113 MF56='out1mf56':'constant',[3.96752659160645]

114 MF57='out1mf57':'constant',[6.78155964998761]

115 MF58='out1mf58':'constant',[0]

116 MF59='out1mf59':'constant',[-1.14657658480498]

117 MF60='out1mf60':'constant',[-3.92341486268316]

118 MF61='out1mf61':'constant',[0]

119 MF62='out1mf62':'constant',[0]

120 MF63='out1mf63':'constant',[0]

121 MF64='out1mf64':'constant',[0]

122 MF65='out1mf65':'constant',[-6.57356206357714]

123 MF66='out1mf66':'constant',[-5.7460317369295]

124 MF67='out1mf67':'constant',[0]

125 MF68='out1mf68':'constant',[-4.01429853993282]

126 MF69='out1mf69':'constant',[-4.07920607546454]

127 MF70='out1mf70':'constant',[0]

128 MF71='out1mf71':'constant',[0]

129 MF72='out1mf72':'constant',[0]

130 MF73='out1mf73':'constant',[0]

131 MF74='out1mf74':'constant',[0]

132 MF75='out1mf75':'constant',[0]

133 MF76='out1mf76':'constant',[0]
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134 MF77='out1mf77':'constant',[0]

135 MF78='out1mf78':'constant',[0]

136 MF79='out1mf79':'constant',[0]

137 MF80='out1mf80':'constant',[0]

138 MF81='out1mf81':'constant',[0]

139 MF82='out1mf82':'constant',[0.956934794258858]

140 MF83='out1mf83':'constant',[4.58185940568531]

141 MF84='out1mf84':'constant',[1.29263108328575]

142 MF85='out1mf85':'constant',[0.241532551027591]

143 MF86='out1mf86':'constant',[1.34911698746698]

144 MF87='out1mf87':'constant',[0.452125120758185]

145 MF88='out1mf88':'constant',[0.0780658348461269]

146 MF89='out1mf89':'constant',[0.0748051079416907]

147 MF90='out1mf90':'constant',[0]

148 MF91='out1mf91':'constant',[0.0638979399499979]

149 MF92='out1mf92':'constant',[1.29119739183135]

150 MF93='out1mf93':'constant',[0.53587167435224]

151 MF94='out1mf94':'constant',[4.48015533263991]

152 MF95='out1mf95':'constant',[2.23846420138341]

153 MF96='out1mf96':'constant',[0.187432476767759]

154 MF97='out1mf97':'constant',[0.749610430874522]

155 MF98='out1mf98':'constant',[0.952731529900271]

156 MF99='out1mf99':'constant',[0]

157 MF100='out1mf100':'constant',[0]

158 MF101='out1mf101':'constant',[0]

159 MF102='out1mf102':'constant',[0]

160 MF103='out1mf103':'constant',[-0.542092673476708]
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161 MF104='out1mf104':'constant',[0.100170255845813]

162 MF105='out1mf105':'constant',[0]

163 MF106='out1mf106':'constant',[-0.456536977937207]

164 MF107='out1mf107':'constant',[-0.335867811039835]

165 MF108='out1mf108':'constant',[0]

166 MF109='out1mf109':'constant',[-4.78399500126833]

167 MF110='out1mf110':'constant',[1.74302425313201]

168 MF111='out1mf111':'constant',[4.86397281464326]

169 MF112='out1mf112':'constant',[-3.67168475815058]

170 MF113='out1mf113':'constant',[0.0849420948151548]

171 MF114='out1mf114':'constant',[2.95613709957768]

172 MF115='out1mf115':'constant',[0.108697548298319]

173 MF116='out1mf116':'constant',[0.104157367296493]

174 MF117='out1mf117':'constant',[0]

175 MF118='out1mf118':'constant',[-1.21304788851612]

176 MF119='out1mf119':'constant',[-0.240470895414756]

177 MF120='out1mf120':'constant',[0.056982493551563]

178 MF121='out1mf121':'constant',[7.07222708527024]

179 MF122='out1mf122':'constant',[4.50657184450894]

180 MF123='out1mf123':'constant',[0.636790170068476]

181 MF124='out1mf124':'constant',[2.19606114778872]

182 MF125='out1mf125':'constant',[2.50333470501633]

183 MF126='out1mf126':'constant',[0]

184 MF127='out1mf127':'constant',[0]

185 MF128='out1mf128':'constant',[0]

186 MF129='out1mf129':'constant',[0]

187 MF130='out1mf130':'constant',[-0.181768274996029]
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188 MF131='out1mf131':'constant',[0.925479375160748]

189 MF132='out1mf132':'constant',[0]

190 MF133='out1mf133':'constant',[-0.194466147938767]

191 MF134='out1mf134':'constant',[-0.0123602594258481]

192 MF135='out1mf135':'constant',[0]

193 MF136='out1mf136':'constant',[-1.23592614035461]

194 MF137='out1mf137':'constant',[26.5890316567072]

195 MF138='out1mf138':'constant',[11.6336437612259]

196 MF139='out1mf139':'constant',[-1.01721916870219]

197 MF140='out1mf140':'constant',[6.27499146655773]

198 MF141='out1mf141':'constant',[2.13363924284419]

199 MF142='out1mf142':'constant',[0]

200 MF143='out1mf143':'constant',[0]

201 MF144='out1mf144':'constant',[0]

202 MF145='out1mf145':'constant',[-0.307709317964186]

203 MF146='out1mf146':'constant',[-1.86060286032728]

204 MF147='out1mf147':'constant',[-1.59834780445102]

205 MF148='out1mf148':'constant',[-0.253257703998624]

206 MF149='out1mf149':'constant',[-1.27959831303417]

207 MF150='out1mf150':'constant',[-1.1432152397776]

208 MF151='out1mf151':'constant',[0]

209 MF152='out1mf152':'constant',[0]

210 MF153='out1mf153':'constant',[0]

211 MF154='out1mf154':'constant',[0]

212 MF155='out1mf155':'constant',[0]

213 MF156='out1mf156':'constant',[0]

214 MF157='out1mf157':'constant',[0]
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215 MF158='out1mf158':'constant',[0]

216 MF159='out1mf159':'constant',[0]

217 MF160='out1mf160':'constant',[0]

218 MF161='out1mf161':'constant',[0]

219 MF162='out1mf162':'constant',[0]

220 MF163='out1mf163':'constant',[19.2552081138974]

221 MF164='out1mf164':'constant',[15.3660220003553]

222 MF165='out1mf165':'constant',[0]

223 MF166='out1mf166':'constant',[4.76911744383185]

224 MF167='out1mf167':'constant',[3.7993653645862]

225 MF168='out1mf168':'constant',[0]

226 MF169='out1mf169':'constant',[0]

227 MF170='out1mf170':'constant',[0]

228 MF171='out1mf171':'constant',[0]

229 MF172='out1mf172':'constant',[1.96705044400533]

230 MF173='out1mf173':'constant',[1.56907809906657]

231 MF174='out1mf174':'constant',[0]

232 MF175='out1mf175':'constant',[0.452669110469853]

233 MF176='out1mf176':'constant',[0.351672444178518]

234 MF177='out1mf177':'constant',[0]

235 MF178='out1mf178':'constant',[0]

236 MF179='out1mf179':'constant',[0]

237 MF180='out1mf180':'constant',[0]

238 MF181='out1mf181':'constant',[0]

239 MF182='out1mf182':'constant',[0]

240 MF183='out1mf183':'constant',[0]

241 MF184='out1mf184':'constant',[0]
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242 MF185='out1mf185':'constant',[0]

243 MF186='out1mf186':'constant',[0]

244 MF187='out1mf187':'constant',[0]

245 MF188='out1mf188':'constant',[0]

246 MF189='out1mf189':'constant',[0]

247 MF190='out1mf190':'constant',[-0.705090260204011]

248 MF191='out1mf191':'constant',[-1.9216483265055]

249 MF192='out1mf192':'constant',[0]

250 MF193='out1mf193':'constant',[1.32437179828769]

251 MF194='out1mf194':'constant',[-1.59061930053277]

252 MF195='out1mf195':'constant',[0]

253 MF196='out1mf196':'constant',[0.199332608476822]

254 MF197='out1mf197':'constant',[0]

255 MF198='out1mf198':'constant',[0]

256 MF199='out1mf199':'constant',[-0.176368224937162]

257 MF200='out1mf200':'constant',[-0.479297431696797]

258 MF201='out1mf201':'constant',[0]

259 MF202='out1mf202':'constant',[1.76570771210859]

260 MF203='out1mf203':'constant',[-0.407567865819005]

261 MF204='out1mf204':'constant',[0]

262 MF205='out1mf205':'constant',[0.200378812987847]

263 MF206='out1mf206':'constant',[0]

264 MF207='out1mf207':'constant',[0]

265 MF208='out1mf208':'constant',[0]

266 MF209='out1mf209':'constant',[0]

267 MF210='out1mf210':'constant',[0]

268 MF211='out1mf211':'constant',[0]
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269 MF212='out1mf212':'constant',[0]

270 MF213='out1mf213':'constant',[0]

271 MF214='out1mf214':'constant',[0]

272 MF215='out1mf215':'constant',[0]

273 MF216='out1mf216':'constant',[0]

274 MF217='out1mf217':'constant',[-0.182254519312782]

275 MF218='out1mf218':'constant',[-0.497011438490831]

276 MF219='out1mf219':'constant',[0]

277 MF220='out1mf220':'constant',[0.00295275999992829]

278 MF221='out1mf221':'constant',[-0.409061306971833]

279 MF222='out1mf222':'constant',[0]

280 MF223='out1mf223':'constant',[0.0159355611569387]

281 MF224='out1mf224':'constant',[0]

282 MF225='out1mf225':'constant',[0]

283 MF226='out1mf226':'constant',[-0.045376023697578]

284 MF227='out1mf227':'constant',[-0.12374125424139]

285 MF228='out1mf228':'constant',[0]

286 MF229='out1mf229':'constant',[0.116412310532877]

287 MF230='out1mf230':'constant',[-0.101844254007229]

288 MF231='out1mf231':'constant',[0]

289 MF232='out1mf232':'constant',[0.0160191995334607]

290 MF233='out1mf233':'constant',[0]

291 MF234='out1mf234':'constant',[0]

292 MF235='out1mf235':'constant',[0]

293 MF236='out1mf236':'constant',[0]

294 MF237='out1mf237':'constant',[0]

295 MF238='out1mf238':'constant',[0]
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296 MF239='out1mf239':'constant',[0]

297 MF240='out1mf240':'constant',[0]

298 MF241='out1mf241':'constant',[0]

299 MF242='out1mf242':'constant',[0]

300 MF243='out1mf243':'constant',[0]

301

302 [Rules]

303 1 1 1 1 1, 1 (1) : 1

304 1 1 1 1 2, 2 (1) : 1

305 1 1 1 1 3, 3 (1) : 1

306 1 1 1 2 1, 4 (1) : 1

307 1 1 1 2 2, 5 (1) : 1

308 1 1 1 2 3, 6 (1) : 1

309 1 1 1 3 1, 7 (1) : 1

310 1 1 1 3 2, 8 (1) : 1

311 1 1 1 3 3, 9 (1) : 1

312 1 1 2 1 1, 10 (1) : 1

313 1 1 2 1 2, 11 (1) : 1

314 1 1 2 1 3, 12 (1) : 1

315 1 1 2 2 1, 13 (1) : 1

316 1 1 2 2 2, 14 (1) : 1

317 1 1 2 2 3, 15 (1) : 1

318 1 1 2 3 1, 16 (1) : 1

319 1 1 2 3 2, 17 (1) : 1

320 1 1 2 3 3, 18 (1) : 1

321 1 1 3 1 1, 19 (1) : 1

322 1 1 3 1 2, 20 (1) : 1
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323 1 1 3 1 3, 21 (1) : 1

324 1 1 3 2 1, 22 (1) : 1

325 1 1 3 2 2, 23 (1) : 1

326 1 1 3 2 3, 24 (1) : 1

327 1 1 3 3 1, 25 (1) : 1

328 1 1 3 3 2, 26 (1) : 1

329 1 1 3 3 3, 27 (1) : 1

330 1 2 1 1 1, 28 (1) : 1

331 1 2 1 1 2, 29 (1) : 1

332 1 2 1 1 3, 30 (1) : 1

333 1 2 1 2 1, 31 (1) : 1

334 1 2 1 2 2, 32 (1) : 1

335 1 2 1 2 3, 33 (1) : 1

336 1 2 1 3 1, 34 (1) : 1

337 1 2 1 3 2, 35 (1) : 1

338 1 2 1 3 3, 36 (1) : 1

339 1 2 2 1 1, 37 (1) : 1

340 1 2 2 1 2, 38 (1) : 1

341 1 2 2 1 3, 39 (1) : 1

342 1 2 2 2 1, 40 (1) : 1

343 1 2 2 2 2, 41 (1) : 1

344 1 2 2 2 3, 42 (1) : 1

345 1 2 2 3 1, 43 (1) : 1

346 1 2 2 3 2, 44 (1) : 1

347 1 2 2 3 3, 45 (1) : 1

348 1 2 3 1 1, 46 (1) : 1

349 1 2 3 1 2, 47 (1) : 1
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350 1 2 3 1 3, 48 (1) : 1

351 1 2 3 2 1, 49 (1) : 1

352 1 2 3 2 2, 50 (1) : 1

353 1 2 3 2 3, 51 (1) : 1

354 1 2 3 3 1, 52 (1) : 1

355 1 2 3 3 2, 53 (1) : 1

356 1 2 3 3 3, 54 (1) : 1

357 1 3 1 1 1, 55 (1) : 1

358 1 3 1 1 2, 56 (1) : 1

359 1 3 1 1 3, 57 (1) : 1

360 1 3 1 2 1, 58 (1) : 1

361 1 3 1 2 2, 59 (1) : 1

362 1 3 1 2 3, 60 (1) : 1

363 1 3 1 3 1, 61 (1) : 1

364 1 3 1 3 2, 62 (1) : 1

365 1 3 1 3 3, 63 (1) : 1

366 1 3 2 1 1, 64 (1) : 1

367 1 3 2 1 2, 65 (1) : 1

368 1 3 2 1 3, 66 (1) : 1

369 1 3 2 2 1, 67 (1) : 1

370 1 3 2 2 2, 68 (1) : 1

371 1 3 2 2 3, 69 (1) : 1

372 1 3 2 3 1, 70 (1) : 1

373 1 3 2 3 2, 71 (1) : 1

374 1 3 2 3 3, 72 (1) : 1

375 1 3 3 1 1, 73 (1) : 1

376 1 3 3 1 2, 74 (1) : 1
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377 1 3 3 1 3, 75 (1) : 1

378 1 3 3 2 1, 76 (1) : 1

379 1 3 3 2 2, 77 (1) : 1

380 1 3 3 2 3, 78 (1) : 1

381 1 3 3 3 1, 79 (1) : 1

382 1 3 3 3 2, 80 (1) : 1

383 1 3 3 3 3, 81 (1) : 1

384 2 1 1 1 1, 82 (1) : 1

385 2 1 1 1 2, 83 (1) : 1

386 2 1 1 1 3, 84 (1) : 1

387 2 1 1 2 1, 85 (1) : 1

388 2 1 1 2 2, 86 (1) : 1

389 2 1 1 2 3, 87 (1) : 1

390 2 1 1 3 1, 88 (1) : 1

391 2 1 1 3 2, 89 (1) : 1

392 2 1 1 3 3, 90 (1) : 1

393 2 1 2 1 1, 91 (1) : 1

394 2 1 2 1 2, 92 (1) : 1

395 2 1 2 1 3, 93 (1) : 1

396 2 1 2 2 1, 94 (1) : 1

397 2 1 2 2 2, 95 (1) : 1

398 2 1 2 2 3, 96 (1) : 1

399 2 1 2 3 1, 97 (1) : 1

400 2 1 2 3 2, 98 (1) : 1

401 2 1 2 3 3, 99 (1) : 1

402 2 1 3 1 1, 100 (1) : 1

403 2 1 3 1 2, 101 (1) : 1

239



404 2 1 3 1 3, 102 (1) : 1

405 2 1 3 2 1, 103 (1) : 1

406 2 1 3 2 2, 104 (1) : 1

407 2 1 3 2 3, 105 (1) : 1

408 2 1 3 3 1, 106 (1) : 1

409 2 1 3 3 2, 107 (1) : 1

410 2 1 3 3 3, 108 (1) : 1

411 2 2 1 1 1, 109 (1) : 1

412 2 2 1 1 2, 110 (1) : 1

413 2 2 1 1 3, 111 (1) : 1

414 2 2 1 2 1, 112 (1) : 1

415 2 2 1 2 2, 113 (1) : 1

416 2 2 1 2 3, 114 (1) : 1

417 2 2 1 3 1, 115 (1) : 1

418 2 2 1 3 2, 116 (1) : 1

419 2 2 1 3 3, 117 (1) : 1

420 2 2 2 1 1, 118 (1) : 1

421 2 2 2 1 2, 119 (1) : 1

422 2 2 2 1 3, 120 (1) : 1

423 2 2 2 2 1, 121 (1) : 1

424 2 2 2 2 2, 122 (1) : 1

425 2 2 2 2 3, 123 (1) : 1

426 2 2 2 3 1, 124 (1) : 1

427 2 2 2 3 2, 125 (1) : 1

428 2 2 2 3 3, 126 (1) : 1

429 2 2 3 1 1, 127 (1) : 1

430 2 2 3 1 2, 128 (1) : 1
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431 2 2 3 1 3, 129 (1) : 1

432 2 2 3 2 1, 130 (1) : 1

433 2 2 3 2 2, 131 (1) : 1

434 2 2 3 2 3, 132 (1) : 1

435 2 2 3 3 1, 133 (1) : 1

436 2 2 3 3 2, 134 (1) : 1

437 2 2 3 3 3, 135 (1) : 1

438 2 3 1 1 1, 136 (1) : 1

439 2 3 1 1 2, 137 (1) : 1

440 2 3 1 1 3, 138 (1) : 1

441 2 3 1 2 1, 139 (1) : 1

442 2 3 1 2 2, 140 (1) : 1

443 2 3 1 2 3, 141 (1) : 1

444 2 3 1 3 1, 142 (1) : 1

445 2 3 1 3 2, 143 (1) : 1

446 2 3 1 3 3, 144 (1) : 1

447 2 3 2 1 1, 145 (1) : 1

448 2 3 2 1 2, 146 (1) : 1

449 2 3 2 1 3, 147 (1) : 1

450 2 3 2 2 1, 148 (1) : 1

451 2 3 2 2 2, 149 (1) : 1

452 2 3 2 2 3, 150 (1) : 1

453 2 3 2 3 1, 151 (1) : 1

454 2 3 2 3 2, 152 (1) : 1

455 2 3 2 3 3, 153 (1) : 1

456 2 3 3 1 1, 154 (1) : 1

457 2 3 3 1 2, 155 (1) : 1
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458 2 3 3 1 3, 156 (1) : 1

459 2 3 3 2 1, 157 (1) : 1

460 2 3 3 2 2, 158 (1) : 1

461 2 3 3 2 3, 159 (1) : 1

462 2 3 3 3 1, 160 (1) : 1

463 2 3 3 3 2, 161 (1) : 1

464 2 3 3 3 3, 162 (1) : 1

465 3 1 1 1 1, 163 (1) : 1

466 3 1 1 1 2, 164 (1) : 1

467 3 1 1 1 3, 165 (1) : 1

468 3 1 1 2 1, 166 (1) : 1

469 3 1 1 2 2, 167 (1) : 1

470 3 1 1 2 3, 168 (1) : 1

471 3 1 1 3 1, 169 (1) : 1

472 3 1 1 3 2, 170 (1) : 1

473 3 1 1 3 3, 171 (1) : 1

474 3 1 2 1 1, 172 (1) : 1

475 3 1 2 1 2, 173 (1) : 1

476 3 1 2 1 3, 174 (1) : 1

477 3 1 2 2 1, 175 (1) : 1

478 3 1 2 2 2, 176 (1) : 1

479 3 1 2 2 3, 177 (1) : 1

480 3 1 2 3 1, 178 (1) : 1

481 3 1 2 3 2, 179 (1) : 1

482 3 1 2 3 3, 180 (1) : 1

483 3 1 3 1 1, 181 (1) : 1

484 3 1 3 1 2, 182 (1) : 1
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485 3 1 3 1 3, 183 (1) : 1

486 3 1 3 2 1, 184 (1) : 1

487 3 1 3 2 2, 185 (1) : 1

488 3 1 3 2 3, 186 (1) : 1

489 3 1 3 3 1, 187 (1) : 1

490 3 1 3 3 2, 188 (1) : 1

491 3 1 3 3 3, 189 (1) : 1

492 3 2 1 1 1, 190 (1) : 1

493 3 2 1 1 2, 191 (1) : 1

494 3 2 1 1 3, 192 (1) : 1

495 3 2 1 2 1, 193 (1) : 1

496 3 2 1 2 2, 194 (1) : 1

497 3 2 1 2 3, 195 (1) : 1

498 3 2 1 3 1, 196 (1) : 1

499 3 2 1 3 2, 197 (1) : 1

500 3 2 1 3 3, 198 (1) : 1

501 3 2 2 1 1, 199 (1) : 1

502 3 2 2 1 2, 200 (1) : 1

503 3 2 2 1 3, 201 (1) : 1

504 3 2 2 2 1, 202 (1) : 1

505 3 2 2 2 2, 203 (1) : 1

506 3 2 2 2 3, 204 (1) : 1

507 3 2 2 3 1, 205 (1) : 1

508 3 2 2 3 2, 206 (1) : 1

509 3 2 2 3 3, 207 (1) : 1

510 3 2 3 1 1, 208 (1) : 1

511 3 2 3 1 2, 209 (1) : 1
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512 3 2 3 1 3, 210 (1) : 1

513 3 2 3 2 1, 211 (1) : 1

514 3 2 3 2 2, 212 (1) : 1

515 3 2 3 2 3, 213 (1) : 1

516 3 2 3 3 1, 214 (1) : 1

517 3 2 3 3 2, 215 (1) : 1

518 3 2 3 3 3, 216 (1) : 1

519 3 3 1 1 1, 217 (1) : 1

520 3 3 1 1 2, 218 (1) : 1

521 3 3 1 1 3, 219 (1) : 1

522 3 3 1 2 1, 220 (1) : 1

523 3 3 1 2 2, 221 (1) : 1

524 3 3 1 2 3, 222 (1) : 1

525 3 3 1 3 1, 223 (1) : 1

526 3 3 1 3 2, 224 (1) : 1

527 3 3 1 3 3, 225 (1) : 1

528 3 3 2 1 1, 226 (1) : 1

529 3 3 2 1 2, 227 (1) : 1

530 3 3 2 1 3, 228 (1) : 1

531 3 3 2 2 1, 229 (1) : 1

532 3 3 2 2 2, 230 (1) : 1

533 3 3 2 2 3, 231 (1) : 1

534 3 3 2 3 1, 232 (1) : 1

535 3 3 2 3 2, 233 (1) : 1

536 3 3 2 3 3, 234 (1) : 1

537 3 3 3 1 1, 235 (1) : 1

538 3 3 3 1 2, 236 (1) : 1
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539 3 3 3 1 3, 237 (1) : 1

540 3 3 3 2 1, 238 (1) : 1

541 3 3 3 2 2, 239 (1) : 1

542 3 3 3 2 3, 240 (1) : 1

543 3 3 3 3 1, 241 (1) : 1

544 3 3 3 3 2, 242 (1) : 1

545 3 3 3 3 3, 243 (1) : 1
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