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Abstract

The severity of the outbreak of an infectious disease is highly dependent upon

the structure of the population through which it spreads. This thesis considers

the stochastic SIR (susceptible → infective → removed) household epidemic

model, in which individuals mix with other individuals in their household at

a far higher rate than with any other member of the population. This model

gives a more realistic view of dynamics for the transmission of many diseases

than the traditional model, in which all individuals in a population mix homo-

geneously, but retains mathematical tractability, allowing us to draw inferences

from disease data.

This thesis considers inference from epidemics using data which has been ac-

quired after an outbreak has finished and whilst it is still in its early, ‘emerging’

phase. An asymptotically unbiased method for estimating within household

infectious contact rate(s) from emerging epidemic data is developed as well

as hypothesis testing based on final size epidemic data. Finally, we investi-

gate the use of both emerging and final size epidemic data to estimate the vac-

cination coverage required to prevent a large scale epidemic from occurring.

Throughout the thesis we also consider the exact form of the households epi-

demic model which should be used. Specifically, we consider models in which

the level of infectious contact between two individuals in the same household

varies according to the size of their household.
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CHAPTER 1

Introduction

This introduction seeks to give the reader a detailed but non-technical insight

into the purpose of this thesis by providing a historical context. Section 1.1 of-

fers a motivation for the involvement of mathematicians in epidemiology. The

initial breakthroughs of mathematical epidemiologists are explored in Section

1.2. An insight into the early development of the specific model used in this

thesis is given in Section 1.3 before Section 1.4 considers early ideas in mathe-

matics surrounding the prevention of epidemics, most notably through vacci-

nation schemes. Section 1.5 places the work of this thesis in its current context,

discussing recent literature that is closely related to this thesis and literature de-

tailing other mathematical ideas currently being implemented in epidemiology.

Finally, an outline of the thesis and a very brief summary of the key results is

given in Section 1.6.

1.1 Motivation

From the Athenian epidemic of approximately 430 B.C. to the outbreaks of

malaria, dengue fever, AIDS and Ebola that still affect the world today, com-

municable disease has been a one of the greatest scourges to affect the history

of mankind. Perhaps the most startling example of this was the Spanish in-

fluenza pandemic of 1918, which is estimated to have killed around 75 million

people worldwide, dwarfing even the 37 million casualties of the Great War

from the four previous years. Whilst it seems clear than one cannot prevent

disease from occurring altogether, it is worth asking whether it is possible to
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eradicate certain diseases, such as smallpox, and to at least mitigate the effects

of those that cannot be eradicated (e.g. influenza). Short of placing an entire

population in quarantine at the first sign of an epidemic, this may still seem to

be infeasible. However, one must wonder whether the Black Death of the 14th

century would have been quite so deadly (some estimates suggest that 70% of

Europeans were killed) had people understood the airborne nature of the dis-

ease and been careful to avoid coughing or sneezing on others. By contrast, the

work of John Snow on the Broad Street epidemic of 1854 has virtually eradi-

cated the possibility of a cholera epidemic in countries where the water supply

is sanitised properly and it is worth considering just how many lives this has

saved.

Despite being a physician, Snow used mathematical methods to trace the cause

of the epidemic and, in the case of a disease such as cholera where some-

thing as simple as clean water can stop an outbreak altogether, there proved

to be no need for further mathematical input. In 1760 however, the only recog-

nised method available to prevent the spreading of smallpox was variolation,

an early and less effective form of vaccination in which subjects were infected

with a mild form of smallpox in the hope of inducing immunisation to more

fatal variants. In this year Daniel Bernoulli submitted a paper to the Academy

of Sciences in Paris investigating the effectiveness of variolation. Dietz and

Heesterbeek [2002] show how formulae within this paper can be used to calcu-

late the increase in life expectancy as the result of a proportion of a population

being successfully immunized. Although this was the only known mathemati-

cal work of note prior to the late 19th century on the spread of infectious disease,

this paper does give an indication as to the place of mathematics within epi-

demiology and illustrates the general idea behind the mathematical approach

used in this thesis in which is to parameterise an epidemic in order to assess

the extent to which it spreads among a population. One can then assess the

potential impact of a given intervention strategy, with the hope of eventually

choosing a strategy that prevents a major outbreak from occurring.

It should also be noted at this point that curtailing the severity of an epidemic

has huge economic as well as humanitarian benefits. Sickness prevents people

from attending their place of work, and also incurs treatment and rehabilitation

costs. An epidemic which causes a spike in the number of sick individuals in a
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population can place a huge strain on the healthcare infrastructure of a commu-

nity, potentially forcing authorities to implement costly emergency measures

such as a mass quarantine. A mathematical model can also give an indication

of the extent to which vaccination of a population, quarantining or other inter-

vention is required to prevent an epidemic from becoming established. Even if

a conservative estimate of the required vaccination coverage is used compared

to the estimate given by a mathematical model, this could still greatly reduce

the expenditure needed to combat a given disease.

Presenting a generalised mathematical model for the spread of infectious dis-

eases has clear problems. The intricacies surrounding transmission are numer-

ous, with a person’s age, gender, occupation, living arrangements and social

activities being among the variety of factors that could feasibly impact upon the

probability of them becoming infected by a disease and the number of people

that they would then pass that disease on to. It is impractical, both in terms of

collecting the necessary data and mathematically, to implement a model based

on all possible variables affecting the spread of disease. However, by consider-

ing a simpler model, one may be able to estimate the severity of an epidemic

and the effectiveness of intervention strategies to the extent that one can de-

termine the most efficient strategy for preventing the outbreak from affecting a

significant proportion of the population. By using additional knowledge from

outside of the mathematical model when executing this strategy, it should be

possible to prevent major outbreaks from occurring if the necessary resources

are available. An example of this is vaccinating people whom one may consider

more vulnerable to infection or more likely to spread the disease themselves

based on key determinants of health (e.g. children or people who work with

the general public). We can also look to build upon simpler models to include

more variables as further mathematical techniques become available and it is

this aspiration which motivates much of the work presented in this thesis.

For the work presented here we use the stochastic SIR (susceptible → infective

→ recovered) model for a closed population of households. We define a closed

population to be a population in which there is no migration. The purpose

of a closed households model is to mimic the population structure of urban

settlements which a large proportion of the world’s human population lives in.

The assumption of a closed population is reasonable since the rate of migration
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in and out of urban populations is generally far smaller than the rate at which

epidemics spread within them. Splitting a population into small groups may

also be useful in modelling the spread of disease between animals or plants on

farms, since animals my be kept in small groups at night (e.g. separate barns

or sties) and plants may be grouped according to their plot. Under the SIR

model, all individuals start off as being susceptible to a given disease which is

introduced to the population. A susceptible individual who makes contact with

an infective individual contracts the disease and becomes infected themselves

for a certain amount of time after which they recover and are no longer able to

contract or transmit the disease. Under the households model considered here,

all individuals are considered equally susceptible and make contact with all

other individuals in the population with equal frequency. The only exceptions

to this are individuals in the same household, with whom contacts are made

with additional frequency. That is to say that an infective is just as likely to

transmit the disease to one given susceptible in the population as any other,

except for those susceptibles within the same household for whom infectious

contact becomes more likely.

This model is given in a more detailed, mathematical manner in Chapter 2.

However, for now it should be noted that the phrases “infectious contact” and

“contact” are used as generally interchangeable to refer to a contact made be-

tween an infective and a susceptible which results in the susceptible becoming

infected unless specifically stated otherwise. (This does not occur until Chapter

5.) For the remainder of the introduction, we consider the history of mathemat-

ical epidemiology, with a particular emphasis on the history of the stochastic

SIR households model.

1.2 Early history of mathematical epidemiology

Attempts to model epidemics in the 19th century were largely based around fit-

ting curves to incidences of a disease over time and extending them to predict

the future course of an outbreak. While this is a reasonable starting point for

mathematical epidemiology, such work is widely considered to be redundant

now since the predictions made from curve-fitting proved to be highly inaccu-

rate when compared to observations of outbreaks (see p.10 of Bailey [1975]).
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Heesterbeek [2002], however, does cite the work of En’ko [1889, 1989] as being

an important development as this is possibly the first work in epidemiology in

which a mathematical model implies the existence of a threshold for the infec-

tiousness of a disease beyond which epidemics can occur. Specifically, En’ko

notes that conditions for an epidemic to spread are much more favourable in

large populations with a strong communication network between individuals.

This could be considered to allude to population density, an idea which formed

the reference points for the earliest explicit threshold parameters in mathemat-

ical epidemiology. En’ko is probably also the first to consider a stochastic epi-

demic model and even considers the idea of immunity after infection, laying the

foundations for an SIR model. Unfortunately this work was originally printed

in Russian and this may well explain why it appears to have gone largely unno-

ticed by early 20th century mathematicians, such as Kermack, McKendrick and

Bailey, who are mentioned below.

The work of Ross [1911] provides the first application of the threshold con-

cept. His ‘mosquito theorem’ suggests that a certain density of mosquitoes is

needed for a malaria outbreak to occur and that therefore it is not necessary to

remove all mosquitoes from a given area to cut short a malaria outbreak. One

simply has to reduce their number to below the critical density required for

an epidemic to occur. His subsequent papers (Ross [1916], Ross and Hudson

[1917a,b]) on ‘a priori pathometry’ developed the first epidemic model using

prior assumptions regarding the manner of disease transmission in a popula-

tion. This idea would underpin future models, in the sense that we approach

analysis of an epidemic with a model in mind in advance (such as the stochas-

tic SIR households model). Data from an outbreak are then used to estimate

the parameters of that model, rather than using the data alone to suggest an

adequate model as well as its parameters.

For a long time, McKendrick [1925] was widely credited with introducing the

first stochastic epidemic model (see Bailey [1975]), since Ross’ model was de-

terministic and En’ko’s work was unknown. Despite this, his most important

contribution to mathematical epidemiology was in Kermack and McKendrick

[1927], which introduces the SIR model for a deterministic epidemic (the first of

five concluding comments notes that under their model “complete immunity

is conferred by a single attack”) and generalises Ross’ ‘mosquito theorem’ into
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the celebrated threshold theorem for infectious diseases. The second conclud-

ing comment explains this theorem:

“In general a threshold density of population is found to exist, which

depends upon the infectivity, recovery and death rates peculiar to

the epidemic. No epidemic can occur if the population density is

below this threshold value.”

The further comments emphasise the importance of the threshold theorem, not-

ing that small increases in infectivity could be the cause of a major outbreak and

that the termination of an epidemic is related to the time at which enough re-

coveries have occurred such that the density of susceptibles falls below that

required by the threshold theorem to allow for the possibility of a large scale

epidemic. As such, Kermack and McKendrick note that “an epidemic, in gen-

eral, comes to an end before the susceptible population is exhausted”. This

threshold density would eventually become the reproduction number, R0, with

an epidemic being able to take place only if R0 > 1. The concept of R0 was ac-

tually introduced before Kermack and McKendrick’s seminal paper by Dublin

and Lotka [1925]. However, this parameter was as a ratio of births in a demo-

graphic context rather than as a parameter in epidemic modelling. It would be

another 50 years before R0 became synonymous with modelling the spread of

infectious disease.

The next great leap would come from Bailey [1953]. In this work, Bailey de-

fines a stochastic SIR epidemic with infection and recovery rates. He then goes

on to give a method for estimating their ratio, which he defines as the “relative

removal rate”, using statistical techniques (specifically maximum likelihood es-

timation) and uses this estimated parameter to give a distribution for the final

size of an epidemic. The subsequent paper by Whittle [1955] simplifies the cal-

culation for the final size distribution and, perhaps more importantly, uses Bai-

ley’s relative removal rate as a threshold parameter by comparing it to the total

population size. Whittle shows that when the relative removal rate exceeds the

population size, a large scale epidemic cannot occur, creating a threshold theo-

rem for stochastic SIR epidemics. He also gives the probability of a major out-

break occurring when the relative removal rate falls below the population size.

By using a statistical approach to estimate parameters in an epidemic model
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and formulating a stochastic equivalent of Kermack and McKendrick’s thresh-

old theorem, Bailey and Whittle set the standard for analysing epidemics using

the stochastic SIR model. Important contributions at this time were also made

by Kendall [1956] and Bartlett [1956]. In particular both make an effort to ap-

proximate how epidemics reach their final size and thus provide some of the

first analyses of epidemics whilst they are in progress.

Although the relative removal rate introduced by Bailey and analysed by Whit-

tle provides a threshold parameter for stochastic SIR epidemics, its form is

rather untidy since its value needs to be compared to the population size in

order for it to take on any meaning. The basic reproduction number, R0, is a

more satisfying threshold parameter since any communicable disease can only

take off if R0 > 1. Consequently, it is R0 rather than Bailey’s relative removal

rate which has become the standard threshold parameter in mathematical epi-

demiology. In an interesting parallel with Ross’ mosquito theorem preceding

Kermack and McKendrick’s threshold theorem, the inspiration for a threshold

parameter with a critical value of 1 in mathematical epidemiology would also

come from the study of malaria. Macdonald [1955] uses the term ’basic repro-

duction rate’ for his value z0 and notes that

“The critical level is 1.0, rates below which determine the progres-

sive elimination of the disease.”

Macdonald had actually discussed the basic reproduction rate of malaria in

an earlier paper (Macdonald [1952]) but it is the introduction of the parame-

ter z0 that gives his work a striking resemblance to epidemiology’s R0. In his

paper dedicated to the history and calculation of R0, Heesterbeek [2002] cred-

its Dietz [1975] with introducing the first clearly defined threshold parameter

for mathematical epidemic models which has a critical value of 1. This value,

R, would quickly become the R0 which is now so familiar in epidemiology. He

also cites Hethcote [1975] and Becker [1975] as making valuable contributions in

this development. Credit should also be given here to Bartoszyński [1967] who

equated epidemic models to branching processes. Branching process theory

provides a standard framework to understand the concept of R0 by equating

births and non-extinction in a standard branching process to infectious contacts

in a epidemic and an epidemic becoming established in a population, respec-
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tively. Branching processes have also been used to develop and understand

more complicated epidemic models, such as the households model.

Whilst Bailey and Whittle were formalising their continuous-time SIR model,

an analogous discrete-time model was being introduced to the mathematical

community. Reed and Frost developed their model in the 1920s but it was

Abbey [1952] who first fully explained the model in published writing. Al-

though there are some clear differences between the Reed-Frost model and the

continuous-time, stochastic SIR model (such as the inclusion of a latent period

in the Reed-Frost model) they do share many qualities and both can be equated

to branching processes in their initial stages. As such, enhancing one’s under-

stand of one model can often be beneficial in learning about the other.

1.3 Development of the households model

The techniques for analysing epidemic models discussed above all assume that

the population in which a given disease spreads is homogeneously mixing.

That is to say that any infective individual in the population has an equal

chance of infecting any given susceptible. This is clearly an unrealistic assump-

tion since an individual is far more likely to infect somebody that they live or

work with than someone chosen at random from the population. Therefore, we

have motivation to look at an epidemic model in which the population is par-

titioned into small groups, such as households. The first attempt to introduce

a model without homogeneous mixing was made by Rushton and Mautner

[1955]. They developed a deterministic epidemic model (with no recoveries)

in which several communities interact with homogeneous mixing taking place

between communities and additional homogeneous mixing taking place within

a given community. Watson [1972] introduced a stochastic SIR version of this

model and included a notion of epidemic severity based on the number of dif-

ferent communities affected by a disease as well as a threshold theorem which

gives a minimum requirement for a generalised epidemic, in which most com-

munities are affected, to be possible. This work considers a population split into

homogeneously mixing communities, but does rely on each of those communi-

ties containing a large number of individuals (unlike households in a realistic

population which are generally small). However, the threshold theorem pro-
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duced by Watson does use a key idea in that it considers the spread of an epi-

demic based on the proliferation of infected communities, rather than infected

individuals.

Bartoszyński [1972] was the first to look at epidemics among a population split

into smaller communities, such as households, with no minimum requirement

for their size. The distinction from the work of Watson [1972] being that Bar-

toszyński [1972] considers a population consisting of a large number of groups

of fixed size rather than a population consisting of a fixed number of large

groups. This work uses a deterministic, discrete-time model rather than the

continuous time, stochastic SIR model which is predominantly used in this

thesis. However, his notion that, in the early stages of an epidemic, all infec-

tious contacts between households can be considered to infect individuals in

fully susceptible households only, forms the basis for the threshold theorem for

all household epidemic models, including the stochastic SIR model. It would

be some time before a threshold theorem for households would be explicitly

determined. In the interim, Longini and Koopman [1982] fitted a stochastic,

discrete-time households model to real data, with a focus on estimating the in-

fectious rates within households and in the population as a whole. These are

the values which determine the threshold parameter for households and there-

fore whether a large scale epidemic is possible. Meanwhile, Ball [1986] and

Addy et al. [1991] worked on introducing arbitrary but specified infectious pe-

riods into epidemic models, considering the final size distribution of epidemics

in a homogeneously mixing population and a multipopulation, similar to that

used by Watson. Addy et al. apply this information to a households model and

attempt to estimate the parameters of an epidemic from final outcome data.

The breakthrough of a threshold parameter, R∗, for the stochastic SIR house-

holds model came with the parallel works of Becker and Dietz [1995] and Ball

et al. [1997]. This is analogous to R0 from the homogeneous mixing case in the

sense that both parameters have to take a value greater than 1 in order for there

to be any possibility of an epidemic taking off. For the households model this

can be seen as an event similar to Watson’s generalised epidemic, but in this

case referring to a large number of households in the population being affected

by the epidemic. The parameter is calculated by considering the number of

new households that one infective household is expected to infect rather than
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considering the proliferation of infected individuals. The rationale behind this

is that an individual in a fully susceptible household has far more “targets”

through local infectivity than an individual who is the last in their household

to be infected. Such differences in the expected number of infectious contacts

an individual makes means that calculating a threshold parameter based on

infected individuals is a highly cumbersome task, although Pellis et al. [2012]

do give a reproduction number using this method. Ball et al. [1997] go on to

give a detailed analysis of the model and discuss the final size distribution of

an SIR households epidemic in their paper. They also consider estimation of

R∗ from final outcome data of an epidemic. Ball and Lyne [1999] extend this

argument to show how final size data can be used from an SIR households epi-

demic can be used to estimate the global and local infectious rate parameters by

using maximum likelihood estimation. This improves upon the estimators of

Addy et al. [1991] who had assumed that within-household epidemics occurred

independently of each other.

A key area of research in more recent years has been to consider the behaviour

of emerging epidemics. We have outlined the work describing how the param-

eters of an epidemic can be estimated using data from its final outcome in a

population. However, it is often desirable to try to understand the dynamics of

the spreading of a disease before these data are available so that the epidemic

can be combated before it is established in other populations (such as nearby

towns) and to curb the effects in the population where the epidemic is estab-

lishing itself currently. It has already been noted that branching processes have

been used to approximate the early stages of an epidemic, suggesting that there

is a mathematical structure attached to emerging epidemics.

Pellis et al. [2011] note that the real-time growth rate is one of the first pieces

of information available from an emerging epidemic and go on to show how

this rate relates to the other parameters of an epidemic in a households setting.

Wallinga and Lipsitch [2007] explain the relationship between the real-time

growth rate and reproduction numbers of an epidemic, whilst Fraser [2007]

uses the real-time growth rate for estimation purposes, showing how it can be

used to give estimates of the threshold parameters R0 and R∗. Little work has

been done however on making use of observed data in the emerging phase of

an epidemic in order to estimate its parameters.
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Another interesting idea is that of a local infectious rate that is determined by

household size. Cauchemez et al. [2004] moot this idea and suggest a potential

households model to incorporate it. It seems sensible to suggest that an infec-

tive individual is more likely to infect a given susceptible in the same household

if they are the only other individual in the household rather than if they are one

of many other individuals in the household. In the latter case one would as-

sume that the level of contact between the specific susceptible and infective

would be less frequent. As such, this concept is included in the model given in

Chapter 2 that is used throughout this thesis.

1.4 Vaccination in epidemic models

Upon finding that the threshold parameter of an epidemic is greater than 1 (be

that R0 in the homogeneous case or R∗ for epidemics among a population of

households) the priority of any authority dealing with the outbreak should be

to introduce preventative measures in order to reduce the threshold parameter

to 1 and thereby eliminate the possibility of a large scale outbreak. An obvi-

ous example of such a measure which has received considerable attention from

mathematicians is vaccination.

The first mention of vaccination among mathematicians looking at epidemic

models (excluding Bernoulli’s pioneering work on inoculation mentioned in

Section 1.1) is credited to Neyman and Scott [1964], who looked to use a Galton-

Watson process to show how immunisation could reduce the expected size of

a stochastic discrete-time epidemic. Becker [1972] builds on this work with

the aim of determining the minimum number of individuals that need to be

vaccinated in order to curtail the spread of a disease. In Becker’s case he was

attempting vaccinate as few people as possible in cases where vaccines were

known to have potentially harmful side effects and was therefore looking for a

balance between preventing an epidemic from spreading and avoiding having

too many people fall ill from taking a vaccine which they did not need. Becker

was effectively trying to reduce the threshold parameter to below 1 at the min-

imum cost possible in terms of vaccines used (although this was not explicitly

mentioned in his paper since R0 was still three years away from being formally

introduced to the mathematical community). By reducing the threshold param-
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eter of an epidemic to below 1, one can be certain that a major outbreak cannot

occur under a deterministic model. The same is true under a stochastic model

as the population size N → ∞. Hethcote and Waltman [1973] show how to use

vaccination to reduce the spread of an epidemic below a fixed value, effectively

providing a mathematical framework to achieve this goal for a deterministic

model.

The survey paper of Wickwire [1977] cites the Taylor [1968] paper on the spread

of bovine viral diarrhoea (BVD) among cattle as the first to consider the effect of

vaccination in a stochastic epidemic model but also comments that it is Becker

[1975] who considers vaccination in terms of the early stages of an epidemic

which can be approximated by a branching process. Taylor should also be cred-

ited with noticing potential problems with vaccine models, such as the poten-

tial for vaccines to fail and the possibility of new strains of a disease to develop

which would nullify the effect of a successful vaccination, however he does not

elaborate on these ideas mathematically. Wickwire notes from Becker’s work

that vaccinating a population such that the epidemic has a “birth rate” of 1 pre-

vents a major outbreak and that there is little value in vaccinating a population

any further. This is equivalent to reducing the basic reproduction number, R0,

to 1 and provides a stochastic version of Hethcote and Waltman’s work in the

deterministic setting.

Hethcote [1978] extends this work to vaccinating a heterogeneously mixing

population with a disease spreading under a deterministic model. This pop-

ulation contained large groups, such as a town (c.f. the Rushton and Maut-

ner [1955] model), but paved the way for work on vaccinating a population

split into households of small size. The subsequent publication by May and

Anderson [1984] demonstrates the value of extending the work to a heteroge-

neously mixing population, since they show that if one falsely assumes a ho-

mogeneously mixing population, then under-vaccination will occur under the

deterministic model if one allocates vaccines randomly. If, however, one knows

the manner in which a heterogeneously mixing population is split then, by al-

locating vaccines properly, it is possible to prevent an epidemic by vaccinating

fewer people than the false homogeneous model suggests is necessary.

The aforementioned papers Becker and Dietz [1995] and Ball et al. [1997] were

key in moving the theory of vaccination in mathematical epidemiology to a
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households model where the locally mixing groups are small in size. Becker

and Dietz introduce a post-vaccination reproduction number Rv for stochastic

SIR epidemics among a community of households which, as with other repro-

duction numbers, needs to be reduced to 1 in order to prevent a major outbreak.

They also consider different vaccination strategies and discussed whether it

is preferable to vaccinate whole households or random individuals in order

to contain an outbreak at the minimum possible cost. Ball et al., meanwhile,

make a conjecture as to the actual optimal vaccination strategy for this epi-

demic model which they call equalisation. The idea of this strategy is to choose

to vaccinate an individual in a household with the maximum available number

of unvaccinated susceptibles, effectively removing them from the population

and, so far as is possible, equalising household sizes throughout the popula-

tion in terms of the number of susceptible individuals within them. We discuss

this strategy in greater detail in Chapter 5.

All of the work on vaccination mentioned above assumes that vaccines are cer-

tain to render the individual that they are given to fully immune from a given

disease. Becker and Starczak [1997] allowed for a vaccine to have a random

response and responses which could make an individual partially immune to

a disease rather than making them fully immune or having no effect whatso-

ever. Ball and Lyne [2002a,b, 2006] discuss these vaccine models in more detail

and show how an imperfect vaccine can affect the optimal vaccination strategy

for an epidemic. With an imperfect vaccine, individuals cannot ensure their ef-

fective removal from the population post-vaccination and so the equalization

strategy outlined above is generalised. Chapter 12 of Andersson and Britton

[2000] perhaps offers the best mathematical introduction to the effects of vacci-

nation on epidemics and also includes a section describing a potential method

for estimating the effectiveness of an imperfect vaccine.

1.5 Recent literature

We focus on the model of Ball et al. [1997]. Over the course of this thesis we de-

velop the theory outlined in this introduction by introducing hypothesis testing

to data observed at the end of an epidemic and a maximum pseudolikelihood

method for parameter estimation from emerging epidemic data to this model.
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We also include a study on vaccination, with a focus on how using the house-

holds model of Cauchemez et al. [2004] affects results seen previously in the

literature. A perfect epidemic model would be mathematically tractable whilst

also reflecting the complex and random nature of a given outbreak. In the ear-

lier sections of this introduction, we have outlined the approach of mathemati-

cians who have started with a simple, stochastic epidemic model and have in-

creased its complexity over the course of the last 125 years to give the stochastic

SIR households model. It is hoped that this thesis serves to develop both the

complexity and the potential for inference from this model.

In this section we attempt to offer an overview of the wealth of other research in

the epidemiological field that is currently being carried out by those who have

taken alternative approaches, be that in terms of model selection or in devel-

oping methods for statistical inference from epidemic data. Since the field is so

vast, we largely restrict ourselves to discussing literature related to stochastic

SIR models (and even then we barely scratch the surface of the available liter-

ature). Note, however, that other compartmental models, such as the SI, SIS

and SIRS models, and deterministic epidemic models are still widely studied.

See Keeling and Rohani [2011] for an overview of these alternative epidemic

models.

An obvious starting point is to consider current literature which looks at the

SIR households epidemic model, as used in this thesis. Bayesian approaches

to inference have been used for some time on this model. Cauchemez et al.

[2004] suggest a model for local infectivity that is used throughout this thesis

and adopt a Bayesian MCMC (Markov Chain Monte Carlo) approach to param-

eter estimation for their model while Clancy and O’Neill [2007] use a rejection

sampling methodology when considering exact model selection for outbreaks

of influenza from real life final outcome data from influenza epidmeics. Pa-

rameter estimation for these same influenza data sets under an SIR households

epidemic model is also considered by Demiris and O’Neill [2005], who use a

Bayesian MCMC approach, and Neal and Kypraios [2015] by using data aug-

mentation. Chapter 3 of this thesis considers parameter estimation and model

selection from a frequentist perspective using the same influenza outbreak data.

This focus on real household studies forms an important part of the current lit-

erature. For example, a wealth of studies based on the influenza A(H1N1) pan-
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demic in 2009 have been taken using various statistical approaches and these

have been reviewed by Lau et al. [2012] and House et al. [2012].

Several other approaches have been used in recent times to analyse SIR house-

holds epidemic data, particularly using Bayesian techniques. Neal [2012] uses

approximate Bayesian computation (ABC) methodology and develops an ABC

based algorithm which is shown to be computationally efficient when analysing

households data from an epidemic. The sequential Monte Carlo (SMC) and

non-parametric methods of Toni et al. [2009] and Knock and Kypraios [2014]

respectively for inference from SIR epidemic data can also be applied to the

households model used here. Britton and Giardina [2014] provide a more in

depth review in inferential methods for infectious disease.

This thesis only considers a frequentist approach to inference from households

epidemic data. This generally has the advantage of being computationally less

expensive then many of the Bayesian approaches listed above and has the usual

frequentist advantage of not needing to use prior distributions. Our methods

do have their limitations however and in many circumstances Bayesian meth-

ods may prove more fruitful than the frequentist approach. For example, we

discuss in Section 4.7 that a Bayesian approach may well provide the best way

of approximating the standard error of the key estimator that is derived in

Chapter 4. As such, the frequentist approach taken here should only be seen

as a preference of the author rather than a dismissal of the important role that

Bayesian inference has to play in this field.

Increasing the complexity of the stochastic SIR households model to reflect real

epidemic dynamics is also a key current area of research. Neal [2016] extends

the households epidmeic model by introducing a notion that an individual is

only ever mixing within their household or in their wider community and thus

cannot have infectious pressure on both at the same time. There is also the

households-workplace model of Ball and Neal [2002] which considers individ-

uals belonging to two separate local groups in which there are increased levels

of mixing. This model generally assumes that individuals in the same house-

hold do not work in the same workplace. Ouboter et al. [2015] propose and

analyse a hierarchical model, in which members of the same household also

have the same workplace. This is a particularly useful model for analysing

diseases which are particularly prevalent amongst children, since siblings are
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often likely to attend the same school.

There are also many potential parameters of interest in epidemic models that

are not covered in this thesis but have received considerable attention else-

where. Goldstein et al. [2009] define several reproduction numbers for an epi-

demic among households and give inequalities related to them. These values

include a households reproduction number and a real-time growth rate, which

are used in this thesis, but also include an individual reproduction number,

which is the true equivalent of the value R0 discussed earlier in this introduc-

tion. In addition, Goldstein et al. relate these reproduction numbers to the vac-

cination coverage needed to prevent the possibility of a major outbreak. Pellis

et al. [2012] and Ball et al. [2016] extend this work by introducing further repro-

duction numbers, refining the calculation technique for R0 and extending the

methodology to a households workplace model. Scalia-Tomba et al. [2010] con-

sider the use of generation times (time needed to pass on the disease to another

individual after becoming infective) under the households model. The authors

note that creating an unbiased depiction of the dynamics of an epidemic is not

simple using generation times but they offer potential solutions to this prob-

lem and note that generation time is a concept that is often easy to observe in

practice.

Further inferential methods for epidemics have been studied outside of the con-

fines of a households model. For example, the distribution of the final size of

an stochastic epidemic is of great interest. Methods for computing this prob-

ability mass function in a homogeneously mixing outbreak are reviewed and

compared by House et al. [2013]. Others have considered modelling the trans-

mission of specific diseases for which the households epidemic model may not

be appropriate. For example, Ainseba and Iannelli [2012] discuss the use of

screening methods in curbing the transmission of infections such as HIV while

reproduction numbers for the varicella-zoster virus (VZV) in different countries

are calculated using various socio-demographic factors by Santermans et al.

[2015]. Ideas for increasing model complexity have also stemmed from those

starting out with models which do not include local mixing in small groups

such as households. Examples include O’Neill and Wen [2012], who suggest

using a model in which the rate at which a given susceptible in a population is

exposed to infectious contact does not increase linearly with the number of in-
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fectives in the population and Arino and Portet [2015], who consider dividing

a large population (such as a city) into its central area and a series of smaller

satellite communities or suburbs.

Alternative data collection techniques are also being used to gain a deeper in-

sight into the dynamics of SIR epidemics. Tsang et al. [2016] discuss the advan-

tages of collecting data during an epidemic by targeting households that have

become infected for collection, rather than taking a random sample of house-

holds in the population (as is assumed within this thesis). This method of data

collection has limitations, particularly with respect to the accuracy of parameter

estimation, but could prove to be a useful tool in gaining a very early insight

into the dynamics of a households epidemic.

A modelling method that has received considerable attention in recent times

is the network epidemic model. The theory behind this model is to produce

a directed graph in which nodes represent members of the population and an

edge from person i to person j denotes that person i will make an infectious

contact with person j should person i becomes infected at some point during

the epidemic. Any nodes which can be reached on this graph, starting from

those nodes representing the initial infectives, represent individuals who are

ultimately infected by the outbreak (see Newman [2002]). For the remainder

of this section we offer brief overview of the reasons behind the emergence of

the network model and some of the results obtained from this model in the

literature.

The epidemic models discussed earlier in this introduction and throughout this

thesis may be incorporated into a network epidemic model. For example, Ball

and Neal [2002] show how the stochastic SIR households epidemic model may

also be expressed as a network model. These models have the additional advan-

tage of being able to model further complexities within the population struc-

ture. For example, it is generally unrealistic to assume that a given individual

interacts with an entire population. By using a network model, one can eas-

ily restrict the number of other individuals with whom a given individual in

a population may make contacts with. In their review paper on network epi-

demic models, Keeling and Eames [2005] note that such restrictions change the

dynamics of an epidemic considerably and that networks have the advantage

of being able to model measures, such as contact tracing, that may be used to
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control an outbreak.

Over the past 10 years, the inferential tools available for network epidemic

models have been developed. Ball et al. [2010b] derive a reproduction num-

ber, the probability of a global outbreak occurring and the expected final size of

a global outbreak for a network model in which the number of potential con-

tacts for a given individual is restricted. Real-time growth rate for an epidemic

on an unclustered network is computed by Pellis et al. [2015]. Thus the key

parameters used for inference in the more general households epidemic model

used in this thesis are increasingly being made available for the more complex

network model.

Other tools have also been developed for improving inference from epidemics

on networks. A deterministic ordinary differential equation (ODE) model is

used to estimate the spread of a disease on such a network by Ma et al. [2012],

who also consider the effect of clustering on the final outcome of an epidemic.

Hsu et al. [2015] use a network structure to develop a Bayesian hierarchical

model for the spreading of influenza which can be used to determine several

levels of heterogeneity in an outbreak from final size data. A network model is

also used by López-Garcia [2016] to study a stochastic SIR epidemic among a

small population in which all individuals display heterogeneity.

Of course, the level of information required to set up an accurate network epi-

demic model is often unlikely to be available. For example, our only informa-

tion on a given population may come from census data which are unlikely to

offer details beyond total population size, ages, genders and knowledge of how

the population is divided into households. Thus, whilst the use of networks

with a random degree specification (see Trapman [2007]) can go some way to

making up for these deficiencies, the simplicity afforded by the model used in

this thesis still has a huge role to play in epidemiology.

1.6 Thesis outline and key results

The outline of this thesis is as follows. Mathematical preliminaries are given

in Chapter 2. We introduce the SIR households epidemic model from a mathe-

matical point of view, with a particular emphasis on allowing the rate at which
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infectives pass on a disease to others in their own household to vary according

to household size, and give a formula for the calculation of the threshold pa-

rameter R∗ for this model. This chapter also contains some discussion regard-

ing when an epidemic can be considered to have “taken off” and offers some

results adapted from the literature as to the final outcome of such an epidemic.

Ball and Lyne [2001] provide a central limit theorem for the final outcome of an

SIR households epidemic. In Chapter 3 we use this theorem to develop hypoth-

esis tests. The theory behind these hypothesis tests is presented in a general set-

ting however, as the chapter progresses, the focus turns towards tests relating

to model selection for the local dynamics of a households epidemic. We show

that if the hypotheses being tested only relate to local infectious parameters of

our model, we need not know the proportion of the entire population within

the sample we have available. The tests are then illustrated using real influenza

data for which we consider three possible nested models for the local dynamics

of a households epidemic.

Chapter 4 considers the problem of parameter estimation whilst an epidemic is

still in progress. We introduce the notion of an emerging epidemic, as defined

in the literature, and show that intuitive estimators of local contact rates using

emerging epidemic data using pseudolikelihood methods turn out to be biased.

A new, asymptotically unbiased estimator for this model is developed in this

chapter and is adapted to define a similar estimator for the discrete-time Reed-

Frost epidemic. A series of illustrations using simulated data are then used to

ascertain that the new estimator can perform well in practice. This chapter is

based on the papers of Ball and Shaw [2015, 2016].

We consider the effects of vaccination on an epidemic in Chapter 5. Models for

vaccine action, vaccination strategies and a post vaccination threshold parame-

ter that have been considered previously in the literature are introduced at the

beginning of this chapter. We then discuss the notion of an optimal vaccination

strategy to prevent an epidemic from taking off in more detail and outline how

using a model in which local contact rates can depend on household size can

cause this strategy to change. This is followed by a series of illustrations which

are used to examine the impact of error in parameter estimation (be that as a re-

sult of the variance of the estimators or an incorrect model selection) in terms of

whether a population may be under/over-vaccinated. If a population has been
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under-vaccinated, we examine the affect this has on the expected final outcome

of an epidemic. Finally, some concluding comments and suggestions for future

research are given in Chapter 6.
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CHAPTER 2

Mathematical preliminaries

In the introduction, the history of the households SIR (susceptible → infective

→ recovered) epidemic model was presented, along with an overview of the

most recent literature in similar areas of mathematical epidemiology, in order

to provide a context and motivation for the work of this thesis. This chap-

ter presents a general mathematical overview of the SIR households epidemic

model, as well as some results from the literature regarding the threshold pa-

rameter and the final outcome of an epidemic that are relevant to the thesis as

a whole.

2.1 Model

The epidemic model used throughout this thesis is based on that analysed by

Ball et al. [1997]. We consider a closed, finite population of individuals, each

of whom resides within exactly one household. Given that the population is

finite, there is a maximum household size which is denoted by nmax . For n =

1, 2, ..., nmax, let mn be the number of households of size n, let m = ∑
nmax
n=1 mn

be the total number of households and let N = ∑
nmax
n=1 nmn be the total number

individuals in the population. Further, let αn = mn/m be the proportion of

households of size n and α̃n = nmn/N be the proportion of individuals residing

in households of size n in the population. The row vector α = (α1, α2, ..., αnmax)

shall be referred to as the population structure. The vector α̃ = (α̃1, α̃2, ..., α̃nmax)

may be used equivalently to define the population structure since there is a

one-to-one correspondence between α and α̃.
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It is assumed that a small number of individuals in the population become in-

fected by some external force at time t = 0 and that all other individuals in the

population are susceptible at this time. The amount of time that a given indi-

vidual spends as an infective is determined by a random variable, TI , which

is independently and identically distributed for each individual in the popula-

tion. The distribution of TI is arbitrary but, unless stated otherwise, is assumed

to be known. During its infectious period, an infected individual makes global

contacts with a given susceptible in the population at the points of a homoge-

neous Poisson process with rate λG/N. For n = 2, 3, ..., nmax, an infective in

a household of size n makes additional local contacts with a given susceptible

in the same household at points of a homogeneous Poisson process with rate

λ
(n)
L . (Observe that infectives in households of size 1 cannot make local contacts

and thus it is unnecessary to include λ
(1)
L as a parameter of the model. Alterna-

tively λ
(1)
L may assume an arbitrary value.) It is assumed that all of the Poisson

processes describing infectious contacts and all infectious periods are mutually

independent. Note that this is an extension to the model of Ball et al. [1997],

who assume a single local contact parameter, independent of household size.

Once a susceptible has been contacted by an infective, be it globally or locally,

the susceptible immediately becomes infected themselves. Once an infective

ends its infectious period it recovers and no longer makes infectious contacts,

nor is it affected by infectious contact. The epidemic ends as soon as no in-

fectives remain in the population. It is worth noting that the “R” in the SIR

epidemic model is traditionally referred to as removed rather than recovered

in the literature, dating back to Kermack and McKendrick [1927]. The change

to recovered is only made to clarify that the population size N does not change

and thus nor does rate at which global contacts are made between two individ-

uals. Recovery simply implies that the given individual is no longer affected by

infectious contact.

A more significant change to much of the previous literature is the use of house-

hold size dependent local contact rates. This was suggested by Cauchemez

et al. [2004], whose particular model is explored in later chapters. Note that a

single local contact rate independent of household size is a special case of our

current model which may be achieved by setting λ
(n)
L = λL (n = 2, 3, ..., nmax)

for some, λL ≥ 0. Also note that if we take λL = 0, we recover the traditional,
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homogeneously mixing model of Bailey [1953], in which any partitioning of the

population is assumed to have no effect.

For the sake of convenience, we generally assume that there is no latent period

between a susceptible being contacted by an infective and the onset of their

own infectious period. Results relating to the final outcome of an epidemic

are invariant to general assumptions concerning a latent period, as justified

in Section 3 of Ball et al. [1997]. Thus our assumption of no latent period is

reasonable. A similar argument shows that one may assume, without loss of

generality, that E[TI ] = 1 when dealing with final size data (with other param-

eters being rescaled accordingly). However, details relating to latent periods

and E[TI ] = 1 cannot be ignored when making inferences about epidemics

that are still in progress. This issue is addressed in Chapter 4 when we discuss

emerging epidemics.

2.2 Threshold parameter

At any given time during the course of an epidemic, we define a fully susceptible

household to be a household containing susceptible individuals only and an in-

fected household to be a household which contains, or has contained, at least one

infected individual. We also define a single-household epidemic to be the progress

of the epidemic due to local contacts alone in an infected household with one

or more initial infectives which have been contacted externally, be that from

global infectious contact within the population or as one of the initial infectives

in the epidemic. The size of a single-household epidemic is defined to be the

eventual number of individuals that become infected (or recovered).

Let the initially infected households belong to the 0th generation of the epidemic

and let any household that becomes infected as a result of global contact from

an ith generation household belong to the (i + 1)th generation (i = 0, 1, 2, ...).

Note that generations can and often will overlap in real time. For a commu-

nity in which the total number of households, m, is large, it is highly proba-

ble that all global contacts made by individuals in infected households in the

early stages of an epidemic are with individuals in fully susceptible households.

(This probability tends to 1 as m → ∞ provided “early stages” has been defined
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appropriately. See Section 4.6 for further details.) These contacts also occur

independently of each other as described in Section 2.1. The proliferation of

infected households on a generation-by-generation basis in the initial stages of

an epidemic can therefore be approximated by a branching process with the

following offspring distribution, the mean of which is the threshold parameter,

R∗. The idea of using a generational approach to epidemic analysis is justified

by Ludwig [1975], who observes that the dependence of the dynamics of an

epidemic on the time elapsed since its inception can be ignored if attention is

restricted to the final outcome of the epidemic.

Consider an individual that has been contacted globally by an infective in the

initial stages of an epidemic. From the statement above we can assume that this

individual is in a fully susceptible household and therefore initiates a single-

household epidemic with one initial infective in that household. For n = 1, 2, ...,

nmax, α̃n is the probability that the given individual resides in a household of

size n and, for a = 1, 2, ..., n, let µn,a(λ
(n)
L ) denote the mean size of a typical

single-household epidemic in a household of size n with a initial infectives.

Each infective has an expected infectious period of E[TI ] and, given the way

the model is defined in Section 2.1, infectives make global contacts with indi-

viduals chosen uniformly at random from the population at a rate of λG in the

initial stages of an epidemic, when almost all of the population is still suscep-

tible. Thus, by considering the number of global contacts made by infectives

in a single-household epidemic of size n with 1 initial infective (and hence the

number of newly infected households in the epidemic), we obtain the threshold

parameter for the proliferation of infected households of Ball et al. [1997], given

by

R∗ = λGE[TI ]
nmax

∑
n=1

α̃nµn,1(λ
(n)
L ). (2.2.1)

By standard branching process theory (for example, Athreya and Ney [1972]

p.7) the approximating branching process described above becomes extinct with

probability 1 if R∗ ≤ 1 and with probability strictly less than 1 if R∗ > 1. How-

ever, epidemics under our model always become ‘extinct’ (in the sense that they

terminate) since, unlike the approximating branching process, they take place

in a finite population. It is therefore relevant to ask whether the threshold pa-

rameter R∗ serves any useful purpose in this context.
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Figure 2.1: Histograms depicting the number of people infected in each of nine

sets of 1000 simulations of epidemics. Three different threshold pa-

rameters (increasing from left to right) and three different popula-

tion sizes (increasing from top to bottom) were considered. In each

epidemic the population was partitioned into households of size

4, TI took a negative exponential distribution with mean of 1 and

λ
(4)
L = 1. Vertical axis denotes frequency

Figure 2.1 offers an illustrative example of the importance of the threshold pa-

rameter R∗ and, in particular, the critical value R∗ = 1. We consider popu-

lations of 100, 1000 and 10000 individuals partitioned into 25, 250 and 2500

households respectively, each of size 4, and epidemics for which TI takes a neg-

ative exponential distribution with mean 1 and λ
(4)
L = 1. The histograms in

Figure 2.1 show the final outcomes of three sets of 1000 epidemic simulations

of each population size. In the left hand plots λG = 0.3, in the central plots

λG = 0.4 and in the right hand plot λG = 0.7. Since µ4(λ
(4)
L ) = 2.979, calcula-

tion of which is explained in Section 2.3, (2.2.1) implies that R∗ = 0.894 for the

first set of epidemic simulations, R∗ = 1.192 for the second set and R∗ = 2.085

for the third set. Note from all of the plots that the epidemic can die out early.

This may be equated to extinction in the approximating branching process.

The difference between the histograms lies in the fact that when R∗ ≤ 1 (in the

left hand column of Figure 2.1) all of the epidemics appear to die out in the

initial stages whereas, when R∗ > 1, a greater proportion of individuals can

become infected. This is particularly clear in the bottom right plot of Figure
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2.1 which contains the largest population and a value of R∗ somewhat greater

than the critical value of 1. Here the histogram is clearly split into two parts,

between epidemics that have died out quickly and those which go on to become

infect a sizeable proportion of the population. It is the set of epidemics in the

second part, which ultimately appear to infect around 6000 − 8000 individuals

under these parameters, which can be equated to the approximating branching

process not becoming extinct, since their eventual termination is caused only

by the population being finite.

We refer to these as epidemics which have taken off or as global epidemics and it is

these epidemics which are studied throughout this thesis. Since epidemics can

only take off under this model if R∗ > 1, we only consider epidemics meeting

this criterion. The eventual aim is to reduce the value of the threshold parame-

ter to R∗ ≤ 1, by measures such as vaccination, to ensure that a given epidemic

cannot take off. However, Figure 2.1 does present some issues in recognising

such epidemics. When R∗ is close to one, the expected number of individuals

infected by a global epidemic decreases and the variance appears to increase.

Thus we observe some overlap in the central column of Figure 2.1 between epi-

demics which have theoretically taken off and those which have not. Similarly,

as the population size decreases, the variance of the number of individuals ul-

timately infected appears to increase proportionally to N, causing further diffi-

culty in determining whether an epidemic has become global in the theoretical

sense. Thus, the distinction between major and minor outbreaks is not always

clear, with small population size and closeness to criticality being the key fac-

tors in reducing this clarity.

2.3 Final outcome

If an epidemic does take off in the manner described in Section 2.2, the right

hand histograms of Figure 2.1 suggest that its final outcome, whilst not be-

ing completely determined given the stochastic nature of the epidemic, is pre-

dictable to some extent. For n = 1, 2, ..., nmax and a = 1, 2, ..., n, consider a

single-household epidemic in a household of size n initiated by a infected in-

dividuals within the household. For j = a, a + 1, ..., n, let Pn,a(j|λ(n)
L ) denote

the probability that j individuals (including the initial infectives) are ultimately
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infected by the single-household epidemic. By Equation (2.5) of Ball [1986],

Pn,a(j|λ(n)
L ) may be determined by the following triangular system of linear

equations

k

∑
j=a

(

n − j

k − j

)

Pn,a(j|λ(n)
L )

φ((n − k)λ
(n)
L )j

=

(

n − a

k − a

)

, k = a, a + 1, ..., n, (2.3.1)

where φ(t) = E[e−tTI ] is the moment generating function of the infectious pe-

riod TI . The probabilities calculated from (2.3.1) may be used to evaluate thresh-

old parameter R∗ using (2.2.1), since

µn,a(λ
(n)
L ) =

n

∑
j=1

jPn,a(j|λ(n)
L ). (2.3.2)

If R∗ > 1 and an epidemic takes off, (2.3.1) and (2.3.2) also form the basis for

predicting its final outcome. The ensuing argument describing the final out-

come of an epidemic is approximate but does give an exact result as m → ∞.

The exact result is usually proved by an embedding argument, such as that

given in Section 4 of Ball et al. [1997]. Although Ball et al. consider the sim-

pler model in which local contact rates are independent of household size, their

methods are easily adapted to our model since households of different sizes are

considered on a term by term basis (see (2.3.4) below).

Following Section 3.4 of Ball et al. [1997], let π be the probability that a given

individual within the population avoids global infectious contact throughout

the course of an epidemic and let z be the proportion of individuals in the

population that are ultimately infected by the outbreak (so that Nz is the ex-

pected number of individuals infected by the epidemic). Since global infectious

contacts occur at points of a Poisson process, the probability that a given in-

dividual avoids infection from a single given infective is exp(−E[TI ]λG/N).

Recall that Poisson processes governing infectious contact occur independently

of each other, thus

π = [exp(−λGE[TI ]/N)]Nz = exp(−λGzE[TI ]). (2.3.3)

The expected proportion of individuals in the population as a whole that be-

come infected can be calculated as follows. For n = 1, 2, ..., nmax the number of

individuals in a given household of size n that are contacted globally by an in-

fective throughout the course of the epidemic is given by a Binomial(n, 1 − π)
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distribution. By conditioning on the number of initial infectives (globally con-

tacted individuals) in a household, considering the expected size of the ensuing

single-household epidemic and weighting based on the proportion of individ-

uals in each household size, it follows that

z =
nmax

∑
n=1

α̃n

n

n

∑
a=1

(

n

a

)

(1 − π)aπn−aµn,a(λ
(n)
L ). (2.3.4)

The calculation for z given in (2.3.4) is that given in Ball and Lyne [2002a]. Al-

though the methodology here differs from the calculation of z given in (3.24) of

Ball et al. [1997], it should be noted that the two are equivalent except for the

use of household size dependent local contact parameters under our model. By

substituting the value of π given in (2.3.3) into (2.3.4), we obtain an implicit

equation for z. Clearly z = 0 (π = 1) is always a solution to this equation.

Ball et al. [1997] show that in the case where R∗ ≤ 1 it is the only solution but

that there is a second solution, with z ∈ (0, 1), when R∗ > 1. It is this value

which gives expected proportion of individuals in the population that become

infected when the epidemic takes off.

To illustrate this, consider again the epidemics simulated to create Figure 2.1

in Section 2.2. For the first set of simulations with R∗ = 0.894, z = 0 is the

only root of the implicit equation for z given by (2.3.3) into (2.3.4). For the third

set of epidemics, in which R∗ = 2.085, z = 0.7577 emerges as a second root of

the equation and thus as the expected proportion of the population infected by

a major outbreak. A cursory glance at the third column of histograms of Fig-

ure 2.1 suggests that this is a reasonable assertion, particularly when looking

at N = 10000 plot. This is strengthened by the knowledge that the mean size

of epidemics with more than 10% of the population infected from these sets of

simulations (i.e. those epidemics which took off) was 71.87, 754.1 and 7575 for

the N = 100, 1000 and 10000 epidemics respectively. For the R∗ = 1.192 epi-

demics, the second root of (2.3.4) is z = 0.2731 and the mean size of epidemics

infecting more than 10% of the population in the N = 100, 1000 and 10000 epi-

demic simulations was 38.72, 310.2 and 2714 respectively. Again, the number

of infected individuals seems to correspond to expectation in the larger pop-

ulation, however it is clear that in the smaller populations, we have excluded

some epidemics which had theoretically taken off. This illustrates the difficul-

ties discussed at the end of Section 2.2 in determining whether an epidemic has
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taken off if the population is small and/or R∗ is close to unity.

For the remainder of this thesis z and π shall refer to the non-trivial solutions

of (2.3.3) and (2.3.4) since these are the values which are relevant to global epi-

demics. From (3.25) of Ball et al. [1997], it is clear that z is strictly increasing in

λG. Consequently, (2.3.3) shows that π is strictly decreasing in z and λG. Thus,

any one of the parameters π, z and λG determines the other two if the local

contact rates λ
(2)
L , λ

(3)
L , ..., λ

(nmax)
L , population structure α and distribution of the

infectious period TI are fixed. Since (2.2.1) also shows a clear one-to-one corre-

spondence between R∗ and λG, we observe that any one of π, z and R∗ may be

used to replace λG as the parameter explaining the global infectious dynamics

of an epidemic, without loss of information.

Let θ = (π, λ
(2)
L , λ

(3)
L , ..., λ

(n)
L ) be a row vector denoting the individual to in-

dividual contact rates of an epidemic among a population of households. For

n = 1, 2, ...nmax and j = 0, 1, 2, ..., nmax let Pn(j, θ) be the probability that j in-

dividuals are ultimately infected in a given household of size n at the end of a

global epidemic under parameters given by θ. Noting that Pn,0(k, λ
(n)
L ) = 1 if

k = 0 and zero for any other value of k and using a similar logic to the deriva-

tion of (2.3.4) yields

Pn(j|θ) =
j

∑
a=0

(

n

a

)

(1 − π)aπn−aPn,a(j − a|λ(n)
L ). (2.3.5)

Addy et al. [1991] show that these probabilities may also be determined by their

own triangular system of linear equations, given by

k

∑
j=0

(

n − j

k − j

)

Pn(j|π, λ
(n)
L )

φ((n − k)λ
(n)
L )jπn−k

=

(

n

k

)

, j = 0, 1, ..., n. (2.3.6)

These probabilities form the basis of all parameter estimation from final size

data in this thesis and (2.3.6) offers a computationally less intensive method

for their calculation than using a combination of (2.3.1) and (2.3.5). It should be

noted however that both methods become unstable for large n and so a sensible

cutoff for nmax should be imposed.
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CHAPTER 3

Hypothesis testing using final size

data for an SIR households epidemic

In this chapter we use hypothesis testing to determine the most appropriate

households epidemic model given some final size data. Throughout this chap-

ter, it is assumed that the distribution of the infectious period TI and household

distribution α are known but that parameters determining the rates of global

and local infectious contacts are unknown. Following the discussion in Section

2.3, we consider π rather than λG as our unknown global contact parameter.

Let θ = (π, λ
(2)
L , λ

(3)
L , ..., λ

(n)
L ) be a row vector of length nmax denoting the pa-

rameters of the epidemic model to be estimated.

The final outcomes of an epidemic in different households within the same pop-

ulation are not independent, although the dependence is weak if the number of

households, m, is large. (Ball and Lyne [2016] note that the dependence is of the

order 1/m.) Therefore, standard maximum likelihood estimation (MLE) proce-

dures for parameter estimation and the subsequent central limit theorem that

would be used for independent observations are potentially inadequate. Sec-

tion 3.1 provides a central limit theorem for the households epidemic model

which takes account of this dependence between households. This theorem

was originally presented in Ball and Lyne [2001] but has been adapted to our

setting in which the local contact rate is dependent on household size. We also

include the notion of there being unobserved households in the population, as

suggested by Ball and Lyne [2016].

Parameter estimation and applications of the theory discussed in Section 3.1
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are then explored in Section 3.2. This is then used to provide the theory for

hypothesis testing on final size data which is explained in Section 3.3. These

sections follow the work of Ball and Lyne [2016] although this work has been

extended in Section 3.3 to establish specific hypotheses for the developed tests

which relate directly to the setting of this thesis.

The remainder of this chapter focuses on application of the preceding theory.

Section 3.4 provides a detailed explanation of the calculation of the covariance

matrices which are needed to carry out the hypothesis tests established in Sec-

tion 3.3. Results relating to the proportion of households that have been ob-

served in an epidemic are given in Section 3.5. Specifically, we establish that

knowing the proportion of the population which has been observed is unnec-

essary when applying the specific hypothesis tests established in Section 3.3.

The hypothesis tests are then applied to real life data in Section 3.6 and con-

cluding comments on the chapter are made in Section 3.7.

3.1 Key convergence theorem - Ball and Lyne [2001]

The purpose of this section is to provide a central limit theorem for the final out-

come of a global epidemic under the model established in Chapter 2. The origi-

nal version of this theorem appeared in Ball and Lyne [2001] and was extended

by Ball and Lyne [2016] to include unobserved households. On a practical level,

this may either refer to households for which data could not be obtained, or

data only being obtained from a sample of households in a larger population.

We extend the theorem to account for the possibility of a local contact rate that

is dependent on household size. As in Ball and Lyne [2001], the embedding

methods of Scalia-Tomba [1985, 1990] and Ball et al. [1997] to construct epi-

demics and provide an asymptotic final size distribution before a central limit

theorem for the final outcome is derived.

3.1.1 Construction and outcome of a completed epidemic

We follow the Selke-type construction of Ball and Lyne [2001] to construct real-

isations of an epidemic. Britton [2010] notes that the advantage of this method

is that it shows that the final outcome of an outbreak is a random process
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which can be constructed using a contributions from a random number of in-

dependent and identically distributed processes and as such it does obey a cen-

tral limit theorem. At the end of this subsection we derive an equation using

the Selke construction which is used as the basis for the law of large num-

bers proved in Section 3.1.2 and, eventually, the central limit theorem which

is proven in Section 3.1.3.

In order to give a realisation of a typical epidemic, E, we first consider the

spread of the epidemic in a household of size n. Label individuals in the house-

hold 1, 2, ..., n and, for i = 1, 2, ..., n, let QL
i and QG

i be random variables that are

negative exponentially distributed with mean 1 and let QI
i be a random vari-

able distributed according to TI which determines the length of the infectious

period if individual i becomes infected. All of the random variables QL
i , QG

i

and QI
i are independent of each other (i = 1, 2, ..., n).

Suppose each individual in the household is exposed to t ∈ [0, ∞] units of

global infection (this is effectively a rescaling of time). For i = 1, 2, ..., n, in-

dividual i is infected globally if QG
i < t. If any individual in the household is

infected globally then a local epidemic follows. If y is the number of infectives

in the household at a given time, susceptible individuals at that time accumu-

late local exposure to infection at rate yλ
(n)
L and a susceptible individual, i say,

becomes infected locally when its local exposure reaches QL
i . This provides

a realisation of the single-household epidemic En(λ
(n)
L , e−t), where e−t is the

probability that a given individual avoids global infection, and the epidemic

terminates when infectives no longer remain in the household (i.e. π = e−t for

a completed epidemic).

For a single-household epidemic En(λ
(n)
L , e−t), let Y(n)(t) be the number of

individuals ultimately infected, An(t) be the sum of their infectious periods

(henceforth known as the severity of the epidemic) and Rn(t) = fn(Yn(t)) be

some finite, deterministic, vector-valued function of Yn(t). For example, Rn(t)

could take the form of an indicator function denoting whether the household

has been infected, a score statistic vector for unknown parameters of the epi-

demic or, to take the most trivial case, Yn(t) itself. For n = 1, 2, ..., nmax, k =

1, 2, ... let {(Rn.k(t), An,k(t))} be independent, identically distributed copies of

{(Rn(t), An(t)) : t ≥ 0} which can be realised by generating the random vari-

ables (QL
i , QG

i , QI
i ) (i = 1, 2, ...n) using the construction method above.
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A realisation of the final outcome E can then be constructed by first supposing

that the population is exposed to T0 units of global infectious time, meaning

that a typical susceptible in the population is exposed to T0λG/N initial units of

global exposure. For n = 1, 2, ..., nmax, label the households of size n 1, 2, ..., mn

and let

{(R•(t), A•(t))} =
nmax

∑
n=1

mn

∑
k=1

{(δn,kRn,k(t), An,k(t))}, (3.1.1)

where δn,k is the indicator function of the event that the final outcome in house-

hold k of size n has been observed. By considering the single-household epi-

demics triggered by the initial T0 units global infectious time, it is clear that a

further A•(T0λG/N) units of further global infectious time are introduced to

the epidemic which may trigger further local infection. This process will con-

tinue and so, for l = 1, 2, ..., it is useful to define Tl as total units of global in-

fectious time within the epidemic after l phases of this construction have been

completed. Specifically,

Tl+1 = T0 + A•(TlλG/N)

and l∗ = min{l : Tl+1 = Tl} is well-defined since the population is finite (l∗ ≤
N). Let T∞ = Tl∗ so that

T∞ = T0 + A•(λGT∞/N). (3.1.2)

Note that T∞ represents the final severity of E and R•(λGT∞/N) the desired

vector-valued function of the final outcome of E.

3.1.2 Asymptotics of severity

We now consider the asymptotic distribution of the severity of an epidemic

A•(t). This is achieved by considering a sequence of epidemics indexed by

ν = 1, 2, ... and will be used in Section 3.1.3 to find the asymptotic distribution

of R•(t), which in turn will be used to give a central limit theorem for our

function of interest R•(T∞).

Consider a sequence of epidemics E(ν), all governed by the same unknown

infectious parameters θ and known infectious period parameter TI but with

different population structures, initiated by T
(ν)
0 units of global infectious time

(ν = 1, 2, ...). The set of independent processes {(Rn,k(t), An,k(t))} can be used
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to construct realisations of the processes {(R(ν)
• (t), A

(ν)
• (t))} which in turn pro-

vide a realisation of E(ν). Note that nmax is retained as the maximum household

size across all epidemics in the sequence.

For ν = 1, 2, ... let m(ν) and N(ν) be the total number of households and indi-

viduals respectively in the population of E(ν). Suppose m(ν) → ∞ as ν → ∞.

For n = 1, 2, ..., nmax, let α
(ν)
n = m

(ν)
n /m(ν), αn = limν→∞ α

(ν)
n , an(t) = E[An(t)],

a(ν)(t) = ∑
nmax
n=1 α

(ν)
n an(t) and a(t) = ∑

nmax
n=1 αnan(t) (t ≥ 0).

Lemma 3.1.1. Suppose that,

(i) a(ν)(t) → a(t) as ν → ∞ and

(ii) E[T2
I ] < ∞.

Then

sup
t∈[0,∞]

|(m(ν))−1A
(ν)
• (t)− a(t)| a.s.−→ 0 as ν → ∞. (3.1.3)

Proof. We follow the proof of Lemma 1 of Ball and Lyne [2001] which is easily

adapted to this setting. For n = 1, 2, ..., nmax and fixed t ≥ 0,

(m(ν))−1A
(ν)
• (t) = (m(ν))−1

nmax

∑
n=1

m
(ν)
n

∑
k=1

A(n,k)(t)
a.s.−→ a(t) as ν → ∞

by the strong law of large numbers and condition (i). (Note that the strong law

of large numbers can be applied due to condition (ii).) Hence,

(m(ν))−1A
(ν)
• (t)

a.s.−→ a(t) as ν → ∞ (3.1.4)

for t ∈ (Q ∩ [0, ∞]) ∪ {∞}. Fix ǫ > 0. Now, a(0) = 0, a(∞) < ∞ and a(t) is

non-decreasing in t and hence there exists r ∈ N and t1, t2, ...., tr ∈ Q such that

0 = t0 < t1 < t2 < ... < tr < tr+1 = ∞ and

a(ti+1)− a(ti) < ǫ/2 i = 0, 1, ..., r.

From (3.1.4) there also exists K ∈ N such that

|(m(ν))−1A
(ν)
• (ti)− a(ti)| < ǫ/2 i = 0, 1, ..., r + 1, ν > K

and since A
(ν)
• (t) is also non-decreasing in t it follows that

|(m(ν))−1A
(ν)
• (t)− a(t)| < ǫ ν > K.
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Since ǫ > 0 is an arbitrary choice,

|(m(ν))−1A
(ν)
• (t)− a(t)| a.s.−→ 0 as ν → ∞

and the lemma follows.

For ν = 1, 2, ..., let m
(ν)
H = N(ν)/m(ν) and mH = limν→∞ m

(ν)
H = ∑

nmax
n=1 nαn,

observing that m
(ν)
H , mH ≤ nmax (and hence are finite). Also, considering (3.1.2)

and letting T
(ν)
0 and T

(ν)
∞ be defined in the obvious manner for E(ν) (ν = 1, 2, ...),

note that

m
(ν)
H T

(ν)
∞ /N(ν) = m

(ν)
H T

(ν)
0 /N(ν) + A

(ν)
• (λGT

(ν)
∞ /N(ν))/m(ν). (3.1.5)

Suppose that conditions (i) and (ii) above are satisfied and T
(ν)
0 /N(ν) → 0 as

ν → ∞. Then, letting ν → ∞ in (3.1.5) and using Lemma 3.1.1 implies that

T
(ν)
∞ /N(ν) converges to a random variable satisfying

mHt = a(λG t)

=
nmax

∑
n=1

αnµn(λ
(n)
L , e−λGt)E[TI ],

where µn(λ
(n)
L , e−λGt) is the expected size of a single household epidemic in

which each individual has probability e−λGt chance of avoiding global infection.

By noting that m ∑
nmax
n=1 αnµn(λ

(n)
L , e−λGt) gives the expected number of individ-

uals that become infected by an epidemic in which individuals have a e−λGt

chance of avoiding global infection, it is easy to see the equivalence of (3.1.5)

to (2.3.4). Thus (3.1.5) has a root at t = 0 and also at t = τ if, where τ > 0 if

and only if the threshold parameter R∗ > 1. Specifically, τ = zE[TI ] and thus

π = e−λGτ .

It should be noted that condition (ii) of Lemma 3.1.1, as well as the eventual

list of conditions required for Theorem 3.1.3, have been simplified compared to

Ball and Lyne [2001]. This is largely as a result of our imposing a maximum

household size, nmax, on our epidemic, following the general setting of this

thesis. Specifically, for Lemma 3.1.1 to hold if no maximum household size

is imposed on the epidemic, condition (ii) should changed to state that there

exists κ > 2 such that E[Tκ
I ] < ∞. The only restrictions on the population

under this setting are that it is closed and that the population size, N, is finite.

Also, the conditions for Lemma 3.1.1 below and for Theorem 3.1.2 in Section

35



3.1.3 only require minor alterations to allow our eventual central limit theorem

to be adapted to the multitype setting of Ball and Lyne [2001]. Appendix B of

Ball and Lyne [2016] should be consulted for further details on both scenarios

outlined here.

3.1.3 Central limit theorem

This subsection provides a functional central limit theorem for (R•(t), A•(t)) in

Theorem 3.1.2 which is used in Theorem 3.1.3 to derive a central limit theorem

for (R•(T∞), A•(T∞)) . In Section 3.2, we consider an estimator θ̂ of θ obtained

by maximum pseudolikelihood estimation. By having a central limit theorem

for R•(T∞), we have a central limit theorem for the score statistic and Fisher

information of a pseudolikelihood function of θ following an observation of an

epidemic that has reached its conclusion. Using these we are eventually able to

derive a central limit theorem for θ̂ in Section 3.2.

We begin by introducing some new notation which will eventually be used

to define the covariance matrix for our central limit theorem for R•(T∞). For

n = 1, 2, ..., nmax, let βn = m−1
∑

mn
k=1 δn,k be the proportion of households in the

population that are both observed and of size n and let β = (β1, β2, ..., βnmax).

Let Rn(t) = (Rn1(t), Rn2(t), ..., Rnp(t)) where p is the dimension of Rn(t) and

let r(t) = ∑
nmax
n=1 βnrn(t) where rn(t) = (rn1(t), rn2(t), ..., rnp(t)) = E[Rn,1(t)].

Let CRR(t) = ∑
nmax
n=1 βnC

n
RR(t) where Cn

RR(t) = var(Rn(t)) is a p × p matrix

whose i, jth element, cn
ij(t, t), is given by cov(Rni,1(t), Rnj,1(t)). Let CAA(t) =

∑
nmax
n=1 αnCn

AA(t) where Cn
AA(t) = var(An,1(t)) and CRA(t) = ∑

nmax
n=1 βnC

n
RA(t)

where the column vector Cn
RA(t) = cov(Rn,1(t), An,1(t)). Finally, let B =

DR(mH − DA)
−1 where DR is a column vector whose ith element is given by

∂ri(λGτ)/∂τ and DA = ∂a(λGτ)/∂τ. For ν = 1, 2, ..., let β
(ν)
n be defined as

expected and let βn = limν→∞ β
(ν)
n .

Theorem 3.1.2. For c > 0 and t ∈ [0, c]

(m(ν))−1/2(R
(ν)
• (t)− E[R•ν(t)])

W−→ X(t) as ν → ∞,

where X(t) = (X1(t), X2(t), ..., Xp(t)) is a zero-mean Gaussian process with covari-

ance function given by cov(Xi(t), Xj(s)) = ∑
nmax
n=1 βncn

ij(t, s) (t, s ∈ [0, c]; i, j =
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1, 2, ..., p) and
W−→ denotes weak convergence in the product space of bounded functions

on [0, c].

Provided the conditions of Theorem 5.2 of Ball and Lyne [2001] are satisfied,

the argument of the proof of that theorem may be used to prove Theorem 3.1.2.

The conditions are as follows.

(i’) lim
ν→∞

nmax

∑
n=1

α
(ν)
n rni(t) =

nmax

∑
n=1

αnrni(t) < ∞ (t ∈ [0, c]; i = 1, 2, .., p);

(ii’) lim
ν→∞

nmax

∑
n=1

α
(ν)
n cn

ij(s, t) =
nmax

∑
n=1

αncn
ij(s, t) < ∞ (s, t ∈ [0, c]; i, j = 1, 2, .., p);

(iii’) for some κ > 2,

lim
ν→∞

1

(M(ν))κ/2−1

nmax

∑
n=1

α
(ν)
n E[(Rn,1(t))

κ ] = 0 (t ∈ [0, c]; i = 1, 2, .., p);

(iv’) if

F
(ν)
i (t) =

nmax

∑
n=1

α
(ν)
n E[(Rn,1(t))Rn,1(c))] (t ∈ [0, c]; i = 1, 2, .., p)

and

D(ν) = max
i=1,2,...,p

max
t∈[0,c]

d

dt
F
(ν)
i (t),

then there exist A, B > 0 such that A ≤ D(ν) ≤ B for all sufficiently large

ν.

Conditions (i′)− (iii′) are satisfied since the sums are over the finite index set

{1, 2, ..., nmax}. A similar theorem holds for A
(ν)
• (t) provided that condition (ii)

of Lemma 3.1.1 is satisfied since (iii′) follows immediately from (ii). Note also

that (iii′) follows immediately from the adapted version of (ii) given at the end

of Section 3.1.2 that is to be used when no maximum household size is imposed

on the epidemic.

It is assumed in Ball and Lyne [2001] that, for i = 1, 2, ..., p, Rni(0) = 0 and that

Rni(t) is non-decreasing in t for t ≥ 0. This assumption and condition (iv′) are

addressed at the end of this subsection. We now give a central limit theorem for

{(R(ν)
• (t), A

(ν)
• (t))} in a similar manner to Theorem 5.3 of Ball and Lyne [2001].

In the statement of this theorem 0 refers to a row vector of zeros of size p but in

general 0 will be used to refer to a vector or matrix of zeros of an appropriate

size throughout this chapter.
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Theorem 3.1.3. Suppose that the conditions required for Lemma 3.1.1 are satisfied and

as, ν → ∞,

(a) (m(ν))1/2T
(ν)
0 /N(ν) p−→ 0;

(b) for n = 1, 2, ..., nmax, (m(ν))1/2(α
(ν)
n − αn) → 0 and (m(ν))1/2(β

(ν)
n − βn) → 0,

where
p−→ denotes convergence in probability. Then, in the event of a global epidemic,

(m(ν))−1/2[R
(ν)
• (λGT

(ν)
∞ /N(ν))− m(ν)r(λGτ)]

D−→ N(0, Σ) as ν → ∞,

where Σ = CRR(τ) +BCAR(τ) + CRA(τ)B
⊤ +BCAA(τ)B

⊤ and CAR(τ) =

(CRA(τ))
⊤ (and thus is a row vector).

Proof. Since we have specified that we are dealing with a global outbreak, we

have T
(ν)
∞ /N(ν) p−→ τ (see Section 3.1.2) and hence λGT

(ν)
∞ /N(ν) p−→ λGτ as

ν → ∞ by the continuous mapping theorem. Thus, by the continuous map-

ping theorem (see Theorem 1.3.6 of van der Vaart and Wellner [1996]),

(m(ν))−1/2(R
(ν)
• (λGT

(ν)
∞ /N(ν))− m(ν)r(ν)(λGT

(ν)
∞ /N(ν)))

W−→ X(λGτ) (3.1.6)

as ν → ∞, where r(ν)(t) = ∑
nmax
n=1 β

(ν)
n rn(t).

By van der Vaart and Wellner [1996], Addendum 1.5.8, X is separable since

almost all of its sample paths are continuous, hence

(m(ν))−1/2[R
(ν)
• (λGT

(ν)
∞ /N(ν))− m(ν)r(λGτ)]

= (m(ν))−1/2[R
(ν)
• (λGT

(ν)
∞ /N(ν))− m(ν)r(ν)(λGT

(ν)
∞ /N(ν))]

+ (m(ν))1/2[r(ν)(λGT
(ν)
∞ /N(ν))− r(λGT

(ν)
∞ /N(ν))] (3.1.7a)

+ (m(ν))1/2[r(λGT
(ν)
∞ /N(ν))− r(λGτ)]. (3.1.7b)

First note that (3.1.7a)
p−→ 0 as ν → ∞ since

(m(ν))1/2[r(ν)(λGT
(ν)
∞ /N(ν))− r(λGT

(ν)
∞ /N(ν))]

= (m(ν))1/2

[

nmax

∑
n=1

{

β
(ν)
n rn(λGT

(ν)
∞ /N(ν))− βnrn(λGT

(ν)
∞ /N(ν))

}

]

= (m(ν))1/2

[

nmax

∑
n=1

(β
(ν)
n − βn)rn(λGT

(ν)
∞ /N(ν))

]

→ 0 as ν → ∞
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by condition (b).

We now turn our attention to (3.1.7b). For i = 1, 2, ..., p Let fi(t) = ri(t) and

note that fi is continuous since ri is continuous. Let DRi
be the ith component of

DR. Then, by the mean value theorem,

(m(ν))1/2[ri(λGT
(ν)
∞ /N(ν))− ri(λGτ)] = (m(ν))1/2(T

(ν)
∞ /N(ν) − τ) f ′i (k

(ν))

=(m(ν))1/2(T
(ν)
∞ /N(ν) − τ) f ′i (τ) + (m(ν))1/2(T

(ν)
∞ /N(ν) − τ)[ f ′i (k

(ν))− f ′i (τ)]

=(m(ν))1/2(T
(ν)
∞ /N(ν) − τ)D⊤

Ri
+ K

(ν)
i ,

for some k(ν) ∈ (T
(ν)
∞ /N(ν), τ). Clearly k(ν)

p−→ τ as ν → ∞, therefore, [ f ′i (k
(ν))−

f ′i (τ)]
p−→ 0 as ν → ∞ by the continuous mapping theorem. Hence it is sufficient

to show that (m(ν))1/2(T
(ν)
∞ /N(ν) − τ) is bounded to show that K

(ν)
i → 0 as

ν → ∞. Recalling (3.1.5) and that mHτ = a(λGτ) from Section 3.1.2,

(m(ν))1/2(T
(ν)
∞ /N(ν) − τ) = (m(ν))1/2T

(ν)
0 /N(ν)

+ (m(ν))−1/2[A
(ν)
• (λGT

(ν)
∞ /N(ν))− m(ν)a(λGτ)]m−1

H

+ (m(ν))−1/2A
(ν)
• (λGT

(ν)
∞ /N(ν))((m

(ν)
H )−1 − m−1

H ).

(3.1.8)

Note that the first term of (3.1.8) converges in probability to 0 as ν → ∞ by

condition (a). For the final term, observe that

(m(ν))−1/2A
(ν)
• (λGT

(ν)
∞ /N(ν))

((m
(ν)
H )−1 − m−1

H )
=

A
(ν)
• (λGT

(ν)
∞ /N(ν))

(m(ν))1/2(N(ν))1/2

(m(ν))1/2(mH − m
(ν)
H )

mH

=
A
(ν)
• (λGT

(ν)
∞ /N(ν))

m(ν)

(m(ν))1/2(mH − m
(ν)
H )

(m
(ν)
H )1/2mH

.

This converges in probability to 0 as ν → ∞ by (b), since m−1A
(ν)
• (λGT

(ν)
∞ /N(ν))

is bounded as ν → ∞ (see Section 3.1.2) and (m
(ν)
H )−1/2m−1

H → m−3/2
H as ν → ∞

which is also bounded since mH ≥ 1. Hence, K(ν) → 0 as ν → ∞.

Thus, using (3.1.8) again,

(m(ν))−1/2[R
(ν)
• (λGT

(ν)
∞ /N(ν))− m(ν)r(λGτ)]

= (m(ν))−1/2[R
(ν)
• (λGT

(ν)
∞ /N(ν))− m(ν)r(ν)(λGT

(ν)
∞ /N(ν))]

+ (m(ν))−1/2[A
(ν)
• (λGT

(ν)
∞ /N(ν))− m(ν)a(λGτ)]m−1

H D⊤
R + F(ν)
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where F(ν) p−→ 0 as ν → ∞. The above argument also holds for determining the

value of the term (m(ν))−1/2[A
(ν)
• (λGT

(ν)
∞ /N(ν))− m(ν)a(λGτ)], so that

(m(ν))−1/2[A
(ν)
• (λGT

(ν)
∞ /N(ν))− m(ν)a(λGτ)]

= (m(ν))−1/2[A
(ν)
• (λGT

(ν)
∞ /N(ν))− m(ν)a(ν)(λGT

(ν)
∞ /N(ν))]

+ (m(ν))−1/2[A
(ν)
• (λGT

(ν)
∞ /N(ν))− m(ν)a(λGτ)]m−1

H DA + G(ν)

= (m(ν))−1/2[A
(ν)
• (λGT

(ν)
∞ /N(ν))− m(ν)a(ν)(λGT

(ν)
∞ /N(ν))](1 − m−1

H DA)
−1

+ G(ν),

where G(ν) p−→ 0 as ν → ∞. Hence

(m(ν))−1/2[R
(ν)
• (λGT

(ν)
∞ /N(ν))− m(ν)r(λGτ)]

= (m(ν))−1/2[R
(ν)
• (λGT

(ν)
∞ /N(ν))− m(ν)r(ν)(λGT

(ν)
∞ /N(ν))] (3.1.9a)

+ (m(ν))−1/2[A
(ν)
• (λGT

(ν)
∞ /N(ν))− m(ν)a(ν)(λGT

(ν)
∞ /N(ν))]B⊤ + H(ν)

(3.1.9b)

where H(ν) p−→ 0 as ν → ∞. The theorem follows by application of Theorem

3.1.2 on (3.1.9a) and (3.1.9b). It is shown in Section 3.4 that τ is a proper crossing

point of mHt = a(λGt), hence DA 6= mH so B is well defined.

We now return to showing that condition (iv′) holds and that the assumption,

for i = 1, 2, ..., p, Rni(t) is non-decreasing in t for t ≥ 0, may be relaxed. Let

1{A} denote the indicator function on event A and, for n = 1, 2, ...nmax; i =

0, 1, ..., n, k = 1, 2, ..., mn and t > 0, let χn,k,i(t) = 1{Yn,k(t)=i} where Yn,k(t) de-

notes the number of individuals ultimately infected in household k of size n.

Hence,

Rn,k(t) =
n

∑
i=0

fn(i)χn,k,i(t)δn,k,

and so, since nmax is finite, a central limit theorem for R•(t) follows immedi-

ately from one for R∗
•(t) = {R∗

n,i(t) : n = 1, 2, ..., nmax, k = 0, 1, ..., n} where

R∗
n,i =

mn

∑
k=1

χn,k,i(t)δn,k.

For n = 1, 2, ...nmax; i = 0, 1, ..., n, k = 1, 2, ..., mn and t > 0, let χ̃n,k,i(t) =

1{Yn,k(t) ≥ i} and note that χ̃n,k,i(t) can be expressed as a linear combination

40



of the (χn,k,l(t); i ≤ l ≤ n) using the “Möbius inversion” method of Martin-Löf

[1986]. Let R̃∗
•(t) = {R̃∗

n,i(t) : n = 1, 2, ..., nmax, k = 0, 1, ..., n}, where

R̃∗
n,i =

mn

∑
k=1

χ̃n,k,i(t)δn,k.

A central limit theorem for R∗
•(t) (and hence for R•(t)) follows immediately

from one for R̃∗
•(t) and note that R̃∗

•(t) is non-decreasing in t since χ̃n,k,i(t) is

non-decreasing in t. Thus a central limit theorem for R̃∗
•(t) exists if condition

(iv′) is satisfied.

Following the construction for E described at the beginning of this section, note

that, for t ∈ [0, c] (c > o)

E[χ̃n,1,i(t)χ̃n,1,i(c)] = E[χ̃n,1,i(t)]

and that E[χ̃n,1,i(t)] is a polynomial in π = e−t. Thus, there exist Bn,i, Cn,i > 0

such that

Bn,i < max
t∈[0,c]

∂

∂t
E[χ̃n,1,i(t)] < Cn,i.

In addition, E[A(n,1)(t)A(n,1)(c)] may also be expressed as a polynomial in π =

e−t and therefore, by (ii) of Lemma 3.1.1, there exist Dn, En > 0 such that

Dn < max
t∈[0,c]

∂

∂t
E[An,1(t)An,1(c)] < En.

Condition (iv′) follows for both R̃∗
•(t) and A•(t) since nmax is finite.

3.2 Parameter Estimation

We discuss the application of the central limit theorem established in Section

3.1 to parameter estimation from final size data and consider some of the prop-

erties of these estimators. This section follows the work of Ball and Lyne [2016]

although considerable detail has been added here to justify the central limit

theorem that we derive for θ̂.

3.2.1 Application of Theorem 3.1.3

We now discuss estimation of the epidemic model parameters given by θ, as de-

fined at the beginning of this chapter, and make use of the central limit theorem
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given in Section 3.1.3. First, recall that θ is a vector of length nmax and let Pn(j|θ)
be the probability that j individuals are ultimately infected in a given household

of size n in an epidemic with infectious contact parameters given by θ (c.f. Sec-

tion 2.3). For an observed epidemic among a population structured and labelled

in the same manner as E in Section 3.1, let yn,k (n = 1, 2, ..., nmax, k = 0, 1, ..., mn)

denote the number of susceptibles ultimately infected in household k of size n.

Let yD = {yn,k : n = 1, 2, ..., nmax, k = 0, 1, ..., mn, δn,k = 1}. An unrestricted

maximum pseudolikelihood estimator (MpLE) θ̂ from observed data yD is ob-

tained by maximising the log-pseudolikelihood function

l(θ|y) =
nmax

∑
n=1

mn

∑
k=1

δn,k log Pn(yn,k|θ). (3.2.1)

Let U (θ|y) be the row vector of the score statistic of the pseudolikelihood func-

tion with respect to θ, with ith component (∂/∂θi)l(θ|yD) (i,= 1, 2, ..., nmax) and

assume in the usual manner that θ̂ is given by the solution to U (θ|y) = 0. Also,

let I(θ|y) be the Fisher information matrix with respect to θ with components

Iij(θ|y) = −(∂2/∂θi∂θj)l(θ|y) (i, j = 1, 2, ..., nmax). It follows using the usual

Taylor series method that

m−1/2U (θ̂|y) ≈ m−1/2U (θ|y) + m−1/2I(θ|y)(θ̂ − θ)

and hence,

0 ≈ m−1/2U (θ|y)− m−1I(θ|y)m1/2(θ̂− θ).

Thus,

m1/2(θ̂− θ) ≈
{

m−1/2U (θ|y)
}{

m−1I(θ|y)
}−1

. (3.2.2)

For the sequence of epidemics E(ν) discussed in Section 3.1, assume that the

infectious parameters, θ and TI , and the population structure, observation and

initial infectivity parameters, m(ν), α(ν), β(ν) and T
(ν)
0 (ν = 1, 2, ...), are such that

the conditions required for Theorem 3.1.3 are satisfied. Let U (ν)(θ|y(ν)
D ) and

I (ν)(θ|y(ν)
D ) be defined in the obvious manner and note that both are vector-

valued functions of the final size data (I (ν)(θ|y(ν)
D ) can be easily made into

a vector of length n2
max), summed across all households in the epidemic and

therefore are both suitable choices for the function R•(t), as defined in Section

3.1. Note that there is a one-to-one correspondence between values of θ1 and t

so R• is a function of θ1 with t = λGτ corresponding to θ1 = π.
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First, let R
(ν)
ni,k = δn,k∂/∂θi[log(Pn(y

(ν)
n,k |θ))] where y

(ν)
n,k is the final number of

infectives in household k of size n in E(ν) and R
(ν)
ni,k is the ith component of Rn,k

(n, i = 1, ..., nmax; k = 1, 2, ..., m
(ν)
n , ν = 1, 2, ...) so that

R• = U (ν)(θ|y(ν)
D ) =

nmax

∑
n=1

mn

∑
k=1

δn,kRn,k

is of the form given in (3.1.1). Then,

rni(λGτ) = E[Rni,1(λGτ)]

=
n

∑
l=0

Pn(l|θ)
∂

∂θi
[log(Pn(l|θ))]

= 0 (3.2.3)

as is always the case when finding the expectation of a score statistic. (Recall

that λG, z and hence τ are determined explicitly by θ if the distribution of TI is

assumed to be known.) Hence, by application of Theorem 3.1.3,

(m(ν))−1/2U (ν)(θ|y(ν)
D )

D−→ N(0, Σθ) as ν → ∞. (3.2.4)

The covariance matrix Σθ is discussed in more detail in Section 3.4.

Now consider R
(ν)
• (λGτ) = m−1I (ν)(θ|y(ν)

D ) with components given by,

R
(ν)
nij,k = −m−1 ∂2

∂θi∂θj
[log(Pn(y

(ν)
n,k |θ))]

where the index nij refers to the (inmax + j)th) component of the vector R
(ν)
n

(n, i, j = 1, ..., nmax; k = 1, 2, ..., m
(ν)
n , ν = 1, 2, ...). Thus

mrnij(λGτ) = mE[m−1Rni,1(λGτ)]

= −
n

∑
l=0

Pn(l|θ)
∂2

∂θi∂θj
[log(Pn(l|θ))]

= In(θ), say.

Letting Iθ = ∑
nmax
n=1 βnIn(θ) and applying Theorem 3.1.3 gives

m−1I (ν)(θ|y(ν)
D )

p−→ Iθ as ν → ∞. (3.2.5)

The exact form of Iθ is discussed in Section 3.4. From Equations (3.2.2), (3.2.4)

and (3.2.5) and noting that Iθ is symmetric, it follows that

(m(ν))1/2(θ̂(ν) − θ)
D−→ N(0, I−1

θ
ΣθI

−1
θ

) as ν → ∞. (3.2.6)
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Note that the omission of higher order terms in the Taylor expansion is justified

using standard results form approximation theory, as in Section 4.2.2 of Serfling

[1980].

3.2.2 Properties of covariance matrices

We now investigate properties of the values B, CRR(τ), CRA(τ), CAR(τ) and

CAA(τ) from Theorem 3.1.3, which determine Σθ. For convenience we now

denote (∂/∂x) by ∂x. Thus R
(ν)
ni,k = ∂θi

[log(Pn(y
(ν)
n,k |θ))]. Then, for i, j = 1, 2, ..., n

and recalling that τ is determined by θ, the (i, j)th component of Cn
RR(τ) is

given by

cn
ij(τ) =

n

∑
k=0

{

Pn(k|θ)
[

∂θi
log(Pn(k|θ))

]

[

∂θj
log(Pn(k|θ))

]}

− rni(λGτ)rnj(λGτ)

=
n

∑
k=0

Pn(k|θ)
∂θi

Pn(k|θ)
Pn(k|θ)

∂θj
Pn(k|θ)

Pn(k|θ)

=
n

∑
k=0

[∂θi
Pn(k|θ)][∂θj

Pn(k|θ)]Pn(k|θ)−1 ,

since ∑
n
k=0 rni(λGτ) = 0 as described in Section 3.2.1. Now, the (i, j)th compo-

nent of In(θ) is given by

Inij(θ) = −
n

∑
k=0

Pn(yn,k|θ)
∂2

∂θi∂θj
[log(Pn(yn,k|θ))]

= −
n

∑
k=0

Pn(yn,k|θ)
[

∂θj

∂θi
Pn(k|θ)

Pn(k|θ)

]

=
n

∑
k=0

{

[∂θi
Pn(k|θ)][∂θj

Pn(k|θ)]Pn(k|θ)−1 − ∂2

∂θi∂θj
Pn(k|θ)

}

= cn
ij(τ)

since
n

∑
k=0

∂2

∂θi∂θj
Pn(k|θ) =

∂2

∂θi∂θj

n

∑
k=0

Pn(k|θ) =
∂2

∂θi∂θj
1 = 0.

Thus Iθ = CRR(τ) since both are a sum of their matrices for specific values of

n, weighted by β.

The matrices Iθ and Σθ are dependent on both α and β. Suppose a stratified

sample of households in the population is taken such that, for n = 1, 2, ..., nmax
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and β ∈ (0, 1], βn = βαn and hence the sampled households represent exactly

100β% of the population. (We shall refer to this as a 100β% stratified sample of

the population.) Then, letting CRR(τ, β) be defined in the obvious manner, it

follows from the definitions given in Section 3.1.3 that CRR(τ, β) = βCRR(τ, 1),

CRA(τ, β) = βCRA(τ, 1), CAR(τ, β) = βCAR(τ, 1), CAA(τ, β) = CAA(τ, 1)

(since CAA(τ) does not depend on β) and Bβ = βB1.

Clearly Iθ,β = βIθ,1 due to the relationship with CRR(τ) outlined above. There-

fore,

Σθ,β =CRR(τ, β) +BβCAR(τ, β) +CRA(τ, β)B⊤
β +BβCAA(τ, β)B⊤

β

=βCRR(τ, 1) + β2B1CAR(τ, 1) + β2CRA(τ, 1)B⊤
1 + β2B1CAA(τ, 1)B⊤

1

=(1 − β)βCRR(τ, 1) + β2[CRR(τ, 1) +B1CAR(τ, 1) +CRA(τ, 1)B⊤
1 +

B1CAA(τ, 1)B⊤
1 ]

=(1 − β)βIθ,1 + β2
Σθ,1

and thus,

I−1
θ,βΣθ,βI

−1
θ,β =β−2I−1

θ,1 [(1 − β)βIθ,1 + β2
Σθ,1]I

−1
θ,1

=β−1(1 − β)I−1
θ,1 + I−1

θ,1Σθ,1I
−1
θ,1 .

It now follows, from (3.2.6), that

(βm(ν))−1/2(θ̂(ν) − θ)
D−→ N(0, Σ̃θ,β) as ν → ∞

where

Σ̃θ,β =β1/2[β−1(1 − β)I−1
θ,1 + I−1

θ,1 Σθ,1I
−1
θ,1 ]β

1/2

=(1 − β)I−1
θ,1 + βI−1

θ,1 Σθ,1I
−1
θ,1 .

Note that in the limit as β → 0, this yields the usual Fisher information ma-

trix obtained by ignoring dependence between outcomes in different house-

holds and treating (3.2.1) as a log-likelihood. The relationship between I−1
θ

and

I−1
θ

ΣθI
−1
θ

(and thus the importance of β on hypothesis testing on the unknown

parameters θ) is investigated in Section 3.5.
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3.3 Hypothesis Tests

3.3.1 Hypotheses and preliminaries

We wish to test whether observed final size data could have come from a given

epidemic model with infectious parameters θ. Specifically we wish to test our

current model, in which local contact rates depend on the household size n,

against the more traditional households epidemic model for which there is only

one local contact rate parameter which is the same for all household sizes. The

test may be written using the nested hypotheses

H0 : λ
(2)
L = λ

(3)
L = ... = λ

(nmax)
L

H1 : λ
(i)
L 6= λ

(j)
L for some i 6= j i, j = 2, 3, ..., nmax. (3.3.1)

or, to give the test in terms of θ,

H0 : θ2 = θ3 = ... = θnmax

H1 : θi 6= θj for some i 6= j i, j = 2, 3, ..., nmax.

Leth(θ) be a vector of length nmax − 2 such that, for i = 1, 2, ..., nmax − 2, hi(θ) =

θi+2 − θ2. Then the above test may be re-written as

H0 : h(θ) = 0

H1 : hi(θ) 6= 0 for some i = 1, 2, ..., nmax − 2.

Let θ̇ denote the restricted maximum pseudolikelihood estimator under H0 and

recall that θ̂ is the unrestricted MpLE under H1. The asymptotic distribution

of θ̂ under H1 is given by (3.2.6). We now look to determine the asymptotic

distribution of θ̇ under H0.

Let λ be a column vector of Lagrange multipliers and Hθ be the (nmax) ×
(nmax − 2) matrix with elements given by (Hθ)ij = ∂hj/∂θi (i = 1, 2, ..., nmax; j =
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1, 2, ..., nmax − 2), so that

Hθ =































0 0 0 · · · 0

1 1 1 · · · 1

−1 0 0 · · · 0

0 −1 0 · · · 0

0 0 −1 · · · 0
...

...
. . .

0 0 0 · · · −1































.

Note in particular that the first row of Hθ is a row of zeros due to θ1 not ap-

pearing in our constraint vector h(θ). Then

U (θ̇|y)−H
θ̇
λ̇ = 0

h(θ̇) = 0,

where 0 denotes the zero column vector of length nmax − 2 and λ̇ is the ap-

propriate vector of Lagrangian multipliers such that the equation above holds.

Making use of Taylor’s theorem yields the approximations

U (θ|y) + I(θ|y)(θ̇ − θ)−Hθλ̇ ≈ 0

H⊤
θ
(θ̇− θ) ≈ 0. (3.3.2)

Page 80 of Silvey [1975], explains the presence of Hθλ̇ rather than H
θ̇

here by

noting that if θ̇ is close to θ then it is also close to θ̂ where U (θ|y) = 0 and

hence λ̇ is small. Expanding H
θ̇

about θ gives first order terms containing

λ̇ and θ̇ − θ meaning that the order of the terms are small enough to ignore.

Simple manipulation of (3.3.2) gives

[

−m−1I(θ|y)
]

m1/2(θ̇− θ) + m−1/2Hθλ̇ ≈ m−1/2U (θ|y)

H⊤
θ m1/2(θ̇− θ) ≈ 0.

Therefore, recalling (3.2.5) and considering the sequence of epidemics E(ν),

(

(m(ν))−1/2U (ν)(θ(ν)|y(ν))

0

)

≈
(

Iθ Hθ

H⊤
θ

0

)(

m1/2(θ̇(ν) − θ)

(m(ν))1/2λ̇(ν)

)

.

Now let
(

Iθ Hθ

H⊤
θ

0

)−1

=

(

P Q

Q⊤ R

)

. (3.3.3)
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It is clear from their definitions that Iθ is a symmetric, positive-definite matrix

and that Hθ has rank nmax − 2. Thus, by Appendix A.8 of Silvey [1975], the left

hand side of (3.3.3) is non-singular, its inverse does indeed take the form given

on the right hand side of (3.3.3) and, specifically, P is a symmetric matrix given

by

P = I−1
θ

− I−1
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

. (3.3.4)

Then, by letting Y = (m(ν))−1/2U (ν)(θ|y(ν)),

(m(ν))1/2(θ̇(ν) − θ) ≈ PY (3.3.5)

and thus, using (3.2.4),

(m(ν))1/2(θ̇(ν) − θ)
D−→ N(0,PΣθP ) (3.3.6)

as ν → ∞ (c.f. Serfling [1980], Section 4.4.4, Lemma C).

We can now consider a pseudolikelihood-ratio test, a pseudo-Wald’s test and

a pseudoscore test on the hypotheses given above. However, we should note

that further hypothesis tests are possible under the same framework and using

very minor modifications of the theory in this section. In particular, the tests

given in this section can be generalised to any other hypotheses as long as the

null hypothesis can be characterised by h(θ) = 0 for some set of constraints h.

For example, we may with to consider the model of Cauchemez et al. [2004] in

which the local contact parameter takes the form λ
(n)
L = λL/nη , where η may

take any real value. To consider this as the alternative hypothesis against the

local contact parameter being independent of household size is straightforward

in that we let θ = (π, λL, η) and h(θ) = θ3 (i.e η = 0 under the null hypothesis).

Testing this model against the new model in which there is no relationship be-

tween the local contact rate of households of different sizes can be achieved in

the following manner. The unknown parameters of the alternative hypothesis

can be described, as before, by θ = (π, λ
(2)
L , ..., λ

(nmax)
L ). For i = 3, 4, ..., nmax we

require

2ηθ2 = iηθi (= λL) (3.3.7)

for some value η. The constraint function h(θ) cannot contain η however since

h(θ) needs to be a function of θ. By taking logarithms on each side of (3.3.7),

note that for i = 3, 4, .., nmax

log
(

θi
θ2

)

log
(

2
i

) = η
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and thus h(θ) may be given by

hi(θ) =
log
(

θ3
θ2

)

log
(

2
3

) −
log
(

θi+3
θ2

)

log
(

2
i+3

) (i = 1, 2, ..., nmax − 3). (3.3.8)

Details relating to tests on the local contact parameters only, such as those un-

der the hypotheses outlined in (3.3.1) and those given above are considered in

Section 3.5. However, we consider the more general case for the remainder of

this section. Note also that if we assume that the observed households repre-

sent a 100β% stratified sample of all households in the population, for some

β ∈ (0, 1], we have already established in Section 3.2.2 that Iθ,β = βIθ,1. It is

therefore clear from the definition of P given in (3.3.4) that Pβ = β−1P1, where

Pβ is defined in the obvious manner, since Hθ is not dependent on β. The

following tests were originally established in Ball and Lyne [2016].

3.3.2 Pseudolikelihood ratio test

The pseudolikelihood ratio test is based upon the test statistic

2 log λ = 2{l(θ̂|y)− l(θ̇|y)}

with H0 being rejected if 2 log λ is too large. Using a Taylor expansion,

l(θ̇|y) ≈ l(θ̂|y) +U (θ̂|y)⊤(θ̇ − θ̂) + (θ̇− θ̂)⊤I(θ̂|y)(θ̇ − θ̂)/2

and hence, by considering the sequence of epidemics E(ν) and since U (θ̂|y) =
0,

2 logλ(ν) ≈ −(θ̇(ν) − θ̂(ν))⊤I (ν)(θ|y(ν))(θ̇(ν) − θ̂(ν))

=(m(ν))−1/2(θ̇(ν) − θ̂(ν))⊤{−(m(ν))−1I (ν)(θ|y(ν))}(m(ν))−1/2(θ̇(ν) − θ̂(ν)).

Now, using equations (3.2.2), (3.3.3) and (3.3.5),

(m(ν))1/2(θ̇(ν) − θ̂(ν)) = (m(ν))1/2(θ̇(ν) − θ)− (m(ν))1/2(θ̂ − θ(ν))

≈ (P − I−1
θ

)Y ,
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so

2 log λ(ν) ≈Y ⊤(P − I−1
θ

)Iθ(P − I−1
θ

)Y

=Y ⊤[PIθP − 2P + I−1
θ

]Y .

However, by equation (3.3.4)

PIθP =

(I−1
θ

− I−1
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

)Iθ(I
−1
θ

− I−1
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

)

= I−1
θ

− I−1
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

)IθI
−1
θ

− I−1
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

)IθI
−1
θ

+ I−1
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

= I−1
θ

− I−1
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

= P ,

since H⊤
θ
I−1
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1 gives the identity matrix. Thus,

2 log λ(ν) ≈Y ⊤[I−1
θ

−P ]Y

=Y ⊤I−1
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

Y

=Y ⊤I−1/2
θ

I−1/2
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1/2
θ

I−1/2
θ

Y .

Note that

(I−1/2
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1/2
θ

)(I−1/2
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1/2
θ

)

=I−1/2
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1(H⊤

θ
I−1
θ

Hθ)(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1/2
θ

=I−1/2
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1/2
θ

,

so I−1/2
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1/2
θ

is an idempotent matric of rank nmax −
2 (the rank of Hθ). Since Iθ is symmetric and positive semi-definite, I1/2

θ
is

symmetric. Thus, I−1/2
θ

, I−1
θ

and hence I−1/2
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1/2
θ

are

also symmetric since the inverse of a symmetric matrix is symmetric.

Recall from (3.2.4) that Y ∼ N(0, Σθ) and let X = Σ
−1/2
θ

Y
D−→ N(0, I) as

ν → ∞ (where I is the identity matrix of order nmax) so that now,

2 log λ(ν) ≈ X⊤
Σ

1/2
θ

I−1/2
θ

I−1/2
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1/2
θ

I−1/2
θ

Σ
1/2
θ

X .

Now Σ
1/2 is symmetric since Σ is symmetric and hence Σ

1/2 = (Σ1/2)⊤ and

hence we can once again appeal to Appendix A.8 of Silvey [1975] to show that
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the matrix Σ
1/2
θ

I−1/2
θ

I−1/2
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1/2
θ

I−1/2
θ

Σ
1/2
θ

is symmetric.

Hence there exists orthogonal P ∗ such that

(P ∗)⊤Σ
1/2
θ

I−1/2
θ

I−1/2
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1/2
θ

I−1/2
θ

Σ
1/2
θ

P ∗ = Λ
∗

where Λ
∗ is diagonal. Thus, by Section 29.2 of Johnson and Kotz [1970],

2 log λ(ν) D−→
nmax−2

∑
i=1

λ∗
i Ui (3.3.9)

as ν → ∞, where U1, U2, ..., Unmax−2 are independent and identically distributed

χ2
1 random variables and λ1, λ2, ..., λnmax−2 are the non-zero eigenvalues of

Σ
1/2
θ

I−1/2
θ

I−1/2
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1/2
θ

I−1/2
θ

Σ
1/2
θ

which, by matrix similarity, are the same as the non-zero eigenvalues of

ΣθI
−1/2
θ

I−1/2
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1/2
θ

I−1/2
θ

= Σθ(I
−1
θ

−P ). (3.3.10)

In the case of a 100β% stratified sample of households, note that

Σθ,β(I
−1
θ,β −Pβ) = (βΣθ,1 + (1 − β)Iθ,1)(I

−1
θ,1 −P1)

3.3.3 Pseudo-Wald’s W test

The idea for this test stems from the notion that under the null hypothesis,

h(θ) = 0 and hence, if H0 is true, applying h to the unrestricted maximum

pseudolikelihood estimator should find that h(θ̂) ≈ 0. Taylor’s theorem gives

h(θ̂) ≈ h(θ) +Hθ(θ̂ − θ), so, under H0,

h(θ̂) ≈ Hθ(θ̂− θ)

Hence, using Equation (3.2.6) and considering the sequence of epidemics E(ν),

(m(ν))1/2h(θ̂(ν))
D−→ N(0,H⊤

θ
I−1
θ

ΣθI
−1
θ

Hθ) (3.3.11)

as ν → ∞ (see the theorem of Serfling [1980], Section 4.4.4). Hypothesis tests

may be carried out from here but it may be convenient to note from the above

that

(m(ν))1/2h(θ̂(ν))(H⊤
θ I−1

θ
ΣθI

−1
θ

Hθ)
−1/2 D−→ N(0, I)
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and hence that

mh(θ̂(ν))⊤(H⊤
θ
I−1
θ

ΣθI
−1
θ

Hθ)
−1h(θ̂(ν))

D−→ χ2
nmax−2

as ν → ∞, since H⊤
θ
I−1
θ

ΣθI
−1
θ

Hθ is symmetric. This test is easy to adapt to

the case of observing a 100β% stratified sample of households since we have

already established in Section 3.2.2 that

I−1
θ,βΣθ,βI

−1
θ,β = β(1 − β)I−1

θ,1 + β2I−1
θ,1Σθ,1I

−1
θ,1 .

3.3.4 Pseudoscore statistic test

Under H0, U (θ̇|y) should be close to 0. Expanding U (θ̇|y) about the unre-

stricted MpLE gives

U (θ̇|y) ≈ U (θ̂|y) + I(θ̂|y)(θ̇ − θ̂)

= I(θ̂|y)(θ̇ − θ̂).

since U (θ̂|y) = 0. Thus

(m(ν))−1/2U (θ̇(ν)|y(ν)) = [−(m(ν))−1I (ν)(θ̂(ν)|y(ν))](m(ν))1/2(θ̂(ν) − θ̇(ν))

≈ Iθ(P − I−1
θ

)Y

=− (I − IθP )Y

where I again denotes the identity matrix of size nmax.

As such, under H0,

(m(ν))−1/2U (θ̇(ν)|y(ν))
D−→ N(0, (I − IθP )Σθ(I − IθP )⊤) (3.3.12)

as ν → ∞ (again, see the theorem of Serfling [1980], Section 4.4.4). Now,

(I − IθP )(I − IθP ) = I − 2IθP + IθPIθP = I − IθP since we have already

established that PIθP = P in Section 3.3.2. Hence I − IθP is idempotent and

has rank nmax − 2, the rank of Hθ. Letting Σ̂ = (I − IθP )Σθ(I − IθP )⊤, noting

that Σ̂ also has rank nmax − 2 and following a similar approach to Section 3.3.2,

this implies that there exists an orthogonal matrix A such that AΣ̂A⊤ = D,

where D is a diagonal matrix of size nmax whose first nmax − 2 diagonal ele-

ments are the non-zero eigenvalues of Σ̂ and remaining diagonal elements are

0.
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Thus

(m(ν))−1/2AU (θ̇(ν)|y(ν))
D−→ N(0,D) as ν → ∞.

Let C be the (nmax − 2) × nmax matrix given by C = [I 0]A, where [I 0] is

the matrix formed by binding the identity matrix of order (nmax − 2) with the

(nmax − 2)× 2 zero matrix. Then

(m(ν))−1/2CU (θ̇(ν)|y(ν))
D−→ N(0, D̃) as ν → ∞,

where D̃ is the diagonal matrix D reduced to size nmax − 2. Therefore,

(m(ν))−1U (θ̇(ν)|y(ν))⊤C⊤D̃−1CU (θ̇(ν)|y(ν))
D−→ χ2

nmax−2 as ν → ∞.

Note that D̃ = CΣ̂C⊤ and thus

(m(ν))−1U (θ̇(ν)|y(ν))⊤C⊤(CΣ̂C⊤)−1CU (θ̇(ν)|y(ν))
D−→ χ2

nmax−2 as ν → ∞.

Returning to the scenario in which βn = βαn for some β ∈ [0, 1], note that

Iθ,βPβ = Iθ,1P1 and hence Σ̂β = (I − Iθ,1P1)Σθ,β(I − Iθ,1P1)
⊤.

3.4 Calculation of covariance matrices

We give a method for calculating the values of B, CRR(τ), CRA(τ), CAR(τ)

and CAA(τ) for R
(ν)
• = U (ν)(θ|y(ν)), and hence the matrices Iθ and Σθ. All

calculations given below involving n are defined for n = 1, 2, ..., nmax. It is

assumed that the βn (the proportion of households in the population that are

observed and of size n) are known during these calculations. On a practical

level, this may be as a result of knowing the total distribution of household

sizes α and assuming that the observed households represent a 100β% stratified

sample of these households as discussed Section 3.2.2 and at various points in

Section 3.3.

The section begins by calculating Cn
RR(τ) using results from Section 3.2.2 and

manipulating the final size probabilities given in Section 2.3 using differentia-

tion. We then introduce a joint moment generating function for the final size

and severity of a single household epidemic. The first moment of the severity

is calculated using a simple Wald’s identity formula. However, the second mo-

ment is trickier to calculate and thus we introduce a method of manipulating

53



the joint moment generating function using Gontcharoff polynomials. The first

and second moments of the severity of a single household epidemic can then

be used to calculate CAA(τ).

Further suitable differentiation of our joint moment generating function, aided

by Gontcharoff polynomials is then used to calculate CAR(τ) and the compo-

nent parts of B. Finally, we utilise our joint moment generating function and

Gontcharoff polynomials to show that B is a well-defined vector.

A formula for Cn
RR(τ) has already been established in Section 3.2.2, specifically,

cn
ij(τ) =

n

∑
k=0

[∂θi
Pn(k|θ)][∂θj

Pn(k|θ)]Pn(k|θ)−1. (3.4.1)

We therefore need values for the Pn(k|θ) (k = 0, 1, ..., n) and their first deriva-

tives with respect to θi (i = 1, 2, ..., nmax). It has already been established in

Section 2.3 that Pn(k|θ) can be determined from the triangular system of linear

equations

k

∑
j=0

(

n − j

k − j

)

Pn(j|θ)
φ((n − k)λ

(n)
L )jπn−k

=

(

n

k

)

, k = 0, 1, ..., n. (3.4.2)

Clearly ∂θi
Pn(k|θ) = 0 for all j if i 6= 1, n so we need only focus on these two

components of θ. Differentiating (3.4.2) with respect to θ1 = π yields

k

∑
j=0

(

n − j

k − j

)

∂θ1
Pn(j|θ)

φ((n − k)λ
(n)
L )jπn−k

=
k

∑
j=0

(

n − j

k − j

)

(n − k)Pn(j|θ)
φ((n − k)λ

(n)
L )jπn−k+1

(3.4.3)

and differentiating (3.4.2) with respect to θn = λ
(n)
L yields

k

∑
j=0

(

n − j

k − j

)

∂θn
Pn(j|θ)

φ((n − k)λ
(n)
L )jπn−k

=
k

∑
j=0

(

n − j

k − j

)

j[(n − k)φ′((n − k)λ
(n)
L )]Pn(j|θ)

φ((n − k)λ
(n)
L )j+1πn−k

(3.4.4)

for k = 0, 1, ..., n, where φ′(x) = ∂φ(x)/∂x (which depends entirely upon the

distribution of TI). Values for the ∂θi
Pn(k|θ) (n = 1, 2, ..., nmax; k = 0, 1, ..., n)

can therefore be determined by solving (3.4.2) and, subsequently, (3.4.3) and

(3.4.4) (all of which are triangular systems of linear equations). Calculation of

CRR(τ) follows easily by inserting the results into (3.4.1). Note that ∂θn
φ((n −

k)λ
(n)
L ) values depend on the distribution of TI but should be calculable if TI is

assumed to take a standard distribution. For example, Gamma distributed TI

are discussed in Section 3.6.
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To calculate the remaining values, more information is required about the sever-

ity of a single-household epidemic in an initially fully susceptible household of

size n in which each individual avoids global infection with probability π. Let

Y be the final size of such an epidemic, A be its severity and define

Φn(s, ϑ) = E[sn−Y exp(−Aϑ)] (0 ≤ s ≤ 1, ϕ ≥ 0). (3.4.5)

Note that moments of A are equivalent to moments of An,1(τ) and hence E[A]

and E[A2] are of interest. The expected severity E[A] = an(τ) can be found

using the Wald’s identity E[A] = E[Y]E[TI ] (cf. Corollary 2.2 of Ball [1986]),

where E[Y] = ∑
n
k=0 kPn(k|θ) which can be found using Equation (3.4.2). To

see that E[A] = E[Y]E[TI ] we follow the proof of Ball and Shaw [2016]. Label

individuals in the household 1, 2, ..., n and, for i = 1, 2, ..., n, let Ii be the length

of individual i’s infectious period should they become infected and let χi = 1

if individual i becomes infected and χi = 0 otherwise. Then A = ∑
n
i=1 χi Ii but,

for given i, χi and Ii are independent. Thus

E[A] =
n

∑
i=1

E[χi]E[Ii] = E[TI ]E

[

n

∑
i=1

χi

]

= E[Y]E[TI ].

Finding E[A2] however, does require manipulation of Φn(s, ϑ) and this requires

use of Gontcharoff polynomials. Before introducing these polynomials for-

mally, we note that they could have been exploited earlier in this thesis to find

final size probabilities for an epidemic. However, House et al. [2013] note that

the matrix type methods as given in Section 2.3 are more efficient numerically.

They also point out that Gontcharoff polynomial methods are numerically un-

stable for large n and whilst this is not an issue in most practical circumstances,

it should be borne in mind if one wishes to remove the assumption used in this

thesis of there being a maximum possible household size nmax when perform-

ing the calculations given below.

Let U = u0, u1, ... be a sequence of real numbers. The Gontcharoff polynomials

associated with U are defined recursively by the system of equations

v

∑
w=0

uv−w
w

(v − w)!
Gw(s|U ) =

sv

v!
v = 0, 1, ... . (3.4.6)

(See Gontcharoff [1937] for the introduction of Gontcharoff polynomials and

Picard and Lefèvre [1990] for their use in a similar epidemiological context.)
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Then, by Equation (3.9) of Ball et al. [1997], for s ∈ R and ϑ ∈ R+

Φn(s, ϑ) =
n

∑
w=0

n!

(n − w)!
φ(ϑ + λ

(n)
L w)n−wπwGw(s|U ), (3.4.7)

where U is given by uw = φ(ϑ + λ
(n)
L w) (w = 0, 1, ...).

From the definition of Φn(s, ϑ), E[A2] = ∂
(2)
ϑ Φn(s, ϑ) evaluated at s = 1, ϑ = 0,

where ∂
(i)
ϑ denotes the partial derivative ∂i/∂ϑi (i = 1, 2, ...). Differentiating

(3.4.7) with s = 1 gives,

∂
(2)
ϑ Φn(1, ϑ)

=∂ϑ

n−1

∑
w=0

n!

(n − w − 1)!
πwφ′(ϑ + λ

(n)
L w)φ(ϑ + λ

(n)
L w)n−w−1Gw(1|U )

+ ∂ϑ

n

∑
w=0

n!

(n − w)!
πwφ(ϑ + λ

(n)
L w)n−w[∂ϑGw(1|U )]

=
n−2

∑
w=0

n!

(n − w − 2)!
πw[φ′(ϑ + λ

(n)
L w)]2φ(ϑ + λ

(n)
L w)n−w−2Gw(1|U )

+ 2
n−1

∑
w=0

n!

(n − w − 1)!
πwφ′(ϑ + λ

(n)
L w)φ(ϑ + λ

(n)
L w)n−w−1[∂ϑGw(1|U )]

+
n

∑
w=0

n!

(n − w)!
πwφ(ϑ + λ

(n)
L w)n−w[∂

(2)
ϑ Gw(1|U )]. (3.4.8)

A recursive formula for the derivatives of the Gontcharoff polynomials with

respect to ϑ can be found by differentiating (3.4.6). In our case, for v = 1, 2, ...n,

v

∑
w=0

φ(ϑ + λ
(n)
L w)v−w

(v − w)!
∂ϑGw(s|U )

= −
v−1

∑
w=0

φ′(ϑ + λ
(n)
L w)φ(ϑ + λ

(n)
L w)v−w−1

(v − w − 1)!
Gw(s|U ) (3.4.9)
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(for v = 0 note that G0(s|U ) ≡ 1 and hence all of its derivatives are 0) and thus

v

∑
w=0

φ(ϑ + λ
(n)
L w)v−w

(v − w)!
∂
(2)
ϑ Gw(s|U )

=− 2
v−1

∑
w=0

φ′(ϑ + λ
(n)
L w)φ(ϑ + λ

(n)
L w)v−w−1

(v − w − 1)!
∂ϑGw(s|U )

−
v−1

∑
w=0

φ′′(ϑ + λ
(n)
L w)φ(ϑ + λ

(n)
L w)v−w−1

(v − w − 1)!
Gw(s|U )

−
v−2

∑
w=0

[φ′(ϑ + λ
(n)
L w)]2φ(ϑ + λ

(n)
L w)v−w−2

(v − w − 2)!
Gw(s|U )

(3.4.10)

provide numerically calculable formulae for ∂ϑGw(1|U ) and ∂
(2)
ϑ Gw(1|U ) re-

spectively. If φ′(x) and φ′′(x) can be calculated (from knowing the distribu-

tion of TI) then E[A2] follows from evaluating (3.4.6), (3.4.8), (3.4.9) and (3.4.10)

at ϑ = 0 (again noting that all of these are systems of linear equations), thus

C
(n)
AA = E[An,1(τ)

2]− E[An,1(τ)]
2 may be evaluated and CAA follows.

We now turn our attention to the vector Cn
RA(τ) whose ith component is given

by cov(Rni,1(τ), An,1(τ)) = E[Rni,1(τ)An,1(τ)], since E[Rni,1(τ)] = rni(τ) = 0

(c.f. (3.2.3)) and hence E[Rni,1(τ)]E[An,1(τ)] = 0. Now, Rn,1(τ) is a vector-

valued function of the final size of a single-household epidemic with parame-

ters θ, specifically the score statistic, and as such can be written as Rn,1(τ) =

∑
n
k=0 U (θ|yn,1 = k)1{yn,1=k}. (Here U (θ|yn,1 = k) refers to the score statistic

based on observing a single household of size n with k recovered individuals at

the end of the epidemic.) Thus,

Cn
RA(τ) =E

[

An,1(τ)
n

∑
k=0

U (θ|yn,1 = k)1{yn,1=k}

]

=
n

∑
k=0

U (θ|yn,1 = k)E
[

An,11{yn,1=k}
]

. (3.4.11)

We now look to manipulate Φn(s, ϑ) to obtain Cn
RA(τ), using (3.4.11).

Let X = n − Y in the definition of Φn(s, ϑ) given in (3.4.5) and, for i = 1, 2, ...n,

let Φ
(i)
n (s, ϑ) denote the ith derivative of Φn(s, ϑ) with respect to s. Then,

Φn(s, ϑ) =E[sXe−Aϑ]

=
n

∑
k=0

P(X = k)skE[e−Aϑ|X = k],
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so, for i = 0, 1, ..., n,

Φ
(i)
n (s, ϑ) =

n

∑
k=i

k!

(k − i)!
P(X = k)sk−iE[e−Aϑ|X = k]

and

Φ
(i)
n (0, ϑ) = i!P(X = i)E[e−Aϑ|X = i],

since all terms other than the first in the sum disappear as a result of setting

s = 0. Consequently, for k = 0, 1, ..., n,

E[e−Aϑ
1{X=k}] = Φ

(k)
n (0, ϑ)/k!

and thus,

E[A1{X=k}] = [∂ϑΦ
(k)
n (0, ϑ)]/k! |ϑ=0

=− 1

k!

{ n−1

∑
w=0

n!

(n − w − 1)!
πwφ′(ϑ + λ

(n)
L w)φ(ϑ + λ

(n)
L w)n−w−1G

(k)
w (0|U )

+
n

∑
w=0

n!

(n − w)!
wπw−1φ(ϑ + λ

(n)
L w)n−w[∂ϑG

(k)
w (0|U )]

}∣

∣

∣

∣

ϑ=0

, (3.4.12)

where G
(k)
w (s|U ) denotes the kth derivative of Gw(s|U ) with respect to s. Equa-

tion (2.7) of Picard and Lefèvre [1990] shows that G
(k)
w (s|U ) = Gw−k(s|U (k))

(where U (k) is the sequence uk, uk+1, ...) if k ≤ w and G
(k)
w (s|U ) = 0 otherwise.

Hence the Gontcharoff polynomials and their derivatives with respect to s, eval-

uated at s = 0, can be calculated easily using (3.4.6) and all of their first deriva-

tives with respect to ϑ can be found using the same technique as was used in

(3.4.9). The vector Cn
RA(τ) can thus be calculated using (3.4.11) and (3.4.12)

and calculation of CRA(τ) follows. Note also that CAR(τ) is simply given by

CRA(τ)
⊤ (see the respective definitions in Section 3.1.3).

Recall from Section 3.1.3 that B = DR(mH − DA)
−1 where D f denotes the first

derivative of a continuous vector-valued function f with respect to τ. Since π =

e−λGτ and hence ∂π/∂τ = −λGπ, it follows that D f = −λGπD̃ f where D̃ f de-

notes the first derivative of f with respect to π. Therefore B = −λGπD̃R(mH +

λGπD̃A)
−1. It is clear from the definition of Iθ that D̃R is equal to the first col-

umn of Iθ (or CRR(τ)). This leaves only D̃A to be calculated. Observe, by using
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a similar method to the derivation of (3.4.8), that

a(λGτ) =
n−1

∑
w=0

n!

(n − w − 1)!
πwφ′(ϑ + λ

(n)
L w)φ(ϑ + λ

(n)
L w)n−w−1Gw(1|U )

+
n

∑
w=0

n!

(n − w)!
πwφ(ϑ + λ

(n)
L w)n−w[dϑGw(1|U )]

and hence

D̃A =
n−1

∑
w=0

n!

(n − w − 1)!
wπw−1φ′(ϑ + λ

(n)
L w)φ(ϑ + λ

(n)
L w)n−w−1Gw(1|U )

+
n

∑
w=0

n!

(n − w)!
wπw−1φ(ϑ + λ

(n)
L w)n−w[dϑGw(1|U )]. (3.4.13)

Equations (3.4.6), (3.4.9), (3.4.13) can thus be used to evaluate B. It is now

possible to calculate the matrices Iθ and Σθ from the above. In most practical

situations, θ is unknown but the matrices can be estimated by evaluating at the

MpLE θ = θ̂.

Observe that for B to be well-defined, we require mH − DA 6= 0. Now, we have

already established in Section 3.1.2 that 0 and τ are roots of mHt = a(t). If a(t)

is strictly concave then these are the only two roots of the equation and both

are proper crossing points (not tangent), meaning that mH 6= a′(τ) = DA as

required. The function a(t) is strictly concave if and only if its second derivative

a′′(t) < 0 for all t. First note that a′′(t) = ∑
nmax
n=1 αna′′n(t) which is strictly negative

if a′′n(t) is strictly negative for each n . Appealing to the notation used above

when discussing Φn(s, ϑ), recall that E[A] = E[Y]E[TI ] and that

Φn(s, ϑ) = E[sn−Y exp(−Aϑ)],

Φ
(1)
n (s, ϑ) = E[(n − Y)sn−Y−1 exp(−Aϑ)],

Φ
(1)
n (1, 0) = n − E[Y],

E[Y] = n − Φ
(1)
n (1, 0).

Thus,

an(t) =nE[TI ]− E[TI ]
n

∑
w=0

n!

(n − w)!
(e−λGt)wφ(λ

(n)
L w)n−wGw−1(1|U (1)) and

a′′n(t) =− E[TI ]
n

∑
w=0

n!

(n − w)!
(wλG)

2e−wλGtφ(λ
(n)
L w)n−wGw−1(1|U (1)). (3.4.14)
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Now, φ(x) is positive for any x ∈ R since φ is a moment generating function

and λG > 0 by definition. Hence a′′n(t) < 0 if Gw−1(1|U (1)) > 0 for w = 1, 2, ....

Now U (1) is given by the sequence uw = E[exp(−(λ
(n)
L (w + 1))TI)], which is

monotone non-increasing in w but strictly positive. For w = 0, 1, .. the integral

representation of Gw(|U (1)) is given by

Gw(|U (1)) =
∫ 1

u0

∫ ξ0

u1

∫ ξ1

u2

...
∫ ξw−2

uw−1

dξ0dξ1...dξw−1

(see Equation (2.5) of Picard and Lefèvre [1990]). Since u0 < 1, it follows im-

mediately that the Gw(1|U (1)) are strictly positive (c.f. Section 3.2 of Ball et al.

[1997]). Therefore a(t) is indeed concave and hence B is well-defined.

3.5 Results relating to the dependence between out-

comes in different households

No knowledge of the parameter β is necessary to determine the MpLE θ̂, since

(3.2.1) shows that only observed data are included in the log-pseudolikelihood

function and, for n = 1, 2, ..., nmax; k = 0, 1, ..., n calculation of Pn(k|θ) does

not even rely on knowledge of the related population structure parameter α.

However, the asymptotic covariances of the parameter estimator given by θ̂,

and thus asymptotic properties of hypothesis tests relating to these estimators,

are affected by the matrices Iθ and Σθ which are shown to depend on β in

Section 3.4. Since Iθ = ∑
nmax
n=1 βnIn(θ) and, for n = 1, 2, ..., nmax, the number

of observed households of size n is given by βnmn it is clear that hypothesis

tests using only Iθ (i.e. by assuming that all observed household outcomes

are mutually independent in the manner discussed at the end of Section 3.2.2,

thus making Σθ irrelevant) are only affected by observed households and, as

such, do not depend on β. However, Σθ cannot generally be ignored, since the

relationship between Σθ and β is more complicated than that between Iθ and

β, and hence such assumptions regarding the lack of dependence on β cannot

be made.

In this section it is shown that hypothesis tests of the form outlined in Section

3.3 do not require knowledge of Σθ (and hence any knowledge of β, including

the overall population structure α) if none of the constraints given by the vector
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h(θ) contain θ1 = π, such as in the tests suggested in Section 3.3.1. We consider

the relationship between Iθ and Σθ but must first introduce some notation. For

a given matrix A, let A[n,] be the row vector given by the nth row of A, A[,n]

be the column vector given by the nth column of A and, for b < c, A[b:c] be

the square matrix of size c − b formed using only elements aij of A for which

b ≤ i, j ≤ c.

Recall from (3.2.6) that, for large m, the covariance matrix of θ̂ is approximately

given by m−1I−1
θ

ΣθI
−1
θ

and that Σθ = CRR(τ) + BCAR(τ) + CRA(τ)B
⊤ +

BCAA(τ)B
⊤ . Then, using the fact that Iθ = CRR(τ),

I−1
θ

ΣθI
−1
θ

=I−1
θ

+ I−1
θ

BCAR(τ)I
−1
θ

+ I−1
θ

CRA(τ)B
⊤I−1

θ
+ I−1

θ
BCAA(τ)BI−1

θ
.

Now, from the discussion in Section 3.4, B = K(Iθ)[,1], where K = −λGπ(mH −
DA)

−1 is a scalar, and thus,

I−1
θ

B = KI−1
θ

(Iθ)[,1] = (K, 0, 0, ..., 0)⊤ (3.5.1)

and, similarly,

B⊤I−1
θ

= (K, 0, 0, ..., 0).

It follows easily that

(I−1
θ

BCAR(τ)I
−1
θ

)[2:nmax] = (I−1
θ

CRA(τ)B
⊤I−1

θ
)[2:nmax]

=(I−1
θ

BCAA(τ)BI−1
θ

)[2:nmax] = 0

and thus that

(I−1
θ

ΣθI
−1
θ

)[2:nmax] = (I−1
θ

)[2:nmax]. (3.5.2)

Recalling from Section 3.3.1 that (Hθ)ij = ∂hj/∂θi, note that (Hθ)[1,] = 0
⊤ and

that (H⊤
θ
)[,1] = 0 (where 0 now represents the zero column vector) if the con-

dition that none of the constraints comprising h(θ) contains θ1 = π is satisfied.

Hence, using (3.5.2),

H⊤
θ
I−1
θ

ΣθI
−1
θ

H = H⊤
θ
I−1
θ

H . (3.5.3)

Using (3.3.11) and (3.5.3) and the discussion at the beginning of this section, it

is immediately clear that the pseudo-Wald’s test does not require calculation of

Σθ if (Hθ)[1,] = 0
⊤.
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By splitting Σθ into its component parts and recalling (3.3.12), it is also clear

that the pseudoscore statistic test does not need Σθ to be calculated if

(I − IθP )B = 0. (3.5.4)

Now, using the definition of P given in (3.3.4),

(I − IθP )B = B −B + IθHθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

B

and hence we need only show that

IθHθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

B = 0.

However, this follows immediately from (3.5.1) if we have the condition that

our constraints do not include θ1 (and hence that (H⊤
θ
)[,1] = 0).

Finally, we consider the pseudolikelihood ratio test which, recalling (3.3.10),

depends upon the non-zero eigenvalues of

ΣθI
−1
θ

Hθ(H
⊤
θ I−1

θ
Hθ)

−1H⊤
θ I−1

θ
. (3.5.5)

Considering the component parts of Σθ as above and noting that B⊤I−1
θ

Hθ =

0
⊤, (3.5.5) becomes

(Iθ +BCAR(τ))I
−1
θ

Hθ(H
⊤
θ I−1

θ
Hθ)

−1H⊤
θ I−1

θ
.

Now,

[

(Iθ +BCAR(τ))I
−1
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

]2

=
[

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

+BCAR(τ)I
−1
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

]2

=Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

+Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

BCAR(τ)I
−1
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

+BCAR(τ)

(

I−1
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

+ I−1
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

BCAR(τ)I
−1
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

)

=Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

+BCAR(τ)I
−1
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

=(Iθ +BCAR(τ))I
−1
θ

Hθ(H
⊤
θ
I−1
θ

Hθ)
−1H⊤

θ
I−1
θ

since H⊤
θ
I−1
θ

B = 0. Hence the matrix given in (3.5.5) is idempotent under our

condition on the constraints and therefore its only non-zero eigenvalues are 1
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and the pseudolikelihood test does not require any knowledge of β. Moreover,

the test given by (3.3.9) may now be simplified to say that, as ν → ∞, 2 log λ(ν)

converges in distribution to a random variable taking a χ2
r distribution, where

r is the rank of Hθ.

3.6 Applications

We seek to illustrate the tests outlined in Section 3.3 using real data and simu-

lation studies. In particular, we look to test for the dependence of local contact

rate on household size using influenza data from Tecumseh, Michigan and Seat-

tle, Washington, which have been studied extensively within the mathematical

epidemiology field. These data are used since any results obtained can be com-

pared to the work of previous authors. In general, we consider tests on the

following pairs of hypotheses, as discussed in Section 3.3.1,

H0 : λ
(2)
L = λ

(3)
L = ... = λ

(nmax)
L

vs H1 : λ
(i)
L 6= λ

(j)
L for some i 6= j i, j = 2, 3, ..., nmax (3.6.1)

and

H0 :

log

(

λ
(3)
L

λ
(2)
L

)

log
(

2
3

) =

log

(

λ
(4)
L

λ
(2)
L

)

log
(

2
4

) = ... =

log

(

λ
(nmax)
L

λ
(2)
L

)

log
(

2
nmax

) (i = 1, 2, ..., nmax − 3),

vs H1 :

log

(

λ
(i)
L

λ
(2)
L

)

log
(

2
i

) 6=
log

(

λ
(j)
L

λ
(2)
L

)

log
(

2
j

) for some i 6= j. (3.6.2)

Recall from Section 3.3.1 that H0 in (3.6.2) refers to the model of Cauchemez

et al. [2004] in which, for n = 2, 3, ..., nmax, λ
(n)
L = n−ηλL for some λL, η. We

shall refer to H0 of (3.6.2) as the Cauchemez model, H0 of (3.6.1) as the basic model

and the alternative hypotheses as the unrestricted model on the local contact pa-

rameters. We perform formal goodness-of-fit tests in Section 3.6.3 to show that

all three of these models provide a reasonable fit to our data, thus validating

the use of the above hypothesis tests as tools for model selection.
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3.6.1 Testing against the unrestricted model

We begin by using real data to test the mathematically less complex basic model

and Cauchemez model against the unrestricted model for local contacts rates.

The data comprise two influenza outbreaks in Seattle, Washington, reported in

Fox and Hall [1980], from 1975-76 and 1978-79, and two outbreaks in Tecumseh,

Michigan from 1977–78 and 1980-81, reported in Monto et al. [1985]. Ball et al.

[1997] offers the original lead for considering the Tecumseh data to be taken

from a households epidemic model similar to that used here and both sets

of data have been studied under household epidemic models in Clancy and

O’Neill [2007], Neal [2012] and Neal and Kypraios [2015]. References within

those papers cite a considerable amount of further literature using one or both

data sets.

The data for the Tecumseh and Seattle outbreaks are given in Tables 3.1 and

3.2 respectively. The Tecumseh data refer to outbreaks of the same influenza A

strain (H3N2 virus) and consist of an approximately 10% sample of households

in the population, however we have already seen in Section 3.5 that knowledge

of the population structure beyond what is observed is unnecessary for the tests

on local contact parameters that we wish to perform. We treat these data sep-

arately and also consider combined data, assuming that both share common

local contact parameters and the same global contact parameter λG.

Note that if the population structure α differed for the two epidemics then the

global infectious escape probability π would differ for the two epidemics un-

der the assumptions made above. For the sake of simplicity when considering

the combined data, we assume that the population structure of Tecumseh did

not change between the two outbreaks. This is a reasonable assertion given

that the epidemics take place a mere three years apart in the same town and

the greater prevalence of larger households in the 1980-81 data set can possi-

bly be explained by assuming that the 1977-78 data represent a cross-sectional

sample of households and that the 1980-81 set deliberately recruited more of

the larger households, since minimal data are available on them in the 1977-78

sample. Under these assumptions and considering the arguments of Section

3.5, we combine the data sets in the most obvious manner (by simply adding

one to the other) when performing hypothesis tests relating to local contact pa-
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Table 3.1: Observed final size data from two influenza A epidemics (H3N2

virus) in Tecumseh, Michigan

No. infected

per household

Household size (1977-78) Household size (1980-81)

1 2 3 4 5 6 7 1 2 3 4 5 6 7

0 66 87 25 22 4 0 0 44 62 47 38 9 3 2

1 13 14 15 9 4 0 0 10 13 8 11 5 3 0

2 4 4 9 2 1 0 9 2 7 3 0 0

3 4 3 1 1 1 3 5 1 0 0

4 1 1 0 0 1 0 0 0

5 0 0 0 1 0 0

6 0 0 0 0

7 0 0

Total 79 105 48 44 12 2 1 54 84 60 62 19 6 2

rameter values on the combined data.

The Seattle data are taken from outbreaks of different influenza strains, namely

the influenza B outbreak of 1975-76 and an influenza A (H1N1) outbreak of

1978-79, so it is only appropriate to treat these as separate data sets. Note also

from Table 3.2 that we only have information for households up to size-3 for the

1978-79 outbreak. Therefore, the test given in (3.6.2) is not applicable to these

data since households of at least three different sizes (ignoring size-1 house-

holds) are needed to constrain the Cauchemez model in such a way that the

restricted MpLE θ̇ is not equal to the unrestricted MpLE θ̂.

Following the lead of Addy et al. [1991], we consider the infectious period to

take a gamma distribution with a mean of 4.1 days and shape parameter 2 for

the Tecumseh data. Returning briefly to Section 3.4, it is noted that calcula-

tion of the covariance matrices Iθ and Σθ relies on knowing the derivatives of

the moment generating function of TI . For gamma distributed TI with shape

parameter a and scale parameter b,

φ(t) =

(

1 +
t

b

)−a

,

so

φ′(t) =− a

b

(

1 +
t

b

)−(a+1)

and φ′′(t) =
a(a + 1)

b2

(

1 +
t

b

)−(a+2)

,
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Table 3.2: Observed final size data from the 1975-76 influenza B outbreak and

the 1978-9 influenza A (H1N1) outbreak, both in Seattle, Washington

No. infected

per household

Household size (1975-76) Household size (1978-79)

1 2 3 4 5 1 2 3

0 9 12 18 9 4 15 12 4

1 1 6 6 3 3 11 17 4

2 2 3 4 0 21 4

3 1 3 2 5

4 0 0

5 0

Total 10 20 28 20 9 26 50 17

where the derivatives given above are with respect to t. Such a precedent has

not been set for the Seattle data with Clancy and O’Neill [2007], for example,

suggesting both constant and exponential infectious periods for these data. As

such, we use the same gamma distribution, with a mean of 4.1 days, as the

Tecumseh data for the Seattle data (recalling that only the shape of the distri-

bution is important since the estimates of θ will adjust for scale accordingly).

This allows for easier comparison between the data sets since these data are

simply being used to illustrate the methods for hypothesis testing discussed in

this chapter.

Tables 3.3 and 3.4 give the maximum pseudolikelihood estimates for the un-

known parameters for each of the three models for all for outbreaks and the

combined Tecumseh data as well as p-values for each of the three hypothesis

tests outlined in Section 3.3 for testing the basic and Cauchemez models against

the unrestricted model. Note that for the Tecumseh 1980-81 data we would ob-

tain θ̂6 = 0, since none of the three globally contacted households of size-6 in

these data experienced any local contact. As such, our unrestricted MpLE, θ̂,

lies at the edge of our parameter space and the theory of Section 3.3 breaks

down. To account for this we follow the precedent of Addy et al. [1991] and

Ball et al. [1997], who omit households of 6 and 7 individuals in their studies,

when looking at the Tecumseh 1980-81 data. We re-introduce these households

into the combined Tecumseh data.

Immediate observations from Table 3.3 are that the unrestricted model does
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Table 3.3: Parameter estimates and hypothesis test results on the Tecumseh

and Seattle data for the pseudolikelihood-ratio test (LRT), pseudo-

Wald’s test (Wald) and pseudoscore statistic test (Score). Estimators

and hypothesis tests using the basic and Cauchemez (Cauch) mod-

els as the null hypothesis are shown. The number of households in

each population is given in brackets next to the epidemic location

and date

Model
Parameter estimate Hypothesis test p-value

π λL η LRT Wald Score

Tecumseh

1977-78 (289)

Basic 0.8542 0.0361 0.8642 0.9240 0.7374

Cauch 0.8544 0.1075 0.8050 0.9878 0.9877 0.9868

Tecumseh

1980-81 (279)

Basic 0.8792 0.0513 0.1630 0.3223 0.0027

Cauch 0.8798 0.3633 1.5203 0.9985 0.9982 0.9987

Tecumseh

comb. (576)

Basic 0.8699 0.0417 0.1205 0.0681 0.0887

Cauch 0.8703 0.2360 1.3072 0.9495 0.9857 0.9905

Seattle

1975-76 (87)

Basic 0.8319 0.0333 0.9104 0.8964 0.9254

Cauch 0.8324 0.0967 0.8080 0.9809 0.9831 0.9827

Seattle

1978-79 (93)

Basic 0.5383 0.0987 0.5146 0.5174 0.5141

Cauch 0.5401 0.2726 1.1487 N/A N/A N/A

Table 3.4: Parameter estimates for the Tecumseh and Seattle data using the un-

restricted model

Parameter estimate

π λ
(2)
L λ

(3)
L λ

(4)
L λ

(5)
L λ

(6)
L λ

(7)
L

Tec. 1977-78 0.8543 0.0431 0.0553 0.0362 0.0258 0.0212 0.0208

Tec. 1980-81 0.8797 0.1261 0.0715 0.0425 0.0330

Tec. comb. 0.8702 0.0850 0.0620 0.0398 0.0299 0.0080 0.0225

Seat. 1975-76 0.8324 0.0491 0.0391 0.0366 0.0203

Seat. 1978-79 0.5401 0.1230 0.0772
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not offer any advantage over the Cauchemez model, to the extent that such

consistently high p-values suggest that the Cauchemez model behaves almost

identically to the unrestricted model. Also, it is only when the Tecumseh 1980-

81 data are included that there is any case for rejecting the basic model. Note

also that although the three hypothesis tests appear to offer broad agreement

(as one would hope), it seems that there can be some difference between the

results of these tests, especially for lower p-values. In particular, the p-value of

0.0027 for the pseudoscore test is rather lower than those of the other two tests,

under which one would be unlikely to reject the basic model.

The estimate η = 1.5203 under the Cauchemez model for the Tecumseh 1980-

81 data suggests an abnormally high level of dependence on household size for

the local contact rate in this outbreak. This explains the lower p-values for the

testing the basic model against the unrestricted model for these and the com-

bined Tecumseh data sets. It would be foolish however to dismiss the Tecumseh

1980-81 data as anomalous with such a small number of other data sets to com-

pare to. Even if the Tecumseh 1980-81 data are unusual, it may still be perfectly

reasonable for the local contact rate to have different levels of dependency of

household size for the same strain of influenza if other conditions change. The

manner in which households were recruited into the Tecumseh 1980-81 data

(some households dropped out of the study between outbreaks and had to be

replaced) may also provide a reason for this apparent change. Whatever the

explanation, the results of Table 3.3 suggest that combining data from the two

Tecumseh outbreaks to form a single data set should be done with caution when

modelling these influenza outbreaks using a households SIR model.

A key strength of the Cauchemez model is its robustness to such changes, as

evidenced by the extremely high p-values under all three tests comparing the

Cauchemez model to the unrestricted model for all of the available data. The

Cauchemez model also maintains a large amount of the simplicity of the ba-

sic model, in that it only introduces one extra parameter no matter how many

different households sizes there are in the data. Both the basic and Cauchemez

models benefit from this simplicity and do not suffer from having highly unreli-

able parameter estimates which can occur in the unrestricted model if there are

very few households of a given size. Specifically, no estimator was available for

θ7 of the Tecumseh 1980-81 data since no individuals in size-7 households were
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infected and θ̂6 = 0 for this data set since no individuals were infected by local

contact in size-6 households. Such issues can be averted by simply ignoring

data from households whose size is rare in the data, as was done here, but this

is unnecessary under the basic and Cauchemez models. Thus, for these data, it

appears that there is generally little to gain from using the unrestricted model

for influenza, since the basic and Cauchemez alternatives provide far greater

simplicity (both mathematically and in terms of considering the reliability of

parameter estimates when minimal data are available for certain household

sizes) without significantly reducing the goodness-of-fit to the data.

3.6.2 Testing the basic model vs the Cauchemez model

We now look to test the basic model against the Cauchemez model for our in-

fluenza data. That is to say that we let θ = (π, λL, η) and wish to test

H0 : η = 0

vs H1 : η 6= 0. (3.6.3)

Under this new definition of θ and new hypotheses from (3.6.3) we now have

h(θ) = θ3 and Hθ = (0, 0, 1)⊤. It is straightforward to see that all of the the-

ory of Sections 3.3 and 3.5 still holds, since our null hypothesis still places no

restrictions on θ1 = π, but some amendment is needed to the calculations of

Iθ and Σθ given in Section 3.4. Observe that the only changes required are to

equations such as (3.4.4), which are obtained by taking derivatives with respect

to λ
(n)
L (n = 2, 3, .., nmax) under the unrestricted model. Under the Cauchemez

model, we now require derivatives with respect to λL and η. However, since

λ
(n)
L = λL/nη , we can make use of the chain rule to acquire these derivatives.

Specifically, for n = 2, 3, ..., nmax and any given function f ,

∂

∂λL
f (λ

(n)
L ) = n−η f ′(λ(n)

L ) and

∂

∂η
f (λ

(n)
L ) = −λL log (n)n−η f ′(λ(n)

L ),

where f ′ denotes the first derivative of f with respect to λ
(n)
L . Calculation of Iθ

and Σθ now follows easily using the methods of Section 3.4.

Since Hθ now has rank 1, all three of our tests now involve comparison to a χ2
1

distribution and thus we reject H0 at the 95% significance level if the relevant
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Table 3.5: p-values from testing the basic model against the Cauchemez model

using all three tests for the influenza data

Epidemic
Basic vs Cauchemez test p-value

LRT Wald Score

Tecumseh 1977-78 0.2569 0.2473 0.2817

Tecumseh 1980-81 0.0058 0.0038 0.0165

Tecumseh combined 0.0059 0.0032 0.0158

Seattle 1975-76 0.5488 0.5525 0.5679

Seattle 1978-79 0.5146 0.5116 0.5191

test statistic exceeds 3.8415. Table 3.5 gives the p-values for each of the tests on

our new hypotheses for the influenza data. Again there is good agreement be-

tween the pseudolikelihood ratio test, pseudo-Wald’s test and pseudoscore test

for each data set and this agreement is clearly far stronger than for tests relating

to the unrestricted model, although there is a general trend for the pseudo-

Wald’s test to give the lowest p-value and the pseudoscore test to give the high-

est p-value. The pseudoscore test also relies on the likelihood function L(θ)

having a derivative close to 0 at the MpLE under the null hypothesis. As such

it is particularly prone to erroneous results when parameter values are close to

their boundary (see the discussion at the end of Section 3.6.1).

As with the hypothesis tests against the unrestricted model, Table 3.5 displays

far smaller p-values when the Tecumseh 1980-81 data are included. However,

unlike before, there is now clear evidence to reject the basic model in favour

of the alternative model for both the Tecumseh 1980-81 data and the combined

data. This is particularly evident under the pseudolikelihood ratio and pseudo-

Wald’s test which both give p-values less than 0.01. The p-values for the re-

maining data do not fall near any realistic rejection region, although this may

be due to a lack of data or, in the case of the Seattle outbreaks, not having data

for a wide enough variety of household sizes. (Note that we are now able to

use the full Tecumseh 1980-81 data set, including households of sizes 6 and 7,

following the discussion at the end of Section 3.6.1. This explains the difference

in estimates of η for the Tecumseh 1980-81 data between Table 3.3 and Table 3.6

given below.)

Table 3.6 gives 95% confidence intervals for η, as obtained under the Cauchemez
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Table 3.6: 95% confidence intervals for η from the influenza data

Epidemic MpLE of η (95% confidence interval)

Tecumseh 1977-78 0.8050 (-0.5587, 2.1687)

Tecumseh 1980-81 1.7542 (0.5674, 2.9411)

Tecumseh combined 1.3072 (0.4382, 2.1761)

Seattle 1975-76 0.8080 (-1.8581, 3.4742)

Seattle 1978-79 1.1482 (-2.2804, 4.5769)

model. These intervals were calculated using the asymptotic distribution of

MpLEs given by (3.2.6). The confidence intervals are generally wide, particu-

larly for the Seattle data, which confirms the suggestion that more data, on a

greater number of household sizes is needed to determine if the basic model

should generally be rejected in favour of the Cauchemez model for influenza.

However, our MpLEs for η are consistently closer to 1 than 0. This corresponds

with the estimate of η = 0.84 given in Cauchemez et al. [2004] for influenza

data from Epigrippe in France and there is some evidence to suggest that use of

the Cauchemez model with η ≈ 1 as an alternative to the basic model should

be investigated further.

3.6.3 Goodness of fit

In this section we have considered which of our three models (basic, Cauchemez

or unrestricted) provide a “best fit” to our influenza data using hypothesis test-

ing. However, we have not considered how well any of our models fit the

data in the wider sense and not just in comparison to each other. This may be

achieved by using the usual Pearson chi-squared goodness-of-fit statistic and

following the methods of Ball and Lyne [2016].

Let N∗ = {n ∈ {1, 2, ..., nmax} : ∑
mn
i=1 δn,i ≥ 1} denote the set of household

sizes for which we have observed data from a given epidemic. For n ∈ N∗
and 0 ≤ k ≤ n let On,k and En,k(θ̂) = (∑

mn
i=1 δn,i)Pn(k|θ̂) be the observed and

expected number of households of size n respectively in which k individuals

are ultimately infected by the epidemic. Let

X2 = ∑
n∈N∗

n

∑
k=0

(

On,k − En,k(θ̂)
)2

/En,k(θ̂).

71



For the sequence of epidemics E(ν) described in Section 3.1, Ball and Lyne [2016]

show that in our single-type epidemic setting

X2
(v)

D−→ χ2
n∗

where X2
(v)

is defined in the obvious manner for E(ν) and n∗ is the degrees of

freedom for the standard Pearson test assuming independent households.

Table 3.7 shows the results of this goodness-of fit test applied to each of our

models when applied to the Tecumseh and Seattle influenza data sets. In each

case we provide the number of degrees of freedom, n∗ for the Pearson chi-

squared test, the test statistic X2 and the p-value for the goodness-of-fit test

under the null hypothesis that the observed data is drawn from a distribu-

tion described by our model. Since the number of degrees of freedom for a

Person chi-squared is equal to the number of categories in our data minus the

number of parameters in our model, we find that n∗ = nmax(nmax + 3)/2 − p,

where p is the number of model parameters and p = 2, 3 and nmax for the basic,

Cauchemez and unrestricted models respectively. Note that we once again use

a restricted version of the Tecumseh 1980-81 data set, ignoring households of

size 6 and 7 for the reasons outlined in Section 3.6.1.

We observe from the high p-values in Table 3.7 that each of our three models

appear to provide a reasonable fit to each of the real data sets used within this

chapter. Therefore, selecting one of these models to apply to each of our data

sets is sensible and hence the work in this section is a useful application of the

hypothesis testing method for model selection that is presented in this chapter.

3.7 Discussion

We have derived a central limit theorem for final size data under the households

epidemic model outlined in Chapter 2 based on the theorem derived by Ball

and Lyne [2002a]. This central limit theorem was used to present a general the-

ory for performing three types of hypothesis test (pseudoLRT, pseudo-Wald’s

and pseudoscore) based on maximum pseudolikelihood estimates of epidemic

parameters. In particular, we have focussed upon hypotheses concerning local

contact parameters λ
(n)
L (n = 2, 3, ..., nmax), giving specific calculations of co-

variance matrices for this model and showing that hypothesis tests that only
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Table 3.7: Goodness-of-fit test results on the Tecumseh and Seattle data for the

basic, Cauchemez and unrestricted models for local infectiousness.

DoF refers to the degrees of freedom of the Pearson chi-squared test.

Model DoF n∗ Test statistic X2 p-value

Tecumseh

1977-78

Basic 33 30.3109 0.6017

Cauchemez 32 27.3596 0.7006

Unrestricted 28 26.7493 0.5319

Tecumseh

1980-81

Basic 18 15.3074 0.6408

Cauchemez 17 10.4738 0.8826

Unrestricted 15 10.2511 0.8037

Tecumseh

combined

Basic 33 21.7988 0.9320

Cauchemez 32 14.1415 0.9973

Unrestricted 28 13.4078 0.9909

Seattle

1975-76

Basic 18 8.2309 0.9750

Cauchemez 17 8.1850 0.9624

Unrestricted 15 8.0386 0.9222

Seattle

1978-79

Basic 7 2.0988 0.9542

Cauchemez 6 1.6582 0.9483

Unrestricted 6 1.6582 0.9483
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consider local contact parameters do not require knowledge of what propor-

tion of the population the observed data represents (although a knowledge of

the population structure α is required).

The effects of including a maximum household size nmax in our epidemic model

have also been considered. In Section 3.1 we note that, with a minor change to

condition (ii) of Lemma 3.1.1, the central limit theorem derived in this chapter

still holds if a maximum household size is not imposed. However, the discus-

sion at the end of Chapter 2 and surrounding the use of Gontcharoff polynomi-

als in Section 3.4 point out that the numerical methods needed to compute the-

oretic final size probabilities and the covariance matrices needed to apply our

central limit theorem become intensive and potentially unstable if nmax is too

large. As such, imposing a maximum household size on our epidemic model is

sensible until such time as these numerical methods can be improved upon.

Previously studied influenza data sets from Seattle, Washington and Tecum-

seh, Michigan were used to illustrate the theory of this chapter. Hypothesis

tests were performed on the data in an attempt to decide between three nested

household epidemic models. These were the basic model, in which local con-

tact rates are independent of household size, the Cauchemez model, in which

local contact rates depend on household size in a set manner according to a

parameter η; and the unrestricted model, defined in Chapter 2 in which local

contact rates depend on household size in an arbitrary way. The hypothesis

tests showed no evidence that the unrestricted model was superior to the ba-

sic or Cauchemez models for these data but was less conclusive in determining

whether the basic model should be rejected in favour of the Cauchemez model.

Of particular interest is a specific case of the Cauchemez model in which η = 1

(which is as simple as the basic model in terms of the number of parameters

that need to be estimated). Wide confidence intervals for η, derived using the

central limit theorem of Ball and Lyne [2001], suggested that further investi-

gation into whether η may take a specific value for influenza epidemics may

provide a fruitful area for future research.

We have also established that our three models all provide a reasonable to ob-

served data from Seattle and Tecumseh using a standard goodness-of-fit test

which is applicable due to results in Ball and Lyne [2016]. Therefore, deciding

between these particular models for fitting to the observed data is a sensible ap-
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proach to statistical inference. However, one issue that has not been discussed is

whether the hypothesis testing approach outlined in this chapter is the best tool

available for model selection. The theory presented in this chapter shows that

our hypothesis testing approach is perfectly valid but other methods should

also be considered.

Information-theoretic criteria such as the Akaike information criterion (AIC)

and Bayesian information criterion (BIC) are perhaps the most popular tools

for model selection within the statistical community. Another model selection

tool that is becoming increasing popular is cross-validation. However, these

methods all rely on having independent data or else their asymptotic proper-

ties are unknown. Thus it would seem unwise to use any of these tools for

model selection with households epidemic data unless further research estab-

lishes their asymptotic properties for dependent data, augmented versions of

these methods can be found for such data or the number of households, m, in

the population sampled for a given data set is known to be large enough that

dependence between outcomes in different households is extremely weak. As

such, the hypothesis testing methods developed in this chapter appear to be the

best available model selection method for households epidemic data at present.

The real data presented in this chapter are both relatively small and are only for

influenza outbreaks and as such, our general unrestricted model cannot be dis-

missed altogether. Thus, for the remainder of this thesis we continue to present

theory in terms of the unrestricted model but will use the basic and Cauchemez

models (with emphasis on the η = 1 Cauchemez model) when providing ap-

plications and illustrations.
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CHAPTER 4

Estimating within-household

infection rates in emerging

epidemics

Thus far we have focussed upon inference from completed epidemics. We

now look to estimate the parameters of outbreaks which are still in their ini-

tial stages, specifically, the time in which an epidemic replicates the branching

process set out in Section 2.2. Previous literature on emerging epidemics has

largely focused on the exponential growth rate and this is defined and reviewed

in Section 4.1. Our key focus for this chapter however is on the local dynam-

ics in the early stages of an outbreak. Section 4.2 suggests an intuitive method

for estimating the local contact parameters of an emerging epidemic but es-

tablishes that the resulting estimators are biased. An asymptotically unbiased

estimator of local contact rates for our epidemic model is derived in Section 4.3

by utilising branching process theory and is then adapted to the discrete-time

Reed-Frost model in Section 4.4. In Section 4.5 we illustrate how the new es-

timator may be used in practice and to assess factors affecting the bias of the

intuitive estimators outlined in Section 4.2. A proof of the strong consistency of

estimators using the new method is outlined in Section 4.6. The chapter closes

with a brief discussion in Section 4.7.

This chapter is based upon the paper of Ball and Shaw [2015]. Permission has

been obtained from the publisher to reproduce this work, in particular the fig-

ures, within this thesis.

76



4.1 Review of emerging epidemics and their growth

rate

In Section 2.2 we introduced the threshold parameter R∗ which determines the

expected number of fully susceptible households that become newly infected

as the result of a typical single-household epidemic, with one initial infective,

in the early stages of a global outbreak. Thus R∗ gives the rate at which in-

fected households multiply on a generation by generation basis, where initially

infected households represent the 0th generation and any household newly in-

fected by global contact from an individual in a kth generation household be-

longs to the k + 1th generation (k = 0, 1, ...). We have seen in Chapter 2 that R∗
provides useful information as to whether there is a positive probability of an

epidemic taking off. However, since generations of infected households over-

lap in time, R∗ does not correspond to any observable growth rate. Therefore,

it is useful to consider the rate at which the number of infected households

increases in real time during the early stages of a global epidemic.

Diekmann and Heesterbeek [2000] p.9 note that for a deterministic epidemic

model with a homogeneously mixing population (i.e. λ
(n)
L = 0 for all n), in-

cidence of disease increases at an exponential rate, r, in the early stages of an

epidemic. That is to say that if Y(t) is the number of individuals that have been

infected up to time t, then

Y(t) ≈ Ke−rt

for some constant K. They also conclude that r > 0 if and only if R0 > 1. Recall

from Chapter 1 that R0 is an individual reproduction number obtained by treat-

ing the proliferation of infected individuals in the initial stages of an epidemic

in a homogeneously mixing population as a branching process. Diekmann and

Heesterbeek [2000] p.103 extend this point to deterministic models with hetero-

geneity and show that an exponential growth rate r still exists in such a popu-

lation. Thus it is natural to ask whether the proliferation of infected households

under our stochastic households model also increases at an exponential rate, r,

in the early part of a global outbreak and if it is possible to calculate r given the

parameters of an epidemic.

In Section 2.2, basic theory of discrete-time branching processes (specifically the
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Galton-Watson process) is exploited to yield the households reproduction num-

ber R∗. Given that we are now interested in real time dynamics of an epidemic,

we now need to consider the theory of branching processes in continuous time

and hence we turn our attention towards the Crump-Mode-Jagers branching

process (CMJBP), see Jagers [1975] p.123 and in particular, results relating to

the generalised CMJBP given by Nerman [1981]. Individuals in the generalised

CMJBP are associated with a random variable denoting their life length and

a point process denoting their reproduction times. We can use a generalised

CMJBP to approximate an epidemic among households considering infected

households in the epidemic as alive individuals in a CMJBP. Crucially, CMJBPs

are associated with a Malthusian parameter, r, (Jagers [1975] p.132) which gives

the rate at which the process grows exponentially. Further details on the ap-

proximating CMJBP for a households epidemic are given in Section 4.3 which

also details the relationship between r and the infectious rate parameters of an

epidemic. Pellis et al. [2011] have previously shown how r can be calculated

using the other parameters of a households epidemic however their formula

is only practical in the Markovian case in which infectious periods are expo-

nentially distributed. We encounter similar issues in this chapter which are

discussed in Section 4.3.2.

Before moving on to use theory associated with CMJBPs in order to understand

the real time dynamics of epidemics among households, one should ascertain

whether the theoretic exponential growth rate, r, discussed above may bear

any resemblance to data which may be observed in real life. Figure 4.1 shows

the number of households infected over time in a single simulation of a global

outbreak among 1 million households of size 4. The infectious period was cho-

sen to be exponentially distributed, the infectious parameters were λG = 1 and

λ
(4)
L = 1 and the epidemic was initiated by a single individual chosen uniformly

at random. A large population was used to ensure that the epidemic approxi-

mately mimicked a branching process for a reasonable period of time. The left

hand plot appears to show an exponential growth during the time t < 13, af-

ter which the epidemic is no longer in its initial stages and thus grows at an

increasingly slower rate prior to termination.

The right hand plot shows the number of infected households on a logarith-

mic scale and is significantly more informative since it appears to show a “burn
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in” period up to time t = 5, during which the epidemic becomes established.

This is followed by linear growth (on the logarithmic scale) up to approxi-

mately time t = 13 before the epidemic growth slows and eventually termi-

nates. Specifically, the right hand plot shows that the number of infected house-

holds appears to grow exponentially from approximately e4 at time t = 5 to e10

at time t = 10, suggesting an exponential growth rate of r ≈ 6/5 = 1.2. The the-

oretic exponential growth rate for this epidemic (calculated using the formula

of Pellis et al. [2011]) is r = 1.2095.
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Figure 4.1: Plots showing the number of infected households over time in a

single global epidemic among 1 million households. The right

hand plot displays the same information as the left hand plot but is

on a logarithmic for ease of observing exponential growth

Note from the above that an estimate of r should be one of the most readily

available pieces of information from an emerging epidemic (see also Riley et al.

[2003]). Pellis et al. also prove that the proliferation of infected households and

individuals occurs at the same exponential rate under the stochastic households

model. A final and important point from the formula of Pellis et al. for the

calculation of r is that it indicates that there is a one-to-one correspondence

between r and λG. Hence, if an estimate of r is available for an epidemic and

the distribution of TI is known, only the local contact rates need to be estimated

complete parameter estimation. Therefore, assuming that an estimate of r is

available, establishing local contact rate estimators is our aim for the rest of this

chapter.
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4.2 Basic approach to estimating local contact rates

For n = 2, 3, ..., nmax, suppose one wishes to estimate λ
(n)
L for an epidemic

that is observed whilst it is still in its initial stages, as described in Section

4.1. For x = 0, 1, ..., n − 1, let p
(n)
basic(x|λ

(n)
L ) be the probability that a single-

household epidemic (without global infection) in a household of size n, started

by one initial infective, finishes with x susceptibles remaining. It is clear that

p
(n)
basic(x|λ

(n)
L ) = Pn,1(n − x|λ(n)

L ) and thus may be determined using the trian-

gular system of equations given by (2.3.1) in Section 2.3.

Let a
(n)
x,y be the number of households of size n containing x susceptibles and

y infectives at the time when the epidemic is observed. By considering only

the households in which the single-household epidemic has ceased (i.e. where

x < n and y = 0), one can attempt to estimate λ
(n)
L by maximising the pseudo-

likelihood function

L
(n)
basic(λ

(n)
L |a) =

n−1

∏
x=0

p
(n)
basic(x|λ

(n)
L )

a
(n)
x,0

. (4.2.1)

Recall that (4.2.1) is not a true likelihood function as it assumes independence

between households. This method of estimation, which we call basic MpLE, is

simple but does not use all of the information available since households in

which infectives are still present are ignored. A similar approach using more of

the information available is to use maximum pseudolikelihood estimation but

with censoring on households in which there are still infectives remaining. For

n = 2, 3, ...nmax and x = 0, 1, ..., n − 1, let q
(n)
basic(x|λ

(n)
L ) = ∑

x
i=0 p

(n)
basic(i|λ

(n)
L ) be

the probability that a household of size n has at most x survivors from a single

household epidemic and let b
(n)
x = ∑

n−x
y=1 a

(n)
x,y be the number of observed house-

holds of size n containing at least one infective and exactly x susceptibles. Such

households will have at most x survivors once the single-household epidemic

is completed. We can now use what is referred to as the censored MpLE ap-

proach for estimating λ
(n)
L , with left-censoring for the number of survivors (i.e.

right-censoring for the total size), by maximising

L
(n)
censor(λ

(n)
L |a, b) =

n−1

∏
x=0

p
(n)
basic(x|λ

(n)
L )

a
(n)
x,0

q
(n)
basic(x|λ

(n)
L )

b
(n)
x

.

Figure 4.2 shows how well the basic and censored MpLE methods perform in

practice. For these histograms, epidemics were simulated using the same popu-
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lation and parameters as those used for Figure 4.1, with estimates of λ
(4)
L taking

place after the 1000th recovery has occurred. Any epidemic not reaching 1000

recoveries was considered not to have taken off and was ignored. Estimates

of λ
(4)
L were made for the first 1000 epidemics to reach the 1000 recovery mile-

stone. As before, a large population was used to ensure that the simulated

epidemics were still approximately mimicking a branching process at the time

of estimation.
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Figure 4.2: Estimates of λ
(4)
L , with a true value of 1, from 1000 epidemic simu-

lations using the basic and censored MpLE methods

It is clear from Figure 4.2 that the basic MpLE method severely underestimates

λ
(4)
L . This can be attributed to small local epidemics being more likely to have

been completed at the time of estimation than larger local epidemics. Conse-

quently, households that contain less severe local epidemics are more likely to

be included in the basic MpLE estimate, causing the observed underestimate

of λ
(4)
L . The censored MpLE approach appears to offer an improvement but

repeated simulations with different parameters showed that this method gen-

erally overestimates λ
(4)
L , as is observed in Figure 4.2. Repeating the simulation

for populations with different household sizes reveals the same trend. (The ef-

fect of household size on this observed bias is considered in more detail later in

this chapter in the discussion surrounding Figure 4.9.)

In order to obtain a more accurate estimate of λ
(n)
L (n = 2, 3, ..., nmax) one must

understand the infected households branching process in more detail. The basic
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idea is the following. If the approximating branching process does not go ex-

tinct, then it grows exponentially at a rate r, which depends on the parameters

of the households epidemic model, and as time t → ∞ the fraction of com-

pleted single household epidemics (in the branching process), in households

of size n, that leave x members susceptible, converges to a limit p̃
(n)
x,0 (r|λ

(n)
L )

(x = 0, 1, ..., n − 1). Thus we assume that each observed household in the data

has final size that comes from that distribution and estimate λ
(n)
L by maximis-

ing the pseudolikelihood obtained by replacing p
(n)
basic(x|λ

(n)
L ) by p̃

(n)
x,0 (r̂|λ

(n)
L ) in

(4.2.1), where r̂ is an estimate of the growth rate r; see (4.3.5) in the Section 4.3,

where calculation of p̃
(n)
x,0 (r|λ

(n)
L ) is explained.

4.3 A new method

4.3.1 A more accurate estimator

We begin by formalising the approximation of a households epidemic to a

CMJBP, as suggested in Section 4.1. Consider the approximating branching

process introduced in Section 2.2, in which individuals correspond to infected

households and an individual has one offspring whenever a global contact em-

anates from the corresponding single-household epidemic. For n = 1, 2, ..., nmax,

let E
(n)
H denote a typical size-n single-household epidemic, started by one mem-

ber of the household being infected at time t = 0. For t ≥ 0, let X
(n)
H (t) and

Y
(n)
H (t) be respectively the numbers of susceptibles and infectives in E

(n)
H at

time t. Let T (n) = {(x, y) : x = 0, 1, ..., n − 1; y = 0, 1, ..., n − x} and, for

(x, y) ∈ T (n), let p
(n)
x,y (t|λ(n)

L ) = P(X
(n)
H (t) = x, Y

(n)
H (t) = y) (t ≥ 0) and

p̃
(n)
x,y (r|λ(n)

L ) =
∫ ∞

0 e−rt p
(n)
x,y (t|λ(n)

L ) dt (r ≥ 0). Note that T (n) covers all pos-

sibilities for the numbers of susceptibles and infectives in a household once it

has become infected (including its state at the end of the single-household epi-

demic).

Further, let ξ
(n)
H be the point process describing times that global contacts em-

anate from E
(n)
H , so, for t ≥ 0, ξ

(n)
H ([0, t]) is the number of global contacts that

emanate from E
(n)
H during [0, t]. For t ≥ 0 let µ(n)(t) = E[ξ

(n)
H ([0, t])] and note
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that

µ(n)(dt) = λG ∑
(x,y)∈T (n)

yp
(n)
x,y (t|λ(n)

L ) dt. (4.3.1)

Let ξH be a mixture of ξ
(1)
H , ξ

(2)
H , ..., ξ

(nmax)
H with mixing probabilities α̃1, α̃2, ...,

α̃nmax . (For n = 1, 2, ..., nmax, α̃n is the probability of a global contact being with

an individual in a size-n household in the early stages of an epidemic.) Then

ξH is a point process which describes the ages at which a typical individual re-

produces in the approximating branching process. This branching process is a

general CMJBP since we have a point process associated with the reproduction

of infected households and we let the life length of an infected household be

infinite. Thus we have a random variable denoting life length that is actually

constant. It is convenient to assume that individuals live forever in the branch-

ing process, though of course an individual ceases to reproduce as soon as there

is no infective in the corresponding single-household epidemic. (Recall that in-

dividuals in the branching process are equated to infected households in the

epidemic.)

Thus we may now exploit CMJBP theory. For t ≥ 0, let

µ(t) = E[ξH([0, t])] =
nmax

∑
n=1

α̃nµ(n)(t). (4.3.2)

The branching process has a Malthusian parameter, r ∈ (0, ∞), given by the

unique solution of the equation

∫ ∞

0
e−rtµ(dt) = 1.

(See, for example, Jagers [1975] p.132.) Note, from (4.3.1) and (4.3.2), that r

satisfies

λG

nmax

∑
n=1

α̃n ∑
(x,y)∈T (n)

yp̃
(n)
x,y (r|λ(n)

L ) = 1. (4.3.3)

For n = 1, 2, ..., nmax and (x, y) ∈ T (n), an individual in the branching pro-

cess is said to be in state (n, x, y) if it corresponds to a single size-n household

epidemic and there are x susceptibles and y infectives in that epidemic. Let

T = {(n, x, y) : n = 1, 2, ..., nmax and (x, y) ∈ T (n)}. For t ≥ 0 and (n, x, y) ∈ T ,

let Yn,x,y(t) be the number of individuals in state (n, x, y) at time t in the branch-

ing process.
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Suppose that the Malthusian parameter r is strictly positive. We wish to verify

that the conditions of Theorem 5.4 of Nerman [1981] are satisfied. Condition 5.1

of Nerman sates that there exists on [0, ∞), a non-increasing, bounded, positive

integrable function g such that

E

[

sup
t∈[0,∞)

ξ(∞) − ξ(t)

g(t)

]

< ∞.

This follows from the remark given afterwards which states that the condition

is satisfied if there exists a non-increasing, positive integrable function g such

that
∫ ∞

0

1

g(t)
e−rtµ(dt) < ∞.

Following Nerman’s suggestion, we let g(t) = e−rt to satisfy this remark since

µ(∞) if r is finite.

For some (n, x, y) ∈ T let ϕ(t) denote the indicator function on whether a given

household is in state (n, x, y) at time t. Condition 5.2 of Nerman [1981] states

that there exists on [0, ∞), a non-increasing, bounded, positive integrable func-

tion h such that

U = sup
t∈[0,∞)

(

e−rtϕ(t)

h(t)

)

has finite expectation. Then setting h(t) = e−rt clearly satisfies Condition 5.2.

Thus, we may apply Theorem 5.4 of Nerman [1981]. Applied to our setting, this

shows that there exists a random variable W ≥ 0, where W = 0 if and only if

the branching process goes extinct, such that for all (n, x, y) ∈ T ,

e−rtYn,x,y(t)
a.s.−→ α̃n p̃

(n)
x,y (r|λ(n)

L )W as t → ∞, (4.3.4)

where
a.s.−→ denotes almost sure convergence (i.e. convergence with probability

1).

Note that ∑(x,y)∈T (n) p
(n)
x,y (t|λ(n)

L ) = 1, so ∑(x,y)∈T (n) p̃
(n)
x,y (r|λ(n)

L ) = 1/r (n =

1, 2, ..., nmax). Thus, if the branching process does not go extinct, as t → ∞ the

proportion of individuals that are in state (n, x, y) converges almost surely to

α̃nrp̃
(n)
x,y (r|λ(n)

L ).

Return to the households epidemic model. Recall that for (n, x, y) ∈ T , the

number of households of size n that contain x susceptibles and y infectives

when the epidemic is observed is denoted by a
(n)
x,y . Suppose that an estimate,
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r̂ say, of the growth rate r is available. Then, provided the epidemic has taken

off and it has been running for a sufficiently short period of time so that the

branching process provides a good approximation but a sufficiently long time

so that the above asymptotic composition of the branching process is applica-

ble, the λ
(n)
L can be estimated by maximising the normalised pseudolikelihood

function

L f ull(λ
(2)
L , λ

(3)
L , ..., λ

(nmax)
L |a, r̂) =

nmax

∏
n=2

∏
(x,y)∈T (n)

p̃
(n)
x,y (r̂|λ(n)

L )a
(n)
x,y . (4.3.5)

In Section 4.6 we prove that, under suitable conditions, the estimator

(λ̂
(2)
L , λ̂

(3)
L , ..., λ̂

(nmax)
L ) = argmax L f ull(λ

(2)
L , λ

(3)
L , ..., λ

(nmax)
L |a, r̂)

is strongly consistent as the number of households m → ∞, i.e. that λ̂
(n)
L con-

verges almost surely to the true value λ
(n)
L as m → ∞.

Suppose, as in the basic MpLE method, that estimation is based only on com-

pleted single-household epidemics. Then the λ
(n)
L may be estimated by max-

imising

L f inal(λ
(2)
L , λ

(3)
L , ..., λ

(nmax)
L |a, r̂) =

nmax

∏
n=2

n−1

∏
x=0

p̃
(n)
x,0 (r̂|λ

(n)
L )a

(n)
x,0 .

Observe that subject to mild conditions,

p
(n)
basic(x|λ

(n)
L ) = lim

t→∞
p
(n)
x,0 (t|λ

(n)
L ) = lim

r→0+
rp̃

(n)
x,0 (r|λ

(n)
L ).

(Since e−rt → 1 as r → 0.) It follows that, under appropriate conditions, the

basic MpLE method becomes asymptotically unbiased as the growth rate tends

down to zero.

A key assumption of the estimator based on L f ull is that the exact state of a

household is observable but this is unlikely to be realised in practice. Suppose

that only recoveries are observed. For n = 2, 3, ..., nmax and j = 1, 2, ..., n let c
(n)
j

be the observed number of households of size n with j recoveries, let A(n)
j =

{(x, y) ∈ T (n) : x + y = n − j} and let

q̃
(n)
j (r|λ(n)

L ) = ∑
(x,y)∈A(n)

j

p̃
(n)
x,y (r|λ(n)

L )/(
1

r
− q̃

(n)
0 (r|λ(n)

L )),
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where q̃
(n)
0 (r|λ(n)

L ) =
n

∑
y=1

p̃
(n)
n−y,y(r|λ

(n)
L ). Then the λ

(n)
L may be estimated by

maximising

Lrec(λ
(2)
L , λ

(3)
L , ..., λ

(nmax)
L |c, r̂) =

nmax

∏
n=2

n

∏
j=1

q̃
(n)
j (r̂|λ(n)

L )
c
(n)
j . (4.3.6)

4.3.2 Practicalities and extensions

Estimates of λ
(n)
L based upon L f ull and Lrec are both dependent on knowing

p̃
(n)
x,y (r|λ(n)

L ) for (n, x, y) ∈ T , which is not practical in many circumstances.

However, it is possible if we restrict ourselves to the Markovian case, in which

the infectious period TI is exponentially distributed, by following a similar ar-

gument to that used in Section 4 of Pellis et al. [2011] to calculate real-time

growth rates. Under these circumstances, the single-household epidemic E
(n)
H =

{(X(n)
H (t), Y

(n)
H (t)) : t ≥ 0} is a continuous-time Markov chain (CTMC). Fig-

ure 4.3 shows the transition rates of E
(3)
H as a CTMC and also assigns labels to

each state (x, y) ∈ T (3). The exact assignment of these state labels is unimpor-

tant, however it is convenient for the initial state (n − 1, 1) to be assigned as

state 1 for a size-n household. Note that the state space T (n) of E
(n)
H has size

(0, 0)9 (1, 0)8 (2, 0)7

(0, 1)3 (1, 1)2 (2, 1)1

(0, 2)5 (1, 2)4

(0, 3)6

1 1 1

2

3

2

2�L

�L 2�L

Figure 4.3: Graphical representation of a single-household epidemic for house-

holds of size 3 as a CTMC, where (x, y) denotes the household state

and state labels (shown as superfixes) for the CTMC are assigned

as described. The values on the arrows represent positive transition

rates between states in the single-household epidemic

s(n) = |T (n)| = n(n + 3)/2. Let Q(n)(λ
(n)
L ) = [q

(n)
ij (λ

(n)
L )] be the s(n) × s(n)

transition-rate matrix of E
(n)
H , using the assigned labelling. Thus, if i 6= j then

q
(n)
ij (λL) is the transition rate of E

(n)
H from the state having label i to the state hav-

ing label j, and q
(n)
ii (λ

(n)
L ) = − ∑j 6=i q

(n)
ij (λ

(n)
L ). Note that if a label i corresponds
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to a household state (x, 0), then q
(n)
ij (λ

(n)
L ) = 0 for all j. If k is the label assigned

to state (x, y) ∈ T (n) then p
(n)
x,y (t|λ(n)

L ) = (etQ(n)(λ
(n)
L ))1k, where etQ(n)(λ

(n)
L ) =

∑
∞
l=0(tQ

(n)(λ
(n)
L ))l/l! denotes the usual matrix exponential. Hence,

p̃
(n)
x,y (r|λ(n)

L ) =

∞
∫

0

e−rt(etQ(n)(λ
(n)
L ))1k dt = ([rIs(n) − Q(n)(λ

(n)
L )]−1)1k,

where Is(n) is the s(n) × s(n) identity matrix (cf. Equation (12) on p.78 of Grim-

mett and Stirzaker [2001]).

The estimating procedure described in Section 4.3.1 assumes that the distribu-

tion of the infectious period is known. The theory may be extended easily to

the setting where a parametric form is assumed for the infectious period dis-

tribution, with unknown parameters that need to be estimated from the data.

E.g. if the infectious period is assumed to follow an exponential distribution

with rate γ, then the preceding theory goes through with p
(n)
x,y (t|λ(n)

L ) replaced

in an obvious fashion by p
(n)
x,y (t|λ(n)

L , γ) and (λ
(n)
L , γ) being estimated by max-

imising the appropriate normalised pseudolikelihood function (which should

be adjusted to include households of size 1 since their dynamics are affected

by TI). Note that for final outcome data it is impossible to estimate both the

various λ
(n)
L and γ, since the final outcome distribution is invariant to rescaling

of time. However, that is not the case in an emerging epidemic setting, as the

exponential growth rate is clearly time-scale dependent.

The assumption of exponentially distributed infectious periods can be relaxed

by using the phase method (e.g. Asmussen [1987] p.71-78). For example, a

J-stage Erlang distribution for the infectious period can be accommodated by

splitting the infectious period into J stages having independent exponentially

distributed durations. The Markov property is maintained by expanding the

state space of a single-household epidemic to include the number of infectives

in each of the J stages. This can lead to an appreciable increase in the size

of T (n). One can also extend the model to an SEIR (susceptible → exposed

→ infectious → recovered) model by introducing a latent period. In the sim-

plest case, both infectious and latent periods follow exponential distributions,

in which case the state space of a single-household epidemic is extended to

include the number of exposed (i.e. latent) individuals, but again the phase

method can be used to accommodate more general distributions.
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A further extension would be to assume that infectious cases are observed with

some (un)known, probability δ ∈ [0, 1] which is independent of all other pro-

cesses in the epidemic and independent of whether previous infectious cases

have been correctly observed. (Gamado et al. [2014], for example, consider a

similar idea.) This could be easily incorporated into the model by replacing

the p
(n)
x,y (t|λ(n)

L ) with p
(n)
x,y (t|λ(n)

L , δ). Note that if δ = 0 (whether known or un-

known) only recovered individuals are observed and thus we are in the same

situation as discussed at the end of Section 4.3.1.

Finally, note that the theory above has been generalised from that presented

in Ball and Shaw [2015] in which the basic model of local contact is assumed

(λ
(n)
L = λL for all n). Alternatively, one can assume a specific form for λ

(n)
L ,

such as the Cauchemez model (see Section 3.3.1) under which one can estimate

the unknown parameters λL and η in the obvious fashion.

4.4 Application to Reed-Frost Epidemics

We make a small diversion in this section to discuss how theory similar to

the above can be applied to the discrete-time Reed-Frost epidemic model. The

Reed-Frost model, in the context of a population of households, is briefly intro-

duced before showing how a multitype branching process method can be used

to estimate local person-to-person infectious probabilities. An adapted version

of the method for Reed-Frost epidemics using continuous-time Markov pro-

cesses can be used give an alternative unbiased estimator for our continuous-

time epidemic model to that derived in Section 4.3 for epidemics with exponen-

tially distributed infectious periods. This is briefly outlined at the end of this

section.

The work presented in this section utilises theory presented in Ball and Shaw

[2016] as well as that of Ball and Shaw [2015].

4.4.1 The Reed-Frost epidemic model

We consider a population structured in the same manner as described in Sec-

tion 2.1, parameterised by α. Under the Reed-Frost model (see, for example,
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Abbey [1952]), susceptibles contacted by an infective experience a latent period

of constant duration, which without loss of generality can be taken to be one

unit of time, and the infectious period is reduced to a single point in time.

Consider an epidemic initiated by a small number of individuals being infected

at time t = 0. For t = 0, 1, . . . , individuals infected at time t become infectious

at time t + 1. Different infectives behave independently of each other. Consider

an individual in a household of size n that is infected at time t. At time t + 1

it makes global infectious contact with any given susceptible in the population

with probability pG = 1 − exp(−µG/N) and, additionally and independently,

local infectious contact with any given susceptible in its household with prob-

ability p
(n)
L . Moreover, contacts between this infectious individual and distinct

susceptible individuals are mutually independent. Any susceptible individ-

ual that is contacted by at least one infective at time t is infected and becomes

infectious at time t + 1. As in the continuous-time case, the process contin-

ues until there is no infective left in the population. For ease of notation let

pL = (p
(2)
L , p

(3)
L , ..., p

(nmax)
L ) be a vector denoting the local contact probabilities

for each household size.

Again, our focus is on emerging epidemics, so it is assumed that, when the

epidemic is observed, the proliferation of infected households still mimics a

discrete-time branching process. Note that in the limit as the population size

N → ∞, the mean number of global contacts made by a typical infective is

µG. Note also that upon infection a household of size n is in state (n, n − 1, 1)

and that in subsequent generations that household contains at least one recov-

ered individual. We assume that it is possible to observe the geometric growth

rate ρ(pL, µG) of the approximating branching process. (That being the rate

at which the number of infectives multiplies with each generation. In the ini-

tial stages of an epidemic, generation t + 1 will have approximately ρ(pL, µG)

times as many infectives as generation t.) The parameter µG increases with

ρ(pL, µG) for fixed pL, so for any estimate of pL, an estimate for µG is pre-

determined since it is assumed that ρ(pL, µG) can be observed directly. Note

that even though we have moved to a discrete-time setting, there is still the

potential for an overlap between generations in the approximating branching

process since households may contain infectives for more than one generation.

Thus a threshold parameter R∗ is still not readily available from real data and
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therefore it is sensible to consider methods utilising the observable geometric

growth rate ρ(pL, µG). It is important to note however that R∗ > 1 if and only

if ρ(pL, µG) > 1.

4.4.2 Estimating pL using a multitype branching process ap-

proximation

A multitype branching process is process in which individuals take one of

a number of possible forms and thus can assume different behaviours (see

Athreya and Ney [1972] p.191). We consider a discrete-time multitype branch-

ing process S to approximate the early stages of a Reed-Frost epidemic. Define

the type space of S as TRF = {(n, n − 1, 1) : 1 ≤ n ≤ nmax} ∪
⋃nmax

n=1 {(n, x, y) :

x ≥ 0, y ≥ 1, x + y < n} and label the elements of TRF as 1, 2, ..., k where

k = |TRF| = nmax + ∑
nmax
n=2

n(n−1)
2 = nmax(n2

max + 5)/6. Thus our “types” define

the size of a household and the number of susceptibles and infectives present

within it and the type space includes all possible household states where infec-

tion is still present.

Let M be the mean matrix of S on TRF, so the element mij is the expected num-

ber of type-j individuals that a typical type-i individual gives birth to upon

death. Under the Reed-Frost model, a household in state (n, x, y) gives birth

to an expected number of α̃n′µG households in state (n′, n′ − 1, 1), for n′ =

1, 2, ..., nmax, as a result of global infectious contacts, and to an expected num-

ber of (x
z)(1 − (1 − p

(n)
L )y)z(1 − p

(n)
L )y(x−z) households in state (n, x − z, z), for

z = 0, 1, ..., x, from local contacts. Let Yt = (Yt1, Yt2, ..., Ytk) denote the num-

ber of individuals of each type from TRF alive after t generations of S and let

ρ(pL, µG) be the maximal eigenvalue of M . Assume that ρ(pL, µG) > 1, so

the branching process is supercritical. Kesten and Stigum [1966] show that if

u(pL, µG) is the left-eigenvector associated with ρ(pL, µG), normalised so that

its components sum to one, then

ρ(pL, µG)
−tYt

a.s.−→ Wu(pL, µG) as t → ∞, (4.4.1)

where W is a non-negative random variable such that W = 0 if and only if S

becomes extinct. The eigenvector u(pL, µG) therefore gives the proportions of

individuals of each type in S as t → ∞, conditional upon S not going extinct. It
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follows from (4.4.1) that

ρ(pL, µG)
−t

t

∑
t′=1

Y ′
t

a.s.−→ ρ(pL, µG)

ρ(pL, µG)− 1
Wu(pL, µG) as t → ∞. (4.4.2)

Let Zt = (Zt1, Zt2, ..., Ztk), where Zti denotes the number of single-household

epidemics that terminate before t generations of the epidemic, for which the

last active household state was i ∈ TRF. A household in state (n, x, y) at time t′

has probability (1 − p
(n)
L )xy of containing no infectives at time t′ + 1. Hence, if

(n, x, y) is the household state associated with a type-i individual in S, it follows

from (4.4.2) and the strong law of large numbers that, for i = 1, 2, ..., k,

ρ(pL, µG)
−tZti

a.s.−→ W
(1 − p

(n)
L )xy

ρ(pL, µG)− 1
ui(pL, µG) as t → ∞.

Let u(n,x,y) = ui where i is the label of a type-(n, x, y) individual in S. Note

that any single-household epidemic finishing the generation after it was in

state (n, x, y) finishes with x susceptibles remaining. Thus, define the function

pRF f ull(n, x, y|p(n)L , µG) as follows:

pRF f ull(n, x, y|pL, µG) =















Ku(n,x,y) if y ≥ 1,

K
n−x−1

∑
y=1

(1 − p
(n)
L )xy

u(n,x,1)(pL, µG)

ρ(pL, µG)− 1
if y = 0,

where K is chosen such that

nmax

∑
n=1

[

( n−1

∑
x=0

n−x−1

∑
y=0

pRF f ull(n, x, y|pL, µG)
)

+
(

pRF f ull(n, n − 1, 1|pL, µG)
)

]

= 1.

One can then estimate pL by performing maximum pseudolikelihood estima-

tion in exactly the same manner as described using L f ull in Section 4.3.1. Note

that this estimation procedure can be adapted to the case where susceptibles

and infectives are indistinguishable, using the same method as described for

Lrec in Section 4.3.1.

4.4.3 An alternative estimator for the continuous-time model

The estimator derived for pL above relies on the Markovian property of Reed-

Frost epidemics. That is to say that at any given generation t, no knowledge
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is needed of previous generations to determine the probabilities relating to any

infectious contact. In the continuous-time case, we have already alluded to the

fact that an exponentially distributed infectious period TI makes the epidemic

Markovian (see Section 4.3.2). Suppose we have an epidemic in which TI fol-

lows an exponential distribution with mean 1 (after rescaling of time). The

approximating branching process for this epidemic may be described by a mul-

titype birth-death (B-D) process, SBD, a Markov process in which there are a

number of individuals of each type, which may increase by one following a

birth or decrease by one following a death.

The process SBD is defined on active individual types (households in which in-

fectives are present in our epidemic) and thus its type space is given by TRF.

An individual in SBD of type (n, x, y) has an exponentially distributed lifetime

with rate y(1+ xλ
(n)
L ), during which it gives birth to type-(n, n− 1, 1) individu-

als at rate yλG as a result of infectives making global contacts with susceptibles

in previously uninfected households. Upon death, a type-(n, x, y) individual

produces a type-(n, x − 1, y + 1) individual with probability xλ
(n)
L /(xλ

(n)
L + 1).

Otherwise it produces a type-(n, x, y − 1) individual if y ≥ 2 or no individual if

y = 1, since the recovery of the last remaining infective in a household causes

a single-household epidemic to cease. Label the types in the manner described

in Section 4.4.2 such that a type-(n − i, 1) individual has label i.

Recall that k = |TRF| and let Λ be the k × k birth-rate matrix of S, with element

λij being the rate at which a type-i individual gives birth to a type-j individ-

ual. Let diag(µ) be the diagonal death rate matrix of the process, with elements

given by µ = (µ1, µ2, ..., µs), where µi is the rate at which a type-i individual

dies. (Thus if i corresponds to the state (n, x, y), µi = y(1 + xλ
(n)
L ), λij = yα̃nλG

if j corresponds to the state (n, n− 1, 1), λij = xyλ
(n)
L if j corresponds to the state

(n, x − 1, y + 1), λij = y if j corresponds to the state (n, x, y − 1) and λij = 0 for

all other j.) For ease of notation, let θ = (λG, λ
(2)
L , λ

(3)
L , ..., λ

(nmax)
L ). Let r(θ) be

the maximal eigenvalue of A = Λ − diag(µ). Then r(θ) is the Malthusian pa-

rameter of SBD and hence is also the real-time growth rate of the initial stages of

the households epidemic. Let v(θ) = (v1(θ), v2(θ), ..., vk(θ)) be the left eigen-

vector of A associated with r(θ), normalised such that ∑
k
i=1 vi(θ) = 1.

Following Athreya and Ney [1972] p.206 yields a continuous-time equivalent

of (4.4.1). Let Z̃n,i(t) denote the number of single households epidemics that
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terminate before time t in households of size n with i recoveries in the epidemic

and define Zn,i(t) similarly for SBD . All such households are in state (n − i, 1)

immediately before the household epidemic ceases. Suppose i′ is the label as-

sociated with state (n − i, 1) and recall that the recovery rate of infectives is 1.

Then, for large t,

Zn,i(t) ≈
∫ t

0
Yi′(u)du ≈

∫ t

0
Wvi′(θ)e

ur(θ)du =
Wvi′(θ)

r(θ)
(etr(θ) − 1).

Moreover, see Jagers [1992]),

e−tr(θ)Zn,i(t)
a.s.−→ W

vi′(θ)

r(θ)
as t → ∞.

Let vn,x,y(θ) = vi(θ) where i is the label of a type-(n, x, y) individual in SBD .

Then for, (n, x, y) ∈ T , define

p
(n)
multi(x, y|θ) =







K(θ)v(n,x,y)(θ) if y ≥ 1

K(θ)
v(n,x,1)(θ)

r(θ)
if y = 0

where K(θ) is chosen such that ∑
nmax
n=1 ∑

n−1
x=0 ∑

n−x
y=0 p

(n)
multi(θ) = 1. Assuming the

epidemic mimics the CMJBP outlined in Section 4.3 (as t → ∞), it is clear

that p
(n)
multi(x, y|θ) gives the asymptotic proportion of households in all possible

single-household epidemic states. Thus estimation of local contact rates may

now be carried out as described in Section 4.3 using this estimator.

4.5 Numerical illustrations

Applications of the preceding theory are presented in this section. For ease of

illustration we revert to the basic model, as discussed in Section 3.6, in which

λ
(n)
L = λL for all n. Thus we need only estimate a single local contact parameter

λL (or pL under the Reed-Frost model), which may be achieved under the full-

pseudolikelihood method by maximising the pseudolikelihood function

L f ull(λL|a, r̂) =
nmax

∏
n=2

∏
(x,y)∈T (n)

p̃
(n)
x,y (r̂|λL)

a
(n)
x,y .

Pseudolikelihood functions for the recovery-pseudolikelihood, basic MpLE and

censored MpLE methods may be obtained in a similar fashion.

93



4.5.1 Simulation studies

We begin by performing a series of simulation studies. The parameter choices

for our studies are loosely based on the Fraser [2007] analysis of varicella data.

Simulations are performed on a population of m = 10 000 households with size

distribution α = [0.13, 0.30, 0.23, 0.18, 0.09, 0.07], taken from 1961 UK census

data (see Registrar General for England and Wales [1961]). Specifically, this

population has a mean household size of 3.01 and thus our population has

size N = 30100. This structure contains a higher proportion of larger house-

holds than those obtained using more recent censuses and is used to maximise

the effect of local infectious contacts on the simulated epidemics. The popula-

tion size is chosen so that it is small enough to represent a realistic population

cluster (e.g. a town) but large enough so that there are sufficient data to es-

timate λL whilst the epidemic is still in its emerging phase. For the sake of

simplicity, an exponentially distributed infectious period with rate 1 is used.

Fraser suggests having a within-household susceptible-infectious escape prob-

ability of 0.39, as reported by Hope Simpson [1952], and that infected individ-

uals be expected to infect 1.21 susceptibles outside of their household. This

implies parameter values of λG = 1.21, λL = 1.565 (since φ(1.565) = 0.39,

where φ(θ) = E[exp(−θTI)] = (1 + θ)−1 and r = 1.762 (recall (4.3.3)) in the

continuous-time case and µG = 1.21, pL = 0.61 (= 1− 0.39), ρ(pL, µG) = 2.248

under the Reed-Frost model.

Unless stated otherwise, growth rates are estimated by fitting a straight line to

the logarithm of the number of recoveries, as a function of time, using the poly-

fit function in MATLAB. The first 20 recoveries are ignored when estimating r,

to enable the exponential growing phase of the epidemic to settle in. Note that,

while this is the most common method to estimate r, other methods are also

considered in the literature; see, for example, Ma et al. [2014]. Further to this,

King et al. [2015] show that this method showed severe bias when applied to

real life Ebola data from West Africa in 2014. Thus we use this method to give

an estimator of r purely out of convenience when dealing with simulated data

and do not advocate using this method when analysing real life data.

For illustrative purposes, estimates of λL are given in terms of the secondary

attack rate (SAR), as defined by Longini and Koopman [1982]. The SAR is
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the probability that an infective infects locally a given household member, ex-

pressed as a percentage, and is given by 100%(1 − φ(λL)). (Note that with the

continuous-time and discrete-time models, matching the SAR and λG results in

different growth rates.) The SAR is used since the variance of estimates of λL,

under any of the methods outlined in this paper, increases greatly as the true

value of λL increases, whereas the variance of the SAR estimates is closer to

being constant whatever its true value. Note that for a given distribution of TI ,

SAR strictly increases with λL.

It is shown in Section 4.3 that an emerging households epidemic can be approx-

imated by a Crump-Mode-Jagers branching process (CMJBP), however there

is no indication as to when an epidemic can still be considered to be in its

emerging phase. Figure 4.4 shows estimates of the SAR throughout the life-

time of a single simulated SIR epidemic using the parameters outlined above.

Estimations of λL (and hence of the SAR using the formula given above) were

made at regular intervals throughout the epidemic using basic MpLE, censored

MpLE, full- and recovery-pseudolikelihood estimation methods (using (4.3.5)

and (4.3.6) respectively) and by considering the distribution of individuals at

the end of an epidemic using the methods of Section 3.2. This is referred to as

the final-size method of estimation.

For the basic MpLE method, it takes some time before the SAR is estimated to

be non-zero. This can be explained by the reliance of this method on household

epidemics being completed since the basic MpLE method will only pick up

any trace of local infectivity when a completed single-household epidemic with

more than one recovered individual is observed. As would be expected, the

final-size method appears to tend to the true SAR value as t → ∞. The initially

large estimates from the final size data can be explained by noting that few

households are infected at this time but that recoveries are clustered within

households. The former point suggests a very low value of λG (considering

that the estimator assumes that the epidemic is complete), so the estimate of

the SAR is large to account for the clustering of recovered individuals.

Note that the recovery-pseudolikelihood method estimates the SAR to be 100%

as the epidemic approaches completion. In the epidemic outlined above, with

growth rate r = 1.762 but with an SAR of 100%, appreciably fewer than half of

all infected households of size 3 and above are expected to contain only recov-
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ered individuals during the emerging phase. Once the true epidemic (with an

SAR of 61%) is completed, appreciably more than 80% of households of size 3

and above in the entire population are expected to contain only recovered indi-

viduals. This suggests that there is a threshold, after the epidemic has stopped

approximating a CMJBP, when the number of recovered individuals in infected

households exceeds the expectations of even the maximum possible SAR in

the recovery-pseudolikelihood estimation method, hence this method will con-

tinue to give an MpLE for the SAR as 100% for the remainder of the epidemic.
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Figure 4.4: Estimates of the SAR (true value 61%) through time for a single

SIR households epidemic. The four estimation methods outlined

earlier in this chapter are shown along with estimates of the SAR

using the final-size method

Figure 4.4 shows that once an epidemic has had sufficient time to establish it-

self, there is a window when both the full and recovery CMJBP methods appear

to give a good estimate of the SAR. This corresponds to the time in Figure 4.1

when exponential growth is evident but is of a shorter length of time due to

the smaller population size used in this simulation. Moreover, the length of

this window in Figure 4.4 is roughly the same for both CMJBP methods, al-

though the recovery method gives a less reliable estimate owing to it using less

information. This is confirmed in Figure 4.5 which shows kernel density es-

timates of the distribution of the estimator of SAR for both CMJBP methods

from 1000 simulations of the epidemic outlined above. The plots marked ‘γ
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known’ use the methodology described in Section 4.3.1 and those marked ‘γ

unknown’ assume that γ is also estimated, as described in Section 4.3.2. Esti-

mates of the SAR were made from each simulation after 500 recoveries were

observed for reasons outlined below. Irrespective of whether or not γ is also es-

timated, both the full and recovery methods yield estimates of the SAR that are

centred broadly around the true value of 61% but the recovery method yields

estimates having a far greater variance. The variance of the estimates is greater

when γ is assumed unknown than when it is assumed known but the differ-

ence is appreciably smaller than that between the full and recovery methods.

Kernel density estimates are used here for visual reasons as it allows us to view

all four of our methods on the same plot. The inset of Figure 4.5 shows a scat-

ter plot of the estimates of (SAR, γ) using the full-pseudolikelihood method,

which indicates that the estimates of the SAR and γ are positively correlated.
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Figure 4.5: Kernel density estimates of the distribution of the estimator the

SAR (true value 61%) based on 1000 simulations of the outlined

epidemic using the full and recovery CMJBP estimation methods,

both with and without the recovery rate γ (true value 1.00) being

also estimated. Inset: Scatter plot of estimates of (SAR, γ) for the

full-pseudolikelihood (γ unknown) method

Repeated simulations using different population sizes yielded very similar re-

sults to those seen in Figure 4.4, in that there appears to be a window once

the epidemic has established itself when a households SIR epidemic can still

be considered to be in its emerging phase and the full-pseudolikelihood es-

timate is relatively accurate. The start of this window corresponds to when
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the asymptotic behaviour of the approximating CMJBP kicks in, the timing of

which is independent of the total population size N, provided N is sufficiently

large. Further simulations suggested that this window ends when approxi-

mately N2/3 recoveries have occurred, after which the CMJBP approximation

of the households epidemic breaks down. The time taken for N2/3 recoveries

to take place depends on the severity of the epidemic and the population size.

Note that Barbour and Utev [2004] prove that a homogeneously mixing Reed-

Frost model can be closely approximated by a branching process up until order

N2/3 individuals have been infected.
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Figure 4.6: EMSE of estimates of the SAR using the full-pseudolikelihood

method. See text for details

The above points are illustrated in Figure 4.6. This figure shows estimates

of the mean squared error (EMSE) of estimates of the SAR, assuming that γ

(= 1) is known, using the full-pseudolikelihood method throughout the emerg-

ing stages of 1000 simulated epidemics and among populations with differ-

ing numbers of households. All simulated epidemics used in this figure are

from a model with the same population structure α, growth-rate r and SAR

as given above. If SAR1, SAR2, ..., SAR1000 denote the estimates of the SAR

(true value 61%) obtained from these 1000 simulated epidemics then EMSE

= 1000−1 ∑
1000
i=1 (SARi − 61)2. It is assumed that the value r is known, in or-

der that the figure illustrates only when the distribution of household states in

an emerging epidemic conforms to its equivalent branching process. It can be

seen that it takes approximately 50 recoveries to occur (regardless of popula-
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tion size) for the EMSE to stabilise and settle at a lower value due to the high

variance of SAR estimates when too few households have been infected and the

epidemic is yet to establish itself in the population. The length of this window

then clearly increases with population size as a result of a higher percentage of

fully susceptible households still being available at this stage of the epidemic.

For the population considered in most of the numerical illustrations, i.e. con-

sisting of 10 000 households, it appears appropriate to estimate the SAR after

approximately 500 recoveries have occurred. This issue is discussed further in

Section 4.5.3.

We now consider estimation of pL in the Reed-Frost model. A single-household

epidemic in a household of size n can last for at most n generations. Thus, under

the assumption that all global contacts are with individuals in previously unin-

fected households, if the households epidemic is observed in the kth generation,

one can estimate pL by using an adaptation of the basic MpLE method from the

continuous time case as follows. If one wishes to make the estimate in the kth

generation then the single-household epidemics in all households with at least

one recovery in the (k − nmax + 1)th generation are certain to have been com-

pleted. One can then estimate pL by using only the latter households and con-

sidering the final-size distributions of single-household epidemics under the

Reed-Frost model to perform the basic MpLE method of estimation in the same

manner as before. This circumvents the problem of uncompleted epidemics in

households but at the expense of ignoring the information about pL contained

in those single-household epidemics.

Figure 4.7 gives kernel density estimates of pL (true value 0.61) for 1000 simula-

tions of Reed-Frost epidemics with parameters as outlined at the beginning of

this section. Estimates were made in the first generation at which 1000 recover-

ies were observed using the full- and recovery-pseudolikelihood methods (i.e.

both with and without the ability to distinguish between susceptibles and infec-

tives) and by using the adapted basic MpLE method outlined above. Note that

all three methods appear to give estimates that are centred roughly around the

true value of pL, however, the adapted basic MpLE method estimates have a far

larger variance than the other estimates, suggesting that the full- and recovery-

pseudolikelihood methods are preferable, regardless of whether or not infec-

tives are distinguishable. Estimates were made after 1000 recoveries had been
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observed rather than the 500 recoveries used in the continuous-time case, ow-

ing to the time it takes for 500 recoveries to occur potentially being nmax − 1 = 5

generations.
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Figure 4.7: Kernel density estimates of the distribution of the estimator of pL

(true value 0.61) based on 1000 simulations of Reed-Frost type epi-

demics; see text for details

4.5.2 Relationship between parameters of the model and bias

of the basic and censored MpLE methods

We examine the extent of the bias of the basic and censored MpLE methods and

how the bias is affected by various parameters of an epidemic, by considering

“perfect” household data, a, from an emerging epidemic (as determined by its

CMJBP or multitype branching process approximation) and using these data

to estimate λL (or pL if the model is Reed-Frost) using the basic and censored

MpLE methods. Households data are considered to be perfect for an emerging

epidemic in continuous-time with parameters λL and r, if the proportion of

households in state (n, x, y) is exactly α̃nrp̃
(n)
x,y (r|λL) for all (n, x, y) ∈ T . (Note

that with perfect data, λ̂L = argmax l̃
(∞)
f ull, see equation (4.6.6) in Section 4.6.)

Similarly, perfect data for an emerging Reed-Frost epidemic with parameters

pL and µG is achieved when the proportion of households in state (n, x, y) is

exactly pRF f ull(n, x, y|pL, µG) for all (n, x, y) ∈ TRF. Note that in both cases, the

distribution of household states representing perfect data is also dependent on
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the population structure α = (α1, α2, ..., αnmax). Note also that assuming perfect

data is equivalent to assuming an infinite population, in which all households

are observed, and that in this setting, estimates of the SAR have no illustrative

advantage over those of λL, since all estimates have no variance.

Effect of local contact rate
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Figure 4.8: Estimates of different values pL assuming perfect data in emerging

Reed-Frost type epidemics, ρ = 2.248, using the basic and censored

MpLE methods

Figure 4.8 illustrates the effect of the local contact rate on the bias of the ba-

sic and censored MpLE methods by considering estimates of pL for emerging

Reed-Frost epidemics with geometric growth rate ρ = 2.248 and household

distribution α = [0.13, 0.30, 0.23, 0.18, 0.09, 0.07], as given in Section 4.5.1 but

with different local contact probabilities. Note that given perfect data, both es-

timates converge to the true value of pL as pL tends to 0 or 1. This can be easily

explained by noting that all completed single-household epidemics in house-

holds of size n will have exactly 1 recovery if pL = 0 and exactly n recoveries if

pL = 1, implying that the issue of less severe single-household epidemics being

more likely to be included in the estimation data becomes irrelevant since all

single-household epidemics are of the same severity. The basic and censored

MpLE methods appear to be at their most biased in the region 0.3 < pL < 0.6

when the proportion of recoveries from single-household epidemics in house-

holds of sizes 3 and 4 (which make up a significant portion of the population)
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are distributed in a relatively uniform manner.

Effect of household size
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Figure 4.9: Estimates of λL assuming perfect data for emerging epidemics,

with r = 1.762, among populations with equal household sizes us-

ing the basic and censored MpLE methods. The upper plot takes

λL = 1.565 for all household sizes. The lower plot adopts the model

λ
(n)
L = λL/n, where n is household size and λL = 6.75

Figure 4.9 gives two plots showing estimates of λL in continuous-time epi-

demics with real-time growth rate r = 1.762 assuming perfect data for popula-

tions of equal sized households from 2 to 20. The upper plot considers the case
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where λL = 1.565, independent of household size. In this plot the basic MpLE

estimate considerably underestimates λL regardless of household size but the

bias appears to get marginally worse as household size increases. This can be at-

tributed to the most severe single-household epidemics taking longer in larger

households and hence fewer of the more severe epidemics are completed by

the time of estimation in larger households. The censored MpLE fares better

however and appears to converge towards the true value of λL as household

size increases. Since λL is a person-to-person contact rate, larger households

are far more likely to have severe epidemics than smaller households with the

same λL, since the number of local infectious contacts in a household increases

quadratically with n. Therefore, as household size increases, the proportion of

recoveries from single-household epidemics with the same local contact rate

becomes less uniform, leading to less bias in the censored MpLE estimate (as

observed in Figure 4.8).

The lower plot of Figure 4.9 uses the same real-time growth rate and popula-

tion distributions but assumes that the local infection rate depends on house-

hold size, specifically that λ
(n)
L = λL/n with λL = 6.75 (i.e. the Cauchemez

model described in Section 4.3.2). This value was chosen as it gives a value of

λG = 1.21 when r = 1.762 from the population distribution α as used previ-

ously in this section. Here it can be seen that the basic MpLE approach again

becomes more biased as household size increases while the censored MPLE ap-

proach does not appear to converge back towards the true value of λL. In the

basic case this is for the same reasons as before, whereas in the censored case,

the additional local contacts that come from an increased household size are

compensated by the reduction of the local contact rate, leading to the relatively

uniform distribution of recoveries in a single household-epidemic which causes

bias. However, as in the upper plot, the censored MpLE does eventually con-

verge back towards the true value of λL as household size increases beyond the

scope of Figure 4.9 since the number of local contacts in a household increases

with household size at a greater rate than the local contact rate decreases.

Effect of growth rate

Figure 4.10 shows estimates of λL in emerging epidemics with λL and α as

defined in Section 4.5.1. It is clear from the plot that both the basic and censored
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MpLE estimates converge to the true value of λL as r → 0, as is proved in

Section 4.3.1.
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Figure 4.10: Estimates of λL assuming perfect data in emerging epidemics with

different real-time growth rates r using the basic and censored

MpLE methods

4.5.3 Accuracy of the new estimator

In Section 4.5.3 we discuss the reliability of the full-pseudolikelihood method

(following Figure 4.6) and in particular when it is at its most accurate. We now

attempt to provide some insight into how population and household sizes affect

the accuracy of this estimator of λL (or the SAR). Let ã
(n)
x,y denote the proportion

of infected households of size n that are in state (n, x, y), then the TV (total vari-

ation) distance between the observed epidemic and the limiting distribution of

its approximating CMJ branching process is given by

D(a, λL, r) = ∑
(n,x,y)∈T

α̃n|ã(n)x,y − p̃
(n)
x,y (r̂|λ(n)

L )|

Figure 4.11 shows how D(a, λL, r) changes as epidemics progress. Specifically

epidemics with parameters λG = 1.21, λL = 0.64 and a unit-mean exponential

infectious period were simulated and 1000 that took off were used for each

of the following population structures. In the left hand plot, populations of

21000 individuals are partitioned into equally sized households of 2, 4, 6 and 8
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while the right hand plot uses populations of 5000, 10000, 20000 households of

size 4 and a CMJBP made up of households of size 4 (representing an infinite

population). During the simulations, the distance D(a, λL, r) was recorded at

regular intervals based on the number of recovered individuals observed and

the mean TV distance at each interval over the 1000 simulations provided the

data points for the plots.

For a population of 21000 individuals, D(a, λL, r) is minimised after approxi-

mately 500 recoveries have occurred regardless of the household size. As stated

in the discussion surrounding Figure 4.6, before this point the epidemics have

not had long enough in general to settle into behaviour resembling the asymp-

totic behaviour of the CMJBP, whilst, after this point, global infectious contacts

with susceptibles in previously infected households begin to make the CMJBP

approximation break down.

It is also worth noting the general pattern of D(a, λL, r) increasing as house-

hold size increases. Initially this can be attributed to the smaller state space

in epidemics with smaller households reducing the number of elements in the

sum used to calculate D(a, λL, r) and allowing the epidemic to settle into its ap-

proximate CMJBP behaviour more quickly. As epidemics progress, the greater

number of households in epidemics with smaller-sized households also means

that global infectious contacts with susceptibles in previously infected house-

holds occur less frequently, so D(a, λL, r) remains small for longer in popula-

tions split into smaller sized households. The right hand plot shows that as

population size increases, the number of recoveries needed before the CMJBP

approximation begins to break down becomes increasingly large (again offer-

ing agreement with Barbour and Utev [2004] as discussed after Figure 4.6). For

an infinite population, the mean TV distance converges towards zero as the

number of recoveries increases, as predicted by theory; the mean TV distance

drops quickly to about 0.05 but thereafter convergence is much slower.

4.6 Strong consistency of estimators

We consider the asymptotic behaviour of the estimators described in Section

4.3 as the number of households in the population tends to infinity. Specifically
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Figure 4.11: Mean TV distances between the observed and asymptotic distri-

bution of household states as the number of recovered individuals

increases, based on 1000 epidemic simulations. See main text of

Section 4.5.3 for further details

we show that, under suitable conditions, the estimators are strongly consistent,

conditional upon the epidemic taking off. This section extends the results of

Professor Frank Ball that were originally published in Ball and Shaw [2015],

which only considers estimators of λL under the basic epidemic model and

assumes that the recovery rate γ is known. The proof is adapted here to incor-

porate estimators household size dependent λ
(n)
L and an unknown infectious

period/recovery rate γ.

The proof is structured as follows. Theorem 4.6.1 shows that if the approximat-

ing branching process takes off and if the number of households in the pop-

ulation is large enough, the epidemic does mimic the approximating branch-

ing process for some time at the start of the outbreak. (Recall from Chapter 2

that we are not interested in the case where the epidemic does not take off.)

Specifically, we equate births in the approximating branching process to global

contacts made by infectives in the epidemic and consider the number of such

contacts in the epidemic until the first one with an individual not in a fully

susceptible household. We then show that, if the epidemic occurs in a large

enough population, there is a time frame (which tends to ∞ as m → ∞) in

which the approximating branching process contains strictly fewer births than

this value, meaning that all births in the approximating branching process dur-

ing this time frame correspond to a global infectious contact with an individual

in a fully susceptible household in the epidemic.

Theorems 4.6.2 and 4.6.3 show the strong consistency of the estimators obtained
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using the full- and recovery-pseudolikelihood methods respectively. We adapt

the standard methodology of considering the maximum of the pseudolikeli-

hood function of our unknown parameters for epidemics with large m and the

maximum of the limit of a sequence of these functions as m → ∞. Exploration

of the behaviour of the pseudolikelihood function towards the limits of its do-

main are required to complete the proof and it is here that the extension of the

results in Ball and Shaw [2015] is particularly non-trivial. Completion of the

proof of strong consistency is achieved for the full-pseudolikelihood estimator

but is left as an open problem for the recovery-pseudolikelihood estimator.

Consider a sequence of epidemics E(m) (m = 1, 2, ...), indexed by the num-

ber of households in the population. For m = 1, 2, ... and n = 1, 2, ..., nmax,

let α
(m)
n be the proportion of households in E(m) that have size n. The epi-

demic E(m) is as defined in Chapter 2 and has one initial infective, who is

chosen uniformly at random from the population. The infection parameters

(λG, λ
(2)
L , λ

(3)
L , ..., λ

(nmax)
L ) and the infectious period distribution are all assumed

to be independent of m, as is the maximum household size nmax . We assume in

this proof that the infectious period TI takes an exponential distribution with

unknown rate γ, as suggested in Section 4.3.2. Adapting the proof to the case

in which TI takes an arbitrary but known distribution is trivial (and is the proof

given in Ball and Shaw [2015]). Let θ = (γ, λ
(2)
L , λ

(3)
L , ..., λ

(nmax)
L ) be a vector de-

noting the unknown parameters which we are estimating. It is assumed that

α
(m)
n → αn as n → ∞ (n = 1, 2, ..., nmax).

Let E(∞) denote the general branching process, analysed in Section 4.3, which

approximates the epidemic E(m) for suitably large m. Recall that for (n, x, y) ∈
T , the number of individuals in E(∞) having state (n, x, y) at time t is denoted

by Yn,x,y(t). For m = 1, 2, ..., (n, x, y) ∈ T and t ≥ 0, let Y
(m)
n,x,y(t) denote the num-

ber of size-n households in E(m) that have x susceptibles and y infectives at time

t. Let TL = {(n, x, y) ∈ T : y ≥ 1}. For t ≥ 0, let Y(t) = ∑(n,x,y)∈TL
Yn,x,y(t)

denote the number of “live” individuals in E(∞) at time t. Recall that r denotes

the Malthusian parameter of E(∞).

Theorem 4.6.1. Suppose that r > 0. Then there is a probability space (Ω,F , P) on

which are defined a sequence of epidemics E(m) (m ≥ 1) and the approximating branch-

ing process E(∞) satisfying the following property. Let A = {ω ∈ Ω : lim
t→∞

Y(t, ω) =

0} denote the set on which the branching process E(∞) goes extinct. Then for P-almost
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all ω ∈ Ac and any c ∈ (0, 1
2r−1),

sup
0≤t≤c log m

max
(n,x,y)∈T

|Y(m)
n,x,y(t, ω)− Yn,x,y(t, ω)| = 0 (4.6.1)

for all sufficiently large m.

Proof. For m = 1, 2, ..., let N(m) = m ∑
nmax
n=1 nα

(m)
n denote the total number of in-

dividuals in the population among which E(m) is spreading. Let (Ω,F , P) be a

probability space on which are defined the following independent sets of ran-

dom quantities: (i) a realisation of the branching process E(∞); (ii) χ
(m)
k (m =

1, 2, ...; k = 1, 2, ...), where for each m, χ
(m)
1 , χ

(m)
2 , ... are independent and uni-

formly distributed on {1, 2, ..., N(m)}.

For m = 1, 2, ..., a realisation of the early stages of the epidemic E(m) can be

defined on (Ω,F , P) as follows. Label the individuals in the mth population

1, 2, ..., N(m). The initial infective in E(m) has a label given by χ
(m)
1 and cor-

responds to the ancestor in the branching process E(∞). Births of individu-

als in E(∞) correspond to global infectious contacts being made in E(m). For

k = 1, 2, .., the individual contacted in E(m) corresponding to the kth birth in

E(∞) has a label given by χ
(m)
k+1. If the household in which χ

(m)
k+1 resides has

not been infected previously, then χ
(m)
k+1 becomes infected in E(m) and initiates

a new single-household epidemic in E(m) whose course and subsequent global

infectious contacts are given by the life-history of the (k + 1)th individual in

E(∞). If the household in which χ
(m)
k+1 resides has been infected previously then

the construction of E(m) needs modifying but such detail is not required for the

present proof. Note that local infectious contacts still occur but are not births in

the approximating branching process since they do not infect new households.

For m = 1, 2, ..., let M(m) be the smallest k ≥ 2 such that χ
(m)
k belongs to the

same household as χ
(m)
l for some l = 1, 2, ..., k − 1, and let M̂(m) be a random

variable, taking values in 2, 3, ..., having survivor function

P(M̂(m)
> k) =

k−1

∏
i=1

(1 − inmax/N(m)) (k = 2, 3, ...).

Note that M(m) is stochastically greater than M̂(m), since the maximum house-

hold size is nmax, and (cf. Aldous [1985], p.96) m−1/2M̂(m) D−→ M̂ as m →
∞, where

D−→ denotes convergence in distribution and M̂ has density f (x) =
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nmaxxµ−1
H exp (−nmaxµ−1

H x2/2) (x > 0), with µH = ∑
nmax
n=1 nαn being the mean

household size. (Note that m−1N(m) → µH as m → ∞.)

By the Skorokhod representation theorem, the random variables M̂, M(m) and

M̂(m) (m = 1, 2, ...) may be defined on a common probability space so that

P(M(m) ≥ M̂(m), (m = 1, 2, ...)) = 1 and m−1/2M̂(m) a.s.−→ M̂ as m → ∞. Further,

that probability space may be augmented to carry random variables χ
(m)
k (m =

1, 2, ...; k = 1, 2, ...) distributed as above and consistent with M(m) (m = 1, 2, ...).

Thus we may assume that the random variables M̂(m) (m = 1, 2, ...) and M̂ are

also defined on (Ω,F , P) and that there exists B ∈ F with P(B) = 1, such that,

for all ω ∈ B,

M(m)(ω) ≥ M̂(m)(ω) and m−1/2M̂(m)(ω) → M̂(ω) as m → ∞. (4.6.2)

For t ≥ 0, let T(t) be the number of births in E(∞) during [0, t], including

the ancestor. Then T(t) = ∑(n,x,y)∈T Yn,x,y(t) and it follows from (4.3.4) that

e−rtT(t)
a.s.−→ r−1W as t → ∞. Recall that W = 0 if and only if the branching

process goes extinct. Thus there exists C ∈ F , with C ⊆ Ac and P(C) = P(Ac),

such that for all ω ∈ C,

e−rtT(t, ω) → r−1W(ω) as t → ∞. (4.6.3)

Let ω ∈ B∩C and c ∈ (0, 1
2r−1). Then it follows from (4.6.3) that T(c log m, ω) <

2mrcr−1W(ω) for all sufficiently large m. Also, (4.6.2) implies that M(m)(ω) >

1
2m1/2M̂(ω) for all sufficiently large m. Hence, since rc < 1/2, for all suf-

ficiently large m, every birth in E(∞)(ω) during (0, c log m] corresponds to a

global contact with an uninfected household in E(m)(ω) and (4.6.1) follows

since P(B ∩ C) = P(Ac).

We turn now to estimation of λ
(n)
L (n = 2, 3, ..., nmax) and γ. Suppose that

the epidemic E(m) is observed at time t(m), where the sequence (t(m)) satis-

fies (i) t(m) → ∞ as m → ∞, (ii) t(m) ≤ c log m for all sufficiently large m,

for some c ≤ (2r)−1. Suppose also that an estimator r̂(m) of the growth rate

r is available such that r̂(m) a.s.−→
Ac

r as m → ∞ where
a.s.−→
Ac

means convergence

for P-almost all ω ∈ Ac. It is easily verified that one such estimator is r̂(m) =

log[(T(m)(t(m))/T(m)(t(m)/2))]/(t(m)/2), where T(m)(t) is the total number of
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households that have been infected in E(m) by time t. Let θ̂
(m)
f ull denote the esti-

mator obtained by maximising the function L f ull(γ, λ
(2)
L , λ

(3)
L , ..., λ

(nmax)
L |a, r̂(m))

defined at (4.3.5) and extended to include γ. For ease of exposition, we as-

sume that all infected households are observed, so, in our present notation,

a
(m)
x,y = Y

(m)
n,x,y(t

(m)) for (n, x, y) ∈ T . The following theorems are easily ex-

tended to the situation when only some infected households are observed; of

course, the number of observed households must tend to infinity as m → ∞ and

the sampling mechanism must be independent of disease progression within

households. In these theorems, it is convenient to denote the true value of θ by

θ̄ = (γ̄, λ̄
(2)
L , λ̄

(3)
L , ..., λ̄

(nmax)
L ).

Theorem 4.6.2. Under the conditions of Theorem 4.6.1,

θ̂
(m)
f ull

a.s.−→
Ac

θ̄ as m → ∞.

Proof. First note that from (4.3.5)

θ̂
(m)
f ull = argmax l̃

(m)
f ull(θ|Y

(m), r̂(m)), (4.6.4)

where

l̃
(m)
f ull(θ|Y (m), r̂(m)) = W−1e−rt(m)

nmax

∑
n=1

∑
(x,y)∈T (n)

Y
(m)
n,x,y(t

(m)) log p̃
(n)
x,y (r̂

(m)|θ).

(Note that, unlike in Ball and Shaw [2015], we must sum across all household

sizes since households of size 1 contribute information towards estimating γ̄.)

Observe that, under the conditions satisfied by (t(m)), Theorem 4.6.1 and (4.3.4)

imply that, for all (n, x, y) ∈ T ,

W−1e−rt(m)
Y
(m)
n,x,y(t

(m))
a.s.−→
Ac

α̃n p̃
(n)
x,y (r|θ̄) as m → ∞. (4.6.5)

Hence, since r̂(m) a.s.−→
Ac

r as m → ∞, we have that for any θ ∈ (0, ∞)nmax ,

l̃
(m)
f ull(θ|Y

(m), r̂(m))
a.s.−→
Ac

l̃
(∞)
f ull(θ|r) as m → ∞,

where

l̃
(∞)
f ull(θ|r) =

nmax

∑
n=1

α̃n ∑
(x,y)∈T (n)

p̃
(n)
x,y (r|θ̄) log p̃

(n)
x,y (r|θ). (4.6.6)
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Standard arguments, (e.g. Silvey [1975], page 75) show that, for n = 2, 3, ..., nmax,

the function gn(θ) = ∑(x,y)∈T (n) p̃
(n)
x,y (r|θ̄) log p̃

(n)
x,y (r|θ) has a unique global max-

imum at θ̄. Hence, as a function of θ ∈ (0, ∞)nmax , l̃
(∞)
f ull(θ|r) has a unique global

maximum at θ̄.

Fix K such that K is a compact subset of (0, ∞)nmax and θ̄ ∈ K. Then

max
θ∈K

|l̃(m)
f ull(θ|Y (m), r̂(m))− l̃

(∞)
f ull(θ|r)| ≤

nmax

∑
n=1

∑
(x,y)∈T (n)

max
θ∈K

g
(m)
n,x,y(θ), (4.6.7)

where

g
(m)
n,x,y(θ) = |W−1e−rt(m)

Y
(m)
n,x,y(t

(m)) log p̃
(n)
x,y (r̂

(m)|θ)− α̃n p̃
(n)
x,y (r|θ̄) log p̃

(n)
x,y (r|θ)|.

Now

g
(m)
n,x,y(θ) ≤ ĝ

(m)
n,x,y(θ) + ǧ

(m)
n,x,y(θ), (4.6.8)

where

ĝ
(m)
n,x,y(θ) = W−1e−rt(m)

Y
(m)
n,x,y(t

(m))| log p̃
(n)
x,y (r̂

(m)|θ)− log p̃
(n)
x,y (r|θ)|

and

ǧ
(m)
n,x,y(θ) = |{W−1e−rt(m)

Y
(m)
n,x,y(t

(m))− α̃n p̃
(n)
x,y (r|θ̄)} log p̃

(n)
x,y (r|θ)|.

Using (4.6.5), for all (n, x, y) ∈ T ,

max
θ∈K

ǧ
(m)
n,x,y(θ)

a.s.−→
Ac

0 as m → ∞. (4.6.9)

Further, for any θ > 0 (where 0 is a vector of zeros of length nmax) and r, r′ > 0,

|p̃(n)x,y (r|θ)− p̃
(n)
x,y (r

′|θ)| ≤
∫ ∞

0
|e−rt − e−r′t|dt = |r − r′|/(rr′), (4.6.10)

so, since log x is uniformly continuous on any bounded subinterval of (0, ∞)

and the estimator r̂(m) a.s.−→
Ac

r as m → ∞, it follows using (4.6.5) that, for all

(n, x, y) ∈ T ,

max
θ∈K

ĝ
(m)
n,x,y(θ)

a.s.−→
Ac

0 as m → ∞. (4.6.11)

Combining (4.6.4) - (4.6.9) yields

max
θ∈K

|l̃(m)
f ull(θ|Y

(m), r̂(m))− l̃
(∞)
f ull(θ|r)|

a.s.−→
Ac

0 as m → ∞, (4.6.12)
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whence, since l̃
(∞)
f ull(θ|r) has a unique global maximum at θ̄,

argmax
θ∈K

l̃
(m)
f ull(θ|Y (m), r̂(m))

a.s.−→
Ac

θ̄ as m → ∞. (4.6.13)

To complete the proof we explore the behaviour of l
(m)
f ull(λL|Y (m), r̂(m)) as the

λ
(n)
L , γ ↓ 0 and the λ

(n)
L , γ ↑ ∞. Loosely speaking, our aim is to show that

there exist lower and upper bounds on each element of θ̂
(m)
f ull which must be

satisfied for sufficiently large m, independently of other elements of θ̂
(m)
f ull. Recall

throughout this part of the proof that θ = (γ, λ
(2)
L , λ

(3)
L , ..., λ

(nmax)
L ) and θ̂

(m)
f ull and

θ̄ are vectors with elements denoted in the obvious manner.

We begin by considering λ
(n)
L (n = 2, 3, ..., nmax). Let X denote the time of the

first point in (0, ∞) of a homogeneous Poisson process having rate (n − 1)λ
(n)
L .

Then p
(n)
n−2,2(t|θ) ≤ P(X ≤ t) = 1 − e−(n−1)λ

(n)
L t, so

p̃
(n)
n−2,2(r|θ) ≤

∫ ∞

0
(1 − e−(n−1)λ

(n)
L t)e−rt dt

=
(n − 1)λ

(n)
L

r(r + (n − 1)λ
(n)
L )

≤ (n − 1)λ
(n)
L /r2. (4.6.14)

For all n, we have that p̃
(n)
x,y (r̂

(m)|θ) ≤ 1/r̂(m) for all (x, y) ∈ T (n), so

log p̃
(n)
x,y (r̂

(m)|θ) + log r̂(m) ≤ 0. (4.6.15)

Let

l
(m)
∗ (θ|Y (m), r̂(m))

= W−1e−rt(m)
nmax

∑
n=1

∑
(x,y)∈T (n)

Y
(m)
n,x,y(t

(m))(log p̃
(n)
x,y (r̂

(m)|θ) + log r̂(m))

= l
(m)
f ull(θ|Y

(m), r̂(m)) + W−1e−rt(m)
nmax

∑
n=1

∑
(x,y)∈T (n)

Y
(m)
n,x,y(t

(m)) log r̂(m),

and, recalling (4.6.4), note that θ̂
(m)
f ull = argmax l

(m)
∗ (θ|Y (m), r̂(m)).

Fix λn,0 > 0. Then (4.6.14), (4.6.15) and, subsequently, (4.6.5) imply that, for all

θ such that λ
(n)
L ∈ (0, λn,0],

l
(m)
∗ (θ|Y (m), r̂(m)) ≤ W−1e−rt(m)

Y
(m)
n,n−2,2(t

(m))(log(n − 1) + log λn,0 − log r̂(m))

a.s.−→
Ac

α̃n p̃
(n)
n−2,2(r|θ̄)[log(n − 1) + log λn,0 − log r]

(4.6.16)
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as m → ∞. Also, using (4.6.5) and (4.6.12),

l
(m)
∗ (θ̄|Y (m), r̂(m))

a.s.−→
Ac

l
(∞)
f ull(θ̄|r) + r−1 log r

nmax

∑
n=1

α̃n as m → ∞. (4.6.17)

For n chosen such that α̃n > 0 (noting that if α̃n = 0 then estimation of λ
(n)
L is

unnecessary), choose λn,0 > 0 and the right hand side of (4.6.16) is strictly less

than the right hand side of (4.6.17). Let Fi be a function denoting the projection

of a vector onto its ith element. For example, if x = (x1, x2, ...., xj), then, for

i ≤ j, Fi(x) = xi. Then, since θ̂
(m)
f ull = argmax l

(m)
∗ (θ|Y (m), r̂(m)), it follows that

for n = 2, 3, ..., nmax and P-almost all ω ∈ Ac, there exists mn,0(ω) such that

Fn(θ̂
(m)
f ull(ω)) 6∈ (0, λn,0) for all m ≥ mn,0(ω). (4.6.18)

Note that this behaviour is independent of the other elements of θ.

Let TI denote the infectious period of the initial infective in a household of size

n. Then p
(n)
n−1,1(t|θ) = E[e−(n−1)λ

(n)
L t
1{TI>t}] ≤ e−(n−1)λ

(n)
L t, whence p̃

(n)
n−1,1(r|θ)

≤ 1/((n − 1)λ
(n)
L + r). Fixing λn,1 and arguing as in (4.6.16) implies that, for

λ
(n)
L ∈ [λn,1, ∞)

l
(m)
∗ (θ|Y (m), r̂(m)) ≤ W−1e−rt(m)

Y
(m)
n,n−1,1(t

(m))[log r̂(m) − log(r̂(m) + (n − 1)λn,1)]

a.s.−→
Ac

α̃n p̃
(n)
n−1,1(r|θ̄)[log r̂(m) − log(r̂(m) + (n − 1)λn,1)]

(4.6.19)

Choosing λn,1 large enough such that the right hand side of (4.6.19) is strictly

less than the right hand side of (4.6.17) and arguing as before shows that there

exists λn,1 < ∞ such that, for P-almost all ω ∈ Ac, there exists mn,1(ω) such

that

Fn(θ̂
(m)
f ull(ω)) 6∈ (λn,1, ∞) for all m ≥ mn,1(ω). (4.6.20)

A similar argument holds for γ. Observe, by following the techniques above,

that p̃
(n)
n−1,0(r|θ) ≤ γ/r2 and that p

(n)
n−1,1(t|θ) ≤ e−γt. Thus the proof above can

be easily adapted to show that there exist γ0, γ1 > 0 such that for P-almost all

ω ∈ Ac, there exists m0(ω) and m1(ω) such that

F1(θ̂
(m)
f ull(ω)) 6∈ (0, γ0) for all m ≥ m0(ω) and (4.6.21)

F1(θ̂
(m)
f ull(ω)) 6∈ (γ1, ∞) for all m ≥ 1(ω). (4.6.22)

Note again that this behavior is independent of all other parameters of θ. The

theorem then follows from (4.6.13), (4.6.18), (4.6.20), (4.6.21) and (4.6.22).
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We now consider estimation of θ based only on recoveries. For m = 1, 2, ...,

n = 1, 2, ..., nmax and t ≥ 0, let

Z
(m)
n,j (t) = ∑

(x,y)∈A
(n)
j

Y
(m)
n,x,y(t) (j = 1, 2, ..., n)

be the total number of size-n households in which j recoveries have been ob-

served by time t in the epidemic E(m). Let θ̂
(m)
rec denote the estimator of θ ob-

tained by maximising the function Lrec(θ|c, r̂(m)) described at (4.3.6) and ex-

tended to include γ, over any given set K ∈ (0, ∞)nmax . (In our present notation

c
(n)
j = Z

(m)
n,j (t

(m)).)

Theorem 4.6.3. Under the conditions of Theorem 4.6.1,

θ̂
(m)
rec

a.s.−→
Ac

θ̄ as m → ∞.

if K is any compact subset of (0, ∞)nmax containing θ̄.

Proof. First note from (4.3.6) that θ̂
(m)
rec = argmax l̃

(m)
rec (θ|Z(m), r̂(m)), where

l̃
(m)
rec (λL|Z(m), r̂(m)) = W−1e−rt(m)

nmax

∑
n=1

n

∑
j=1

Z
(m)
n,j (t

(m)) log q̃
(n)
j (r̂(m)|θ).

Using (4.6.5), for n = 2, 3, ..., nmax and j = 1, 2, ..., n,

W−1e−rt(m)
Z
(m)
n,j (t

(m))
a.s.−→
Ac

α̃n(r
−1 − q̃

(n)
0 (r|θ̄))q̃(n)j (r|θ̄) as m → ∞, (4.6.23)

so, for any θ ∈ (0, ∞)nmax ,

l̃
(m)
rec (θ|Z(m), r̂(m))

a.s.−→
Ac

l̃
(∞)
rec (λL|r) as m → ∞,

where

l̃
(∞)
rec (θ|r) =

nmax

∑
n=1

α̃n(r
−1 − q̃

(n)
0 (r|θ̄))

n

∑
j=1

q̃
(n)
j (r|θ̄) log q̃

(n)
j (r|θ). (4.6.24)

Now

|l̃(m)
rec (θ|Z(m), r̂(m))− l̃

(∞)
rec (θ|r)| ≤

nmax

∑
n=1

n

∑
j=1

(ĥ
(m)
n,j (θ) + ȟ

(m)
n,j (θ)), (4.6.25)

where

ĥ
(m)
n,j (θ) = W−1e−rt(m)

Z
(m)
n,j (t

(m))| log q̃
(n)
j (r̂(m)|θ)− log q̃

(n)
j (r|θ)|
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and

ȟ
(m)
n,j (θ) = |{W−1e−rt(m)

Z
(m)
n,j (t

(m))− α̃n(r
−1 − q̃

(n)
0 (r|θ̄))q̃(n)j (r|θ̄)} log q̃

(n)
j (r|θ)|.

For n = 2, 3, ..., nmax and j = 1, 2, ..., n,

q̃
(n)
j (r|θ) = ã

(n)
j (r|θ)/ã

(n)
0 (r|θ)

where, for j = 1, 2, ..., n,

ã
(n)
j (r|θ) = ∑

(x,y)∈A(n)
j

p̃
(n)
x,y (r|θ) and

ã
(n)
0 (r|θ) = r−1 −

n

∑
y=1

p̃
(n)
n−y,y(r|θ).

Note that |A(n)
j | = n + 1 − j (j = 1, 2, ..., n). It follows from (4.6.10) that, for

n = 2, 3, ..., nmax and j = 1, ..., n,

|ã(n)j (r|θ)− ã
(n)
j (r′|θ)| ≤ (n + 1 − j)|r − r′|/(rr′). (4.6.26)

Fix K such that K is a compact subset of (0, ∞)nmax and θ̄ ∈ K. It then follows

from (4.6.23) and the continuity of ã
(n)
j (r|θ) that for n = 2, 3, ..., nmax and j =

1, 2, ..., n,

max
θ∈K

ȟ
(m)
n,j (θ)

a.s.−→
Ac

0 as m → ∞, (4.6.27)

Further, (4.6.26) and the uniform continuity of log x imply that, for n = 2, 3, ...,

nmax and j = 1, 2, ..., n,

max
θ∈K

ĥ
(m)
n,j (θ)

a.s.−→
Ac

0 as m → ∞, (4.6.28)

since r̂(m) a.s.−→
Ac

r as m → ∞. Similar to before, (4.6.24) implies that l̃
(∞)
rec (θ|r) has a

unique global maximum at θ = θ̄. It follows using (4.6.25), (4.6.27) and (4.6.28),

that, for any a ∈ (0, θ),

argmax
θ∈K

l̃
(m)
rec (θ|Z(m), r̂(m))

a.s.−→
Ac

θ̄ as m → ∞. (4.6.29)

The theorem follows.

Extending the proof of Theorem 4.6.3 to K = (0, ∞)nmax is more complicated

than in the one-dimensional setting of Ball and Shaw [2015] and is not consid-

ered here. Similar results to the above also hold for SEIR and Reed-Frost models

but are omitted here.
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4.7 Discussion

We have demonstrated that, for an emerging epidemic, basing inference on the

final size distribution of single-household epidemics usually leads to a biased

estimate of local contact rates. A new estimator has been developed using the

theory of Crump-Mode-Jagers branching processes which properly accounts

for the dynamics of emerging epidemics in a population of households. The

method has also been adapted to develop a similar estimator for discrete-time

Reed-Frost epidemics and simulations have been used to show that these esti-

mators have the potential to perform well in practice. This method assumes that

an estimate of the exponential growth rate, r of a given epidemic is available.

How best to estimate r is a challenge which remains open. It is also assumed

that estimation is performed whilst an epidemic is in its exponentially growing

phase and it should be checked that this assumption is reasonable.

Extending the proof of Theorem 4.6.3 to K = (0, ∞)nmax is perhaps the most ob-

vious place to consider further research into the theory presented in this chap-

ter. Other ideas to progress this work may include developing approximations

to the Laplace transforms p̃
(n)
x,y (r|λ(n)

L ) (n, x, y) ∈ T in order to relax the assump-

tion of exponentially distributed latent periods and/or recovery rates that are

needed to make the estimation described in Section 4.3 computationally fea-

sible. This may be possible by adopting approaches similar to those given in

Fraser [2007] or Pellis et al. [2011] for calculating r in the non-Markovian case.

It would also be useful to approximate standard errors of estimators using the

method developed in this chapter, either using a parametric bootstrap or by

determining the asymptotic distribution of the estimator. The latter would re-

quire central limit analogues of the results of Nerman [1981] that were exploited

in Section 4.3. Standard cluster bootstrapping would not be appropriate for

households epidemic data since it relies on the clusters within the data (in this

case the outcomes in household of different sizes) behaving independently of

each other. However, it may be possible to develop another version of the block

bootstrap which accounts for the dependence between outcomes in different

households that exists under our households epidemic model. Alternatively,

Bayesian methods such as MCMC or ABC may be used to create credible in-

tervals for estimators (see, for example, Cauchemez et al. [2004]) and then the
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properties of these intervals could be investigated from a frequentist perspec-

tive.

A far simpler progression to implement would be the extension of the method

to the multitype case (see the model of Ball and Lyne [2001]), using the general-

isations of Nerman [1981], in order to accommodate age or gender specific sus-

ceptibilities. The method can in principle also be extended to situations where

information on the temporal progression of disease within households is avail-

able. This is discussed in greater detail in the concluding comments of Ball and

Shaw [2015].
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CHAPTER 5

Epidemics in vaccinated populations

This chapter is concerned with estimating the vaccination coverage required to

prevent an epidemic from taking place using final size and emerging epidemic

data and, as such, may be viewed as a practical application of the previous two

chapters. In general, we consider a scenario in which some data are available

for a given disease which we use to estimate its infectious contact parameters.

We then wish to use the parameter estimates to adopt a vaccination strategy

which will prevent a global outbreak of the same disease, either among the

same population in future or in a nearby population. We also use this chapter

to make further comparisons between the basic and Cauchemez models for

local contact rate that were introduced in Chapter 3.

The structure of this chapter is as follows. We outline the post-vaccination epi-

demic model, vaccine action models and vaccination strategies, all obtained

from the literature, in Section 5.1. Section 5.2 considers the notion of an opti-

mal vaccination strategy in greater detail. In Section 5.3 we outline a procedure

for estimating critical vaccination coverage and investigate the impact of an in-

correct model choice when performing these estimations. The findings of the

chapter are discussed briefly in Section 5.4.

5.1 Vaccination models and strategies

We introduce a post-vaccination threshold parameter, models for the effects of

vaccination and vaccination strategies. This section follows a similar structure

to Section 3 of Ball and Lyne [2006], which may be consulted for further details.
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5.1.1 Post-vaccination threshold parameter

Consider the threshold parameter R∗ introduced in Chapter 2. In the asymp-

totic case, as the number of households m → ∞, the probability that an epi-

demic infects a strictly positive proportion of the population tends to zero if the

threshold parameter R∗ ≤ 1. Therefore, if m is large, we can eradicate the pos-

sibility of a severe outbreak, by reducing the threshold parameter to 1 through

vaccination.

First, let xnv denote the proportion of households of size n containing v vacci-

nated individuals (n = 1, 2, ..., nmax; v = 0, 1, ..., n) and note that the probability

of a global contact in the initial stages of an epidemic being with an individual

in such a household is α̃nxnv. In a vaccinated population, we consider a single-

household epidemic to begin whenever any of the individuals in a fully suscep-

tible household is contacted globally by an infective. This definition makes it

possible for a single-household epidemic to have size 0 if the globally contacted

individual has been vaccinated and is able to resist infection as a consequence.

(Note that we now distinguish between the phrases “infectious contact” and

“contact” since some contacts between an infected and a susceptible individual

do not lead to the susceptible becoming infected.) Let µn,a,v(λ
(n)
L ) be the mean

number of global contacts coming out of a single-household epidemic, under

this definition, in a household of size n with v vaccinated individuals and a

individuals contacted globally by infectives outside of the household. Then,

Rv =
nmax

∑
n=1

α̃n

n

∑
v=0

xnvµn,1,v(λ
(n)
L ). (5.1.1)

Note that (5.1.1) provides a generic post-vaccination parameter which can be

used for any vaccine action model. To obtain a more specific post-vaccination

threshold parameter for a given vaccine action model, we must consider the

exact form of µn,1,v(λ
(n)
L ) under that model.

5.1.2 Vaccine action models

We consider two vaccine action models in this chapter. The first of these is the

all-or-nothing vaccine (see, for example, Halloran et al. [1992] and Becker and

Starczak [1998]). This vaccine renders its subjects completely immune to the

disease, independently, with probability ǫ but otherwise has no effect.
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Under the all-or-nothing vaccine, successfully vaccinated individuals are not at

all susceptible, whereas unsuccessfully vaccinated individuals are fully suscep-

tible. This implies that the number of susceptibles in a household of size n is

k, where n − k denotes the number of successful vaccinations that have taken

place. The distribution of the number of successful vaccinations in a household

with v vaccinated individuals follows a binomial distribution with v trials and

probability ǫ of success. Hence, for k = n − v, n − v + 1, ..., n, the probability

that a household of size n with v vaccinated members contains exactly k sus-

ceptibles is ( v
n−k)ǫ

n−k(1 − ǫ)v−n+k. Note that the probability that global contact

with a household of size n with only k susceptibles starting a single-household

epidemic is k/n. Thus, under the all-or-nothing vaccine,

µn,1,v(λ
(n)
L ) = λGE[TI ]

n

∑
k=n−v

(

v

n − k

)

ǫn−k(1 − ǫ)v−n+k k

n
µk,1(λ

(n)
L ), (5.1.2)

where µk,1(λ
(n)
L ) is as defined in Chapter 2. Note that although vaccination

reduces the number of susceptibles in a household, the local contact rate is still

dependent on the total household size, n. This is the key distinction of (5.1.2)

from the post-vaccination threshold parameter for the all-or-nothing vaccine

given by, for example, Ball and Lyne [2002b, 2006], which follow the basic local

mixing model (see Chapter 3).

Our second vaccine model is the non-random response vaccine, which has a pre-

determined response and is a specific version of the vaccine model of Becker

and Starczak [1998]. Following that paper, we consider a non-random vaccine

to have an effect (A, B) ∈ [0, 1]2 on a given individual, where A and B denote

the relative susceptibility and infectivity respectively of the individual in com-

parison to their unvaccinated state. This is to say that all infectious contact rates

towards vaccinated individuals are multiplied by A and all infectious contact

rates from a vaccinated individual are multiplied by B, should they become

infected.

We now derive the µn,1,v(λ
(n)
L ) under the non-random response vaccine model,

First, note that we effectively have a multitype epidemic under this model with

two types of individuals. Following Ball and Lyne [2006], let unvaccinated in-

dividuals be referred to as type-1 and vaccinated individuals be referred to as

type-2 and let Λ
(n)
L = [λ

(n)
L ]ij be the local infection rate matrix for a household
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of size n (n = 2, 3, ..., nmax). For a vaccine with response (a, b), we have

Λ
(n)
L =

(

λ
(n)
L aλ

(n)
L

bλ
(n)
L abλ

(n)
L

)

.

In a size-n household with v vaccinees there are n − v type-1 individuals and

v type-2 individuals. Define the expected number of type-j individuals in-

fected in a single household epidemic with one initial infective of type-i to be

µ(n,v),i,j(λ
(n)
L ). (Note that we now assume that the initial individual is indeed

infected rather than just contacted.) If global contact is made with a type-2 in-

dividual in a fully susceptible household, a single household epidemic ensues

with probability a. Similarly, the expected number of global contacts made by

a type-2 individual is scaled by b. Hence

µn,1,v(λ
(n)
L ) =

(

n − v

n

[

µ(n−v,v),1,1(λ
(n)
L ) + bµ(n−v,v),1,2(λ

(n)
L )
]

+
v

n
a
[

µ(n−v,v),2,1(λ
(n)
L ) + bµ(n−v,v),2,2(λ

(n)
L )
]

)

λGE[TI ].

The µ(n,v),i,j(λ
(n)
L ) may be calculated using the following method of Ball [1986]

and notation of Ball and Lyne [2006]. For i = 1, 2 and l1, l2 = 0, 1, 2, ..., let

hi(l1, l2) = φ(l1[λ
(n)
L ]i1 + l2[λ

(n)
L ]i2), where φ(t) = E[e−tTI ], as given in Chapter

2. Then, for i = 1, 2 and n1, n2 = 0, 1, 2, ..., let β
(n)
n1,n2

be defined recursively by

n1

∑
l1=0

n2

∑
l2=0

(

n1

l1

)(

n2

l2

)

β
(n)
n1,n2

[hi(l1, l2)]
n1−l1[hi(l1, l2)]

n2−l2 = ni.

Then, for n1 = 1, 2, ..., n2 = 0, 1, 2, ... and i = 1, 2,,

µ(n1,n2),1,i(λ
(n)
L ) = ni

−
n1−1

∑
l1=0

n2

∑
l2=0

(

n1 − 1

l1

)(

n2

l2

)

β
(n)
n1,n2

[hi(l1, l2)]
n1−l1[hi(l1, l2)]

n2−l2

and, for n1 = 0, 1, 2, ..., n2 = 1, 2, ... and i = 1, 2,,

µ(n1,n2),1,i(λ
(n)
L ) = ni

−
n1

∑
l1=0

n2−1

∑
l2=0

(

n1

l1

)(

n2 − 1

l2

)

β
(n)
n1,n2

[hi(l1, l2)]
n1−l1[hi(l1, l2)]

n2−l2.
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The generalised version of the non-random vaccine response model is that of a

discrete vaccine response Becker and Starczak [1998]. Under this model, the vac-

cine response (A, B) is given by a pair of random variables with a distribution

supported on finitely many points in R2

P(A = ai, B = bi) = pi (i = 1, 2, ..., k),

for some finite k such that ∑
k
i=1 pi = 1. We do not consider this vaccine model

in general, however, it should be noted that the all-or-nothing vaccine is a form

of this model in which k = 2, a1 = 0, a2 = b2 = 1, p1 = ǫ, p2 = 1 − ǫ and b1

is arbitrary (since successfully vaccinated individuals never become infective).

The post-vaccination threshold parameter, Rv, may be derived for this model

by extending the methodology used for the non-random vaccine response in

the manner described in Section 3.2.3 of Ball and Lyne [2006].

The value 1 − E[AB] gives a measure of how efficient a vaccine is and is re-

ferred to as vaccine efficacy. (Note that this is not the only definition available

of vaccine efficacy, see Becker et al. [2006], but is the traditional measure.) From

the above statements it is clear that 1 − AB is the efficacy of the non-random

response vaccine and that ǫ is the efficacy of the all-or-nothing vaccine as de-

fined above. For the remainder of this chapter we shall compare vaccines with

the same efficacy and denote that efficacy by ǫ. In particular an all-or-nothing

vaccine with efficacy ǫ will be compared to non-random response vaccines with

A = B =
√

1 − ǫ and A = 1 − ǫ, B = 1. The latter of these, in which B = 1

and thus vaccination takes no affect once an individual has become infected, is

known as the leaky vaccine.

5.1.3 Vaccination strategies

Let c denote the proportion of individuals in the population that are to be vac-

cinated. We consider three potential vaccination strategies. The first of these is

the random individuals strategy in which the individuals chosen to be vaccinated

are chosen uniformly at random from the entire population. Under this strategy

we approximate that, for n = 1, 2, ..., nmax; v = 1, 2, ..., n, xnv = (n
v)c

v(1− c)n−v.

Under the random households strategy, entire households are vaccinated which

are again chosen uniformly, at random from the population. Here we approxi-
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mate that xnn = c and xn0 = 1 − c. These approximations for the random indi-

viduals and random households vaccination strategies become exact as m → ∞.

The final strategy to consider is the optimal vaccination strategy. A strategy is

considered optimal in this context if it reduces the post-vaccination threshold

parameter such that Rv ≤ 1 by vaccinating as few people as possible. Note

however that such a strategy may not be unique or may not exist. Ball et al.

[2004a] and Ball and Lyne [2006] show that by letting hnv = mnxnv be the num-

ber of households of size n with v vaccinated members, Mn,v = nµn,1,v(λ
(n)
L )/N,

the post-vaccination threshold parameter becomes

Rv =
nmax

∑
n=1

n

∑
v=0

hnvMn,v. (5.1.3)

This shows that Rv can be determined by assigning every household a value

Mn,v, as defined above, and summing across all household values in the pop-

ulation. More importantly, the reduction in Rv from vaccinating an individual

in a household of size n with v currently vaccinated individuals is given by

Gn,v = Mn,v − Mn,v+1. Note that Gn,v is always non-negative since the expected

size of a single-household epidemic, µnv(λ
(n)
L ), cannot be increased by vacci-

nating an extra individual in the household. Also observe that

c =
nmax

∑
n=1

n

∑
v=0

vhnv.

Under any given vaccination strategy, the usual aim is to achieve Rv ≤ 1 since

this prevents any epidemic from taking off in the manner described in Chapter

2. Let c
(ind)
v , c

(house)
v and c

(opt)
v denote the critical vaccination coverage (CVC) for

the random individuals, random households and optimal vaccination strate-

gies respectively, where the CVC refers to the minimum proportion of individ-

uals in a population that need to be vaccinated in order to achieve Rv ≤ 1.

5.2 Forms of the optimal vaccination strategy

In this section we focus on the effect that model choice can have on the optimal

vaccination strategy. Under most circumstances, the optimal strategy is to find

the maximal Gn,v such that xnv > 0 (or equivalently hnv > 0) and to vaccinate
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an individual in the associated household state. This reduces the threshold

parameter Rv by Gn,v and the process should continue until Rv ≤ 1. The ex-

ception to this rule is the case where Gn,v does not decrease as v increases for

fixed n. Here the strategy needs modifying to account for the possibility that

it may be optimal to vaccinate two or more individuals in the same household

before moving on. Such circumstances occur when Gn,v < Gn,v+1 and hence

2Gn,v < Gn,v + Gn,v+1, implying that the gain from vaccinating two individuals

in a household of size n with v vaccinees is greater than that of vaccinating in-

dividuals in different households of size n with v vaccinees. This phenomenon

is explored in more detail in Ball and Lyne [2002b] and Ball et al. [2004a].

Another special case to consider is that in which, for all n, λ
(n)
L = 0. This gives

a homogeneously mixing population in which there is clearly no difference in

the effect of vaccinating one individual over another and thus all strategies are

equal. Specifically, for all n and v = 0, 1, ..., n − 1, Gn,v = λGE[TI ]ǫ/N under

any of the vaccine models outlined in Section 5.1.2 with efficacy ǫ, where N is

the population size. Therefore, the optimal vaccination strategy is driven by the

local dynamics of an epidemic.

We now consider epidemics with non-zero local contact rates and shall ignore

the global contact rate for the remainder of this section since it merely scales

the lower-triangular gain matrix G (formed by the Gn,v values) which deter-

mines the optimal strategy. As such, the remainder of this section assumes that

λG = 1 and TI takes a negative exponential distribution with rate 1. This is

largely for ease of illustration, although it should be noted that the underlying

distribution of TI does effect the Gn,v beyond simply rescaling. Similar results to

those shown below may be found for other distributions of TI , such as gamma

or constant. We also restrict ourselves to the case nmax = 5 for illustrative con-

venience.

Table 5.1 shows the gain matrices for an epidemic under the basic model with

λL = 0.6 (see Chapter 3) using four vaccines: a perfect vaccine (ǫ = 1) and three

vaccines with efficacy ǫ = 0.5. These are an all-or-nothing, vaccine, a leaky

vaccine and a non-random response vaccine with A = B =
√

0.5. Note that the

action model of the perfect vaccine is irrelevant since it renders all vaccinees

non-infective, either through loss of susceptibility or infectivity. It is assumed

here that P(A = 0) = 1 when referring to a perfect vaccine and thus the vac-
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cinee is left fully immune to infection. For illustrative purposes, the Gn,v are

multiplied by the unspecified population size N and bracketed superscripts are

used to rank the values from highest to lowest for ease of reading off the opti-

mal strategy.

Ball et al. [1997] proposed that the optimal vaccination strategy under the ba-

sic model with a perfect vaccine takes a form known as the equalising strategy.

Under this strategy, households with the largest number of unvaccinated indi-

viduals are targeted for further vaccination. Under an imperfect vaccine, Ball

and Lyne [2002a] outline a generalisation to a strategy which they refer to as

the conditional equalising strategy and describe as targeting “households with

the largest expected number of susceptibles” for further vaccination (although

it is not obvious exactly how to interpret this explanation for a non-random re-

sponse vaccine). As discussed above, optimal vaccination strategies work by

curtailing the local dynamics of an epidemic and the idea under these strategy

is to minimise the expected number of susceptibles in larger households so that

the expected number of susceptibles in local groups is as equal as possible. The

ǫ = 1 portion of Table 5.1 provides a simple illustration of this strategy. Under

a perfect vaccine, vaccinated individuals retain no susceptibility and thus the

number of susceptibles in their household is effectively reduced by one post-

vaccination. With this in mind, the table clearly shows that the optimal vacci-

nation strategy at any given time is to vaccinate a single individual in any of the

households containing the largest possible number of unvaccinated individu-

als. Note also that when ǫ = 1, Gn,v depends only on the value of n − v.

If the vaccine is not fully effective, as in the three vaccines with efficacy ǫ = 0.5

shown in Table 5.1, the exact form of the optimal vaccination strategy is not as

immediately obvious. However, on closer inspection, the idea of conditional

equalisation still holds under the basic model. We can still see from the table

that optimal strategy attempts to effectively reduce the number of susceptibles

in the larger households, as per the explanation by Ball and Neal [2002]. The

difference with a less effective all-or-nothing vaccine is that vaccinated individ-

uals may still be susceptible and thus one must vaccinate a greater number of

individuals in the larger households in order to effectively reduce their size.

Observe also that the Gn,v values are all smaller under the less effective vaccine.

These values represent a relative reduction in Rv by vaccinating a given indi-
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Table 5.1: Gain matrices for a basic model epidemic, with λL = 0.6 under a

perfect vaccine and all-or-nothing, non-random A = B and leaky

vaccines with efficacy ǫ = 0.5. The superscripts rank the gains

from highest to lowest for ease of reading off the optimal vaccina-

tion strategy

n v=0 v=1 v=2 v=3 v=4

Perfect, ǫ = 1

1 1.0000(11)

2 1.7500(7) 1.0000(11)

3 2.8835(4) 1.7500(7) 1.0000(11)

4 4.4267(2) 2.8835(4) 1.7500(7) 1.0000(11)

5 6.3334(1) 4.4267(2) 2.8835(4) 1.7500(7) 1.0000(11)

All-or-nothing, ǫ = 0.5

1 0.5000(15)

2 0.8750(13) 0.6875(14)

3 1.4418(9) 1.1584(11) 0.9229(12)

4 2.2134(4) 1.8276(6) 1.4930(8) 1.2080(10)

5 3.1667(1) 2.6900(2) 2.2588(3) 1.8759(5) 1.5419(7)

Non-random, A = B =
√

0.5

1 0.5000(15)

2 0.8287(13) 0.6905(14)

3 1.2429(10) 1.1179(11) 0.9805(12)

4 1.7458(6) 1.6262(7) 1.5046(8) 1.3747(9)

5 2.3221(1) 2.2035(2) 2.0915(3) 1.9820(4) 1.8690(5)

Leaky, A = 0.5

1 0.5000(15)

2 0.8317(13) 0.6875(14)

3 1.2969(9) 1.1096(11) 0.9348(12)

4 1.8829(4) 1.6659(6) 1.4534(8) 1.2492(10)

5 2.5512(1) 2.3255(2) 2.0948(3) 1.8629(5) 1.6338(7)

126



vidual and thus it is clear that from a mathematical viewpoint that a greater

number of individuals need to be vaccinated to achieve the CVC under less

effective vaccines. This observation is trivial but nonetheless reassuring.

The non-random vaccines shown in Table 5.1 illustrate these points even more

clearly. The non-random response A = B =
√

0.5 vaccine displays an optimal

strategy in which it is always better to vaccinate individuals in larger house-

holds if possible. This even occurs if all but one individuals in a household are

vaccinated and there are other households in the population with just one fewer

individual residing in them and no vaccinees. Other than in households of size

1, the Gn,v are all smaller, suggesting that the non-random response A = B vac-

cine is actually less effective than an all-or-nothing vaccine of the same efficacy

when a vaccinated individual mixes locally as well as globally. Note, however,

that the optimal strategy still takes a conditional equalising form under this vac-

cine model, since larger households are still targeted first. They simply require

greater vaccination coverage to reduce their overall susceptibility than under

the all-or-nothing vaccine.

The leaky vaccine displays Gn,v values which are generally smaller than for the

all-or-nothing vaccine, as proven formally in Ball et al. [2004a], but larger than

the non-random A = B vaccine of the same efficacy. It shares the same opti-

mal strategy as the all-or-nothing vaccine for these particular parameter values,

although differences in some relative gains such as G4,1 > G5,4 are less pro-

nounced than for the all-or-nothing vaccine, suggesting that the leaky vaccine

may display an optimal strategy more similar to that of the non-random A = B

model under different parameter choices.

The optimal vaccination strategy has the potential to deviate from conditional

equalisation under the model presented in this thesis in which the local con-

tact rate varies with n. In particular, one would expect the form of the optimal

strategy to vary under the Cauchemez model (again, see Chapter 3) if η is suf-

ficiently large, since the local contact rate is more significant in smaller house-

holds under this model. Table 5.2 shows gain matrices from Cauchemez model

epidemics with λL = 0.2 and λL = 4, both with η = 1, so for all n, λ
(n)
L = λL/n

in each epidemic. An all-or-nothing vaccine with ǫ = 0.75 and a non-random

response vaccine with A = B = 0.5 are considered in both cases.

Deviation from the conditional equalising strategy can be seen immediately in
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Table 5.2: Gain matrices and optimal strategies for Cauchemez model epi-

demics, with η = 1. We consider epidemics with high and low

local infectious rates, an all-or-nothing vaccine with ǫ = 0.75 and

a non-random response vaccine with A = B = 0.5

n v=0 v=1 v=2 v=3 v=4

All-or-nothing, λL = 0.2

1 0.7500(15)

2 0.8864(7) 0.7841(14)

3 0.9530(4) 0.8711(8) 0.7978(13)

4 0.9935(2) 0.9250(5) 0.8624(9) 0.8053(12)

5 1.0210(1) 0.9620(3) 0.9074(6) 0.8569(10) 0.8101(11)

All-or-nothing, λL = 4

1 0.7500(15)

2 1.7500(10) 1.000(14)

3 2.8650(6) 1.9216(9) 1.2036(13)

4 4.0625(3) 2.9844(5) 2.0820(8) 1.3818(12)

5 5.3212(1) 4.1476(2) 3.1054(4) 2.2322(7) 1.5434(11)

Non-random, λL = 0.2

1 0.7500(15)

2 0.8842(8) 0.7854(14)

3 0.9361(4) 0.8778(10) 0.8068(13)

4 0.9571(2) 0.9238(5) 0.8797(9) 0.8242(12)

5 0.9626(1) 0.9466(3) 0.9210(6) 0.8856(7) 0.8400(11)

Non-random, λL = 4

1 0.7500(15)

2 1.5833(12) 1.0833(14)

3 2.4392(7) 1.9283(10) 1.4141(13)

4 3.3192(3) 2.7920(5) 2.2757(8) 1.7592(11)

5 4.2202(1) 3.6763(2) 3.1488(4) 2.6350(6) 2.1235(9)
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the λL = 0.2 gain matrices. Under an imperfect vaccine, conditional equalising

suggests that it is better to vaccinate an individual in a size-n household with v

vaccinated individuals than an individual in a household of size n − v + 1 with

no vaccinated individuals. Other than when n = v + 1, the opposite is shown

to be true for our λL = 0.2 epidemics under the all-or-nothing vaccine and is

generally the case for the non-random response A = B vaccine. The exception

under the non-random response vaccine is among households in which two

unvaccinated individuals remain.

For our epidemics with higher local contact rates, in which λL = 4, we see that

the conditional equalising still holds as the optimal vaccination strategy. How-

ever, by recalling that a perfect vaccine effectively reduces household size by

1 when used, it is clear that an optimal strategy similar to that for the all-or-

nothing vaccine λL = 0.2 epidemic would have been seen had we considered

a vaccine with ǫ = 1. Under an imperfect vaccine, vaccinated individuals may

still become infected locally and the potential additional local infectious contact

that they bring to their household can be more significant to the spread of an

epidemic in a household than the increased local contact rate in a smaller house-

hold. Thus the optimal strategy may still continue to conform to conditional

equalising, despite the change in how local contact rates are modelled. When λL

is sufficiently large, the model essentially becomes the highly-infectious model

of Becker and Dietz [1995] (see also Becker and Starczak [1997]) for which condi-

tional equalising is the optimal vaccination strategy (see Ball and Lyne [2002b]).

The optimal vaccination strategy under the non-random response vaccine in

the λL = 0.2 epidemic also deviates from that under the all-or-nothing vaccine

in the same epidemic and that which we could expect from a perfect vaccine

under the Cauchemez model in the case where two unvaccinated individuals

remain in all households. Here, the optimal strategy under the non-random re-

sponse vaccine advocates vaccinating individuals in households of size 5 before

those in households of size 2, 3 or 4. The explanation for this is similar to that

as to why conditional equalisation still holds under the Cauchemez model for

large enough λL. We may recall from Table 5.1 that vaccinating people in larger

households is of greater importance under the non-random response vaccine

than the all-or-nothing vaccine, particularly in the case where A = B. Note

however that all four values in the gain matrix for households with two un-
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vaccinated individuals are extremely close. Therefore, any deviation from the

optimal vaccination strategy may not be too problematic in practice in terms of

achieving CVC that is close to the optimal value.

We observe that deviation in the optimal vaccination strategy from conditional

equalisation under the Cauchemez model is most likely to occur under larger

η and ǫ, smaller λL (cf. Keeling and Ross [2015]) and, if vaccine efficacy is

known, assuming that the available vaccine has a non-random response with

A = B. However, given that smaller λL gives an epidemic closer to the homo-

geneously mixing case in which there is no optimal vaccination strategy this

suggests that conditional equalisation may still be effective in practice, even

under a Cauchemez model. This is investigated in greater detail in Section 5.3.

5.3 Estimating critical vaccination coverage

5.3.1 General approach

We attempt to estimate the vaccination coverage required to prevent a major

outbreak of a disease by first estimating the parameters associated with the epi-

demic using the maximum pseudolikelihood methods outlined in Section 3.2

for final size data and in Section 4.3 for emerging epidemic data. In the emerg-

ing case we assume that information on infectives are available and thus use the

full-pseudolikelihood method. It is assumed that all the necessary conditions

set out in these sections and in Chapter 2 are satisfied. In particular, we assume

that there is no latent period when dealing with emerging epidemic data (recall

that this assumption is not required for final size data). We also assume that TI

follows a negative exponential distribution. In the case of emerging data, this

distribution has an unknown rate γ (see Section 4.3.2). Recall from Chapter 2.1

that we may assume, without loss of generality, that E[TI ] = 1 when dealing

with final size data. We also assume that the vaccine response is known (all-

or-nothing or non-random and the associated parameters). There is a wealth

of information available on estimating vaccine efficacy, Longini and Halloran

[1996] and Longini et al. [1998], for example, give estimation methods for a

generalised form of the all-or-nothing vaccine outlined in this chapter. Becker

et al. [2006] offer procedures for estimating the efficacy of a discrete response
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vaccine which, as we have already noted in Section 5.1.2, is a generalisation of

both of our vaccine action models.

Once estimates are made of all the unknown parameters of an epidemic, it is

possible to compute the pre-vaccination threshold parameter R∗. If R∗ ≤ 1

then no further action is needed since the epidemic is already sub-critical. If

R∗ > 1 then it is necessary to vaccinate members of the population and values

are needed for the parameters xnv (n = 1, 2, ..., nmax; v = 0, 1, ..., n) in order

to compute the post-vaccination threshold parameter Rv, as outlined in Sec-

tion 5.1. The xn,v are determined by the vaccination coverage c for the random

households and random individuals strategies. For the optimal strategy, the

xn,v are determined by the estimates of the λ
(n)
L as well as c. (Note that λG and

E[TI ] merely scale the Gn,v values that determine the optimal strategy). Since

ǫ and the xnv are considered to be either estimated or known, we need only

find estimates for λG and the λ
(n)
L from final size data in order to estimate the

critical vaccination coverage for an epidemic using (5.1.3). When dealing with

emerging epidemic data, we begin by estimating the real-time growth rate r by

using the method outlined in Section 4.5.1 in which we fit a straight line to the

logarithm of the number of recoveries. The λ
(n)
L and γ may then be estimated

by using the maximum pseudolikelihood approach of Section 4.3. Finally, an

estimate of λG can be obtained by using (4.3.3).

5.3.2 Simulation study

We use the methods outlined in Section 5.3.1 to illustrate the effects of estimat-

ing epidemics governed by the Cauchemez model with the simpler and more

widely used basic model. In particular, we wish to assess the accuracy of using

the basic model to estimate critical vaccination coverage for the three vaccina-

tion strategies outlined in Section 5.1.3 for epidemics with dynamics governed

by the Cauchemez model. To achieve this, epidemic simulations are performed

to generate emerging epidemic data and final size data.

Let θ = (λG, λL, η, γ) be a vector denoting the unknown parameters of a given

epidemic under the Cauchemez model. The data from the simulated epidemics

that take off are used to determine one of four possible estimators for θ. These

are denoted by θ̂
(Cauch)
EME , θ̂

(Cauch)
FIN , θ̂

(basic)
EME and θ̂

(basic)
FIN . The subscripts EME and
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FIN refer to estimators made from emerging and final size data respectively

(and so no estimate of γ is made for the latter case) and the superscripts (Cauch)

and (basic) refer to the Cauchemez and basic models respectively. For the basic

model estimators, η̂ is fixed at 0. An estimator for the CVC may be calculated

from each of these four estimators using the methods of Section 5.1.3.

The parameter choices for the epidemic used in the simulation study are as

follows. As outlined in Section 5.3.1, the infectious period, TI, is set to have an

exponential distribution with rate γ = 1 and hence E[TI ] = 1. Two population

distributions are considered to reflect different household structures in different

parts of the world. The first, αUK = [0.36, 0.30, 0.15, 0.10, 0.05, 0.04], represents

a typical city in Western Europe and is based on data taken from the 2011 UK

census for the urban area of Nottingham (Office for National Statstics [2011]).

Due to the lack of households of size greater than 6, all households meeting this

criterion have been truncated to be of size 6 for the sake of convenience.

The second structure, αGhana = [0.20, 0.15, 0.15, 0.14, 0.12, 0.09, 0.05, 0.10], repre-

sents a typical city in West Africa and is taken from the combined urban data

of the 2010 Ghanaian census (Ghana Statistical Service [2012]). All households

of size 8 or above are truncated to size 8, again for the sake of convenience.

The parameters governing disease transmission are set to be λG = 0.8, λL = 2

and η = 1. These values are chosen such that approximately 50% of an unvac-

cinated population becomes infected if the epidemic takes off under the αUK

population structure (see Ball et al. [2010a], Ferguson et al. [2005]). For compar-

ison, the pre-vaccination threshold parameter R∗ = 1.57 under the αUK popu-

lation structure and R∗ = 2.20 under αGhana for epidemics with parameters as

outlined above. The value of η = 1 follows the suggestion of Cauchemez et al.

[2004] and Chapter 3.

Consider the following vaccines with efficacy ǫ = 0.84: an all-or-nothing vac-

cine, a leaky vaccine (A = 0.16) and a non-random response vaccine with

A = B = 0.4. For the epidemic outlined above, Table 5.3 gives the true CVC

for the epidemic outlined above under each vaccine action model, each of our

three vaccination strategies and both the UK and Ghanaian population struc-

tures. Note from Table 5.3 that the CVC values are generally larger under the

Ghanaian population structure which contains larger households and thus has

potentially larger local outbreaks. The CVC is also smallest under the optimal

132



Table 5.3: Critical vaccination coverage (CVC) for the epidemic outlined in this

simulation study under different population structures, vaccine ac-

tion models (all with efficacy ǫ = 0.84) and both the UK and Ghana-

ian population structures, as outlined in the main text

Population

structure Vaccine action model c
(ind)
v c

(house)
v c

(opt)
v

UK

All-or-nothing, ǫ = 0.84 0.2988 0.3976 0.2113

Leaky, A = 0.16 0.3100 0.3998 0.2225

Non-random, A = B = 0.4 0.3211 0.3998 0.2323

Ghana

All-or-nothing, ǫ = 0.84 0.4269 0.5861 0.3492

Leaky, A = 0.16 0.4430 0.5889 0.3643

Non-random, A = B = 0.4 0.4684 0.5889 0.3903

strategy (as one would hope), followed by the random individuals strategy and

finally the random households strategy is least effective. We also see that the

all-or-nothing vaccine performs better than the leaky vaccine which in turn gen-

erally outperforms the non-random response A = B vaccine, even though all

three vaccines have the same efficacy. These observations are reassuring given

previous results in the literature (see, for example, Ball et al. [2004a] and Ball

and Lyne [2006]) and those seen in Section 5.2.

However, the two non-random response vaccines (Leaky and A = B) perform

equally well under the random households strategy. In a household of size n

in which every individual has been vaccinated with a non-random response

vaccine which has effect (A, B), infectious contacts between a susceptible and

infective occur at rate ABλ
(n)
L . Thus, any two non-random response vaccines

with the same efficacy will perform equally well under a random households

strategy, since we have already established in Section 5.2 that only the vaccine

efficacy ǫ affects the gain of vaccinating a given individual in terms of curtailing

global infectious contacts.

Before looking at simulation studies, we should take account of the fact that,

in practice, implementing the optimal vaccination strategy relies on having

knowledge of λL and η. Specifically, the discussion in Section 5.2 shows that an

estimate of η that is far enough away from its true value can lead to incorrect

guess as to the form of the optimal vaccination strategy. As such, we now intro-
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duce another vaccination strategy which will be referred to as the fitted optimal

strategy. This scheme uses the estimated parameters of an epidemic rather than

the unknown true parameters to determine an “optimal” vaccination strategy.

Thus, the fitted optimal strategy is not necessarily optimal.

Let c
(opt)
v denote the CVC for an epidemic under the fitted optimal vaccination

strategy and ĉ
(opt)
v be its estimator. Also, let ĉ

(ind)
v and ĉ

(house)
v be estimators of

the CVC under the random individuals and random households strategies re-

spectively. Note that Table 5.3 does not contain true values for the fitted optimal

strategy since it is dependent on observed data and thus is a random variable.

We simulate final size data for a population of m = 500 households for the

UK population structure and m = 300 households for the Ghanaian popula-

tion structure so that the total population size is similar for both populations.

(N = 1150 for the UK structured population whilst N = 1020 for the Ghanian

structured population.) In both cases 1000 epidemics were simulated, with the

data used to give estimates θ̂
(Cauch)
FIN and θ̂

(basic)
FIN , which were then used to give

estimates of c
(ind)
v , c

(house)
v and c

(opt)
v for each of the vaccine action models con-

sidered in Table 5.3.

As explained in Chapter 4, estimating epidemic parameters from emerging data

is only reliable if the population is large enough such that there is a point

in the epidemic at which the proliferation of infected households still resem-

bles the branching process outlined in Chapter 2. However, we must also en-

sure that there are enough infected households to give a reliable estimate of

θEME. As such, we consider epidemics in a population of m = 10000 house-

holds (N = 23000) for the UK population structure and m = 6000 households

(N = 20400) for the Ghanaian population structure, both of which are used to

provide emerging epidemic data after 500 recoveries have been observed, (see

Section 4.5.3). An estimate r̂ of the real-time growth rate is made as described in

Section 5.3.1 by using the polyfit function in MATLAB and ignoring the first 20

recoveries (also see Section 4.5.1). Again 1000 epidemics are simulated and the

data used give CVC estimates for each strategy under the basic and Cauchemez

models.

For this simulation study, we focus on the value ĉv − cv, i.e. the difference

between estimated CVC and its true value. If this value is positive, then the

population would be over-vaccinated if the estimated CVC is used, potentially
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ĉv − cv

Final Size

 

 

Fitted Optimal Strategy (Basic)
Fitted Optimal Strategy (Cauchemez)
Random Individuals (Cauchemez)
Random Individuals (Basic)
Random Households (Cauchemez)
Random Households (Basic)

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
0

2

4

6

8

10

12
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Figure 5.1: Kernel density estimates of ĉv − cv for each of our vaccination

strategies. These plots are based on 1000 simulations of the epi-

demic outlined in this section for the UK population structure and

use an all-or-nothing vaccine with efficacy ǫ = 0.84. We consider

both final size data and emerging epidemic data and estimate the

CVC assuming both a basic and Cauchemez model for the epi-

demics. The true CVC values were c
(ind)
v = 0.2988, c

(house)
v = 0.3976

and c
(opt)
v took values in the range [0.2113, 0.2160]
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wasting valuable resources. If it is negative then the population will be under-

vaccinated, leaving it vulnerable to a global outbreak. In Figure 5.1 we illustrate

how choice of vaccination strategy under our all-or-nothing vaccine affects the

potential to under/over-vaccinate a population for our epidemic, using both

our simulated final size and emerging epidemic data from the population struc-

ture αUK, by giving kernel density estimates of ĉv − cv from our 1000 epidemic

simulations.

As one would expect given that we simulated epidemics from the Cauchemez

model, the distribution of ĉv − cv is centred around zero for the fitted opti-

mal, random individuals and random households strategies if the Cauchemez

model is used to estimate the unknown parameters of the epidemic and this is

observed from both the final size and emerging epidemic simulations. If a basic

model is used for parameter estimation, both our final size and emerging plots

suggest that the fitted optimal strategy is more likely to under-vaccinate the

population. The distribution of CVC estimates for random individuals and ran-

dom households strategies are both still loosely centred around the true CVC

value when the basic model is used for parameter estimation. The plots sug-

gest that over-vaccination may be more likely under these strategies if CVC

estimates are made using the basic model from final size data.

We also observe that the variation of the estimators θ̂
(basic)
FIN , θ̂

(Cauch)
FIN , θ̂

(basic)
EME and

θ̂
(Cauch)
EME can all lead to rather large errors in CVC estimators. These errors are

greater under the random individuals and random households strategies al-

though this may be attributed to the fact that these strategies generally require

more individuals to be vaccinated than the fitted optimal strategy so this is not

entirely unexpected. (Generally speaking, variance of ĉv is reduced when c is

closer to 0 or 1.) It is also worth noting that the variance of the estimators of θ

reduces as the number of households m increases and so this is a less problem-

atic issue if large enough data are available (cf. Chapters 3 and 4). We discuss

this further in Section 5.3.3.

Figure 5.1 only shows kernel density estimate of the probability density func-

tion of the random variable ĉv − cv under the all-or-nothing vaccine. We now

turn our attention to comparing our three vaccine action models, as given in

Table 5.3. Kernel density estimates of the distribution of ĉ
(opt)
v − c

(opt)
v for our

epidemic under the αUK population structure are given in Figure 5.2 for each
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Figure 5.2: Kernel density estimates ĉ
(opt)
v − c

(opt)
v for the 1000 final size data

simulations of the epidemic outlined in this section under the UK

population structure. Plots are shown for estimates based on as-

sumption of a basic model and a Cauchemez model for local epi-

demic dynamics and three vaccine action models are considered,

each with efficacy ǫ = 0.84. These are the all-or-nothing vac-

cine, a leaky vaccine and a non-random response vaccine with

A = B = 0.4. The true CVC under the fitted optimal strategy,

c
(opt)
v , took values in the range [0.2113, 0.2160] for the all-or-nothing

vaccine, [0.2225, 0.2275] for the leaky vaccine and [0.2323, 0.2379]

under the non-random response vaccine with A = B
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of our vaccine action models, using final size data.

Despite the differences between the three vaccine action models that we have

observed in Section 5.2 and Table 5.3, we observe that the three vaccine models

exhibit very similar behaviour with respect to the distribution of ĉ
(opt)
v − c

(opt)
v

under each vaccine model. Figure 5.2 shows this to be the case whether the

correct Cauchemez model or incorrect basic model are used to estimate θ. Sim-

ilar plots for emerging epidemic data and alternative vaccination strategies are

omitted but show similar results. Thus we conclude that whilst the vaccine

action model affects the value of the CVC under any given vaccination strat-

egy/population structure/data type, it does not appear to have much bearing

on the probability of one under/over-estimating the CVC, if the methods out-

lined in this chapter are used.

Finally, we use our simulation study to consider the effects of population struc-

ture when estimating the CVC for an epidemic. Kernel density estimates of the

distribution of ĉ
(opt)
v − c

(opt)
v for our epidemic under the all-or-nothing vaccine

are given in Figure 5.3 for both the αUK and αGhana population structures. In

Section 5.3.3 we discuss how population structure affects whether one would

expect to over-estimate or under-estimate the CVC if an incorrect model choice

for local contact rates is assumed. However, from this figure, we see that the

variance of ĉ
(opt)
v − c

(opt)
v appears to be greater under the complex Ghanaian

population structure than the simpler UK structure, especially when final size

data are used. Similar plots under other vaccination models and strategies re-

veal a similar trend and thus are omitted.

The illustrations from this simulation study show that highly inaccurate CVC

estimates are plausible for realistic sizes of data, even if the correct model is

chosen. This is particularly likely if there is significant variety in the household

sizes within a population and if the more practical random households or ran-

dom individuals vaccination strategies are selected, rather than attempting to

find an optimal vaccination strategy. In the following section, we investigate ex-

actly when parameterising a Cauchemez model epidemic using the basic model

would be expected to lead to the most severe cases of under/over-estimation

of the CVC and also illustrate the effects of under-vaccination in terms of the

expected final outcome if an epidemic in an under-vaccinated population takes

off.
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Figure 5.3: Kernel density estimates of ĉ
(opt)
v − c

(opt)
v based on 1000 simula-

tions of the outlined epidemic under the αUK and αGhana population

structures, using both the basic and Cauchemez models to estimate

the epidemic parameters. Estimates are based on an all-or-nothing

vaccine with efficacy, ǫ = 0.84. The true CVC under the fitted op-

timal strategy, c
(opt)
v , took values in the range [0.2113, 0.2160] under

αUK and [0.3492, 0.3669] under αGhana
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5.3.3 Perfect data analysis

The variances of the estimators θ̂FIN and θ̂EME decrease as the population size

increases. Whilst the simulation study presented in Section 5.3.2 suggests that

there is little difference between using the basic and Cauchemez models when

estimating CVC, this may not be the case if data from a larger population are

available. Here we consider data from an infinite population, as described in

Section 3.1 for final size data and in Section 4.5.2 for emerging epidemic data.

We wish to ascertain the circumstances under which CVC estimates using the

basic model are at their least accurate, ignoring the variance of θ̂FIN and θ̂EME.

Perhaps more importantly, we also consider the expected final outcome of epi-

demics in which the population has been under-vaccinated as a result of using

the basic model.

As in the simulation study, we assume the specific form of the Cauchemez

model in which η = 1, unless stated otherwise. For the sake of convenience, we

only consider perfect vaccines in this section (ǫ = 1), apart from in Figure 5.7 in

which we also consider imperfect all-or-nothing vaccines.

Figure 5.4 shows the effect of changing the global contact rate for the epidemic

outlined in Section 5.3.2. The plot is given in terms of changing R∗ (a value

which has a one-to-one correspondence with the value of λG, as discussed at

the end of Chapter 2). This offers an illustrative advantage in that the lower

bound of R∗ = 1, which must be exceeded for any epidemic to take off with

non-zero probability, is consistent for epidemics with any parameters, making

it easier to compare epidemics with different population structures. It also al-

lows us to consider epidemics of similar severity under different population

structures. All three vaccination strategies exhibit a similar pattern for both the

αUK and αGhana population structures and both types of observation in that the

estimated CVC under the simple model is close to the true coverage required

for very small R∗ and tends back towards the true coverage required as R∗ gets

very large. This can be explained by the local contact rate (in which the ba-

sic model differs from the true Cauchemez model), becoming a less important

factor in the epidemic as λG increases and the epidemic in question becomes

globally driven.

Beyond this however, one can observe subtle differences between how the pop-
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ĉ v
−

c v

Final Size

 

 

Random Households (Ghana)
Random Individuals (Ghana)
Random Households (UK)
Random Individuals (UK)
Fitted Optimal Strategy (UK)
Fitted Optimal Strategy (Ghana)

1 2 3 4 5 6 7 8
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Threshold parameter, R∗

ĉ v
−

c v

Emerging

 

 

Random Households (UK)
Random Households (Ghana)
Random Individuals (UK)
Random Individuals (Ghana)
Fitted Optimal Strategy (UK)
Fitted Optimal Strategy (Ghana)

Figure 5.4: Plots showing how ĉv − cv changes as the threshold parameter R∗

of an epidemic increases. Perfect data is assumed and the basic

model (assuming η = 0) is used to find ĉv for each of the possible

vaccination strategies. The true values of the local contact rates for

households of size n are fixed at λ
(n)
L = 3/n. We assume a perfect

vaccine (i.e. ǫ = 1). The true value of cv is approximately 0 when

R∗ is close to 1. When R∗ = 8, cv = 0.7215, 0.7724 and 0.8750

under the UK population structure for the true optimal, random

individuals and random households strategies respectively. Under

the Ghanaian structure, these values are cv = 0.6427, 0.7155 and

0.8750
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ulation structure and type of data available affects the accuracy of critical vacci-

nation coverage estimates under the simple model. For the emerging epidemic

data, the random households and random individuals critical vaccination cov-

erage estimates from the simple model appear to perform at a similar level

regardless of the population distribution but under final size data, estimates

of critical vaccination coverage from the αGhana population model are seen to

be less accurate than estimates from the αUK model, in which the majority of

the population reside in smaller households. The most distinctive plots in Fig-

ure 5.4 however are those relating to the fitted optimal strategy. In particular,

there are intervals on all four fitted optimal strategy plots in during which the

estimated critical vaccination coverage diverges sharply from the true value.

These intervals occur when the increased severity of the epidemic is combatted

by vaccinating individuals in the largest households, since the simple model

predicts a far greater gain from vaccinating such individuals than is achieved

under the true model (c.f. Section 5.2). As individuals in smaller households

are vaccinated to combat the increase in λG (or R∗), the CVC estimates recover

towards the true value. The exception to this rule is severe epidemics under

final size data, for which Figure 5.4 shows that the CVC is generally overes-

timated. Here the sharp divergences from the true critical value occurs when

a high proportion of individuals in smaller households (size-2) are vaccinated

and the simple model underestimates the gain from vaccinating these individ-

uals.

It is important to note the range of values that cv takes for each population

structure and vaccination strategy shown in Figure 5.4 as R∗ increases. As one

would expect, the range is wide since we consider epidemics which barely take

off and those which would be expected to infect an extremely high proportion

of the population without intervention. The true value of cv is approximately 0

when R∗ is close to 1. When R∗ = 8, cv = 0.7215, 0.7724 and 0.8750 under the

UK population structure for the true optimal, random individuals and random

households strategies respectively. Under the Ghanaian structure, these values

are cv = 0.6427, 0.7155 and 0.8750. Thus the scale of the errors shown in CVC

estimates shown in Figure 5.4 vary drastically and this should be borne in mind

when observing the figure.

However, we also observe that c
(house)
v is the same for both population struc-
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tures when R∗ = 8. Specifically, under a perfect vaccine, c
(house)
v = 1 − 1/R∗ re-

gardless of the population structure (mirroring the CVC under a perfect vaccine

of 1 − 1/R0 for a homogeneously mixing population). Although not explicitly

stated, this is illustrated within Figure 2 of Ball and Lyne [2006].

Similar plots to Figure 5.4 in which λL is adjusted under the Cauchemez model

and the threshold parameter R∗ = 2 is fixed are given in Figure 5.5. As one

may expect, the CVC estimate under all strategies and both population struc-

tures is extremely accurate when λL is small and the epidemic is almost exclu-

sively globally driven. As local contact rates increase, the difference between

the true and estimated models take effect and the critical vaccination coverage

estimates diverge from the true value. As the local contact rate gets particularly

large however, the CVC estimate becomes more accurate again. Consider, for

example, the final epidemic considered in the plot for which λL = 10 and hence

λ
(8)
L = 1.25. The expected size of a single-household epidemic in an unvacci-

nated household of size 8 is given by µ8(1.25) = 7.15. This suggests that almost

every individual is expected to be infected in a single-household epidemic and

hence even if the basic model gives a considerable overestimate of λL, it cannot

drastically overestimate any of the µnv(λ
(n)
L ) values which determine the CVC.

Note again that in Figure 5.5, as in Figure 5.4, the true CVC values vary across

the x-axis and thus the scale of the errors shown in the plot also varies. When

λL = 0, all three vaccination strategies are equivalent and cv = 0.5 under both

population structures. When λL = 10, cv = 0.2231 and 0.3414 under the UK

population structure for the true optimal and random individuals strategies

respectively. Under the Ghanaian structure, these values are cv = 0.2246 and

0.3109. Once again, this should be borne in mind when considering the scale of

the errors of the CVC estimates given in this figure.

When estimating vaccination coverage, we have stated that our intention is to

achieve Rv ≤ 1, since this eradicates the possibility of an epidemic taking off in

a large enough population. Suppose we vaccinate some members of the popu-

lation but too few to reach critical coverage. It is of interest to know the expected

proportion of individuals in the population, zv, that will become infected by the

epidemic under these circumstances, if the epidemic takes off. We now look to

assess the impact of using the basic model to estimate CVC for epidemics with

different values of η under the fitted optimal vaccination strategy, which we
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ĉ v
−

c v
Final size

 

 

Random Households (Ghana)
Random Households (UK)
Random Individuals (Ghana)
Random Individuals (UK)
Fitted Optimal Strategy (Ghana)
Fitted Optimal Strategy (UK)

0 1 2 3 4 5 6 7 8 9 10
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Local contact parameter, λL
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Figure 5.5: Plots showing how ĉv − cv changes as the local contact parameter

λL of an epidemic increases if a perfect vaccine is used. The thresh-

old parameter is fixed at R∗ = 2 and thus c
(house)
v = 0.5 regardless

of the population structure or value of λL used. When λL = 0, all

three vaccination strategies are equivalent and cv = 0.5 under both

population structures. When λL = 10, cv = 0.2231 and 0.3414 un-

der the UK population structure for the true optimal and random

individuals strategies respectively. Under the Ghanaian structure,

these values are cv = 0.2246 and 0.3109
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have seen generally underestimates cv.

For ease of illustration, we only consider the all-or-nothing vaccine for the re-

mainder of this section. Recall from Chapter 2 that (2.3.3) and (2.3.4) give an

implicit equation for z in an unvaccinated population. We now look to adapt

these equations to the case when some members of the population have been

vaccinated using an all-or-nothing vaccine. Let πv be the probability that a

given individual avoids global contact from any infective over the course of

an epidemic, including contacts that do not result in infection as a result of

our given individual having been successfully vaccinated. Then, following the

same logic used to determine (2.3.3) in Section 2.3,

πv = [exp(−λGE[TI ]/N)]Nzv = exp(−λGzE[TI ]). (5.3.1)

Note that, under an all-or-nothing vaccine, the expected number of people that

ultimately become infected by a single household epidemic in a household of

size n, with v vaccinated individuals and a individuals contacted globally by

infectives outside of the household, is given by

µn,a,v(λ
(n)
L )/λGE[TI ]. (5.3.2)

Thus, by once again considering the arguments used in Section 2.3, we obtain

zv = (λGE[TI ])
−1

nmax

∑
n=1

n−1α̃n

n

∑
v=0

n

∑
a=1

xnv

(

n

a

)

(1 − π)aπn−aµn,a,v(λ
(n)
L ), (5.3.3)

Equations (5.3.1) and (5.3.3) now give an implicit solution for zv under the all-

or-nothing vaccine. As with the pre-vaccination version, we are interested in

the second solution, for which zv ∈ (0, 1) and which only exists when Rv > 1,

as this determines the expected proportion of individuals that become infected

if the epidemic takes off. Note that these methods cannot be extended to other

vaccine action models since (5.3.2) does not necessarily hold. However, cal-

culation of zv under the non-random response vaccine, or indeed its discrete

response generalisation, is possible using the multitype epidemic model meth-

ods of Ball and Lyne [2001].

As the value of η increases, the less accurate the CVC estimator provided by

the basic model should become. Hence, if we are estimating c
(opt)
v , we expect

to underestimate c
(opt)
v more severely as η increases and thus we expect zv to
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increase with η. We have also observed, in Figures 5.4 and 5.5, that regardless

of whether final size or emerging epidemic data are available, the basic model

generally provides its least accurate estimators when the epidemic severity and

local contact rates are large but not to the extent that global/local outbreaks are

almost certain to occur following an initial infectious presence. If R∗ is very

large, the epidemic becomes globally driven and thus the local dynamics we

consider here play a less important role in the spread of the outbreak. If λL is

very large then single household epidemics are likely to infect everyone in the

household who is not fully immune to the disease, thus rendering the differ-

ences between adopting a basic or Cauchemez model negligible. The exception

to this rule is if vaccination coverage is also very large (MMR, for example, has

both large local contact rates and a high vaccination coverage), in which case

the difference between the models may become non-negligible.

Plots depicting the expected proportion of individuals infected in populations

vaccinated according to estimates of the CVC using the fitted optimal strategy

from the basic model for different values of η are depicted in Figure 5.6. For

each value of η used, the value of λL is determined by setting λG = 1 and

R∗ = 1.95 for the UK population structure and R∗ = 2.75 under the Ghanaian

structure. This sets λL = 2 when η = 1 which Figure 5.5 shows to be approx-

imately the level at which basic model estimation performs worst under the

fitted optimal vaccination strategy.

Figure 5.6 shows an increase in zv as η increases however, it is the values that zv

takes that are most interesting. Even at the η = 1 level suggested by Cauchemez

et al. [2004], zv ≈ 0.1 if emerging epidemic data are used. This seems rather

large for a population that has supposedly been vaccinated well enough to pre-

vent an epidemic from taking off. The parameter values and vaccination strat-

egy for Figure 5.6 were deliberately chosen as an extreme, but realistic, example

of under-vaccination given perfect data. The random individuals and random

households strategies are generally expected to over-vaccinate (in comparison

to the CVC) for epidmeic models with η > 0 and thus their plots are not in-

cluded here since zv = 0 when over-vaccination occurs.

This point is illustrated further in Figure 5.7 in which we consider the specific

case of η = 1 from the epidemics considered in Figure 5.6. Again, the plot

shows the expected proportions of individuals that become that become in-
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Figure 5.6: Plots depicting zv in epidemics that have been vaccinated using the

fitted optimal vaccination strategy for the basic model for increas-

ing values of the local contact rate parameter η. The value λG = 1

is fixed along with R∗ = 1.95 for plots based on the UK population

structure and R∗ = 2.75 for the Ghanaian structure. The vaccine is

assumed to be perfect
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Figure 5.7: Plots depicting zv in epidemics that have been vaccinated using the

fitted optimal vaccination strategy for the basic model under all-

or-nothing vaccines with different efficacies. The epidemic param-

eters are λG = 1, λL = 2 and η = 1
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fected in a population vaccinated using the fitted optimal strategy from the

basic model but by using all-or-nothing vaccines of varying effectiveness. In

general, we observe that more effective vaccines can lead to more severe under

vaccination in terms of the eventual final outcome of an epidemic if an incorrect

model choice for the local dynamics of an epidemic is used.

It can be seen from both figures that emerging data leads to a more severe under

vaccination in the circumstances set out here. From Figure 5.6 we observe that

the extent of under/over-vaccination and its effects are far less predictable un-

der the Ghanaian structure than the UK population structure. Small changes in

vaccine efficacy are more likely to result in changes in the form of the fitted op-

timal strategy in population with a greater variety of household sizes and this

affects the extent to which one under/over-vaccinates the population. This ex-

plains both the greater ranges and increased complexity of the curves in Figure

5.6 relating to the Ghanaian population structure compared to those represent-

ing the UK structure. Plots for non-random vaccines yield similar results to the

above and thus are omitted.

Simulations from Section 5.3.2 show that under-vaccination is possible under

any vaccination strategy and vaccine action model. Figures 5.6 and 5.7 should

therefore serve as a warning that as accurate data as possible is needed to es-

timate parameters associated with the spread of an epidemic, since seemingly

marginal under-vaccination can still lead to a reasonably severe epidemic tak-

ing place. Note also that whilst we observe the fitted optimal strategy being

more prone to under vaccinate if one mistakenly assumes a basic model over

a Cauchemez model, it is intuitive to note that the random individuals and, in

particular, the random households strategies are more likely to under vaccinate

if the converse holds and η is assumed to be strictly positive. (Recall from the

Figures 5.5 and 5.4 that the random households strategy is particularly prone

to over-vaccination in the current setting.)

5.4 Discussion

We have investigated how model selection when analysing epidemic data af-

fects estimates of the vaccination coverage that would be required to prevent a

148



future outbreak of the same epidemic from taking off. In particular we found

that if practical vaccination strategies (random individuals and random house-

holds) are used, then estimating the parameters of an epidemic under the more

widely used basic model generally provides a good approximation for critical

vaccination coverage required should the actual epidemic have more closely

resembled a Cauchemez model with η = 1, (see Chapter 3 and Cauchemez

et al. [2004]). If anything, we observe that overestimation of critical vaccination

coverage may be more likely in these circumstances. Model selection becomes

a greater issue if one plans on developing an optimal vaccination strategy and

we show that, even if a large amount of data are available from a previous out-

break, critical vaccination coverage estimates made using the basic model could

under-vaccinate a population to the extent that an epidemic may still take off

and a sizeable proportion of the population become infected.

We also show that the true form of the optimal vaccination strategy can differ

significantly under the Cauchemez model from that of the conditional equali-

sation, which has been hypothesised to be the optimal strategy under the basic

model (see Ball and Lyne [2002b]) for the widely used all-or-nothing and non-

random response vaccine action models outlined in this thesis. Deviation from

this strategy has been shown to be possible under both of these vaccine models

however we show that it is particularly likely to occur under the Cauchemez

model if the vaccine in question is highly effective and that this deviation oc-

curs more readily under an all-or-nothing vaccine than a non-random response

vaccine of the same efficacy.

Epidemic models in which the optimal vaccination strategy differs from condi-

tional equalisation have also been considered by Keeling and Shattock [2012],

who note that in non-interacting communities, small vaccine stockpiles which

are not great enough to achieve critical vaccination coverage in any of the com-

munities should be focussed on the smallest populations first. Also, Keeling

and Ross [2015] consider a households model similar to that presented in this

thesis, in which the within household transmission rate is dependent upon

household size. They find that large maximal household sizes and small within

household transmission rates are most likely to break the assumption of condi-

tional equalisation for the optimal vaccination strategy.

From the simulation studies, it is clear that the variability of critical vaccination
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coverage estimates is far more likely to be the cause of under/over-vaccination

using the random households or random individuals vaccination strategies. As

such it would be useful to attach standard errors to our estimators of critical

vaccination coverage. This would be attainable by attaching errors to parameter

estimates using the methods of Chapter 3 and considering CVC as a function

of θ. This is considered by Ball et al. [2004b] under the setting of Ball and Lyne

[2001] and thus may be adapted to our model.

By attaching standard errors to CVC estimators, one may then consider the

effects of vaccinating at the upper bound of some confidence interval for the

CVC. A similar study to Section 5.3 could then be carried out to assess both

how often vaccination set with some margin for error may leave an epidemic

subcritical and what the effects of this may be if an incorrect model was chosen

estimating CVC. The methods presented in this chapter may also be extended

to the discrete vaccine response model or any other vaccine action models and

thus this may also be an area for potential future research.
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CHAPTER 6

Concluding comments

Results relating to inference from a stochastic SIR epidemic among a popula-

tions of households using both emerging and final size data from outbreaks

have been developed. Here we give a brief summary of the results obtained in

the thesis, ideas for extending this work and offer some general comments on

the future of the field.

We have investigated the use of three different ways of modelling the within-

household contact rate in a population:

1. The basic model in which the local contact rate is independent of house-

hold size.

2. The Cauchemez model in which the local contact rate varies with house-

hold size with respect to a parameter η (see Cauchemez et al. [2004]).

3. The unrestricted model in which local contact rates in households of dif-

ferent sizes are independent of each other.

Since these models are nested, we have presented all of our theory in terms of

the unrestricted model which was set out in detail in Chapter 2.

In Chapter 3 we used the central limit theorem of Ball and Lyne [2001] to present

theory for performing hypothesis tests based on maximum pseudolikelihood

estimates of epidemic parameters from final size data. The tests were given in a

general setting however we placed a specific focus on tests which could be used

to select an appropriate epidemic model from those listed above based on final

size households data obtained from a given outbreak. In particular, we showed
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that performing hypothesis tests to select one of these models does not require

knowledge of the proportion of households in the population that have been

sampled in the data. We also provided details on calculating the covariance

matrices required to perform these tests.

This theory was illustrated using real life final size data obtained from influenza

outbreaks. Our numerical studies in Section 3.6 suggested that the extra sim-

plicity afforded by the basic or Cauchemez models may often provide a better

fit to observed data than the full model. However, this study was only used to

illustrate our theory since the data were relatively small and only gave infor-

mation for influenza. As such it would seem to be ill-advised to dismiss any of

the models outlined above without performing suitable hypothesis testing on

any given households epidemic data that became available.

The use of hypothesis testing as a method for model selection was justified in

Section 3.7. We stated that other popular model selection tools such as AIC,

BIC and cross-validation all rely on data points in a sample being independent

and that their asymptotic properties are unknown for data such as households

epidemic data where dependence is weak but nonetheless exists. Further in-

vestigation into the properties of these methods in this scenario would prove

beneficial for any future research focussing on attaching a “best-fitting” model

to a stochastic epidemic with more than one level of mixing.

In Chapter 4 it was demonstrated that using the final size distribution of a sin-

gle household epidemic generally results in obtaining a biased estimator for the

within household infection rate of an emerging epidemic. We used branching

process theory to develop an estimator which correctly accounts for the true

nature of an emerging epidemic and showed that this estimator is strongly con-

sistent. Using similar theory, we also provided an estimator for the local con-

tact probability for data obtained from emerging Reed-Frost epidemics among

a population of households. The estimator was also shown to be applicable

whether infective and recovered or only recovered individuals in an emerging

epidemic.

Simulation studies were carried out to illustrate that the derived estimator has

the potential to perform well when applied to a real life data set and these were

followed by a series of numerical illustrations depicting the bias of estimators

obtained using the final size distribution of a single household epidemic. In or-
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der to be of practical use, the estimator relies on there being no latent period for

the epidemic,individuals in the population having an exponentially distributed

infectious period TI and having an estimator of the exponential growth rate r of

an epidemic available. We have shown that the assumption of no latent period

and an exponentially distributed recovery rate may be relaxed using the phase

method and assuming that one or both of these may be considered to have a

J-stage Erlang distribution which is made up of J independently distributed

exponentially distributed durations. However, this could become difficult to

implement computationally if J is large.

The problems of how best to estimate r and approximating the Laplace trans-

forms p̃
(n)
x,y (r|λ(n)

L ) (n, x, y) ∈ T (see Section 4.3) for non-phase-exponentially

distributed latent periods/recovery rates are also open, although we have indi-

cated in Section 4.7 the latter may be possible by adopting approaches similar

to those given in Fraser [2007] or Pellis et al. [2011] for calculating r in the non-

Markovian case. Approximating the standard error of the estimator derived in

Section 4.3 is another potentially key area of future research. In Section 4.7 we

have suggested that computationally intensive Bayesian methods such as ABC

or MCMC may be used to calculate credible intervals for the standard error

and this may be the most realistic method. Alternatively, bootstrapping may be

possible but an alternative to the cluster bootstrap would have to be developed

since this method relies on data from households of different sizes being inde-

pendent. A final possibility would be to determine the asymptotic distribution

of the estimator which would require central limit analogues of the results of

Nerman [1981] that were exploited in Section 4.3.

In Chapter 5 we discussed the estimation of critical vaccination coverage for

epidemics among households using emerging and final size data. In particular,

we investigated how the form of the optimal vaccination strategy can vary un-

der the three specific models outlined above and how incorrect model selection

can lead to expected over/under-vaccination a population.

Simulation studies in this chapter showed that the variance of an estimator for

critical vaccination coverage is the most likely cause of under/over-vaccination

of a population if one uses a random individuals or random households strat-

egy to vaccinate the population rather than the optimal vaccination strategy. As

such, research should be made into attaching standard errors to estimators of
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critical vaccination coverage, which is attainable using the methods of Chapter

3 by considering the critical vaccination coverage as a function of the parame-

ters of an epidemic. These could then be used to create confidence intervals for

critical vaccination coverage under a given strategy. A further extension would

be to extend the methods of Chapter 5 to the discrete vaccine response model

which is a generalisation of the non-random and all-or-nothing vaccine action

models used in that chapter.

In a wider context, it would also be fruitful to conduct further investigation

using real data as to which of the households epidemic models outlined above

best encapsulates the dynamics of the spreading of various diseases in which

there appears to be increased levels of mixing at household level. It should also

be possible to incorporate the methods used throughout this thesis into more

general/complex models, such as the network epidemic model, the households-

workplace model (Ball and Neal [2002]) or a model in which global infectious

pressure does not increase linearly with the number of infectives (O’Neill and

Wen [2012]).

The general future of the epidemiology field was discussed in great detail in

the Challenges in modelling infectious disease dynamics edition of the Epidemics

journal in March 2015. The households model presented in this thesis falls un-

der the banner of the metapopulation models discussed by Ball et al. [2015]

in their contribution to this journal. Their suggestions for the future develop-

ment of the model include improving the theory for endemic diseases under

the household structure (e.g. the SIS, Susceptible → Infective → Susceptible

model), generalising theory to more complex population structures (such as

the households-workplace model), developing inferential methods for emerg-

ing epidemics and improving the efficiency of computational methods used to

calculate growth rates and threshold parameters. It is hoped that the work in

this thesis has provided a contribution towards improving the understanding

of the theory and the tools available for inference in epidemics among house-

holds, particularly in the emerging epidemic setting.
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