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Investigations were undertaken in the context of the potential environmental impact of Carbon Capture 

and Storage (CCS) transportation in the form of a hypothetical leak of extreme levels of CO2 into the soil 

environment and subsequent effects on plant physiology. Laboratory studies using purpose built soil 

chambers, separating and isolating the soil and aerial environments, were used to introduce high levels of 

CO2 gas exclusively into the rhizosphere. CO2 concentrations greater than 32% in the isolated soil 

environment revealed a previously unknown whole plant stomatal response. Time course measurements of 

stomatal conductance, leaf temperature and leaf abscisic acid show strong coupling between all three 

variables over a specific period (3 hrs following CO2 gassing) occurring as a result of CO2-specific 

detection by roots. The coupling of gs and ABA subsequently breaks down resulting in a rapid and 

complete loss of turgor in the shoot. Root access to water is severely restricted as evidenced by the 

inability to counter turgor loss, however the plant regains some turgor over time. Recovery of full turgor is 

not achieved over the longer term. Results suggest an immediate perception and whole plant response as 

changes in measured parameters (leaf temperature, gs and ABA) occur in the shoot, but the response is 

solely due to detection of very high CO2 concentration at the root/soil interface which results in loss of 

stomatal regulation and disruption to control over water uptake. 

Introduction 

Carbon Capture and Storage (CCS) is currently regarded as a critical mitigation strategy for the global 

reduction of the atmospheric CO2. It is reported as capable of providing 19% of global CO2 emission 

reductions by 2050 enabling a smooth transition to a more sustainable energy production and use. 

(L’Orange Segio et al. 2014). The UK Government is committed under the Climate Change Act 2008 
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(http://www.legislation.gov.uk/ukpga/2008/27/contents) to reduce emissions by 80% of 1990s levels by 

2050 and has initiated a programme of development of CCS. Inclusive of this is a new area of research 

focused on the potential environmental impact. The deployment of transportation pipelines carrying 

captured and compressed CO2 from source (e.g. power stations and industry) to offshore reservoirs for 

storage is likely to be under agricultural land in areas of intensive land use and therefore requires 

quantitative assessment of potential effects on agricultural crops of potentially very high concentrations 

(up to 90%) of CO2 leakage into the soil environment (Lake et al. 2013, Smith et al. 2016). 

Previous laboratory studies of plant responses to extreme soil CO2 (greater than natural soil CO2 

levels) have been intermittent and span many decades. Rudimentary experiments elevating CO2 in the root 

environment of tomato and corn were carried out over a century ago (Noyes 1914); a wilting effect on 

both plant crops was observed with notable differences recorded between corn, which recovered when 

gassing ceased, and tomato which failed to recover, however, no physiological measurements or CO2 gas 

levels were reported (Noyes 1914). A study undertaken in the context of space travel almost 40 years ago 

also experimented with high levels of CO2 gas in hydroponic systems and looked at effects on potato 

tubers (Arteca et al. 1979). This study exposed plant roots to a 40% CO2 concentration and reported an 

increase in tuber growth and number when compared to control plants. However, in these experiments 

(Arteca et al. 1979) it is not clear whether aerial plant parts (leaves) were isolated from elevated levels of 

gaseous CO2 which may have had a CO2 fertilization effect potentially resulting in increased biomass. 

Furthermore, leaf responses were not reported. Several studies on extreme CO2 levels in the root zone 

have been conducted on a number of different crop species including soybean, rice, sorghum, peas, beans, 

sunflower, barley and cotton and have been reviewed and detailed within a CCS context (Steven et al. 

2010). Overall, negative effects on root growth and yield were reported here under high CO2 together with 

species-specific effects. None of these studies investigated stomatal responses of leaves. A series of 

experiments carried out by Cramer and co-workers did measure stomatal conductance and growth rates in 

tomato seedlings in hydroponic systems with elevated root zone CO2 of 0.5%. They reported that 

conductance and transpiration rate was reduced with elevated CO2 treatment, but only when relative 

humidity around the shoots was high (80%) (Cramer and Richards 1999). Total dry weight biomass of 

tomato increased under high CO2, however similar experiments using white lupin in a sand mix substrate 

with elevated root zone CO2 of 0.6% showed no increase in biomass compared to air gassed controls 

(Cramer et al. 2005) again illustrating species-specific differences. However, these studies did not have 

ultra-high CO2 levels, rather concentrations that can be present in agricultural systems (Stolwijk and 

Thimann 1957, Russell 1973, Glinski and Stepniewski 1985), which in the case of tomato, was in the form 

of dissolved inorganic carbon. Such conditions may not impose a stress per se and as such the studies are 

not directly comparable to this study utilising CO2 in gaseous form and in concentrations above 30%. 
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As gases compete on a volume basis, increases in CO2 always result in decreased oxygen (O2) 

concentration. Plant responses to O2 depletion (hypoxia and anoxia) have been widely investigated, 

mainly in the context of flooding (reviewed in Blom and Voesenek 1996, Fukao and Bailey-Serres 2004) 

however, in the case of CO2 gassing of the root environment important differences have been noted as 

separate and distinct from those of O2 depletion (Chang and Loomis 1945, Boru et al. 2003), including the 

present experimental system (Lake et al. 2016). 

Biochemical root to shoot signalling involved in plant water status under drought is well known 

(Schachtman and Godger 2008), however integration of biochemistry with hydraulic processes and the 

relatively under-reported field of electrical signalling in plants is less well understood. Distinct roles for 

both hydraulic and electrical processes were found to impact on gas exchange in maize (Grams et al. 

2007) whilst Malone and Stanković (1991) suggested co-ordination of both in response to wounding-

induced changes in water status in wheat. Here a series of experiments was devised to specifically test the 

effects of extreme soil CO2 (greater than 30%) completely isolated from aerial leaves, on stomatal 

physiology and biochemistry and in doing so, investigate the mechanistic basis of CO2-induced wilting 

described by Noyes (1914). We report a previously unreported whole plant rapid stomatal response 

directly emanating from high CO2 around the roots and propose a hypothetical long-distance mechanistic 

model orchestrated by a combination of biochemical and electrical signalling together with physical 

hydraulic processes. Furthermore, this response while synonymous with water stress (defined here as a 

direct consequence of water deficit) results in a change in water relations that are distinct from other 

abiotic conditions that affect hydraulic processes such as drought, chilling and flooding. 

Material and methods 

Experimental protocol 

In a laboratory system, soil chambers were constructed of acrylic plastic with pipe inlets and outlets to 

allow flow-through CO2 gassing of the soil environment, which is isolated from the above ground 

environment in a fully replicated experiment (Fig. 1A and B). The experimental system was housed in a 

controlled environment growth facility (UNIGRO, UK) to standardise all other environmental variables 

that impinge on plant performance. A maximum of 20 chambers were housed within one walk-in growth 

room. Gas was supplied from an integral supply (pure CO2) and separated prior to entering each soil 

chamber by via step-down primary and secondary manifolds. Gas was fed to and through the soil chamber 

and exhausted to atmosphere outside the growth facility via a separate manifold. A previous study 

including air-gassed control plants and non-gassed control plants showed that air-gassed and non-gassed 

controls were not significantly different in all measured parameters (Table S1 – Supplementary 

Information, Lake et al. 2016) therefore non-gassed control plants grown in the same soil chambers are 
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reported here. 

Plant material 

Beetroot (Beta vulgares v Pablo F1 – a dicotyledon) seeds were sown and grown in Levington’s no.3 

compost (to standardise soil conditions) within the growth room for 1 to 2 weeks before being 

transplanted into the soil chambers (Fig 1B) with the same compost. They were then left to allow 

sufficient root growth before gassing commenced (approximately 2 weeks). The gassing period lasted for 

7 days. After that time, the rapidly growing plants become pot-bound which affects physiology and no 

longer represents experimental responses to soil CO2 alone. Soil moisture was maintained by watering to 

field capacity (free drainage after watering) every 2 to 3 days and the day prior to each experiment to 

ensure that water deficit did not occur through the experiments. 

Standardised growth conditions were set as light level 280 (±20) µmol m–2 s–1 (at plant height) under 

fluorescent tube lighting (Osram FQ 54W / 840 HO Lumilux Cool White. Far red supplement: Phillips 

Clickline 60W G9 240V CL ICT), day/night as 12/12 hrs, temperature 21/18°C and relative humidity 55% 

and CO2 within the growth chamber was 425 (± 30) parts per million (ppm). Replication was 6 plants (soil 

chambers) per treatment in each successive experiment. 

CO2 concentrations in the soil environment 

Pure CO2 was supplied from CO2 cylinders (BOC, UK) and separated prior to entering each individual 

soil chamber by 2 flow rate step-down manifolds. Gas was delivered to each individual chamber at a rate 

of 30 (±15) mL min–1 to maintain CO2 levels at steady state within the soil environment. Gas (CO2 and O2) 

concentration in the rhizosphere was spot measured throughout the course of each experiment by 

interception of the exhaust pipe (Fig 1A) which was then connected to a GEOTECH GA5000 gas analyser 

(Geotech, Warwickshire, UK). 

Stomatal conductance (gs) 

Stomatal conductance was measured continuously on all plants using a Licor 6400x (Licor Inc, Lincoln, 

USA) prior to and post-gassing up to 10 hours. CO2 levels within the plant cuvette for measurement of gs 

were the same as conditions in the growth chamber (425 ± 30 ppm.) and therefore the conditions 

experienced by the whole shoot. Only the isolated soil environment was under high CO2 treatment, the 

leaves remained within an ambient CO2 atmosphere throughout the experiments. 

Leaf temperature measurement (Tleaf) 

Tleaf was recorded by the Licor 6400x throughout gas exchange measurements. Independent measurements 

using a calibrated hand held infra-red thermometer reader (Model 68, Fluke, Everett, WA, USA) were 

made on a target leaf of each plant during the course of one experiment at 30 minute intervals to coincide 
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with gs and ABA sampling from separate experimental runs. 

% leaf water content 

At the end of experiments remaining leaves were harvested, weighed and then dried to constant weight at 

80°C. Water content was calculated as fresh weight – dry weight, expressed as a % water loss. (n = 6) 

Carbon isotope analysis 

Using the same dried leaf material, 0.1 mg of leaf material per plant was ground in a pestle and mortar. 

Twelve CO2 gassed plants and eight non-gassed control plants were analysed using the method in Lake et 

al. (2009). Isotopic composition of the leaf environment was determined by sampling the air inside the 

growth room using pumps, disposable syringes (Sigma-Aldrich, UK) and 10 mL gas tight collection vials 

(Labco Exetainer Vials, Labco Ltd, UK), three replicate vials were flushed with N2 prior to sample 

collection. 

ABA analysis 

In a specific experiment leaf samples were taken as times series immediately prior to and following CO2 

gassing of the soil environment for a total of 3 hrs at 30 minute intervals. Separate experimental runs were 

carried out as removal of leaf samples may have affected measurements of both leaf temperature and gs. 

Three samples per time point were taken from both CO2 gassed and non-gassed control plants. Samples 

were snap frozen in liquid nitrogen and extracted using the water: methanol: chloroform method (Overy et 

al. 2005). 

A new methodology was developed for ABA analysis using Ultra Performance Liquid 

Chromotography-Mass Spectrometry (UPLC-MS; Waters Acquity UPLC coupled to Waters Synapt G2 

Mass Spectrometer, Waters Ltd, Manchester, UK). The mass spectrometer had an electrospray sample 

introduction system and data was acquired in negative mode using Waters MassLynx data system. MS 

conditions were set as Capillary Voltage 2.5 kV; Source Temperature 120°C; Desolvation Temperature 

350°C; Sample Cone 20 V; Extraction Cone 4 V; Desolvation Gas Flow 900 L h–1; Cone Gas Flow 20 L 

h–1. ABA separation using the UPLC was obtained with a 7.6-minute run and a linear gradient system. The 

column was a Waters Acquity UPLC Peptide BEH C18 column (size = 2.1 × 50 mm, pore size = 130 Å, 

particle size = 1.7 µm) with a flow rate of 0.6 mL min–1. All solvents used for the analysis were LC-MS 

Chromasolv Grade from Sigma and ultra-high purity water was obtained from an Elga PureLab system. 

Gradient UPLC run conditions are reported in Table S2 (Supplementary Information). Samples were not 

diluted before analysis and 10 µl was injected into the UPLC. A standard curve was produced, with an R2 

value of 0.995, by serially diluting an ABA stock (Sigma-Aldrich, UK) with a concentration of 26 µg mL–

1 2-fold down to a concentration of 1.625 µg mL–1. ABA is expressed as mg g–1 fresh weight of leaf 
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sample. 

Statistical analyses utilised Student’s t-test, 2-sample means (Minitab v12). 

Soil pH 

Soil samples were taken at the end of each experiment and dried at 40 ± 4°C. A solution of 0.01 M 

calcium chloride (CaCl2·2H2O analytical grade) was dissolved in de-ionised water and added to a soil 

sample to give a final solid to solution ratio of 1:2.5. The mixture was placed on a magnetic stirrer and 

stirred for at least 5 min. The suspension was allowed to settle for 15 min and measured with a pH 

electrode (Hanna combination electrode and Jenway PHM6 meter, Fisher Scientific, UK) until readings 

were stable. 4 replicate samples were taken from pre-gassed soil (before potting and planting) with 4 

replicate samples from non-gassed and 6 replicate samples from CO2-gassed individual soil chambers. 

Results and discussion 

CO2 concentrations in the soil environment were between 56% and 32.2% for CO2-gassed soil chambers 

and 0.09% and 2.5% for non-gassed control chambers, which is consistent with natural temperate soil 

levels of CO2 (Stolwijk and Thimann 1957, Borsato et al. 2015). Mean CO2 and O2 concentrations for all 

experiments are given in Table 1. It is recognised that pure CO2 gas, as supplied, may also contain 

impurities such as ethylene at physiologically relevant concentrations, however this was not measured. 

Ethylene responses induced solely in the root zone which impact on water relations have been reported in 

the literature as a consequence of flooding and mechanical impedance; no reports of this hormone in 

response to extreme CO2 in the root zone were found. We recognise therefore that this may have had some 

additional effect, which requires further investigation. Fig. 2A shows gs of an individual representative 

leaf over the time course of a 10 hr (600+ mins) experiment with mean gs of control plants remaining at 

0.131 (± 0.0178) mol m–2 s–1 throughout (n = 6). Table 2 shows the mean gs of CO2-gassed plants over the 

time frame of experiments (n = 6). Graphic images record the time course of the response as follows: t0 is 

the start of CO2 gassing in the isolated root environment; t1 the onset of a wilting response to CO2 gassing; 

t2 shows the CO2 gassed plant after 180 mins with total loss of turgor; t3 shows the plant during recovery 

of turgor and by t4 the plant appears to regain turgor. Fig. 2B shows the first 180 mins (t0–t2) and reports gs 

from Fig 2A, the simultaneous time course measurements of changes in leaf temperature from ambient 

(21°C) using the infra-red reader which coincide with time point samples of leaf ABA from CO2 gassed 

and non-gassed control plants. 

Highly significant negative correlations measured from t0 to t2 between Tleaf and gs (R2 = 0.74, 

Pearson’s correlation co-efficient and significance test p = 0.0013; GraphPad Prism 6 Analysis) and 

between leaf ABA and gs (R2 = 0.72, Pearson’s correlation co-efficient and significance test p = 0.0019) 

and a positive correlation between Tleaf and ABA (R2 = 0.57, Pearson’s correlation co-efficient and 
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significance test p = 0.012) suggest close interaction of all three variables during this initial period of gas 

delivery (Fig. 3A, B and C respectively). The theoretical relationship between Tleaf and both gs and 

transpiration rate (Jones 1999) has been previously demonstrated experimentally (Lake and Woodward 

2008, Forrai et al. 2012, Janker et al. 2013, Prytz et al. 2003); indeed, Tleaf is used to compute total 

conductance to water vapour in IRGA (infra-red gas analyser) systems (Licor Inc. USA) and is now in 

widespread use in infra-red thermographic screening equipment for water-related plant traits (Kim et al. 

2014). 

Closer examination of the integrated order of events show an initial rapid increase in Tleaf within 10 

mins of root contact with soil CO2, reaching a maximum of 27.1°C from initial measurement of 23.3°C. 

This provides evidence of a lack of evaporative cooling at the leaf surface despite gs being at its highest in 

gassed plants. Control plants show a steady state gs and a small and steady rise in Tleaf over the same 

period (from 22.5 to 24.1°C). The rapid rise in Tleaf represents an immediate and whole plant perception of 

an environmental change in the root environment which is initially independent of leaf gs. This must be in 

response to a long distance root-to-shoot signal as the shoot (i.e. the leaves) is not subject to any 

experimental perturbation. Therefore the signal must be solely derived from the CO2/root interaction. 

Stomatal closure responds to increases in leaf ABA and is at its lowest when leaf ABA peaks after 30 

mins (t1). Tleaf at this time is reduced, which suggests evaporative cooling is now occurring and water is 

being lost at the leaf surface, despite a reduction is gs. There is therefore a disparity between an assumed 

lack of evaporative cooling (high Tleaf) and a higher gs, as Tleaf of gassed plants remain higher than control 

plants throughout (Fig 2B). 

These responses are counter-intuitive and suggest that there is a decoupling of evaporative water loss 

and gs. However, extremely similar changes to gs and transpiration have previously been reported. Various 

abiotic environmental stimuli administered to distant leaves from measured leaves, most notably heat-

treatment (burning) of leaves (Grams et al. 2009, Hláváčková et al. 2006, Kaiser and Grams 2006, Herde 

et al. 1998) and mechanical wounding (Rhodes et al. 1999, Fromm et al. 2013), but also chilling (Fromm 

et al. 2013), drought (Fromm and Fei 1998) and re-irrigation following drought (Grams et al. 2007), 

recently reviewed by Choi et al. (2016). All implicate a rapid long-distance electrical systemic signal. 

Electrical signalling is known to consist of two types; action potential (AP) and variation potentials (VPs). 

APs are self-propagating, whilst VPs are known to interact with environmental stress and both have been 

measured to propagate through plant tissues at speeds of up to 105.5 m s–1 (Choi et al. 2016). This cited as 

a plausible explanation of very rapid initiation of systemic responses following perception of 

environmental perturbation (Hedrich et al. 2016). Furthermore, electrical signals have been demonstrated 

to impact on primary physiology: photosynthetic ΦPSI and ΦPSII show immediate changes after localised 

burning-induced VP (Lautner et al. 2005, Sukhov et al. 2015). The full mode of action of electrical 
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signalling is still unknown. An interpretation of individual responses seen here are discussed and then 

integrated to allow a mechanistic basis for results to be proposed. 

Leaf temperature (Tleaf) 

A study on the thermal resistance of leaves subjected to VP induction following burning of a distant leaf 

showed that non-burnt leaf temperature of experimental plants are consistently higher than comparable 

control plants, when external temperatures are kept constant (Sukhov et al. 2015). This suggests that Tleaf 

is a potential physiological perception of stress in response to VPs. In the same study, Sukhov et al. (2015) 

report depression of both gs and (E) over timescales consistent with the present study. The authors 

conclude that a drop in E following activation by VP is the likely cause of Tleaf increases, however, here 

Tleaf is the first response and largely independent of E (Fig 4A). Furthermore, IRGA measurements of Tleaf, 

whilst not showing the initial increase in as in infra-red measurements because Tleaf is held by the block 

temperature of the instrument above ambient, does show that high Tleaf is sustained for more than 250 

mins (Fig 4A). We speculate that Tleaf is the initial perception of a ‘stress’, in this case high CO2 contact 

with roots, and is likely to involve VPs given the similarity of gs and E responses with those of Sukhov et 

al. (2015). 

Leaf ABA 

Time point measurements of leaf ABA show an initial increase from the onset of gassing to 30 min. Co-

ordinated ABA responses with electrical signalling have been reported, again in response to localised 

burning. Herde et al. (1998) measuring membrane potentials in veins of tomato plants found specific 

potentials to be affected by the presence or absence of ABA production using ABA-deficient mutants. 

Hláváčková et al. (2006) directly measured ABA in the fifth leaf of tobacco after burning the tip of the 6th 

leaf at time points 0, 8, 15, 30 and 60 mins. Together with a rapid induction of electrical signals and a 

decrease in gs and E, leaf ABA levels rose sharply within the first 15 mins, thereafter reducing to below 

pre-burning levels after 60 mins. The authors point out that time spot measurements may well miss some 

information for time points not sampled and suggest that ABA as well as electrical signals may have 

elicited the stomatal responses reported. It has been shown that radio-labelled ABA translocation can 

occur throughout the plant shoot when fed to an excised petiole within 5 mins (Malone et al. 1994). The 

present study has a similar issue with time point measurements, however, both this and the study by 

Hláváčková et al. (2006) suggest that ABA is controlling stomatal closure up to the 30-minute time point. 

Interestingly, this study also reported no change in intracellular CO2 (Ci), commensurate with the present 

study (data not shown). 



A
cc

ep
te

d 
A

rti
cl

e
Whole plant loss of turgor 

Continued loss of water at the leaf surface between t1 and t2 causes a complete loss of whole plant turgor 

which previous studies (referenced above) over similar timescales do not report. The collapse of turgor 

pressure suggests massive disruption to the hydraulic system and that the roots are unable to access water 

to counter catastrophic water loss at the leaf surface; i.e. disruption to normal water gating mechanisms 

has occurred. It has been demonstrated that root-derived ABA plays a role in regulation of aquaporins 

(water channels in the root at the soil interface) by reversing water channel gating (from closed to open) 

and increasing plasma membrane permeability (Jiang et al. 2004, Stillwell and Hester 1984) under water 

deficit conditions (Wan et al. 2004). Furthermore, this mode of action is coupled to a reduction in pH 

(Gerbeau et al. 2002). It may be speculated that under conditions of high CO2-gassing weak carbonic acid 

is formed when CO2 and water interact lowering pH at the root surface, therefore this ABA response 

should occur. In the present study this does not occur and suggests a specific and distinctly different 

response to that of water deficit. Measurements of soil pH after an experimental run are unaffected by the 

treatment (Table S3) and indeed, plants slightly increase soil pH in both CO2-gasssed and non-gassed 

control treatments when compared to soil before plants are introduced to the medium, but this is not 

statistically significant. 

CO2-specific response 

Chang and Loomis (1945) found that high soil CO2 levels around the roots of wheat, maize and rice in 

hydroponic solution severely inhibited both water and nutrient uptake, but that a decreased pH solution 

(equivalent of the CO2 gassed solution) had little effect, suggesting a specific response to CO2 gas. They 

speculated that CO2 has the ability to alter membrane permeability. This speculation was realised when 

disruption of cell membrane integrity to CO2 was elegantly demonstrated by Glinka and Rienhold (1962) 

who also showed a distinct CO2 effect compared to both a low pH and a lack of O2. These authors 

subsequently showed that CO2 caused a reduction in turgor pressure of excised hypocotyls of Helianthus 

annuus (Reinhold and Glinka 1966) as seen here in the whole intact plant. To our knowledge these 

mechanisms remain unknown. 

Stomatal response 

Between 30 and 60 mins leaf ABA levels drop and control over stomatal conductance is lost; this is 

evidenced by continued water loss until lack of turgor is complete (180 mins, t2). This unexpected 

response may be explained by stomatal ‘failure’ to close in response to a loss of turgor. This has been 

reported as a normal hydraulic stomatal response when ‘water deficit in angiosperm leaves causes 

subsidiary cells to lose turgor before the guard cells, and this collapse causes stomata to open “hydro-

passively” rather than closing during rapid dehydration’ (Brodribb and McAdam 2011). Recent studies on 
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leaf responses to water deficit elicited by leaf excision (to simulate xylem cavitation) and/or increased 

vapour pressure deficit (VPD) have reported transient ‘wrong-way’ stomatal responses to leaf water 

potential whereby gs increased in response to decreased RH (Buckley et al. 2011) over time scales and 

magnitudes similar to the present study. More rapid responses (~2.5 mins) have also been observed in 

Helianthus annuus (Hanson et al. 2013). It may be expected that changes induced by directly manipulating 

the leaf will produce faster responses than those directed by root responses, however Hanson et al. (2013) 

invoke a combination of hydraulic disruption (cavitation) and other signal(s) to produce the ‘wrong way’ 

stomatal response they observed indicating a response over multiple timescales maybe possible. An even 

more rapid hydropassive stomatal opening was found in Mimosa pudica within 60 seconds of stimulation 

of a nearby pinna from heat-induced electrical VPs and was interpreted as a sudden loss of epidermal 

turgor (Kaiser and Grams 2006). The latter study reported gs to fully recover within twenty minutes in 

direct contrast to the present study. 

Despite an increase in leaf ABA and a corresponding decrease in gs from 60 to 120 mins suggesting 

that gs is still capable of responding to leaf ABA, after 180 mins measured stomatal conductance decreases 

(Fig. 2A). We suggest that following catastrophic turgor loss and failure of water channels in the roots to 

open, the leaves have no more water to lose. IRGA measurements record this as extremely low gs (no 

evapotranspiration) however, stomata may still be hydropassively open i.e. non-functional. 

Turgor recovery 

During the period 180 to 630 mins (Fig. 2a, t2 to t4), the plant begins to regain turgor following collapse 

which we interpret as redistribution of remaining plant water because gs remains close to zero thereafter. 

Recovery of gs to pre-experimental levels was observed following leaf excision in H. annuus in the study 

by Hanson et al. (2013) which the authors also explain as water redistribution within the leaf as there is no 

access to additional water. However, for the remainder of the experiment (6 to 7 days) leaves remained 

flaccid and full turgor recovery to the pre-gassed state did not occur. Further evidence for a loss of water 

is shown by a reduce leaf water content and lower carbon isotope discrimination (�13C) i.e. a more 

intrinsic water use efficient plant (Fig 3 a and b). Our conclusion here is that roots remain unable to access 

sufficient water. Eventually (over several more days) the plant dies under continuous gassing. This finding 

replicates field experiments (Lake et al. 2013, Smith et al. 2016) which record extremely localised (radius 

0.25 m) plant death within a week of elevated soil CO2, presumably due dehydration and/or nutrient 

starvation (Sevanto et al. 2014). Table 3 shows fresh weight and dry weight biomass and root to shoot 

ratio at the end of a 7-day experiment providing evidence for this hypothesis as a dramatic reduction in 

root biomass, with little effect on shoot biomass. The loss of roots at this stage, however, cannot explain 

the loss of turgor during the initial phase of CO2 gassing. 
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Integrating responses in a mechanistic framework 

Our identified root response is initiating subsequent events, and stomatal control by ABA is decoupled 

during rapid turgor loss, however, the plant appears to utilise hydraulic processes to redistribute water and 

regain some control of turgor pressure. As such, hydraulic processes are partly responsible for the plant 

phenotype over the longer term. In Fig. 5 we speculate on a mechanistic framework which integrates 

electrical, hydraulic and biochemical components to elucidate a whole plant response to root induced CO2 

stress which is distinctly different from drought stress. Clearly, there are still unknown and complex 

aspects of how hydraulic/mechanical processes interact with biochemical mechanisms in vascular plants, 

as well as incorporation of electrical signals which provide rapidity of responses but a whole plant 

approach integrating root and shoot responses is the only way to elucidate these fully. 

CO2 sensing 

The results presented here also raise the intriguing question of whether a specific CO2 sensor in the roots 

leads to this response. It has long been a goal of plant physiologists to discover a sensing mechanism for 

CO2 in leaves, but with limited success. As far back as 1990, Mott identified the need for a CO2 sensing 

mechanism to explain overall physiological responses to elevated atmospheric CO2. 35 years on and 

despite concerted efforts to locate such a sensor in stomatal guard cells (Vavasseur and Raghavendra 

2005) a specific CO2 sensor in either the leaf or guard cell has remained elusive (Negi et al. 2014). The 

CO2 specific nature of the response reported here offers the possibility of elucidating CO2 sensing, not 

using the leaves of plants, but the roots. Such a sensing mechanism may be conserved and therefore 

similar in structure to any found in aerial parts. Furthermore, the interaction between CO2, ABA, pH status 

and aquaporin regulation of water uptake requires further investigation and offers a tantalising opportunity 

to investigate whole plant mechanisms of CO2 sensing and water regulation. Our results show that plant 

control over water status possibly holds more elements than water deficit responses alone, indeed 

mechanisms of a plant’s ability to distinguish between different responses are not well known. Revisiting 

this intriguing topic more than a century after it was first seen exposes the gaps in our knowledge; further 

research into the physiological dynamics of whole plant responses which have elements in common will 

elucidate and ultimately allow for a more targeted approach to manipulated water use efficiency. 
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Figure legends 

 

 
Fig. 1. (A): schematic of soil chamber design, (B): beetroot plants in situ. 
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Fig. 3. Correlations between gs and Tleaf (A), leaf ABA (mg g–1 fresh weight) and gs (B) and leaf ABA and 
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Tleaf (C). Measurements taken at 180 mins from onset of gassing. Solid circles are CO2 gassed; open 

circles are non-gassed control plants. 

 
Fig. 4. (A) Tleaf (black) and transpiration rate (E) of a representative CO2 gassed plant measured 

continuously by IRGA. (B) % water lost from leaves (fresh weight – dry weight) and (C) �13C carbon 

isotope discrimination (WUEi – intrinsic water use efficiency). [Black bars= CO2-gassed plants, white bars 

= non-gassed control plants. * = p = <0.05, ** = p = <0.005 Student’s t-test]. 
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Fig. 5. Putative mechanistic model of the response to high CO2 gassing in the root zone: involvement of 
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hydraulic and biochemical signalling. Red highlights represent unknown signals/mechanisms; blue 

highlights represent measured or observed effects; green highlights represent hypothetical mechanisms; 

black highlights represent deduced effects from measured/observed effects. 

 

 

 

 

Table 1. Mean CO2 and O2 concentrations measured inside soil chambers during laboratory experiments. 

Mean gas concentration (%) CO2-gassed Non-gassed control 

CO2 42.3 1.2 

O2 11.1 19.8 

 

Table 2. Stomatal conductance (gs) of CO2-gassed plants over the experimental time frame of 6 

experiments. [Mean values (± range of values), n = 6]. 

Time point Pre-gassing (t0) 30 mins (t1) 180 mins (t2) 630 mins (t4) 

gs (mol m–2 s–1) 0.24 (± 0.07) 0.031 (± 0.02) 0.044 (± 0.04) 0.028 (± 0.05) 

 

Table 3. Mean biomass, root to shoot ratio and % loss of water on drying of beetroot grown with or 

without CO2 gassing of the root zone (n = 6).  

Experimental 

treatment 

Non-

gassed 

control 

CO2-

gassed 

Non-gassed 

control 

CO2-

gassed 

Non-

gassed 

control 

CO2-

gassed 

 Fresh weight (g) Dry weight (g) % water loss on 

drying 

Shoot biomass 41.52 36.78 3.34 4.47 92 88 

Lateral root biomass 20.21 2.03 2.57 0.67 87 67 

Beet biomass 9.0 1.98 0.65 0.21 93 89 

Root biomass (total) 29.21 4.01 3.22 0.88 89 78 

Root to shoot ratio 0.70 0.11 0.96 0.19 n/a n/a 

 

 


