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Abstract 7 
 8 

The demand for diagnostic tools that allow simultaneous screening of samples for multiple 9 

pathogens is increasing because they overcome the limitations of other methods, which can 10 

only screen for a single or a few pathogens at a time.  Microarrays offer the advantages of 11 

being capable to test a large number of samples simultaneously, screening for multiple 12 

pathogen types per sample and having comparable sensitivity to existing methods such as 13 

PCR.  Array design is often considered the most important process in any microarray 14 

experiment and can be the deciding factor in the success of a study.  There are currently no 15 

microarrays for simultaneous detection of rodent-borne pathogens.  The aim of this report is 16 

to explicate the design, development and evaluation of a microarray platform for use as a 17 

screening tool that combines ease of use and rapid identification of a number of rodent-borne 18 

pathogens of zoonotic importance.  Nucleic acid was amplified by multiplex biotinylation 19 

PCR prior to hybridisation onto microarrays.  The array sensitivity was comparable to 20 

standard PCR, though less sensitive than real-time PCR.  The array presented here is a 21 

prototype microarray identification system for zoonotic pathogens that can infect rodent 22 

species. 23 
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Highlights 28 

 We have developed a microarray to detect zoonotic pathogens in rodent species. 29 

 The design stage of a microarray experiment is crucial for a successful experiment. 30 

 We examined the difference between amplification methods prior to hybridisation. 31 

1.1 Introduction 32 

 33 
Prompt detection of pathogens is a significant issue in diagnostic testing for both human and 34 

veterinary health.  This is particularly relevant when slow-growing or fastidious organisms 35 

are involved and the limitations of some existing diagnostic tools are driving researchers to 36 

consider alternative methods, as demands on quantity and rapidity of testing methods are 37 

increasing [1].  Serological methods provide an indication of exposure to a pathogen and are 38 

best used for screening populations.  However, they also require an adequate time post-39 

infection/exposure for antibodies to develop and may be unable to distinguish between 40 

different strains or antigenic types of pathogen.  Zoonotic pathogens make up the majority 41 

(75%) of emerging diseases and wildlife are a major source of these pathogens [2].  Early 42 

detection of pathogens in wild animals would be useful in identifying risk factors associated 43 

with disease transmission to humans or domestic animals, and this could help prevent a 44 

possible outbreak.  It has also been suggested that prevention of disease, which could be 45 

aided by an effective surveillance system, is better than reacting to an outbreak, or to finding 46 

a cure [3].  Microarrays offer the advantage of testing large numbers of samples 47 

simultaneously, coupled with screening a single sample for multiple pathogens.  Use of this 48 

technology would enable timely, accurate and inexpensive detection of pathogens, which 49 

could lead to more effective control of these infectious diseases, which has positive 50 

implications for public health [4].  There are a wide ranging number of potential applications 51 

for pathogen detection arrays; and have been used for the detection of novel pathogens, as in 52 

the case of severe acute respiratory syndrome (SARS) [5], simultaneous detection of 53 
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Newcastle disease virus and avian influenza virus in birds [6] and detection of viruses that 54 

can cause vesicular or vesicular-like lesions in livestock [7].   55 

Although microarrays are used widely, the fluorescence-based glass slide arrays are relatively 56 

expensive.  Alternatives to the glass slide microarray are the ArrayTube™ (AT) and 57 

ArrayStrip™ (AS) platforms from Alere Technologies GmbH (Jena, Germany).  These are 58 

much less expensive, and can be used without highly specialised equipment [8].  The AT (up 59 

to 225 spots) and AS (up to 600 spots per well) platforms make the use of a small array 60 

surface of size 4 x 4 mm placed on the bottom of a plastic vial or well.  Hybridisation and 61 

analysis are simple and rapid, using standard laboratory methods, and hybridisation signals 62 

are detected following an enzyme-catalysed precipitation reaction [9].  The use of plastic 63 

tube-integrated arrays and fast non-fluorescent labelling and hybridisation protocols results in 64 

a system that is cost-effective, time saving, and allows high sample throughput, in a 96 well 65 

format [1].   66 

There are currently no microarrays for the detection of multiple rodent-borne pathogens.  The 67 

aim of this report is to explicate the design, development and evaluation of a microarray 68 

platform for use as a screening tool, which combines ease of use and rapid identification of a 69 

number of rodent-borne pathogens of zoonotic importance.   70 

2.1Materials and Methods 71 

2.1.1. Probe design 72 

An initial literature search was performed to identify zoonotic pathogens which are 73 

transmissible by rodents.  A microarray was then developed to screen for the presence of 74 

these pathogens.  Table 1 shows the list of pathogens to be screened for, including the source 75 

of any reference material if available.  Unfortunately, not all of the pathogens for which the 76 

array was designed to detect could be sourced.  Therefore the probes for, Hepatitis E Virus, 77 

Bartonella, MRSA, R. typhi and S. monilliformis were not evaluated.  RNA from an infected 78 
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Rattus norvegicus sample was supplied but several attempts at PCR proved unsuccessful and 79 

it was concluded that the RNA had degraded too much to be of use.  A further literature 80 

search was conducted to identify particular genes or target regions which had been previously 81 

used for identification purposes in other diagnostic tests such as PCR.  The DNA sequences 82 

were obtained from the NCBI database and aligned using ClustalX2 83 

(http://www.ebi.ac.uk/Tools/phylogeny/clustalW2_phylogeny/help/faq.html#5) software.  84 

Oligonucleotide sequences (probes) were designed for each pathogen from regions targeted 85 

by species-specific or generic primers.  Two freely available software packages were used for 86 

probe design: Unique Probe Selector (UPS) [10] and OligoWiz [11, 12].  Both types of 87 

software were used to compensate for any limitations in the other.  OligoWiz, at present, can 88 

only be used to design probes for bacteria.   89 

An optimal length of 60-nucleotide probes was assigned, and parameters for both OligoWiz 90 

and UPS included cross-hybridisation, delta-Tm, low-complexity, position and folding.  An 91 

in silico analysis was performed on all the probes using the BLAST tool on the NCBI 92 

database to determine if cross-hybridisation would occur with any other known sequences.  93 

The selected probes were synthesised at Metabion International (Jena, Germany) with the 94 

following specifications: NH2 modification at the 3’ end, no modification at the 5’ end, 95 

purification with HPLC, 0.04 µmol scale, and absolutely biotin-free.   96 

The AT platform was used for initial evaluation for individual pathogens, and the best 97 

performing probes were transferred to the AS platform making a pool of probes from 98 

different pathogens.  For both platforms, each probe was directly spotted onto the array 99 

surface at a 15 µM concentration with each probe printed in duplicate.   100 

 101 

2.1.2. Primer design 102 

http://www.ebi.ac.uk/Tools/phylogeny/clustalW2_phylogeny/help/faq.html#5
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Generic primers were designed from conserved flanking regions of the target sequence using 103 

Primer3 (http://primer3.ut.ee/).  Species-specific primers were designed from more variable 104 

regions of a sequence that were specific to certain pathogens.  The amplicon size was set 105 

between 250 and 750 bases, with an optimum of 500 bases.  Primer sequences for both 106 

multiplex PCR and real-time PCR can be seen in Table 2. 107 

Table 1.   108 

A list of all the reference materials that were available for this study. 109 

Table 2. 110 
 111 
Primers used during the evaluation of the arrays.  The majority were designed during the 112 
study but others were obtained either from the literature or colleagues. 113 

 114 

2.1.3. Nucleic acid amplification 115 

Several amplification methods were tested including sequence-independent amplification 116 

[13] using a random pentadecamer primer and a primer tag, and sequence-dependent 117 

amplification using pathogen-specific primers.   118 

 119 

2.1.3.1. Sequence-independent amplification 120 

Any RNA present in the sample was reverse transcribed into cDNA with 1.0 µl of primer A 121 

(GTT TCC CAG TCA CGA TCN NNN NNN NNN NNN NN) (40 µM), 1.0 µl of 10mM 122 

dNTP mix (Invitrogen), and variable amounts of water and template (minimum 50 ng/µl) 123 

were mixed in a PCR tube to a total volume of 13µl.  The volume of water was variable to 124 

allow for different concentrations of template.  This was then heated to 65°C for five min 125 

using a thermal cycler.  The mixture was placed on ice for at least one minute.  A separate 126 

mixture containing 4.0 µl of 5x Reverse Transcriptase Buffer (Invitrogen), 1.0 µl of 0.1M 127 

Dithiothreitol (DTT) (Invitrogen), 1.0 µl of RNase inhibitor, RNaseOUT (Invitrogen), and 128 

1.0 µl of SuperScript III Reverse Transcriptase (Invitrogen) was added to the PCR tube 129 

http://primer3.ut.ee/
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contents, and mixed by pipetting.  The 20 µl reaction was incubated using a thermal cycler at 130 

25°C for five min, then at 50°C for one hour and finally at 70°C for 15 min to inactivate the 131 

reaction.  The reaction was left at room temperature for five min, followed by one minute on 132 

ice.  The mix was then heated to 94 °C for two min, and rapidly cooled to 10°C in the thermal 133 

cycler for five min.  10 µl of Klenow mix (1.0 µl 10x Klenow buffer (Promega UK), 8.7 µl 134 

water, 0.3 µl Klenow polymerase (Promega)) was then added.  For any DNA already present 135 

in the sample primer extension was effected with 1.0 µl Primer A (40µM), 1.0 µl 10x Klenow 136 

buffer and variable amounts of water and template (minimum 50ng/µl) to make a total 137 

volume of 10 µl.  This sample mixture was then heated to 94°C for two min and then allowed 138 

to cool to 10°C in a thermal cycler for five min.  The following 5.05 µl reaction mix was 139 

added to the sample mixture during its incubation at 10°C: 0.5 µl 10x Klenow buffer, 1.5 µl 140 

3mM dNTPs, 0.75 µl 0.1M DTT, 1.5 µl 500 µg/ml BSA, 0.3 µl Klenow polymerase 141 

(Promega UK), 0.5 µl water.  The reaction was left at room temperature for five min, 142 

followed by one minute on ice.  The mix was then heated to 94 °C for two min, and rapidly 143 

cooled to 10°C in the thermal cycler for five min.  10 µl of Klenow mix (1.0 µl 10x Klenow 144 

buffer, 8.7 µl water, 0.3 µl Klenow polymerase) was then added.   145 

For both RNA and DNA sequence-independent steps the mixture was then heated to 37°C for 146 

8 min, and then held at 37°C for a further 8 min.  This was followed by a rapid increase to 147 

94°C for two min after which the mix was cooled to 10°C for five min, during which 1.2 µl 148 

of diluted Klenow (1:4) was added.  The temperature was again increased to 37°C for 8 min 149 

followed by a hold of 8 min at 37°C, and then the reaction was terminated by placing the 150 

mixture on ice for 5 min.  Standard PCR was then conducted using Primer B (GTT TCC 151 

CAG TCA CGA TC) (100 µM) to amplify the round A product with the following cycle 152 

parameters one step at 95°C for 10 s; 35 cycles of 30 s at 94°C, 30 s at 40°C, 30 s at 50°C, 2 153 

min at 72°C and one final extension step of 72°C for 2 min.  A 50 µl reaction mix was 154 
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prepared from the following: 39.0 µl water, 1.5 µl 50mM Magnesium chloride (MgCl2) 155 

(Invitrogen UK), 5.0 µl 10x Mg-free buffer (Invitrogen UK), 0.5 µl 25mM dNTP mix, 0.5 µl 156 

Primer B, 0.5 µl Taq polymerase (5 U/μl) (Invitrogen UK) and 3.0 µl Round A product.   157 

2.1.3.2. Sequence-specific amplification 158 

Sequence-specific PCR was performed using a 50-µl reaction containing 37.5 µl of nuclease-159 

free water, 2.0 µl of 50mM MgCl2 (Invitrogen UK), 5.0 µl of 10x Mg-free Buffer (Invitrogen 160 

UK), 1.0 µl of 25mM dNTP mix, 1.0 µl of 10µM forward primer, 1.0 µl of 10µM reverse 161 

primer, 0.5 µl of Taq DNA polymerase (5 U/μl) and 2.0 µl of cDNA or DNA (optimal 162 

concentration 50ng/µl).  Cycling parameters were one step of 94°C for 2 min; 30 cycles of 30 163 

s at 94°C, 1 min at 60°C and 1 min at 72°C and one final extension step of 10 min at 72°C.  164 

In addition the Qiagen Multiplex PCR Plus kit was tested with the sequence-dependent 165 

primer sets.  This was carried out with both non-biotinylated and biotinylated primers.  166 

Multiplex PCR was performed using a 50-µl reaction containing 25 µl Multiplex Master Mix, 167 

5 µl 10 x primer mix (2µM each primer) and variable volumes of water and template (50 168 

ng/µl).  The recommended protocol in the Qiagen Multiplex PCR Plus handbook was 169 

followed with cycling parameters of  one step at 95°C for 5 min; 40 cycles of 30 s at 95°C, 90 170 

s at 60°C and 90 s at 72°C and one final extension step of 10 min at 68°C.   171 

Real-time PCR was carried out using the Applied Biosystems 7500 Fast Real-Time PCR 172 

System.  Real-time PCR was performed using a 10-µl reaction containing 5 µl of TaqMan® 173 

Universal PCR Master Mix 2x (Life Technologies), 1 µl of 300nM forward primer, 1 µl of 174 

300 nM reverse primer, 1 µl TaqMan® probe (2.5µM), 1 µl of nuclease-free water and 1 µl 175 

of sample (or water as a negative control).  The recommended protocol was followed with 176 

cycling parameters of one step at 50°C for two min, another step at 95°C for 10 min; 40 177 

cycles of 95°C for 15s and 60°C for 60 s.  Each sample was run in triplicate.  178 

2.1.4. Microarray hybridisation 179 
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Prior to hybridisation of the labelled sample onto the array, the AS was conditioned by 180 

washing with 150 µl of water for 20 min at 30°C.  After the water was removed using a 181 

pipette, a pre-hybridisation buffer (5x saline-sodium citrate (SSC), 0.1% sodium dodecyl 182 

sulphate (SDS), 4x Denhardt’s solution) was pipetted into each well for 30 min at 50°C.  183 

Both washes were performed using a thermomixer (BioShake iQ, QUANTIFOIL Instruments 184 

GmbH, Jena Germany) at 550 rpm, which was used in all subsequent incubation steps unless 185 

otherwise stated.  A 10-µl aliquot of the biotin-labelled sample was added to 90 µl of 186 

hybridisation buffer (5x SSC, 1% SDS, 4x Denhardt’s solution).  The mixture was denatured 187 

at 95°C for 3 min and then kept on ice.  The denatured sample (100 µl) was then pipetted into 188 

the AS well and allowed to hybridise for 30 min at 55°C at 550 rpm.  The sample solution 189 

was then removed and the AS was washed successively for 20 min at 60°C at 550 rpm with 190 

150 µl wash buffer 1 (1x SSC, 0.2% SDS), wash buffer 2 (0.1x SSC, 0.2% SDS), and wash 191 

buffer 3 (0.1x SSC).  This buffer was then removed and vacant binding sites on the 192 

microarray were blocked by incubation with a blocking solution (100 µl) of 2% biotin-free 193 

milk in PBS containing 1% bovine serum albumin (BSA) and 0.1% Tween™ 20 for 60 min at 194 

30°C at 300 rpm.  The blocking solution was replaced with 100 µl conjugation solution 195 

(Streptavidin Poly-Horseradish peroxidase (HRP) diluted 1:100 in the blocking solution), and 196 

the array incubated for 15 min at 30°C at 300 rpm.  Post-conjugation washes were performed 197 

using wash buffers 1-3 as described for the post-hybridisation washes.  After removal of 198 

wash buffer 3, 100 µl of a tetramethylbenzidine (TMB)-hydrogen peroxide (H2O2) solution, 199 

in this instance TrueBlueTM (Insight BioTechnology LTD, UK), was added and incubated for 200 

10 min at 25°C without shaking.  After removing the solution, the AS was then inserted into 201 

the ArrayMate and the array image was recorded with raw data generated.  The recorded 202 

image was analysed using Alere’s integrated IconoClust software and analysis script.  203 

Iconoclust processes the signals and automatically normalises the signal value after an 204 
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algorithm processes the average intensity of the spot and the local background noise.  The 205 

output range of the signals was between 0 and 1, with 0 being negative and 1 being the 206 

maximal possible signal value.  The normalised intensity of the spots was automatically 207 

calculated by subtracting the local background noise from the average intensity of the 208 

automatically recognised spot.     209 

3.1. Results 210 

3.1.1. PCR amplification and hybridisation 211 

A 327 probe ArrayStrip was produced, and the number of probes per pathogen are given in 212 

Table 3.  During the evaluation stage, it was determined that sequence-independent 213 

amplification resulted in lower hybridisation signals on the array than sequence-dependent 214 

amplification.  Some of the pathogens (e.g. Cowpox, T. gondii and C. jejuni), when amplified 215 

by their specific primers produced good quality, detectable, hybridisation signals, but when 216 

random amplification was used, they showed no or weak hybridisation.  A DNA sample of C. 217 

jejuni for example was amplified using sequence-independent PCR and the product was then 218 

hybridised onto the array.  A measurable signal was seen with 26.6% of the C. jejuni probes 219 

on the array.  With specific amplification there was 100% probe hybridisation at significantly 220 

higher signal strength (data not shown).   221 

Table 3.  222 

The number of probes for each pathogen that were spotted on the WT_Rodent_Chip_03 223 

ArrayStrip 224 

 225 

Figures 1A-1H show the images recorded after hybridisation with a variety of Salmonella 226 

species following sequence-dependent and sequence-independent amplification.  The spots 227 

indicated by arrows are the biotin markers, which act as assay controls.  Numerous probes 228 

showed cross-hybridisation in these images, albeit at low signal intensities, so they were 229 
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removed from the final version of the array.  It is also apparent that the cross-hybridising 230 

probes were only visible in the images which show samples that had been amplified using 231 

sequence independent-amplification (Figures 1A-1F).  The images which show hybridisation 232 

following sequence-specific amplification were much cleaner (Figures 1G-1H), and had the 233 

expected hybridisation profile.  The three spots indicated by the rectangular box in all images 234 

except Figure 1G are probes that were designed to hybridise with a wide range of Salmonella 235 

species.  Figure 1H shows the amplification of S. Typhimurium with a set of primers 236 

designed to amplify this region which is common to multiple Salmonella species.  S. 237 

Gallinarum (Figure 1A), S. Dublin (Figure 1B), S. Pullorum (Figure 1C), S. Enteritidis 238 

(Figure 1D), S. Hadar (Figure 1E), and S. Typhimurium (Figures 1F-1H) were tested on the 239 

array.  Although it was visible on the array, the signal strength is low in comparison to Figure 240 

1H.  This is particularly noticeable for S. Dublin and S. Hadar from Figures 1B and 1E.   241 

Both sequence-independent and sequence-specific amplification were used for S. 242 

Typhimurium.  The images produced after hybridisation can be seen in Figures 1F and 1G.  243 

Figure 1F shows sequence-independent amplification, and the circled probes were designed 244 

to be specific for S. Typhimurium.  This set of probes did not show any detectable 245 

hybridisation in the other images so it appeared these were good probes for distinguishing S. 246 

Typhimurium from other Salmonella species.  Figure 1G shows the sequence-specific 247 

amplification with a set of primers designed to amplify the S. Typhimurium-specific region.  248 

The probes for all of the pathogens tested which produced a hybridisation signal can be seen 249 

in Table A.1 in the Appendix.   250 

 251 

Figure 1. 252 
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Images produced after hybridisation of various Salmonella species on WT_Rodents_2_1.0 253 

array.  The spots indicated by arrows are the biotin markers.  The solid square and rectangular 254 

areas are the orientation markers. 255 

A. S. Gallinarum hybridisation following random amplification 256 

B. S. Dublin hybridisation following random amplification 257 

C. S. Pullorum hybridisation following random amplification 258 

D. S. Enteritidis hybridisation following random amplification 259 

E. S. Hadar hybridisation  following random amplification 260 

F. S. Typhimurium amplification following random amplification 261 

G. S. Typhimurium amplification with primers Salm/flag/1366055/F and 262 

Salm/flag/1366482/R (S. Typhimurium-specific) 263 

H. S. Typhimurium amplification with primers Salm/CDP/2167279/F and 264 

Salm/CDP/2005357/R (Generic Salmonella species) 265 

 266 

Table 4. 267 

The negative control sample and reference pathogen samples in lanes 1-12 from Figure 2A.  268 

 269 

3.1.2. Multiplex PCR amplification and hybridisation 270 

The primer sets which performed well in singleplex PCR reactions were then tested in a 271 

multiplex reaction.  As it is unlikely that a sample would contain all of the pathogens tested, 272 

the effectiveness of the primer mix in detecting a pathogen was tested using a sample of 273 

rodent liver DNA which was spiked with individual pathogen DNA (DNA concentration 274 

ranged from 1.66 – 112.5 ng/µL, and copy number from 2.33 x 109 – 2.09 x 1011).  Figure 2A 275 

shows a gel image of the result of amplification of individual pathogens from the spiked 276 

material when the multi-pathogen primer mix was used.  Table 4 shows the pathogen 277 

detected in each lane from Figure 2A.  As can be seen from the figure, the majority of lanes 278 

had a strong band.  The two bands in Lane 9 represent the specific S. Typhimurium 279 

amplicons (663 bp) and the generic Salmonella amplicons (428 bp).  This was expected, as 280 

the multi-pathogen primer mix had primers specific for S. Typhimurium, and also had 281 

primers to amplify a region common to many Salmonella species.  Figure 2B shows the spots 282 
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that hybridised after using the multiplex primer mix (with biotinylated primers) on a pooled 283 

nucleic acid sample from all pathogens for which reference samples were available.  284 

Although the band seen in Lane 12 for T. gondii was quite faint, careful analysis of the 285 

recorded image indicated that all of the pathogens in the sample, including T. gondii, 286 

hybridised with the expected specific probes on the array.   287 

Figure 2. 288 

A. Agarose gel electrophoresis image produced after amplification of nucleic acid of 289 

individual pathogens using the multiplex primer mix. 290 

B. Profile produced after hybridisation of a mixture of all the pathogens following 291 

amplification with the multiplex primer mix for which reference samples were available.   292 

3.1.3. Array sensitivity testing 293 

The sensitivity of the array was tested by performing real-time PCR using serially diluted Y. 294 

pestis DNA.  The pathogenic DNA in the sample was no longer detectable using real-time 295 

PCR (Figure 3) at copy numbers less than 4.39 x 102.  As expected, there was no 296 

amplification for the negative control sample.  Samples in Figure 3B, C, D and E (copy 297 

number 3.47 x 109, 1.76 x 107, 8.57 x 104, 4.39 x 102) were detectable by real-time PCR.  The 298 

DNA in sample B was detectable after 18 cycles.  For samples C, D, and E the cycle number 299 

at which detection occurred was 24, 32 and 36, respectively.  The DNA in sample F appeared 300 

to have been too low for real-time PCR to detect and no amplification was observed. 301 

The array images shown in Figure 3 were produced after hybridisation of the products of 302 

standard PCR amplification. These were the same samples that were tested by real-time PCR 303 

for Y. pestis on the Yersinia_01 ArrayTube.  The biotin markers on each array are indicated 304 

with an arrow.  On the Yersinia_01 array only two probes were expected to hybridise with 305 

the primer set used (Y.pes/pPCP/8374/F Y.pes/pPCP/8902/R).  As can be seen from the 306 

images produced after hybridisation, the two expected probes hybridised with samples B, C 307 

and D.  For samples E and F there was no apparent hybridisation. 308 
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Figure 3.   309 

Real-time PCR sensitivity testing was performed with serial dilutions of Y. pestis.  Sample A 310 

was a negative control sample (water).  The copy number in samples B to F was 3.47x109, 311 

1.76x107, 8.57x104, 4.39x102, and 1.  Array images after hybridisation of the standard PCR 312 

products from the same Y. pestis amplification on WT_Yersinia_01 are also shown.  Biotin 313 

markers are indicated by arrows, and Y. pestis probes that showed hybridisation are circled.   314 
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4.1. Discussion 315 

Collecting good quality samples for disease surveillance can often be a time and cost 316 

intensive process.  Therefore, it is important that any technology used is as efficient as 317 

possible.  We report the development of a DNA microarray for simultaneous detection of 318 

multiple pathogens of rodents, comprised of 327 probes derived from a variety of genes in 319 

each of the target pathogens.  The technology presented here represents a simple but effective 320 

system which is affordable and compatible with standard laboratory equipment, and has been 321 

used for a variety of purposes over recent years [1, 14-18].   322 

The design of oligonucleotide probes is a complex process for a variety of reasons, including 323 

identifying the best target sequences to be screened and understanding the thermodynamics of 324 

probe-target interactions during hybridisation [19].  An oligonucleotide length of 60 bp was 325 

selected, as several studies have indicated that this offers the best combination between 326 

specificity and sensitivity [20-22].  Shorter oligonucleotide probes (15-25 mers) have a very 327 

high specificity, but they have been criticised for having a lack of sensitivity, whereas longer 328 

oligonucleotides (40-90 mers) are thought to have a good sensitivity whilst maintaining a 329 

high specificity [19].  It has been reported that 60-mer oligonucleotides have an eight-fold 330 

higher sensitivity than 25-mers [23].   331 

Variation within microarray experiments can still occur regardless of careful probe design.  332 

The typical sources of variation can be broadly divided into three main categories: variation 333 

within the biological sample, the performance of the technology itself, and finally, variation 334 

in the spot signal measurements.  The majority of variance in microarray experiments is 335 

generally biological rather than technical [24].  Arrays are generally made in batches and 336 

variation can occur between batches.  These can include different probe concentrations, 337 

which can lead to incorrect conclusions being drawn from data [25].  Variation at the array 338 
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production stage can occur for a number of reasons including, for example the particular 339 

printing pin used, the humidity, and temperature during printing.  These variables can lead to 340 

slight differences in the amount of probe that is deposited on the slide surface, the amount 341 

that remains on the array surface after processing, and the level of deviation from the 342 

expected spot location.  All of these factors can have an impact on the amount of labelled 343 

target that can bind to the probe, and on the efficiency of subsequent spot finding and data 344 

extraction steps [19].  The level of deviation from the expected location can result in the array 345 

reader making inaccurate readings, the signals of neighbouring probes becoming merged, or 346 

the spot can become invalid and cannot be accurately detected by the analysis software.  In 347 

order to reduce the variability that is inherent in all biological experiments, experimental 348 

replication is essential.  One obvious form of technical replication is through array probe 349 

replication.  It is advantageous to at least have duplicates, or preferably multiples, of all 350 

probes spotted on the same array, however this may not be possible due to spotting density 351 

constraints.  The precision of particular probe measurements will be more reliable if the spot 352 

intensities of the replicate spots are averaged for each sample [26]. 353 

To achieve an efficient hybridisation step, it is important to have probes with a narrow 354 

melting temperature distribution, because the hybridisation step takes place at the same 355 

temperature for all probes on the array [27].  The algorithms used in both OligoWiz and UPS 356 

are able to make minor adjustments to the length of each probe so that a narrow melting 357 

temperature range is achieved.  Determination of melting temperature thresholds is a difficult 358 

task as this determines the conditions under which probes will bind to the target sequence.  359 

Melting temperatures can cause loss of signal if too high, and non-specific signal if too low 360 

[28].  As a single temperature is used during the hybridisation step, it is advisable that the 361 

narrowest melting temperature range be used to maximise signal detection [29].   362 
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The chip presented here represents a prototype microarray identification system for zoonotic 363 

pathogens that can infect rodents.  The probes used on the microarray were based on genes 364 

that are unique to the pathogens selected.  These genes were selected following a literature 365 

search to identify gene sequences which have been previously used to identify these 366 

pathogens, and a BLAST analysis to see if the sequences selected had similarity to any other 367 

pathogen sequences on the database.  This is also the first report of biotinylated primers used 368 

in a multiplex format with up to 24 primer pairs.  There was no apparent difference in the 369 

hybridisation signal produced when only a single pathogen was present in single and 370 

multiplex PCR reactions.  More work needs to be done to determine the limits of detecteion 371 

and the sensitivity of the array, but as a proof of concept the array has demonstrated potential.  372 

Further improvements to this array could be made by obtaining reference material for 373 

pathogens which were unavailable and evaluating the probes for these pathogens.  Whilst 374 

reference material was available for SEOV during the evaluation stage, several attempts at 375 

PCR proved unsuccessful.  However, a number of rodent samples (nucleic acid was extracted 376 

from liver, kidney and lung of R. rattus and R. norvegicus, an aliquot of which was then 377 

pooled and amplified by multiplex PCR followed by hybridisation with the microarray) were 378 

screened on the array and two of these were identified as SEOV positive.  This was later 379 

verified by both PCR and sequencing.    380 

While in silico analysis of the gene and resulting probe sequences are important in 381 

eliminating the possibility of cross-hybridisation with other sequences already on the NCBI 382 

database, it does not rule out the possibility of cross-hybridisation with newly emerging 383 

organisms for which the gene sequence is unknown.  As a result, microarrays can be used to 384 

identify novel as well as known pathogens.  This can be achieved by designing probes at a 385 

genus level with additional probes designed for differentiating between species [30].   386 
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The presence of host nucleic acid in a sample presents another challenge in microarray 387 

experiments, as it can lower the sensitivity of the array.  This occurs because in most 388 

situations the host DNA is present in much higher amounts than the pathogen nucleic acid, 389 

which makes the pathogen more difficult to detect.  The sensitivity of an array may be 390 

improved by the removal of host nucleic acid by DNAses, i.e. enriching pathogen-derived 391 

nucleic acid, using dedicated methods and kits for this purpose prior to PCR amplification 392 

[31].  The sensitivity on this array was less than that of real-time PCR, as has been previously 393 

demonstrated with other pathogen detecting microarrays [14, 32], this leads to a trade-off 394 

between sensitivity and cost-effectiveness.  It would have been useful to have tested the array 395 

sensitivity for RNA pathogens as well.  However, as mentioned earlier, there were no 396 

working RNA pathogens available during the evaluation stage.  A critical step in the 397 

development of a microarray is sourcing reference samples with which the array can be 398 

evaluated.        399 

The design stage can be the deciding factor in the success of any microarray experiment and 400 

the choice of array platforms or probe types can be challenging.  However, it is now 401 

becoming increasingly clear that when a careful design is followed, the results obtained with 402 

different platforms are likely to be comparable [19, 33, 34].  The user can decide whether to 403 

invest time and resources in developing their own arrays, utilise one of the commercial 404 

providers who can assist with array design and fabrication, or use off-the-shelf commercial 405 

arrays.  The relatively low cost of screening for many pathogens simultaneously in a single 406 

sample is an economical and efficient approach for rapid and sensitive diagnostics.  This may 407 

be of particular use for wildlife samples which may be small in volume and are often 408 

irreplaceable.   409 
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