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ABSTRACT

The response of the North Atlantic meridional overturning circulation (MOC) to wind stress forcing is

investigated from an observational standpoint, using four time series of overturning transports below and

relative to 1000m, overlapping by 3.6 yr. These time series are derived from four mooring arrays located on

the western boundary of the North Atlantic: the RAPIDWestern Atlantic Variability Experiment (WAVE)

array (42.58N), the Woods Hole Oceanographic Institution Line W array (398N), RAPID–MOC/MOCHA

(26.58N), and the Meridional Overturning Variability Experiment (MOVE) array (168N). Using modal de-

compositions of the analytic cross-correlation between transports and wind stress, the basin-scale wind stress

is shown to significantly drive theMOC coherently at four latitudes, on the time scales available for this study.

The dominant mode of covariance is interpreted as rapid barotropic oceanic adjustments to wind stress

forcing, eventually forming two counterrotating Ekman overturning cells centered on the tropics and sub-

tropical gyre. A second mode of covariance appears related to patterns of wind stress and wind stress curl

associated with the North Atlantic Oscillation, spinning anomalous horizontal circulations that likely interact

with topography to form overturning cells.

1. Introduction

The Atlantic meridional overturning circulation

(MOC) is the primary driver of poleward heat transport

by the ocean. At subtropical latitudes, it is responsible

for about 70% of the poleward ocean heat transport and

25% of the combined ocean and atmosphere poleward

heat transport (Ganachaud and Wunsch 2000). Nu-

merical models suggest that over the twenty-first cen-

tury, the MOC will reduce in strength (Vellinga and

Woods 2002) with associated reduction in the northward

heat transport (Johns et al. 2011). Our ability to properly

simulate, or accurately observe, a climatic trend inMOC
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records is impaired by our incomplete understanding of

the origins of MOC variability.

The MOC in numerical models varies on a broad

range of time scales, from decadal scales (Delworth

et al. 1993, 2012) to interannual scales (Biastoch et al.

2008; Köhl and Stammer 2008; Zhao and Johns 2014a)

and to annual (seasonal) and shorter scales (Hirschi

et al. 2007; Blaker et al. 2012; Zhao and Johns 2014b).

At first, processes on different time scales could be

expected to linearly superpose, but numerical simula-

tions suggest that intrinsic interannual variability of the

MOC can spontaneously appear under climatological

atmospheric forcing (Grégorio et al. 2015). A decade of

continuous observations has confirmed that the Atlan-

tic MOC at 268N exhibits broadband variability

(McCarthy et al. 2015), with amplitudes larger than

anticipated (Srokosz and Bryden 2015). As an example,

the Atlantic MOC has shown an exceptional downward

linear trend of about 0.5 Sv yr21 (1 Sv [ 106m3 s21)

(Smeed et al. 2014), in addition to interannual varia-

tions including a year-long dramatic reduction of about

30% (McCarthy et al. 2012). At the annual time scale,

the MOC at 268N shows a substantial seasonal cycle of

roughly 30% of its absolute magnitude. Prior to the

268N moored sustained observations, the Atlantic

MOC had been estimated from synoptic hydrographic

surveys. From five surveys spanning 50 years, a re-

duction of 8 Sv was identified (Bryden et al. 2005), but

this was later mostly attributed to aliasing of the sea-

sonal variability of the MOC into longer time scales

(Kanzow et al. 2010). Thus, analysis of the MOC vari-

ability is complicated by the superposition of multiple

time scales of variability.

At any given latitude, the observed and simulated

variability of the MOC may be induced by local or re-

mote forcing. For example, the seasonal cycle of the

MOC at 268N is explained by coastal wind forcing off the

Canary Islands and the associated heave of isopycnals by

wind stress curl (Chidichimo et al. 2010; Kanzow et al.

2010). Variations in the MOC strength can also result

from local adjustment to boundary waves propagating

around ocean basins (Johnson andMarshall 2002; Elipot

et al. 2013) or planetary waves propagating westward

from the basin interior but with limited meridional ex-

tent (Kanzow et al. 2009; Zhao and Johns 2014b). The

topic of local versus remote forcing of theMOC is linked

to the issue of observing the MOC at a single latitude: is

the measure of the MOC at a single latitude represen-

tative of large-scale MOC variability? Elipot et al.

(2014) showed that the observed MOCs at 268 and 418N
(Willis 2010) were temporally coherent on near-annual

time scales, yet the phases of their annual cycles were in

quadrature, resulting in a null correlation (see also

Mielke et al. 2013). In general, numerical simulation

experiments clearly indicate that the latitudinal

boundaries between tropical, subtropical, and sub-

polar gyres can break the meridional coherence of the

MOC on various time scales (Bingham et al. 2007; Xu

et al. 2014).

Numerical simulations are able to provide basinwide

and consistent transport estimates at all latitudes

(Bingham et al. 2007; Zhang 2010). In contrast, transport

estimates at discrete latitudes from observational

methods are not necessarily comparable. For the MOC,

observational methods include 1) a net transport over a

fixed depth range [measured from profiling floats at a

nominal 3-month time resolution near 418N (Willis

2010)], 2) the maximum of an overturning stream-

function [estimated from transbasin geostrophic shear,

as near 268N with the RAPID–MOC/MOCHA

(Cunningham et al. 2007; Rayner et al. 2011)], 3) the

transport of a physically coherent current near bound-

aries [such as the DeepWestern Boundary Current near

398N (Toole et al. 2011) and at 268N (Meinen et al.

2013)], or 4) zonally integrated meridional transport

across a partial basin width [as near 168N (Send et al.

2011)]. In this study, we use some of the same observa-

tions in the North Atlantic, but we aim at estimating

comparable oceanic transport quantities at each of these

four latitudes (418, 268, 398, and 168N), applying the

method of using ocean bottom pressure (OBP) gradi-

ents on the western boundary of the Atlantic’s basin

(Hughes et al. 2013; Elipot et al. 2014). Next, we apply

statistical methods to study the covariance between

transport estimates, and investigate wind forcing as a

driver of this covariance.

This paper is organized as follows. Section 2 presents a

brief review of the concepts of overturning processes and

observational principles. Section 3 presents the oceanic

and atmospheric data used. Section 4 describes the

methods used. Section 5 presents the results of analyses

between the four transport time series by themselves.

Section 6 presents the results on the statistical analyses

between the four transport time series and the wind over

the North Atlantic, and provides dynamical interpreta-

tion for the observed statistical linkage. Section 7

provides a summary and conclusions.

2. Overturning meridional transports: Concepts
and observational principles

To investigate rapid coupling between wind forcing

and overturning transports, it is useful to consider the

velocity decomposition of Lee andMarotzke (1998) (see

also Jayne and Marotzke 2001; Sime et al. 2006).

Assuming that a time-dependence is implicit, the
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meridional velocity y(x, y, z) is decomposed into three

components:

y(x, y, z)5
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whereH(x, y) is the water depth at location (x, y). Each

of these three terms can lead to an overturning, where

overturning refers to a zonally integrated meridional

transport that varies with depth. The first term represents

velocities that are depth independent at each (x, y) spa-

tial location, but its zonal integral can vary with depth

because of varying topography and basin width. As an

example, imagine a hypothetical ocean where the west-

ern half is 1000m deep with a depth-independent ve-

locity of 2 cms21 northward, and the eastern half is

2000 m deep with a depth-independent velocity of

1 cms21 southward. The resulting zonally averaged ve-

locity profile will be 1 cms21 northward in the top 1000m

and 1 cms21 southward in the lower 2000m, effectively

forming an overturning circulation. The overturning

transport from the first term in (1) is the so-called ex-

ternal mode, and is often associated with a barotropic

gyre circulation. Conceptual examples of such circula-

tions leading to an overturning are given by Lee and

Marotzke (1998), Elipot et al. (2013), and Yang (2015).

The second velocity term in the square bracket of (1)

leads to the so-called Ekman overturning. The first

subterm in the bracket is the upper-ocean response to

zonal wind stress, summing to a meridional Ekman flow

distributed over a surface Ekman layer of unknown

thickness.1 The second subterm in the bracket

represents a local vertically uniform return flow that

compensates the surface Ekman flow, thus forming an

overturning circulation.As noted byHughes et al. (2013),

the Ekman return flow is a convenient mathematical

representation that is not meant to be physically correct

since it will be distributed over a range of depths.

Killworth (2008) shows that the return flow in a simple

linear frictional ocean model with flat bottom can vary

strongly horizontally and vertically. In addition, the exact

distribution may also depend on the time scales under

consideration, as also shown by Jayne and Marotzke

(2001) in an ocean general circulation model.

The final term of (1) leads to a baroclinic (i.e., verti-

cally sheared) meridional flow, with
Ð 0
2H

ysh dz5 0. The

velocity ysh consists mostly of a thermal-wind sheared

velocity that is balanced by the zonal density gradient

but could also include non-Ekman ageostrophic flow.

In a numericalmodel, Lee andMarotzke (1998) find that

Ekman overturning dominates the meridional over-

turning of the IndianOcean. In a coupled climatemodel,

Sime et al. (2006) find that the contributions to theMOC

of each term of (1) in the Atlantic Ocean on seasonal

and interannual time scales depend on the latitude un-

der consideration.

Let us now consider the meridional geostrophic ve-

locity yg from the zonal pressure gradient:

f y
g
5

1

r

›p

›x
,

where f is the Coriolis parameter, and r is the water

density. The zonal integral of this equation gives the

geostrophic meridional mass transport per unit depth:

T(y, z)[

ðxE
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dx5
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f
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where pE and pW are theOBP on the eastern andwestern

boundaries, respectively. Thus, T is given by the differ-

ence between OBP on each side xW and xE of an ocean

basin. Overturning, by definition, is a measure not of the

net flow across a given latitude, but of compensating

meridional flows at different depths, meaning a zonally

integrated flow that has vertical shear. Thus, to capture

an overturning transport, it is not so much absolute OBP

signals that are needed but rather the vertical OBP

gradient alongside boundaries [see Bingham andHughes

(2008) for an extended discussion of this point]:

›

›z
T(y, z)5

1

f

›

›z
[p

E
(y, z)2 p

W
(y, z)]. (3)

The sheared transport ›T/›z can then be formally

separated into two contributions: one arising from

the western boundary OBP gradient, and one from

the eastern boundary OBP gradient, independently

of the interior velocity field. In an ocean basin with

vertical sidewalls, the vertical pressure gradient is pro-

portional to density anomalies through the hydrostatic

relation. In the presence of sloping boundaries, hori-

zontal geostrophic velocities near the boundaries are

also needed to obtain the full vertical pressure gradient

(Hughes et al. 2013).

The appropriateness of using the OBP gradient

method to estimate overturning was demonstrated in an

ocean general circulation model (OGCM) of the North

Atlantic by Bingham and Hughes (2008). They found

1At the RAPID–MOC/MOCHA the Ekman transport calcu-

lated from wind data is evenly distributed over the upper 100m of

the ocean.
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that the western boundary OBP gradient integrated to

form a layer transport representative of the MOC ex-

plained more than 90% of the interannual variability of

transports calculated directly from the model velocity

fields. The dominance of the western boundary OBP

variance is due to more energetic flow on the western

boundaries and westward accumulating variability as-

sociated with Rossby waves and eddies. From observa-

tional data, Elipot et al. (2014) found that the dominant

signal of the MOC near 268 and 418N is the geostrophic

overturning, which is itself dominated by the western

boundary contribution. They further demonstrated that

OBP gradient time series on the western boundary, in-

tegrated within appropriate depth ranges to form

transport quantities, captured a large fraction of the

variability of the MOC. In particular, at 268N, the

equivalent of the western boundary OBP gradient in-

tegrated relative to and below 1000m is representative

of the variability of theMOC at semiannual, and longer,

time scales.

Of the three terms in (1), the first and last terms are

primarily geostrophic. In the second term, ye is the result

of a frictional process, but the compensation term (the

integral) is assumed to be geostrophic. The overturning

transport estimated from vertical pressure gradients

following boundaries as in (3) should therefore capture

overturning transports arising from all but the ye con-

tribution. In this study we investigate the covariance of

western boundary pressure gradient contributions to

overturning transports at four different latitudes, with

respect to the wind forcing on a basin scale. Because our

transport time series are only a few years long, and be-

cause of the nature of the methodologies applied, we

investigate near-instantaneous velocity responses of the

oceanic circulation, which we expect will be manifested

in the first two terms of (1). The baroclinic ocean re-

sponse to wind forcing, manifested in the third term, is

mediated from the ocean interior by westward propa-

gating planetary waves, and is delayed by months or

years until it reaches the western boundary to influence

the geostrophic shear estimated from the western

boundary pressure gradients. For example, the North

AtlanticOscillation (NAO) atmospheric pattern drives a

response in the North Atlantic Ocean characterized by

anomalous horizontal circulations at the boundary be-

tween subtropical and subpolar gyres (Visbeck et al.

2003). Eventually, these velocity responses project onto

the western boundary pressure, and thus influence the

overturning. Instead, the mechanisms of adjustment

considered here are typically deemed barotropic, as

they are communicated by fast propagating baro-

tropic waves within the ocean interior and around

ocean basins boundaries (O’Rourke 2009).

3. Oceanic and atmospheric observations

a. Oceanic overturning transport time series

1) DERIVATIONS OF TRANSPORT TIME SERIES

AT RAPID WAVE LINE B, LINE W,
AND RAPID–MOC/MOCHA

We study the basin-scale covariance of the North

Atlantic MOC by considering the western boundary

contribution to zonally integrated meridional transport

relative to and below 1000m, from observations at four

different latitudes. The four mooring arrays from which

data are used are shown in Fig. 1: Line B of the RAPID

Western Atlantic Variability Experiment (WAVE) ar-

ray near 428N (Elipot et al. 2013), the Woods Hole

Oceanographic Institution Line W near 398N (Toole

et al. 2011), RAPID–MOC/MOCHA near 26.58N
(Cunningham et al. 2007), and the Meridional Over-

turning Variability Experiment (MOVE) array at 168N
(Send et al. 2011). The common length of the transport

time series from these four arrays is 1325 days (3.6 yr), so

we are limited to studying processes acting on time

scales less than three years and seven months (i.e., from

seasonal to interannual time scales).

Elipot et al. (2013) applied (3) to derive western

boundary contributions to zonally integratedmeridional

transport relative to and below 1000m from Line B and

FIG. 1. (left) Western North Atlantic bathymetry and (right)

locations of western boundary arrays used to derive western

boundary overturning transports. At (left) the black longitude–

latitude boxes delineate the close-ups at (right); (top)–(bottom)

from north to south, these are RAPID WAVE Line B, Woods

Hole Line W, RAPID–MOC/MOCHA (west moorings only), and

MOVE array (west moorings only). Bathymetry data are from

Smith and Sandwell (1997) topography database version 13.1.
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Line W, two arrays separated by about 1000km along

the western boundary. The two resulting time series

called TW (398N) and TB (418N) were shown to be co-

herent and almost in phase for all time scales from

3 months to 3.6 years. At shorter time scales, they were

still coherent but with group delay estimates implying a

propagation speed of 1ms21 between the two latitudes,

consistent with expectations for baroclinic coastally

trapped wave speeds. Elipot et al. (2014) showed sub-

sequently that these two time series were representative

of the Atlantic MOC as captured by Argo float data

analyses near 418N (Willis 2010), on semiannual time

scales and longer.

A third time series of overturning transport below and

relative to 1000m, calledT26, was derived byElipot et al.

(2014) from RAPID–MOC/MOCHA, and shown to be

strongly coherent and out of phase with the MOC

strength, defined from the same array as the maximum

of the vertically integrated streamfunction (Kanzow

et al. 2010). The overturning transport T26 captured

most of variance of the MOC at periods longer than

2 years. At periods of 6 months to 2 years, T26 captured

most of the western boundary contribution to the geo-

strophic variance of the MOC.

No propagating signals were detected from the lati-

tudes of Line B and Line W to 268N, and while TB and

TW were coherent with T26 on semiannual and longer

time scales, there was a 908-out-of-phase relationship

resulting in a null correlation. The reasons for the co-

herence between Line B and Line W and 268N was

unclear.

2) DERIVATION OF THE DEEP OVERTURNING

TRANSPORT TIME SERIES AT THE MOVE
ARRAY

The mooring array of the MOVE experiment located

near 168N is designed to capture the deep meridional

flow in the western basin of the North Atlantic, between

Guadeloupe in the Antilles to the west and the Mid-

Atlantic Ridge to the east. The details of the instrumen-

tations and moorings, as well as transport calculations and

analyses can be found in Kanzow et al. (2006, 2008) and

Send et al. (2011). The volume transport at the MOVE

array is calculated by combining the unreferenced interior

mass transport between an eastern tall density mooring

(M1) located west of the mid-Atlantic ridge and a western

tall density mooring just east of Guadeloupe (M3), with

the volume transport estimated by direct velocity mea-

surement (mooring M4) between mooring M3 and the

continental rise between M3 and Guadeloupe. Based on

water masses boundary considerations, absolute trans-

port is derived by referencing geostrophic velocities to

zero at 4950m (Send et al. 2011).

Here we use data from moorings M3 and M4 only to

derive a western boundary contribution to the overturning

transport relative to and below 1000m. First, we calculate

the vertical shear of the interior transport with the east

boundary density profile set to constant values where the

results here are independent of the choice of constant

value. Second, vertical profiles of cross-sectional velocity

are calculated by linear interpolation and constant extrap-

olation at each time step from a discrete number of current

meters on moorings M3 and M4. Those profiles are mul-

tiplied by nominal cross-sectional areas to form profiles of

transport per unit depth at each mooring, which, when

summed, provide a total transport profile per unit depth in

thewesternwedge. This transport profile is differentiated in

the vertical to obtain the transport shear in thewedgewhich

is then added to the interior shear to estimate the total

western boundary transport shear. This shear is then in-

tegrated from zero at a reference level of 1000mdownward

to 4000m to obtainTM, the western boundary contribution

to overturning transport relative to and below 1000m.Note

that the TM daily time series derived here is anticorrelated

(r 520.14 with a p value of 0.15) with the North Atlantic

Deep Water (NADW) transport time series of Send et al.

(2011) for the 8 February 2002–23 June 2009 period. This

may seem surprising but cross-spectral analysis (not shown)

reveals that the absolute value of coherence phase between

those two time series is mostly greater than 908 for time

periods shorter than about 8 months (corresponding to

anticorrelation at those time scales) but becomes less than

908 for longer time periods (corresponding to positive

correlation). This implies that the two time series convey

similar transport tendencies at longer time scales.

b. Other data

We investigate the forcing of the overturning trans-

ports by the wind. We use the 10-m wind data from the

Cross-Calibrated Multiplatform (CCMP) ocean surface

wind vector product (Atlas et al. 2011), obtained from the

NASA Physical Oceanography Distributed Active Ar-

chive Center (http://podaac.jpl.nasa.gov). The resolution

of this product is 0.258 3 0.258 at 6-h intervals, and the

region used is 08–608N, 08–808W in the North Atlantic. A

1.258 two-dimensional Gaussian smoothing window is

applied at each time step and then subsampled every 0.58
to reduce the volume of the data. To match the spectral

content of the transport time series, a third-order type-I

Chebyshev filter with a cutoff frequency of 1 cycles per

day (cpd) is applied to the time series of wind stress at

each grid point, in both forward and reverse directions to

ensure zero-phase distortion of signals. The wind time

series are then subsampled at 12-h intervals.

We also analyze changes of the geostrophic surface

circulation as revealed by absolute dynamic topography
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(ADT) data produced by SSALTO/Data Unification

and Altimeter Combination System (DUACS) and

distributed by AVISO (http://www.aviso.oceanobs.com/

duacs/). Specifically, we used the merged, delayed-time,

reference ADT map product at 7-day interval on a 1/38
Mercator grid. Note that we use the products before the

update of April 2014. We also use the mean dynamic

topography product Centre National d’Études Spatiales–
Collecte Localisation Satellites (CNES-CLS09) version

1.1 (v1.1) (Rio et al. 2011).

4. Statistical methodologies

a. Analytic signal and analytic correlation

We use the analytic transform (Gabor 1946) in our an-

alyses because, as we will show in our results, this trans-

formation conveys phase and phase difference information

from temporal time series (Jacovitti and Scarano 1993;

Marple 1999). It also forms the basis of the analytic eigen

method described next. When x(t) is a real-valued time

series, its complex-valued analytic extension x1(t) is

x
1
(t)5 x(t)1 ix̂(t) , (4)

where x̂(t) is the Hilbert transform of x(t):

x̂(t)5

�
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1

pt

�
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ð2‘
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x(u)

t2 u
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Here, �Ð is the Cauchy principal value integral, * rep-

resents the convolution operator, and i[
ffiffiffiffiffiffiffi
21

p
.

The analytic correlation between two zero-mean time

series x(t) and y(t) is defined as the correlation between

their respective analytic transforms (Jacovitti and Scarano

1993; Marple 1999):

r
1
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E[x
1
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1
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where E[�] is the expectation or time average operator

and (�)* is the conjugation operator. It is relatively

straightforward to show that the (zero lag) analytic cross

covariance E[x1* (t)y1(t)] is equal, up to a real factor, to

the frequency integral of the cross-spectrumof x(t) and y(t).

Thus, the phase of the analytic covariance, like the phase of

r1, is a power-weighted sum of all phases of the cross-

spectrum, andwill be dominated by the phases of the cross-

spectrum in the frequency bands where this one has the

largest power (see appendix A).

b. Analytic extension of singular value decomposition
analysis

The singular value decomposition (SVD) method is

used in climate sciences to decompose the cross-covariance

patterns between two real-valued scalar field variables,

a left one and a right one, into statistical modes po-

tentially revealing linear couplings between the two

fields (Preisendorfer andMobley 1988). This is also known

as maximum covariance analysis (MCA; von Storch and

Zwiers 2002). When the left and right fields are the same,

the SVD method reduces to the empirical orthogonal

function (EOF) method. A variant of the EOF method

exists when the single-field variable components have

undergone the analytic transform [(4)] and thus become

complex-valued variables. The method is then known as

complex (Barnett 1983;Horel 1984) orHilbert (von Storch

and Zwiers 2002; Hannachi et al. 2007) EOF analysis.

To the best of our knowledge, the variant of the SVD

method when distinct left and right field variables have

both undergone the analytic transform has not been

described before, and it is named here the analytic SVD

(ASVD) method. Under specific conditions, such as

when signals of interest have a clear and unique peri-

odicity, the ASVD method can be equivalent to a SVD

method when one of the two fields has been lagged in

time (e.g., Czaja and Frankignoul 1999) because the

analytic covariance (or correlation) integrates the cross-

spectrum (appendix A). Here, the modes that will be

revealed by our analyses do not have a single periodicity,

and their spectra are generally red. Thus, the phase in-

formation cannot be readily interpreted as a temporal

lag. Yet, the time evolution of the phase of the principal

component (PC) time series of thesemodes still indicate a

cyclic and oscillatory character of the explained variance.

The algebra necessary to conduct the ASVD analysis

is standard, yet care needs to be taken because the data

are complex valued (e.g., Schreier 2008). To establish

our conventions, appendix B describes the ASVD

method in detail. Here we note two points of impor-

tance. First, the coupling coefficient of a given mode,

which measures the strength of the linear relationship

between the left and right field variables for that mode,

is the analytic correlation (6) between the complex-

valued PC time series of the left field and the complex-

valued PC time series of the right field. By construction,

the coupling coefficient is real valued, and thus the PC

time series are ‘‘in phase’’ on average. It is the patterns

of the phase of the left and right singular vectors for that

mode (i.e., the spatial patterns) that determine the phase

lags between the individual components within each

field, and between the left and right fields. The second

point of importance is that we choose to decompose the

wind stress (a bivariate field variable) into its rotary

components (clockwise and counterclockwise) (Lilly and

Olhede 2010), rather than into its Cartesian components

(zonal and meridional). The reason for this choice is that

applying ASVD onto Cartesian components intertwines
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geometric and temporal phase information of the bi-

variate variables, making them difficult to extricate. In

contrast, ASVD applied to rotary components leads to

relatively tractable elliptical modes of variance with

distinguishable geometry and phase information; in

particular the geometry of the variance ellipses of a

given mode is the same as the geometry of the instan-

taneous hodographs of the vector anomalies [see Elipot

and Beal (2015) for details].

c. Spectral model and estimates

For the purpose of simulation, we fit a Matérn model

to the observed transport time series Tj,t for j5 1, . . . , 4.

The Matérn model (Matérn 1960) is more commonly

applied to spatial data (Stein 1999) but is also reasonable

for time series analysis (Sykulski et al. 2016). The

spectral density of the model is

SM(n)5
a2
1

(n2 1a2
2)

a3
, (7)

for which the parameters are usually interpreted as

follows. The parameter a2
1 is an overall energy level, a3

determines the smoothness or differentiability of the

process, and a2 determines the range or correlation

decay.

We estimate the parameter a 5 (a1, a2, a3) of the

Matérn spectrum by maximizing the Whittle likelihood

(Whittle 1953):

‘(a)5 �
bN/2c21

k51
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where

J
0
(T

j
, n)5 �

N21

t50

h
0,t
[T

j,t
2T

j
]e22ipnt , (9)

and Tj is the sample mean of Tj (Sykulski et al. 2016).

The sum over the indices k corresponds to the bN/2c2 1

frequency bands achievable from theN data points time

series. The first Slepian data taper is h0,t (Walden 2000),

used to remove leakage in the Fourier transform. A

single taper for the estimation of a is used because the

objective of its usage is to minimize spectral leakage

rather than to estimate the spectrum. The maximization

of ‘(a) is achieved by applying the standard Nelder–

Mead optimization method (Press et al. 1988). The op-

timum values for each transport time series are listed in

Table 1.

We also estimate the auto- or cross-spectral density

function of our quantities Tj by a multitaper estimate,

which is formed from individual orthogonal Slepian ta-

pers hk,t; each individual tapered estimate is written as

J
k
(T

j
; n)5 �

N21

t50

h
k,t
[T

j,t
2T

j
]e22ipnt. (10)

A spectral estimate is formed by averaging across tapers

and so we obtain (Walden 2000)

Ŝ
ij
(n)5

1

K1 1
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K

k50

J
k *(Ti

; n)J
k
(T

j
; n) . (11)

d. Bootstrapping

Throughout this study, the Matérn spectrum model

SM
j (n) for each transport time series Tj, is used to assess

the significance of the various statistics estimated from

the observational data. We use a parametric approach,

coupled with phase scrambling, to bootstrap whole time

series (Theiler et al. 1992; Davison and Hinkley 1997,

p. 408). From the Matérn model parameters obtained

for each Tj, simulated replicated time series are gener-

ated as follows. The Fourier transform of a simulated

time series corresponding to Tj is generated with a

random phase for each discrete frequency nk as

F [T
j
](n)5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SM
j (n)

q Z
1
(n)2 iZ

2
(n)ffiffiffi

2
p , (12)

where SM
j (n) is theMatérnmodel forTj, andwhereZ1(n)

and Z2(n) are two zero-mean unit-variance Gaussian

random sequences of length (N/2) 2 1, the number of

frequencies sampled, coupled with two real-valued unit

varianceGaussian random sequences at n5 0 and n5 1/2

just multiplied by
ffiffiffiffiffiffiffiffiffiffiffiffiffi
SM
j (n)

q
. To make the generated time

series real valued, the sequence is extended to negative

frequencies using Hermitian symmetry of the Fourier

transform. The simulated time series is then obtained by

taking the inverse Fourier transform. To avoid periodic

sequences a series of twice the length of the data is gen-

erated, and half the series subsequently discarded. This

operation is repeated 104 times to obtain a pool of sim-

ulated time series. Typically, the statistical analyses in this

study (correlation, coherence, complex empirical or-

thogonal function analysis, singular value decomposition)

are repeated over these simulated realizations, and the

TABLE 1. Estimated parameters for frequency spectrum marginal

Matérn model function of frequency n, S(n)5a2
1/(a

2
2 1 n2)a3 .

TB TW T26 TM

a1 0.1025 0.1197 0.5811 0.4077

a2 0.0522 0.1498 0.0210 0.0248

a3 1.8400 2.7311 1.0402 1.2706
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distributions of the statistics from the simulations are

used to assess the significance of the statistics calculated

from the real observations.

5. Results: Relationship between transport time
series

a. Standard and analytic correlations

For analyses, we consider the original 12-hourly time

series for their overlapping time period, from 22 August

2004 to 8 April 2008, and also the time series after a

3-month third-order Butterworth low-pass filter is ap-

plied forwards and backward to prevent phase distortion

(Fig. 2). The 3-month cutoff corresponds to the mini-

mum time scale at which Elipot et al. (2013) detected

significant coherence between TB and TW but time de-

lays not significantly different from zero. In addition,

Elipot et al. (2014) found that TW exhibited some co-

herence with T26 for periods longer than 2 months (al-

though TB exhibited significant coherence with T26 only

at periods longer than 15 months). In both cases, the

phase in coherent bands was found to be near 2908,
implying that the overturning transports at Line B and

Line W led the transport at 268N.

Here we conduct cross-spectral analyses with the new

time series TM to find that it exhibits significant

coherence at the 95% confidence level with T26 and TW

only in a fewmarginal frequency bands corresponding to

periods longer than 2 months (not shown). As a conse-

quence of weak coherence, the only significant correla-

tion between the time series at 12-hourly resolution is

found between TB and TW at 0.18 (Table 2; see also

Elipot et al. 2013). The correlations of T26, and of TM,

with the other three time series are indistinguishable

from zero. The correlation betweenTB andTW increases

to 0.59 for the 3-month low-pass-filtered time series,

yet all other correlations remain near zero.

The realization that a specific phase organization may

exist between the four time series prompts us to calcu-

late the complex-valued analytic correlation r1. The

analytic correlation between all pairs of transports for

the 12-hourly and 3-month low-pass-filtered time series

is reported in Table 2, displaying the absolute values and

complex arguments, or phases in degrees. We find that

the transport time series adjacent in latitude all have

modest, yet significant, analytic correlation with abso-

lute values between 0.19 and 0.27 for the 12-h time se-

ries. Between TB and TW the analytic correlation phase

is 215.58, suggesting again that TW slightly lags TB.

Between TW and T26 the phase is 298.68 and between

T26 and TM the phase is 269.58. The absolute values of

analytic correlations for the 3-month low-pass-filtered

time series are increased but overall the organization of

FIG. 2. Overturning transport anomaly time series TB, TW, T26, and TM, successively offset

by 230 Sv. The gray curves are 12-h time series, the black curves are 3-month low-pass-

filtered time series for the common time period of length 1259.5 days used for the analyses.

The red curves are the real part of the 3-month low-pass-filtered projections of AEOF1. The

blue curves are the sum of the fits to annual and semiannual cycles.
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the phases does not change much. Examining Table 2,

there seems to exist an overall pattern of correlation

between these time series after accounting for phase lags.

Furthermore, the arrangement of these phases suggests

that there could be an underlying common signal or

forcing pattern at the source of these correlations.

b. Analytic EOF analysis

To investigatewhether the analytic correlations between

transport pairs are representative of a common mode of

variability, we apply the ASVD method (section 4) to

the transport time series. Since the left and right fields

for analysis are here identical, it is effectively an analytic

EOF (AEOF) method, which is also known as complex

or Hilbert EOF analysis (Barnett 1983; von Storch and

Zwiers 2002). Because there are four transport time

series, the analysis produces four modes explaining all

the variance. Using our bootstrapping method to assess

significance, we find that only the first mode, hereafter

AEOF1, is significant at the 95% confidence level (see

Table 4), explaining 36% of the variance. The eigen-

vector for AEOF1 is displayed on a complex plane (see

Fig. 3a) scaled to representmode anomalies in Sverdrup.

AEOF1 causes typical transport anomalies between

5.6 Sv (at Line W) and 3.2 Sv (at Line B and MOVE),

which are of the same order of magnitude as the stan-

dard deviations of the transport time series (5.1, 6.6, 5.6,

and 7.7 Sv for TB, TW, T26, and TM, respectively). The

projection of the four time series onto AEOF1 results in

the first analytic PC (APC1), plotted in Figs. 3b and 3c.

[The variance explained by this first mode for each time

series is listed in Table 5. This mode explains the most

variance for T26 (55.7%) and the least for TB (19.1%).]

Here we choose to represent AEOF1 when the phase

of the component for TB is 1808, that is when the

anomaly for TB is southward (Fig. 3a). At those times,

the phase of TW is separated by approximately 2128
from the phase of TB, and the phase of T26 is separated

by approximately2918 from the phase of TW. Thus, T26

is approximately in quadrature phase from TB and TW

for this mode. In addition, the phase of TM is separated

approximately by 528 from the phase of T26, making TM

separated by about 1568 from the phase of TB. Thus, the

overall picture is one of TB and TW in phase, and both

of them in quadrature phase with T26, and out of phase

with TM.

The time variability of this mode is given by the

complex time series APC1. The phase of APC1 (Fig. 3c)

follows amixed annual to semiannual cycle, with higher-

frequency variability superimposed. The amplitude of

APC1 (Fig. 3b) has annual and semiannual modulations

(this is more evident for the 3-month low-pass-filtered

version of the PC) but also a pronounced near-monthly

variability. The spectrum of APC1 is consequently red

and broadband, which means that we cannot assign a

single frequency to the time variability of the mode

(Fig. 3d). The energy is mostly contained at low fre-

quencies where the spectral power levels off at periods

longer than 3 months. Yet, the first-moment of the

spectrum—equivalent to the energy-weighted average

frequency—is 1/27.7 cpd, which indicates that variability

on monthly time scales is important (also indicated by a

significant peak near the 34-day period).

The AEOF analysis identifies a coupling between the

transport time series, not only pairwise as the analytic

correlations already showed, but also between all of

them, modulated in amplitude from one year to the next

and also at higher frequencies, with a temporal phase

that is loosely locked to an annual-to-semiannual cycle.

It is tempting to interpret the phase of the eigenvector

TABLE 2. Correlation r and analytic correlation r1 (absolute value, phase in degrees) between the 12-h step transport time series (above

diagonal of each subtable) and 3-month low-pass-filtered time series (below diagonal), and with the NAO index. A negative phase for r1
indicates that the variable in the column lags the variable in the row by the corresponding amount of a 3608 cycle. Significant correlations at
the 95% confidence level are displayed in boldface font. The significance for r is assessed from a two-tail test, the significance for r1 from

a one-tailed test.

TB TW T26 TM NAO

r

TB — 0.18 20.02 0 20.18

TW 0.59 — 20.04 0 20.09

T26 0.1 0.09 — 0.08 0.11

TM 0 0 0.09 — 20.14
NAO 20.26 20.25 0.31 20.14 —

r1
TB — 0.19, 215.58 0.07, 2106.38 0.03, 286.78 0.17, 2136.58
TW 0.49, 22.7° — 0.27, 298.68 0.06, 289.58 0.12, 2124.08
T26 0.34, 70.68 0.51, 80.98 — 0.24, 269.58 0.08, 2118
TM 0.14, 97.48 0.09, 81.38 0.41, 77.08 — 0.10, 2163.08
NAO 0.20, 155.98 0.37, 117.78 0.23, 12.38 0.15, 134.18 —
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for AEOF1 as a signal propagation, as is typical in

complex EOF analyses (Barnett 1983). However, this

would be valid for narrowband signals only, which is not

consistent with the spectrum of AEOF1 (Fig. 3d). In-

stead in section 6we interpret the pattern ofAEOF1 as a

rapid adjustment, or response, of themeridional overturning

between 168 and 418N to basin-scale wind forcing.

c. Fits to annual and semiannual cycles

To characterize further the seasonal variability in

the transport time series, we conduct least squares fits

of annual and semiannual frequency models Tj(t) 5
Aj cos(2pnt 1 fj), with n 5 1/365.25 and 1/182.625 cpd.

The results (amplitude, phase, and amount of variance

explained) are listed in Table 3 and the corresponding

curves are drawn in Fig. 4. The sums of the fits for each

oceanic transport time series are also included in Fig. 2.

The sum of annual and semiannual cycles explain less

than 20% of the variance of the 12-hourly time series,

except for TM at 168N for which 27.6% of the variance is

accounted for. When time scales shorter than 3 months

are filtered out, these cycles explain between 40% and

50% of the variance of T26 and TM, about 29% of the

variance of TW, and about 19% of the variance of TB.

At the annual frequency, TB and TW are in phase,

with a maximum overturning (maximum negative anom-

aly) at the beginning of May, and a minimum overturning

at the beginning of November (Fig. 4a). For T26, the

maximum overturning occurs at the beginning of August,

and for TM in mid-October. The phase arrangement of

the annual cycle is close to the phase arrangement of the

AEOF1 mode described earlier (Fig. 3). These transport

time series are representative of the western boundary

contribution only to the overturning, yet near 268 and

FIG. 3. First mode of AEOF analysis of the transport time series. (a) Conjugate of the AEOF1. The entries of AEOF1 are complex

numbers, represented here as vectors in a complex plane and scaled in absolute value to represent a transport in Sverdrup as indicated by

the scale of the abscissa when the absolute value of APC1 [in (b)] takes the value 1. The angle of the vector from the right direction

corresponds to the complex argument. The origin of each vector is indicated by a small open circle. A clockwise angle from a first

eigenvector entry to a second indicates that the first leads the second. All phases of the eigenvector entries and of theAPC1 time series [in

(b) and (c)] were offset to align the eigenvector entry for TB with a 1808 phase corresponding to a southward transport at RAPIDWAVE

Line B. (b) Amplitude of the APC1 associated with AEOF1 (absolute value of expansion coefficient time series of AEOF1). (c) Phase of

APC1. The black lines in (b) and (c) are the 3-month low-pass-filtered time series. (d) PC1 power spectral density computed with

a multitaper spectral estimate with seven Slepian tapers. The vertical dashed line correspond to 1/27.7 cpd, the first moment of the

spectrum, equivalent to the energy-weighted average frequency.
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418N they exhibit the same approximate phasing as iden-

tified in the conventional MOC time series which include

the variability of the eastern boundary (maximum over-

turning in summer, minimum in winter) (Kanzow et al.

2010; Mielke et al. 2013).

When the annual and semiannual cycles are summed,

the overturning is maximum for TB and TW around the

beginning of July and minimum in October. For T26, the

sum of the two cycles exhibits two similar minimum

overturning at the beginning of April and in October,

and a maximum in mid-July. For TM, the sum of the two

cycles predominantly peaks with a maximum overturning

at the end of August and a minimum in May.

6. Results: Relationship to wind stress and wind
stress curl

In this section, we investigate the relationship between

the overturning transports and the wind over the North

Atlantic. Figure 5 shows the mean and standard de-

viation fields of the filtered wind stress (Figs. 5a,b) and

wind stress curl (Figs. 5c,d) for the overlapping period of

the transport time series, from 22 August 2004 to 8 April

2008. The mean wind stress exhibits an anticyclonic cir-

culation over the subtropical gyre, with westerlies north

of 358Nand the tradewinds to the south.Accordingly, the

wind stress curl is negative over the subtropical gyre away

from coastal areas, and positive over the subpolar gyre.

South of 208N the wind stress curl is mostly positive apart

from over the eastern equatorial Atlantic. The variance

of wind stress increases from south to north. South of

258S the wind variance ellipses are generally oriented

along the mean wind stress direction, showing the

steadiness of the trade winds. In contrast, to the north of

258N, the variance ellipses are more isotropic with no

clear orientation. Like the pattern of the mean curl, the

pattern of the standard deviation of the curl is not purely

zonal, but exhibits a southwest–northeast tilt.

a. Correlation patterns

Inspired by the results of the AEOF analysis, rather

than considering the standard correlation, we consider

the analytic correlation between transports and wind

TABLE 3. Amplitude, phase, and fraction of variance of the an-

nual and semiannual fits to the oceanic overturning transport time

series for the model Tj(t)5 Aj cos(2pnt1Fj). The phase is relative

to the time origin set to 1 January. The fraction of variance explained

is listed for the 12-h time series and 3-month low-pass-filtered time

series. The bottom part of the table gives half of the peak-to-peak

amplitude of the sum of the annual and semiannual cycles and the

fraction of variance explained by this sum.

Fraction of

variance (%)

Aj (Sv) Fj 12 h 3 month

Annual

TB 0.94 678 1.7 6.6

TW 1.70 638 3.4 18.9

T26 1.84 2298 5.1 20

TM 3.62 21018 3.5 18.2

Semiannual

TB 1.08 1638 2.2 12.5

TW 1.25 1668 1.8 10.2

T26 1.93 1628 5.6 23.4

TM 4.11 848 14.1 23.2

Annual 1 semiannual

Half peak-to-peak

amplitude (Sv)

TB 1.71 3.9 18.6

TW 2.47 5.1 28.7

T26 3.20 11.8 47.4

TM 6.82 27.6 45.1

FIG. 4. (a) Annual, (b) semiannual, and (c) sum of annual and

semiannual sinusoidal cycles fitted to the four transport time

series.
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stress. Our convention is such that if the correlation is

due to a narrowband oscillatory signal, a negative phase

indicates that the signal propagates from x to y or

equivalently that x precedes y in time.

The analytic correlations between the transport time

series and both components of the wind stress t5 (tx, ty)

and its curl k � =3 t are displayed in Fig. 6. The first, and

striking, result is that the strongest correlation with any

wind stress variable does not occur at the respective lat-

itudes of the overturning transports. Rather, common

correlation patterns appear to be associated with large

spatial scales of the wind stress over the North Atlantic.

The four overturning transport time series exhibit

weak but significant analytic correlation with tx in near-

zonal large patterns between 158 and 358N, with phases

between 08 and 2908. In addition, TB and TW are sig-

nificantly correlated with large areas of tx north of 458N,

with phases between 908 and 1808. The series TW, T26,

and TM are significantly correlated with large regions of

tx south of 158N with phases between 21358 and 2458

for TW and T26, and phases between 908 and 1808 for TM.

In summary, the patterns of analytic correlation with tx
are similar for all transport time series, except that the

pattern for TM is shifted in phase.

The patterns of analytic correlation with ty are

roughly oriented southwest to northeast (Fig. 6, middle),

characteristic of the meridional structure of weather

regimes (e.g., Barrier et al. 2014). Considering the re-

gion of the domain north of 208N, for TB and TW, the

southeast part of the domain exhibits significant analytic

correlation with ty with a phase between 2908 and 08,
and the north and northwest parts of the domain exhibit

significant correlation with a phase between 08 and 908.
The series T26 and TM also exhibit patterns of significant

correlations, located in the center and in the western

parts of the domain, with phases about 1808 apart. The
phases of this dipole forTM are shifted by approximately

2908 compared to T26. South of 208N, TW, T26, and TM all

exhibit significant correlation with ty but with 908 phase
differences from TW to T26 and to TM. If one considers

FIG. 5. (a) Mean wind stress for the common period of overturning transport observations, 22 Aug 2004–8 Apr

2008. Every other five data points of the CCMP grid are shown. (b) Wind stress std dev ellipses. Note the two

different scales used. (c) Mean wind stress curl. The solid black curve is the zero contour of the mean dynamic

topography CNES-CLS09 v1.1. (d) Std dev of wind stress curl.
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together the analytic correlations with both tx and ty,

and shift all phases by 1808, a positive overturning

anomaly (negative transport anomaly) at TB, TW, and

T26 corresponds to an approximately in-phase large scale

anticyclonic anomaly of the wind stress over the whole

NorthAtlantic basin. This apparent patternwould be valid

for TM but with a 2908 phase shift.

The correlation patterns between the transports and

wind stress curl (Fig. 6, bottom) are less striking than

with the wind stress components, with smaller areas with

significant correlation. This may result from the added

noise due to the spatial derivatives calculated for curl.

Even so, there is a marked dipole pattern in the tropics

for all transport time series, with centers south and north

of 108N from 908 to 1808 out of phase. The phases of these
dipoles are common between TB and TW but shifted by

approximately 2458 for T26 and an additional 2458 for
TM, for which this dipole is broader. Another noticeable

pattern of correlation for TB, and to a lesser extent for

TW, is another dipole outside the tropics, with a center of

action with phases2908 located over the easternAtlantic

at 408N and another center with phases shifted by about

908 over the easternAtlantic near 208N. Interestingly,T26

is significantly correlated and in phase with a broad re-

gion of wind stress curl located above the Gulf Stream

after it separates from the west coast of North America.

These geographical patterns of analytic correlation

suggest a common, basinwide response of the over-

turning transports to the large-scale wind and wind

stress forcing. This common response is further

investigated next.

b. Singular value decomposition analysis of transport
covariance with the wind stress and wind stress curl

We conduct ASVD analyses between a left field

constituted of collocated time series of wind stress curl

and wind stress decomposed into its rotary components

and a right field constituted of the four oceanic transport

FIG. 6. Analytic correlation r1 between the transport time series (TB, TW, T26, and TM, from left to right) and (top) tx, (middle) ty, and

(bottom) =3 t. The term r1 is represented in the color bar as a hue, saturation, and value color, for which the value is proportional to the

absolute value, the hue represents the phase, and the saturation is kept at 1.Themaximum absolute value of r1 east of 758Wfor each panel

(written at the bottom-left corner of each panel) is assigned the maximum color value of 1 and all other absolute values are accordingly

scaled. A zero absolute value of r1 therefore appears in black. The areas where the absolute value of the correlation is significant at the

95% confidence are enclosed by gray contours. The horizontal white dashed lines indicate the latitude of each array.
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time series. All time series are normalized by their re-

spective standard deviations so that the analyses are

based on correlations, which equally weight all data. The

total number of modes that can be considered is limited

by the minimum number of individual components in

one of the two coupled variable fields under study, here

four for the transports. The statistical significance of

each mode is assessed by repeating the ASVD calcula-

tion for the cross-correlation matrices formed between

the original wind stress time series and the 104 sets of

simulated transport time series, and by calculating the

probabilities of obtaining singular values as large as

those obtained using the real transport time series

(Table 4). We find no singular value as large for the first

two modes with the simulated data, and thus deem these

first two modes to be significant. We interpret the cou-

pled pattern emerging from theASVD analyses as being

representative of the response of the overturning trans-

ports to wind stress forcing.

1) SEASONAL MODE

The first mode, ASVD1 (Fig. 7), is characterized as an

annual, or seasonal, mode of variability since its APC1

time series exhibit a 3608 phase progression over a year

(Fig. 7e). The annual cycle is less evident for the abso-

lute values time series (Fig. 7d), although there is a

tendency for APC1[=3 t, t] to be larger in late summer

(August) of each year. The correlation between the two

APC1 time series (0.51) indicates a strong coupling be-

tween the wind stress pattern and the overturning pat-

tern for this mode.

The wind patterns for this mode are shown in Figs. 7a

and 7b for the wind stress curl and the wind stress vec-

tors, respectively. In Fig. 7b, the geometry and typical

magnitude of the wind stress pattern are indicated by

variance ellipses [as drawn, they are also instantaneous

hodographs; see Elipot and Beal (2015)] and the relative

importance of this mode on the total wind stress variance

at each pixel is given by the homogeneous correlationmap

(color shading). The anomalies associated with this mode

are relatively strong over the equatorial region (south of

158N), corresponding to an oscillation of the trade winds

(Fig. 5). There they explain a sizable fraction of the total

variance as the homogeneous correlation is generally

greater than 0.5. The mode anomalies are also strong

above the subtropical gyre to the west and to the north-

east, as anomalous circulation cells of opposite signs, al-

though the pattern only captures a small fraction of the

total variance of the wind stress in those regions. The in-

stantaneouswind stress anomalies are also shown in Fig. 7b

(green vectors) at times when APC1[= 3 t, t](t) 5 1

(i.e., with zero phase), which approximately occur in the

middle of each calendar year (Fig. 7e). At such times,

the wind stress anomalies consist of an anticyclonic cir-

culation over the western subtropical gyre and a cyclonic

circulation in the northeast corner of the domain, and

also consist of weak forcing to the east and over the

equatorial region. At later times, when the phase of

APC1[=3 t, t] progresses by 908, the instantaneouswind
stress anomalies also rotate by 6908 depending on the

polarity of the ellipses (cyclonic or anticyclonic). At these

times, the wind stress anomalies are relatively weak in the

west and north parts of the subtropical gyre, but are rel-

atively large in the entire north equatorial region.

The wind stress curl anomalies for this mode (Fig. 7a)

consist mostly of a relatively strong zonally elongated

dipole with centers at about 58 and 198N, with phases

consistent with the wind stress vector anomalies just

described. The pole near 198N has a phase near 2908
while the pole near 58N has a phase near 908, implying a

differential Ekman pumping forcing over the tropical

region at one-quarter and three-quarters of the cycle of

this mode. To the north, the impact of the curl for this

mode is much weaker (correlation near 0.1–0.2) and

exhibits a 1808-out-of-phase dipole between the center

of the subtropical gyre and its northeast corner.

The overturning response to this mode is shown

(Fig. 7c) with colored arrows the size of which corre-

spond to the standard deviations of the response, and the

directions of which correspond to the phases. The re-

sponse is such that TB and TW are approximately in

phase near 61808, which implies a negative transport

anomaly below 1000m and hence a strengthening of the

MOC at these latitudes. The response for T26 is offset

compared to the two northern latitudes, with a phase

near 1358, and the response for TM is even farther offset

with a phase near 608. This arrangement of phase in-

dicates primarily that the response at 168N is instanta-

neously of opposite sign to the responses at the other

three latitudes. The phases also indicate that within a

phase cycle the response exhibits a strengthening of the

overturning first occurring near 428N, progressing south

to eventually reaching 168N, one-third of a cycle later.

TABLE 4. Eigenvalues g and singular values l of the AEOF and

ASVD analyses for the four respective modes of each analysis. The

columns labeled with Prob. list the probability of obtaining an ei-

genvalue or a singular value from the simulated data as large as or

larger than from the observational data.A 0%probability indicates

that no values as large were obtained with the simulated data.

AEOF ASVD[= 3 t, t]

Mode g Prob. (%) l Prob.(%)

1 1.43 0 11.91 0

2 1.08 7.62 8.85 0

3 0.85 100 4.38 52.06

4 0.63 100 3.20 97.43
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The magnitude of the transport response increases from

north to south, from 1.5 Sv for TB to 6.3 Sv for TM. The

amount of variance of the transport time series ex-

plained by this mode (Table 5) also increases from north

to south, at 9.2% for TB to over 50% for T26 and TM.

We hypothesize that the results for the transports are

representative of an Ekman overturning in response to

large-scale patterns of wind stress forcing, varying on

seasonal time scales. In an OGCM, Jayne andMarotzke

(2001) showed how, at 308N in the Pacific basin, the

surface meridional Ekman transport anomalies are al-

most exactly compensated instantaneously by a trans-

port calculated as the top-to-bottom vertical integral of

themodel velocities (after removal of near-surface Ekman

velocities). To some extent, this type of barotropic

adjustment was confirmed after the first year of

FIG. 7. Mode 1 of ASVD analysis between t and = 3 t on one hand (left field), and western transports T on the other hand (right field).

(a) Conjugate of the singular vector for mode 1 for = 3 t (ASVD1*, color hue for phase and color value for amplitude after histogram

equalization as indicated at bottom left) and absolute value of the homogeneous correlation vector (labeled contours at 0.1 interval). The SFC

explained by mode 1 is 42%. (b) Singular vector for t for ASVD1 represented using instantaneous ellipse hodographs after rescaling the

singular vector by the std dev of the wind stress. These ellipses also represent the variance ellipses for this mode. Counterclockwise (cyclonic)

ellipses are drawn with dashed lines and clockwise (anticyclonic) with solid lines. The green arrows show the direction of the wind stress when

the absolute value of APC1 is 1 and its phase is zero. The shading indicates the homogeneous correlation for t. (c) Vectors representing the

conjugate of the singular vector for transports, with the phase indicated by both the color and the angle from the right direction. The origins of

the vectors correspond to the latitude of each array in (b). The gray arrows correspond to the phase of meridional Ekman transports (here

plottedwith a constant value) calculated from the zonalwind stress anomalies shown in green in (b). (d)Amplitude and (e) phase of 30-day low-

pass-filtered normalized PC time series (APC1) for =3 t and t (black) and transports (gray). The coupling correlation coefficient is r5 0.51.
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observations of the meridional transport components at

268N (Kanzow et al. 2007). In the model of Jayne and

Marotzke (2001), the spatial structure of the seasonal

variability (defined as average January conditions minus

average July conditions) of the overturning streamfunction

is well reproduced by a near-surface Ekman layer and a

depth-independent (but still horizontally varying) meridi-

onal velocity return flow field equal to the opposite of the

surface Ekman transport divided by the ocean’s depth, as

in the second term of Eq. (1). The time scales associated

with theEkman overturning are very short, on the order of

an inertial period for the spinup of Ekman transports, and

on the order of a day (the time needed for barotropic

waves to traverse a basin) for the barotropic adjustment of

the depth-independent response (Jayne and Marotzke

2001; Willebrand et al. 1980). As a consequence of the

spatial structures of wind forcing, and potentially of the

geometry of ocean basins, Ekman overturning cells de-

velop within basins with large-scale meridional structures

that are quite distinct from the mean overturning cells

(Jayne andMarotzke 2001; Sime et al. 2006). Furthermore,

TABLE 5. Amount of variance (%) after applying a 3-month low-

pass filter explained by PCs from the analytic EOF analysis and

from the analytic SVD analyses with = 3 t and t.

TB TW T26 TM

AEOF1 19.1 47.9 55.7 20.6

[= 3 t, t]

ASVD1 9.2 22.6 50.2 54.7

ASVD2 59.2 33.7 4.1 17.1

ASVD1 1 ASVD2 65.8 51.5 52.4 77.5

FIG. 8. As in Fig. 7, but for mode 2 of ASVD analysis between t and =3 t on one hand (left field), and western transports T on the other

hand (right field).
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the vertical structure of these Ekman cells are such that an

overturning transport between 1000 and 4000m, relative to

1000m, will not only oppose in direction the surface

Ekman transport but will also exhibit substantial shear,

with an amplitude depending on latitude [see as an exam-

ple Fig. 4 of Jayne andMarotzke (2001) and Fig. 4 of Sime

et al. (2006)]. To reiterate, even if the near-instantaneous

Ekman overturning at a given latitude manifests itself as a

vertically uniform return velocity at depth, the resulting

deep transport on seasonal time scales may still be verti-

cally sheared, and thus may constitute an overturning de-

tectable by pressure gradients on basins’ boundaries.

To test the hypothesis that ASVD1 for transports

corresponds to an Ekman overturning like just de-

scribed, we calculate the meridional Ekman transport

as a function of latitude from the instantaneous zonal

wind stress anomalies shown in Fig. 7b (we use the an-

alytic transform of the zonal wind stress for this mode,

and hence the result is an analytic meridional transport

which contains phase information). North of 58N, we

find that the magnitude of such Ekman transport is

typically less than 0.4 Sv so it does not match in magni-

tude the overturning response for ASVD1. Yet, we plot

theEkman responsewith arbitrary constant value (Fig. 7c)

and observe that the phases of the Ekman transport

indicate a general pattern of northward transport between

108N and approximately 408N, and a southward transport

between 408 and 508N. At one-quarter cycle later for this

mode, the phases of the meridional Ekman transport is

rotated by 908 counterclockwise (not shown), implying

little Ekman transport between 108 and 508N but some

northward transport near 108N. We expect that a direct

response of the deep overturning transports would

generally be 1808 out of phase with the Ekman trans-

ports. This is not exactly what we observe but it would

suffice to displace southward by about 58 of latitude the

overturning transports to make this picture consistent. It

is possible that the northward tilt of the gyre boundary to

the east, as well as the complicated bathymetry of the

North Atlantic, are responsible for the mismatch be-

tween meridional Ekman flows induced by zonal stress

and deep overturning transports. We still conclude that

our limited observations are consistent with an Ekman

type of overturning, set up on seasonal time scales.

2) MODAL RESPONSE TO THE NAO

The second coupling mode, ASVD2, between wind

stress and overturning transport (Fig. 8) is associated

with the pattern of the NAO for the wind stress. This is

demonstrated by the significant correlation (r 5 0.51)

between the 30-day low-pass-filtered real part (Re) of

APC2[= 3 t, t] and the NAO index [obtained from

the NOAA Climate Prediction Center (http://www.cpc.

ncep.noaa.gov); Fig. 9], which is slightly larger when

only October–April data are used for the computation

(r5 0.58). The correspondence with the NAO is further

demonstrated in Fig. 10 which shows composites of the

wind stress vector and wind stress curl anomalies for

positive and negative NAO daily indices on one hand,

and positive and negative RefAPC2[= 3 t, t]g on the

other hand, for the time period of analysis. The two sets

of composite anomaly maps clearly show similar pat-

terns. In positive phases of the NAO and ASVD2,

compared to the mean (Fig. 5), there are positive wind

stress curl anomalies on the southern edge of the sub-

tropical gyre and negative anomalies on the northern

edge. The wind stress anomalies consist of an anomalous

anticyclonic circulation centered above the northeast

corner of the subtropical gyre and westward to south-

westward anomalies on the southern edge of the

subtropical gyre and above the north equatorial Atlantic.

These wind stress anomaly patterns result in a northern

shift of the mean wind stress pattern for that period.

The oceanic overturning transport response for

ASVD2 (Fig. 8c) is typically weak for T26 (0.5 Sv stan-

dard deviation), with an absolute phase less than 908
implying a northward transport anomaly, and thus a

weakening of the overturning, for the wind patterns

displayed in Figs. 8a and 8b. In contrast, the response is

relatively strong for the other three transports and all

have absolute phases larger than 908, which implies a

common strengthening of the overturning at these lati-

tudes. At times when APC2[T ] has phase of zero and an

amplitude 1, the response ofTB is 3.9 Sv with 1808 phase,
the response of TW is 3.3 Sv with 1528 phase, and the

response of TM is about 3.9 Sv with 21498 phase. To

investigate if this mode can correspond to an Ekman

overturning, the phase of the predicted meridional

Ekman transport from the zonal wind stress associ-

ated with ASVD2 is calculated and displayed in the

same panel. The Ekman transports consist of flows

FIG. 9. Real part of the PC time series (30-day low-pass filtered)

of the second mode of the ASVD analysis between wind stress and

overturning transports (RefAPC2[= 3 t, t]g), and normalized

30-day low-pass-filtered NAO index time series.
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with a positive northward component between ap-

proximately 138 and 408N (i.e., with an absolute phase

less than 908). Thus, a strengthening of overturning

transports for TB, TW, and TM is consistent with a

compensation response to the Ekman near-surface

flow, but is inconsistent with the very weak positive

overturning response at 268N.

The correlation between APC2[= 3 t, t] and the

NAO index suggests a possible alternate mechanism for

the forcing of deep overturning transports. NAO posi-

tive periods, like RefAPC2[= 3 t, t]g positive periods,

are associated with a negative wind stress curl anomaly

centered above the intergyre region between 358N to the

west and 508N to the east, expected to spin an ‘‘intergyre

gyre’’ anomalous anticyclonic circulation (Marshall

et al. 2001). Alternatively, such anomalies can be seen

as a meridional displacement of the mean circulation.

We verify that this is the case for our observation period

by calculating the weighted difference of ADT between

positive and negative periods of RefAPC2[= 3 t, t]g
(Fig. 11) after removing at each grid point a fit to a si-

nusoidal function with annual frequency tominimize the

impact of steric seasonality. The resulting ADT is de-

pressed in the southern part of the subtropical gyre, and

generally lifted in the northern part. Compared to the

mean, this corresponds to a northward shift of the sub-

tropical gyre, implying a possible spinning up on short

time scales of a barotropic Sverdrup circulation (e.g.,

Pedlosky 1979). Ekman pumping induced by wind stress

curl is balanced by meridional geostrophic flows, which

have been demonstrated from GRACE observational

data to project onto the OBP of the midlatitude North

Atlantic (Piecuch and Ponte 2014). A barotropic circu-

lation would have no overturning impact in a flat bottom

FIG. 10. Composite anomaly maps of normalized wind stress (arrows) and wind stress curl (shading as indicated

by the color bar) for (top) positive and negative phases of the NAO index and (bottom) positive and negative

phases of RefAPC2[= 3 t, t]g. In each panel, an arrow indicates a normalized wind stress vector anomaly of

amplitude 0.5, and the thin black line is the zero contour of the mean dynamic topography CNES-CLS09 v1.1.
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ocean with vertical walls. Yet, in the real ocean, the

difference of topography can induce vertically sheared

zonally integrated transport, and thus might be re-

sponsible for our observations (typically vertically uni-

form flow over deep regions and western boundary

return flow over shallow regions) (Elipot et al. 2013;

Yang 2015). The formal dynamical link between baro-

tropic gyre circulation and the MOC has been shown to

be via the torque of the OBP, a term arising both in the

vertically integrated vorticity equation and the vorticity

balance of the MOC (Yeager 2015). The amount of

variance explained by ASVD2 is the strongest for the

two northern latitudes (see Table 5), which is consistent

with expectations of NAO-type atmospheric patterns

affecting regions outside of the tropics on interannual

time scales.

7. Summary and conclusions

The aim of this study has been to assess the meridi-

onal coherence of the MOC from an observational

standpoint, and to identify the forcing of coherent

variability. For this, we have derived comparable

transport time series from observational arrays at four

different latitudes. These transports are determined

from western boundary pressure gradients, leading to

the calculation of the western boundary contribution

to meridional overturning transport below and relative

to 1000m (Fig. 2). At 418, 398, and 268N, these time series

were shown to be representative of the MOC on semi-

annual and longer time scales. The resulting time series

overlap by only 3.6 years, limiting this study to

subannual-to-interannual time scales of variability.

Over their common length, the time series spectra

(Fig. 12) do not reveal any outstanding common peri-

odicity. Yet, a simple fit to sinusoidal oscillations with

period of one year (Fig. 4) suggests that the western

overturning is at its maximum at the beginning ofMay at

418 and 398N, is maximum at the beginning of August at

268N, and is maximum mid-October at 168N. While the

sinusoidal fits are no proof of coherent variability, using

an analytic EOF analysis we find that the four time series

do covary significantly between the annual and semi-

annual periods (Fig. 3). This mode of variability explains a

sizeable portion of the variability at individual latitudes

FIG. 11. Difference between deseasoned ADT weighted com-

positemapwhenRefAPC2[=3 t, t]g. 0 andweighted composite

map whenRefAPC2[=3 t, t]g, 0 . The thin black line is the zero

contour of the mean dynamic topography CNES-CLS09 v1.1 sep-

arating the subtropical gyre from the subpolar gyre.

FIG. 12. Spectral density functions of the overturning transport time

series. These estimateswere computed for the common time period of

the time series (1259.5 days). First Slepian taper unitaper estimates are

the light gray curves. Their associated Matérn model fits SM(n)5
a2
1/(a

2
2 1 n2)a3 are the thick black curves. Seven Slepian tapers mul-

titaper estimates are the dark gray curves. The fits to the Matérn
model are conducted in the [1/1259.5, 1/0.5] cpd range. The parame-

ters of the fits are listed in Table 1. The unitaper and multitaper es-

timates have been corrected for the expected value of a logx2
2. The

asymmetric 95% confidence intervals for the unitaper and multitaper

estimates are also drawn in the corresponding light and dark grays.
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(Table 5), and the arrangement of the phases is such that

TB andTM are approximately in phase,T26 is in quadrature

phase from TB and TW, and TM is further offset to be

nearly out of phase from TB and TW.

To investigate a possible common forcing for this mode

of overturning covariance, we have considered the analytic

correlation between each transport time series and winds

between 108 and 608N in the North Atlantic. We identified

striking common patterns of correlation with geographic

centers that are not necessarily at the same latitudes as the

transport time series. The application of analytic correla-

tion also highlights the need to properly account for phase

information. Applying a newly extended method of SVD

analysis, which we have here called the analytic SVD or

ASVD, we identified two significant modes of covariance

(Figs. 7 and 8). The first mode is a near-annual mode of

oceanic overturning, which we have interpreted to be an

Ekman overturning in response to a large-scale pattern of

wind forcing. The second mode is related to NAO-like

patterns of winds over the North Atlantic Ocean (Figs. 9–

11), andwe interpret the overturning response as being the

result of a barotropic Sverdrup circulation, which, when it

interacts with topography, projects onto the overturning

transports. This second mode had a center of action at the

boundary between the subtropical and subpolar gyres,

forming the so-called intergyre gyre. In summary, the

ASVD analysis with the wind stress and wind stress curl is

able to explain more than 50% of the variance of each

individual transport time series when the contributions

from the first twomodes are summed (Fig. 13 andTable 5).

The impact of the first seasonal mode is the strongest for

the two southernmost overturning time series, and the

impact of the second NAO-like mode is the strongest for

the two most northerly time series.

A limitation of the SVDmethod is that the patterns of

transport and of wind stress are designed to be orthog-

onal, providing a constraint on the structure of second

and higher modes which limits their ability to represent

natural modes of variability, which may not share the

same orthogonality properties. Another approach is to

use the method of weather regimes, which circumvents

the caveat of orthogonality by clustering data to extract

recurrent and quasi-stationary patterns. Barrier et al.

(2014) used this method in a forced oceanmodel and also

found that the MOC underwent a fast wind-driven re-

sponse in the form of Ekman overturning cells, spanning

wide ranges of latitudes, and delineated by the latitudes

of Ekman transport convergence and divergence. De-

spite the limitations of modal analysis, we have been able

to extend the standard SVD by using phase information

and applying analytic methods. Considering the relative

phases was key to explain a common response of the

overturning at a discrete set of latitudes.

Another limitation comes from the real nature of the

observations. The hypothesized fast wind-driven baro-

tropic response, which we believe can explain our ob-

served modes (Eden and Willebrand 2001), is likely

obscured by the baroclinic response that occurs on lon-

ger, noninstantaneous time scales, which should even-

tually modify the fast barotropic response (Anderson

and Killworth 1977). Finally, our study ignores the

eastern boundary contribution to the variability of the

overturning which has been shown to be important on

annual, or again seasonal, time scales (e.g., Zhao and

Johns 2014a).

Despite the strength of having comparable time series

representative of MOC processes, an important re-

striction is the limited time span of the time series used.

While the patterns and ocean responses identified here

are statistically significant, longer time series could im-

prove the physical interpretation of the ocean response.

In fact, TB has been extended through the continuation

of the RAPID WAVE RAPID-Scotian Line for the

time period 2008–14 (Hughes et al. 2013), and obser-

vations at LineW have also continued through 2014, but

the data are not yet available. Both the RAPID–MOC/

MOCHA andMOVE arrays are still ongoing, and Fig. 2

shows the continuation of T26 and TM through 2011. An

interesting and noticeable feature is that both T26 and

TM show a low-frequency increase in the last half of 2009

followed by a decrease in the first half of 2010, corre-

sponding to the exceptional decrease of the AMOC at

26.58N (McCarthy et al. 2012; Srokosz et al. 2012),

suggesting a meridional coherence of this event between

268 and 168N. This in-phase relationship between these

FIG. 13. Overturning transport anomaly T, and the real parts of

their respective first two modal components and sums from the

ASVD analysis with = 3 t and t. The time series are plotted after

applying a 30-day low-pass filter, and successively offset by 220 Sv.
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two latitudes does not appear to correspond to any of the

twoASVDmodes identified in this study, where T26 and

TM are not in phase. The exceptional downturn at 26.58N
was primarily due to a combination of anomalously

negative Ekman transport, combined with an in-

tensification of the southward return flow in the upper

midocean, reflected partly into the deeper layer

(McCarthy et al. 2012), and also captured by T26 (Elipot

et al. 2014, their Fig. 2). Whether the same processes

occurred at 168N and can be explained by a meridional

coherent response to atmospheric forcing requires fur-

ther investigation.
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APPENDIX A

Analytic Covariance and Correlation

Consider two zero-mean continuous variables x(t) and

y(t), and their two analytic transforms x1(t) and y1(t),

respectively. Since analytic variables are complex val-

ued, the definition of the cross-covariance function

between x1(t) and y1(t) is the expectation of the

Hermitian product, which is the product of the complex

conjugate of the first variable and of the second variable

(other conventions may be chosen but one of the two

variables needs to be conjugated):

R
x1y1

(t)5E[x
1
* (t)y

1
(t1 t)] . (A1)

From the Wiener–Khinchine theorem, the expression

above can be rewritten as

R
x1y1

(t)5

ð1‘

2‘

S
x1y1

( f )ei2pft df , (A2)

where Sx1y1( f ) is the cross-spectrum of x1(t) and y1(t),

which can be obtained from the cross-spectrum Sxy( f )

of x(t) and y(t) (e.g., Bendat and Piersol 1986,

chapter 13):

S
x1y1

( f )5

8><
>:
4S

xy
( f ) , for f . 0

S
xy
( f ) , for f 5 0

0, for f , 0

. (A3)

The cross-spectrum Sxy( f) is a complex-valued function

of frequency f, which can be written by convention

(Jenkins and Watts 1968)

S
xy
( f )5L

xy
( f )2 iQ

xy
( f )5 jS

xy
jeiuxy( f ) , (A4)

which defines the coincident or cospectrumLxy(f) and the

quadrature or quad-spectrum Qxy(f), as well as the am-

plitude cross-spectrum and the phase cross-spectrum

jS
xy
( f )j5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

xy( f )1Q2
xy( f )

q
and (A5)

u
xy
( f )5 arctan

 
2
Q

xy

L
xy

!
. (A6)

Thus, assuming that the function Sx1y1(f ) is absolutely

continuous for f $ 0

R
x1y1

(t)5

ð1‘

0

4S
xy
( f )ei2pft df (A7)

54

ð1‘

0

jS
xy
( f )jeiuxy( f )ei2pft df , (A8)

and, at zero lag,

R
x1y1

(0)5 4

ð1‘

0

jS
xy
( f )jeiuxy( f ) df . (A9)

The analytic cross-correlation coefficient at zero lag

between x(t) and y(t) is

r
x1y1

(0)5
R

x1y1
(0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R
x1x1

(0)R
y1y1

(0)
q . (A10)

Since Rx1x1(0) and Ry1y1(0) are real valued and corre-

spond to variances, the phase of rx1y1(0) is identical to

the phase of Rx1y1(0). Thus, according to (A9), this

phase is a power-weighted sum of all phases of the cross-

spectrum of x(t) and y(t). Figure A1 is an illustration of

this, showing a cross-spectral analysis between the

transport TB and the zonal component of wind stress at

the location 31.1258N, 37.8758W where the analytic

correlation between these two quantities is the largest

(Fig. 6). The phase of the analytic correlation is251.558,
which is the phase of the sumof the complex-valued cross-

spectrum from the zero frequency up to approximately
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0.02 cpd, the range of frequencies where the cross-

spectrum has the most power.

APPENDIX B

Analytic Singular Value Decomposition Analysis

We describe here the analytic SVD method (ASVD).

We consider a first, or left, complex-valued field variable

fxt,jg observed at M locations ( j 5 1, 2, . . . , M) and

N discrete times (t 5 1, 2, . . . , N). This field variable is

complex valued because the analytic transform (4) has

been applied to each time series. If the field variable is

complex valued for another reason than calculating the

analytic transform, then the interpretations of the

mathematical method presented here are not quite

valid. Each location j defines an N 3 1 data column

vector,

x
j
5 [x

j
(Dt), x

j
(2Dt), . . . , x

j
(NDt)]T, (B1)

where Dt is the time interval of the time series and (�)T is

the transpose matrix operation as per usual. The M

column vectors are subsequently combined in a N 3 M

data matrix

X5 [x
1
, x

2
, . . . , x

M
]. (B2)

We also consider a second, or right, complex-valued

field variable fyt,kg, observed at the same N discrete

times, and at P locations (k 5 1, 2, . . . , P). The P loca-

tions of the right field are not necessarily equal in

number to, or coinciding in space with, the M locations

of the left field. Thus, we have a second data matrix of

dimensions N 3 P

Y5 [y
1
, y

2
, . . . , y

P
], (B3)

constructed analogously to X. Without further loss of

generality, it is hereafter assumed thatP#M. Assuming

that all time series have zero mean for simplicity, the

M 3 P cross-covariance matrix between field variables

fxt,jg and fyt,kg is

C
XY

[E[XHY] , (B4)

where E[�] the expectation operator, and (�)H is the

conjugate transpose matrix operation. The ( j, k) com-

ponent of CXY is

E[x
j
*(t)y

k
(t)]5R

xjyk
(0), (B5)

where (�)* is the conjugate operator and Rxjyk(0) the

cross-covariance function at zero lag between xj(t) and

yk(t). Note that in practice the sample cross-covariance

matrix is

~C
XY

5
XHY

N2 1
, (B6)

for which the ( j, k) entry is

~E[x
j
*(t)y

k
(t)]5

1

N2 1
�
N

n51

x
j
*(nDt)y

k
(nDt) . (B7)

The truncated SVD decomposition of the cross-

covariance matrix (B4) is

C
XY

5ULVH , (B8)

where U is an M 3 P matrix, and L and V are P 3 P

matrices. If we write

U5 [u
1
,u

2
, . . . , u

P
] and (B9a)

V5 [v
1
, v

2
, . . . , v

P
], (B9b)

then the kth column vector uk is the singular vector for

fxg, also called the left (spatial) pattern, and the kth

column vector vk is the singular vector for fyg, also
called the right pattern, both for the kth ASVDmode. In

FIG. A1. Cross-spectral analysis between transport TB and zonal

wind stress at 31.1258N, 37.8758W. (top) Power spectral densities of

the real part and imaginary part of the cross-spectrum Sxy and of

the amplitude cross-spectrum jSxyj. (bottom) Phase spectrum

fAngle[Sxy( f )]g and phase of the cumulative frequency integral

from 0 of the cross-spectrum fAngle[
Ð
f
Sxy(d) df ]g. In both panels,

vertical green dashed lines indicate the frequencies corresponding

to the periods of 1 year and 6, 3, 2, and 1 month(s).
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this analytic case, U and V are both complex-valued

matrices. The matrix I is the identity matrix, and the

matricesU and V are unitary matrices, which means that

their columns are pairwise orthonormal:

UHU5 I and (B10a)

VHV5 I . (B10b)

The matrix L is strictly diagonal, and on its diagonal

are found the P real-valued and positive singular values

lk usually arranged in decreasing order. The real-valued

kth ratio

SFC5
l
k

�
P

j51

l
j

(B11)

is the squared fraction covariance (SFC) of mode k,

usually expressed in percentage, and is interpreted as

the amount of the total cross covariance that is captured

by each coupling mode, characterized in space by the

singular vectors.

The singular vectors provide statistical spatial pat-

terns leading to coupled modes of covariance between

the left and right fields. These patterns are modulated in

time by the expansion coefficients time series or analytic

principal components (APC) time series. For eachmode

k, the complex-valued ak(t) and bk(t) APC time series

for the left and right fields, respectively, are found in the

column vectors obtained by projecting the data matrices

onto their respective singular vectors:

a
k
5Xu

k
5 [a

k
(Dt), a

k
(2Dt), . . . , a

k
(NDt)]T (B12a)

and

b
k
5Yv

k
5 [b

k
(Dt), b

k
(2Dt), . . . ,b

k
(NDt)]T. (B12b)

ThoseP vectors are combined in theN3P PCmatrices:

A5XU5 [a
1
, a

2
, . . . , a

P
] and (B13a)

B5YV5 [b
1
,b

2
, . . . , b

P
]. (B13b)

The APC time series can be written using polar

notations

a
k
(t)5a

k
(t)eixk(t) and (B14a)

b
k
(t)5b

k
(t)eifk(t) , (B14b)

where ak(t) and bk(t) are absolute value, or positive

amplitude time series, and xk(t) andfk(t) are phase time

series, defined by

a2
k(t)5Re2[a

k
(t)]1 Im2[a

k
(t)] and (B15a)

x
k
(t)5 tan21

	
Im[a

k
(t)]

Re[a
k
(t)]



, (B15b)

and similarly for bk(t) and fk(t). In some specific cases,

d

dt
arg[a

k
(t)]5

dx
k
(t)

dt
[ 2pf

ak
(t) and (B16a)

d

dt
arg[b

k
(t)]5

df
k
(t)

dt
[ 2pf

bk
(t) (B16b)

can define instantaneous frequencies fak(t) and fbk(t) for

mode k. For the ASVDmethod, note that ak(t) and bk(t)

are analytic time series, which implies that their Fourier

components are null for negative frequencies. Using

(B13), (B8), and the unitary property (B10), direct cal-

culations yield

E[AHB]5L . (B17)

Since L is diagonal, nonnegative, and real, this result

implies that for a given mode k, the APC time series of

the left and right fields are in phase on the time av-

erage. Additionally, as in standard (non-complex

valued) SVD analysis, it implies that an APC time

series of the left field for a given mode is uncorrelated

with all the APC time series of the right field for the

other modes. The strength of the coupling for mode k

between the two fields is measured by the correlation

coefficient

r
k
5

E[a
k
* b

k
]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[a
k
* a

k
]E[b

k
* b

k
]

q 5
l
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E[a
k
* a

k
]E[b

k
* b

k
]

q , (B18)

which is thus real valued.

In conclusion, the data matrices, that is the recon-

structed variability for any mode k# P, are obtained by

multiplying the kth APC time series by the conjugates of

the kth singular vectors:

X
k
5 a

k
(u

k
)H and (B19a)

Y
k
5 b

k
(v

k
)H . (B19b)

Thus, as we do in this study, it is advantageous to rep-

resent the spatial structure of a given ASVD mode by

displaying the conjugate of a singular vector and the

corresponding complex-valued APC time series.

One way of presenting results from SVD analyses in

general is to compute the homogeneous covariance

vectors or ‘‘maps’’ between each field variable and its

respective APC time series. Using (B12), the M 3 1

and P 3 1 homogeneous covariance vectors for the
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left and right fields for mode k are (Bretherton et al.

1992)

E[XHa
k
]5C

XX
u
k

and (B20a)

E[YHb
k
]5C

YY
v
k
, (B20b)

where CYY and CYY are the autocovariance matrices of

the left and right field, respectively. The homogeneous

covariance vectors become homogeneous correlation

vectors when the left-hand sides of (B20) are calculated

after normalizing each column of X and Y, as well as

normalizing ak and bk. The homogeneous correlation

vectors can also be calculated from the right-hand sides

of (B20) if they are respectively divided by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var[ak(t)]

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var[bk(t)]

p
, and CXX and CYY are correlation

matrices.

Alternatively, one can choose to compute the co-

variance vectors between each field variable and the

APC time series of the other field, which are called the

heterogeneous covariance vectors or maps. By using

(B12), noting that CXY 5�P

k51lkuk(vk)
H, and the or-

thogonality property (B10) of the singular vectors, the

M 3 1 and P 3 1 heterogeneous covariance vectors for

the left and right field for mode k are found to be

E[XHb
k
]5 l

k
u
k

and (B21a)

E[YHa
k
]5l

k
v
k
. (B21b)

The heterogeneous covariance vectors become het-

erogeneous correlation vectors when the left-hand sides

of (B21) are calculated after normalizing each column of

X and Y, as well as normalizing bk and ak. The hetero-

geneous correlation vectors can also be calculated from

the right-hand sides of (B21) if they are respectively

divided by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var[bk(t)]

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var[ak(t)]

p
and the lk are

the singular vectors of the cross-correlation matrix CXY.

In conclusion, the left heterogeneous covariance vector

is proportional to the left singular vector, and the right

heterogeneous covariance vector is proportional to the

right singular vector. Representing graphically the het-

erogeneous covariance (or correlation) vectors has the

advantage of showing both the pattern of singular vec-

tors and the strength of the linear relationship between

the two fields. Note that if the coupling coefficient (B18)

for a given mode is strong, the homogeneous and het-

erogeneous maps can appear very similar. For the case

of an EOF analysis where Y [ X the homogeneous and

heterogeneous maps are the same.

The components of the heterogeneous covariance vec-

tors (B21) for the left and right field variables have the

same phases as the components of the singular vectors of

the left and right field variables. Thismeans that the phase

patterns of the singular vectors of the left (right) field

variable show the time-average phases between the left

(right) field variable and the APC time series of the right

(left) field variable. In contrast, (B20) show that there can

exist any average phase of covariance between the left

(right) field variable and the left (right) APC time series.

In section 6 we conduct an analytic SVD analysis be-

tween the transport variables (right field) and the wind

stress vector (left field), which is a bivariate variable.We

apply the method described above but we decompose

the bivariate field variable into its time-domain rotary

components (Lilly and Olhede 2010), as opposed to its

Cartesian (zonal and meridional) components, to ulti-

mately reconstruct elliptical modes of motions of the

wind stress. This reconstruction is described in the ap-

pendix of Elipot and Beal (2015).
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