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Abstract 

Periphyton growth rate has been identified as the key process that leads to river eutrophication. Effort 

has focused on reducing phosphorus concentrations to control periphyton biomass, but other factors, 

such as light, are also important. Within-stream flume mesocosms were deployed in the River 

Lambourn, UK, to investigate how light intensity and phosphorus concentrations affect periphyton 

biomass and community structure. Soluble reactive phosphorus (SRP) concentrations were tripled in 

some flumes, and decreased in others by dosing of FeCl3. Increasing SRP concentrations from the 

ambient concentration of 49 µg L-1 to 155 µg L-1 had no effect on biomass, but community composition 

(by flow cytometry) shifted from diatom to cyanobacterial dominance. Reducing light levels (equivalent 

to riparian tree shading) decreased biomass by 40 %, showing that the biofilms were light limited at 

SRP concentration ≥ 49 µg L-1.  Periphyton were phosphorus / light co-limited when SRP 

concentrations were reduced to 33 µg L-1.  Further reductions in SRP concentration (23 µg L-1) resulted 

in phosphorus limitation of periphyton biomass and increased dominance of diatoms and chlorophytes 

within the biofilm. Reducing light intensity through providing riparian tree shading could be an 

important management tool to reduce periphyton biomass and improve ecological status. 
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Introduction 

The growth rate of periphyton (the complex mixture of algae, cyanobacteria, detritus and heterotrophic 

organisms attached to substrata) in rivers has been identified as a key process that drives the ecological 

problems associated with eutrophication, such as macrophyte loss and habitat degradation (Hilton et al. 

2006). Periphyton biomass is thought to be controlled by multiple factors including nutrient 

concentration, light, invertebrate grazing, water temperature and flow velocity (Bernhardt and Likens 



 

2004; Flynn et al. 2002; Francoeur et al. 1999; Lewis and McCutchan 2010), and manipulating these 

factors is seen as essential to controlling algal blooms and the effects of river eutrophication.  

In the UK and much of the developed world, most catchment management resources are usually 

focussed on reducing nutrient concentrations, and phosphorus (P) concentrations in particular, as P is 

assumed to be the limiting nutrient for algal growth.  European Union directives such as the Urban 

Wastewaters Treatment Directive (Council of European Communities 1991b), Nitrates Directive 

(Council of European Communities 1991a; Kelly et al. 2005), and Water Framework Directive (Council 

of European Communities 2000) have led to wide-scale nutrient concentration reductions across the 

UK in recent decades (Bowes et al. 2010b; Kinniburgh and Barnett 2010). However, these 

improvements in water quality have not produced the expected ecological responses, with many river 

ecosystems failing to achieve the ‘good’ ecological status required by the Water Framework Directive. 

Despite major reductions in  phosphorus concentrations, many rivers across the UK still experience 

phytoplankton blooms (Bowes et al. 2012a) and high levels of periphyton biomass (Kelly and Wilson 

2004; Neal et al. 2010), implying that phosphorus concentrations are still in excess for periphyton 

growth.  

Numerous studies have examined the effects of increasing phosphorus concentration on periphyton 

biomass through river nutrient enrichments (Greenwood and Rosemond 2005), nutrient diffusing 

substrata (Sanderson et al. 2009; Tank and Dodds 2003) and mesocosm experiments (McCall et al. 

2014; Stelzer and Lamberti 2001; Wagenhoff et al. 2013). These approaches have increased ecosystem 

understanding, particularly in low-nutrient environments. However, in countries with high populations 

and intensive agriculture where nutrient concentrations are greatly in excess of those needed to achieve 

a good ecological status, experiments with the capability to reduce phosphorus concentrations are 

urgently needed to advance scientific knowledge and inform the impacts of catchment management 

decisions.   

Reductions in light intensity, through riparian shading, have been shown to result in significant 

reductions in periphyton biomass and community shifts in a number of studies (Bowes et al. 2012b; 

Halliday et al. 2016; Hill et al. 2009; Johnson and Almlof 2016; Sturt et al. 2011). Specifically, the 

study of the River Thames (UK) by Bowes et al. (2012b) showed that reducing light intensities to mimic 

riparian tree shading reduced periphyton biomass by up to 56 % .  Furthermore, recent modelling studies 

on the River Thames basin have shown that in headwater streams, light reduction had a greater potential 

impact on reducing phytoplankton biomass than phosphorus concentration reduction (Hutchins et al. 

2010). Therefore, reduction of light levels by increasing riparian shading offers an alternative means of 

controlling excessive algal biomass in rivers. 

To achieve good ecological status in rivers, and comply with legislative requirements, it is essential to 

understand how the manipulation of multiple environmental variables affects biomass responses and 

community structure. The effects of these two key factors; light and nutrients, have been examined 

previously (Hill and Fanta 2008; Hill et al. 2009; Sturt et al. 2011), although these studies only 

investigated the impact of increasing nutrient concentrations on periphyton biomass. This present study 

investigated how periphyton biomass and community composition were affected by the simultaneous 

manipulation of light intensity and phosphorus concentrations in a relatively low nutrient-impacted 

tributary of the River Thames; the River Lambourn.  Within-river flume mesocosms were used to 

produce a wide range of SRP concentrations, at two different light levels. The novel aspect of this study 

was that river phosphorus concentrations were both increased, and decreased (using a P-stripping 

methodology previously developed by  Bowes et al (2007). The ability to reduce river soluble reactive 

phosphorus concentration was used to determine the P concentration threshold at which periphyton 

biomass became phosphorus-limited. This information is vital for target setting and the effective 

management of periphyton growth and community structure in the River Lambourn and other similar 

chalk rivers. 

Materials and Methods 

Catchment description and site location 

The River Lambourn is a second-order chalk stream located in the county of Berkshire, southern 

England (Figure 1). The source of the river is located 152 m above sea level in Lynch Wood, to the 

north of the village of Lambourn. The 25 km long river flows in a south easterly direction with a total 



 

catchment area of 234 km2 (Marsh and Hannaford 2008). The perennial head of the river is located at 

Great Shefford, approximately 8 km downstream from the source. The River Lambourn is a tributary 

of the River Kennet which itself is a tributary of the River Thames. The confluence of the River 

Lambourn and the River Kennet is to the east of the town of Newbury while the River Kennet joins the 

River Thames at Reading. The high base flow index of the river (0.97) is due to the groundwater 

dominance of this permeable Chalk catchment. Mean river flow is 1.7 m3 s-1 and mean annual rainfall 

is 745 mm (Marsh and Hannaford 2008). The land use within the catchment is predominantly rural, 

with arable and grassland comprising 51.8 and 33.8 % of the land cover respectively, with only 2 % 

urban or semi-urban development (Bowes et al. 2014).   

The experiments for this study were located at the Centre for Ecology & Hydrology’s (CEH) River 

Lambourn Observatory research site (Figure I), just upstream of the village of Boxford. The river is 

typically 9 m wide and 0.4 m deep at this point (Old et al. 2014). This site has been monitored for 

river water quality at weekly interval since June 2008 (Bowes et al. 2014).  

In-stream flume mesocosms 

The in-stream flume mesocosms were constructed from polyvinyl chloride sheeting, supported by an 

aluminium frame. The flumes were arranged in sets of three (five sets of three flumes were used in this 

experiment; fifteen flumes in total), with each flume being 5 m long and 0.3 m wide (Figure 2). 

Adjustable gates at the upstream end of each flume allowed the flow velocity of the incoming river 

water within each flume to be standardised to 0.15 m-1 s-1 at the start of the experiment. Cylindrical 

plastic floats were attached to either side of each set of three flumes to allow them to float at a constant 

depth of 5 cm in the river. The flumes were secured in place using metal poles that had been pile-driven 

into the river bed. The flumes were not in contact with the river bed, thereby minimising potential 

grazing of periphyton by benthic invertebrates. Unglazed ceramic tiles (approximate area of 49 cm-2 

each) were placed in the downstream end of each flume (termed the periphyton monitoring area; Figure 

2) to act as artificial substrata for periphyton growth. A more detailed description of the flume 

mesocosm design is given elsewhere (McCall et al. 2014). The fifteen flume mesocosms were installed 

along a 200 m stretch of river at the River Lambourn Observatory in May 2012 (Figure 1). Flumes were 

located on relatively straight, uniform sections of river that were unshaded by riparian vegetation and 

exposed to full sunlight throughout the day.   

A wide range of phosphorus concentrations were simultaneously produced across the flumes.  A 

concentrated solution of potassium dihydrogen orthophosphate was dripped into the upstream section 

of three replicate flumes, to aim to triple the phosphorus concentration in the incoming river water from 

50 µg SRP L-1 to approximately 150 µg SRP L-1.  The SRP concentration in the incoming water was 

reduced in six flumes, using the methodology developed by Bowes et al. (2007). An iron (III) chloride 

solution was added at two different rates, to produce three replicate flume treatments of approximately 

25 and 35 µg SRP L-1. The added iron solution reacted with dissolved phosphate ions present in 

incoming river water to rapidly form an insoluble, non-bioavailable precipitate (Fe3(PO4)2), thereby 

reducing the SRP concentration in the lower sections of the flumes. One flume received a combined 

phosphorus (P) and nitrogen (N) treatment. This treatment was included to confirm that there was no P 

and N co-limitation of periphyton biomass. Co-limitation was not expected due to the extremely high 

ambient nitrate-N concentration at the study site (average NO3-N from 2008 to 2012 was 7.77 mg L-1; 

data provided by CEH River Lambourn Observatory), therefore only one flume was used for this 

treatment. Chemical additions were controlled via multi-channel peristaltic pumps (205S; Watson-

Marlow, Falmouth, UK). Within each set of three flumes, one flume received no chemical addition and 

therefore had unmodified river water flowing through it for the duration of the experiment, thereby 

acting as a control (five controls in total). The choice of nutrient treatment within each flume and the 

position of controls in each set of three flumes were randomly assigned. A summary of the treatments 

and target phosphorus concentrations in each of the flumes is given in Figure 2. 

A shading treatment was also applied to each flume to reduce light intensity and mimic full riparian 

tree shading (Figure 2). The method used was the same as that of Bowes et al. (2012b). Greenhouse 

shade cloth was positioned over the periphyton monitoring area so that half the tiles were shaded and 

half were in full sun (unshaded). The position of the shade cloth (i.e. in the upstream or downstream 

end of the periphyton monitoring area) was randomly assigned for each flume (Figure 2). Water 

temperature and light intensity in both the shaded and unshaded section of the flume were recorded 



 

hourly throughout the experiment, using HOBO pendant loggers (Onset Computer Corporation, 

Massachusetts, USA).  

Once nutrient concentrations were within the desired range and the shading treatment had been applied, 

the flumes were thoroughly scrubbed to remove any periphyton that had colonised during set-up. Clean 

ceramic tiles were then placed within the periphyton monitoring area at the downstream end of each 

flume, on the 11th May 2012, and the shading cloths were positioned to shade half the tiles (Figure 2). 

SRP concentrations in the lower section of each flume were monitored in the field twice per day, using 

a Hach Lange DR2800 portable spectrophotometer, using the colorimetric method of Murphy and Riley 

(1962). This allowed the drip rates of the potassium dihydrogen orthophosphate and iron chloride 

solutions to be adjusted to maintain the desired SRP concentration in each flume. After ten days (21st 

May), maximum periphyton biomass had accrued on some of the tiles and sloughing appeared to be 

imminent. At this point, the experiment was terminated for all flumes. Three tiles from both the 

unshaded and shaded treatments of each flume were removed and placed in a bag and stored at -20 °C 

for later analysis of chlorophyll a concentration and ash free dry mass (AFDM). Biofilms from two 

further tiles were sampled immediately by scrubbing each with a toothbrush into separate plastic trays. 

The resulting suspension from one tile was preserved with Lugol’s iodine for determination of diatom 

communities and the suspension from the other was left unpreserved for microbial community 

characterisation by flow cytometry.    

Periphyton biomass characterisation 

Tiles were defrosted in the dark and the biofilm removed with a toothbrush into a plastic tray. The 

resulting suspension was decanted into a 500 ml Duran bottle (Fisher Scientific, Loughborough, UK) 

and made up to 300 ml using deionised water. The toothbrush, tray and storage bag were thoroughly 

washed to ensure all the periphyton biofilm had been transferred into the glass bottle..  

After homogenisation by vigorous stirring, a 40 ml sub-sample was taken from the biofilm suspension 

and vacuum filtered through a 0.45 µm glass fibre filter (GF/C grade; Whatman Ltd., Maidstone, UK). 

Filters were placed into vials and chlorophyll a was extracted overnight by the addition of 90 % 

(volume/volume) acetone/water at 4 °C. The absorbance of each sample was measured 

spectrophotometrically at wavelengths of 630, 645, 665 and 750 nm and the total quantity of chlorophyll 

a on each tile was then back-calculated (APHA. 2005).   

A further 40 ml sub-sample was taken from the homogenised biofilm suspension for analysis of AFDM. 

The sub-sample was vacuum filtered through an ashed, pre-weighed GF/C filter. The filters were then 

dried at 105 °C until constant mass was attained, after which they were cooled to room temperature in 

a desiccator and reweighed to determine the dry mass of each sample. Samples were then incinerated 

at 500 °C for two hours in a muffle furnace (model AAF1100; Carbolite Ltd., Hope, UK). After cooling 

in a desiccator, filters were reweighed and the AFDM of each sample was back-calculated (APHA. 

2005). 

From the chlorophyll a concentration and the AFDM, the autotrophic index was calculated. This is the 

ratio of heterotrophic to autotrophic organisms within each biofilm and was calculated by dividing 

AFDM by chlorophyll a concentration. A higher autotrophic index is representative of a periphyton 

community dominated by heterotrophic organisms. 

Flow cytometry 

Flow cytometry is a laser-based analytical technique that can be used to discriminate algal and bacterial 

cells based on size, shape, cell structure and their constituent photosynthetic pigments (Read et al. 

2014). To prevent cell degradation, analyses were run on the flume biofilms within 24 hours of sample 

collection. The biofilm suspension was homogenised by vortex mixing before 500 µl was passed 

through a 40 µm cell strainer (BD Biosciences, Oxford, UK) to remove large sediment particles, after 

which 20 µl of the filtrate was added to 980 µl of ultrapure water. The sample was vortex-mixed again 

to disaggregate colonial algae, and then analysed using a Gallios flow cytometer (Beckman-Coulter, 

High Wycombe, UK) equipped with blue (488 nm) and red (638 nm) solid state diode lasers. Samples 

were run for six minutes and scatter plots were used to delineate and count the major periphyton groups 

(diatoms, chlorophytes, cryptophytes and cyanobacteria) (Read et al. 2014). 

Diatom identification and Trophic Diatom Index 



 

Approximately 5 ml of each preserved biofilm was digested using the hot peroxide method of Kelly et 

al. (2001). The measured suspension was placed in a beaker with ca. 40 ml of hydrogen peroxide. This 

was then gently heated to 90 ± 5 °C for three hours until all organic matter had been removed.  After 

cooling, a few drops of hydrochloric acid were added to remove carbonates and the samples were 

centrifuged at a speed of 3000 rpm for 5 minutes. The centrifuging was repeated twice more with the 

supernatant decanted and deionised water added each time until all traces of hydrogen peroxide had 

been removed. 

Permanent slides of diatom frustules for unshaded treatments in seven of the flumes (covering the range 

of SRP concentrations, plus the flume receiving combined P and N additions) were mounted using 

Naphrax (refractive index 1.74) (Brunel Microscopes Ltd., Chippenham, UK). Approximately 300 

frustules were counted per slide using a DMB2 microscope (Leica Microsystems Ltd., Milton Keynes, 

UK) at 1000 x oil immersion under phase contrast.  Identification, to species level, took place using the 

diatom key of Kelly et al. (2005) and allowed the Trophic Diatom Index (TDI) for each nutrient 

treatment to be calculated (Kelly et al. 2001). 

Water quality analysis 

A longitudinal water quality survey of six sites along the River Lambourn was conducted at monthly 

intervals in the 12 months following the experiment, to provide seasonal context for the outcomes of 

this study, and to allow these outcomes to be applied to the catchment as a whole. Soluble reactive 

phosphorus was analysed using the molybdenum blue method of Murphy and Riley (1962), while total 

phosphorus and total dissolved phosphorus were analysed spectrophotometrically following acid 

persulphate digestion (Eisenreich et al. 1975) on unfiltered and filtered samples respectively. Dissolved 

reactive silicon concentrations were determined colorimetrically by reaction with acid ammonium 

molybdate and oxalic acid (Mullin and Riley 1955). Nitrate-N concentrations were measured using ion 

chromatography (Dionex DX500; Thermo Scientific, California, USA) and total dissolved nitrogen was 

determined by high temperature catalytic oxidation (Vario TOC select; Elementar, Hanau, Germany).   

Data processing and analysis 

Each batch of field SRP measurements were run against fresh calibration standards, which were 

traceable to standard reference materials (LGC Standards, Teddington, UK). All statistical analyses 

were run on mean data from the three tiles in each flume, using SPSS 22 statistical software. Prior to 

analysis, the data were investigated for normality and homogeneity of variances.  SRP and AFDM data 

were not normally distributed and were log10 transformed to improve normality and these data were 

used in all subsequent analyses. A one-way ANOVA was used to compare mean SRP concentrations 

between P-treatments. Chlorophyll a data met the assumptions above, so parametric tests were used to 

analyse these data. 

To confirm that N was not limiting or co-limiting periphyton biomass, a single sample t-test was run to 

compare the mean Chlorophyll a and AFDM from the single flume treated with the combined N and P 

addition, with the mean data from each of the three replicate flumes where only P was added, for each 

of the shaded and unshaded light treatments. To investigate the effects of P-treatment and light regime 

on periphyton biomass (as quantified by mean Chlorophyll a and AFDM in each flume), two-way 

ANOVA tests were run using Type III sums of squares to account for the unbalanced 

experimental design (Keppel and Wickens 2004). Where significant differences were observed, a 

post-hoc Tukey test was used to determine which P-treatments were significantly different from each 

other. 

Results  

Nutrient treatments 

The soluble reactive phosphorus (SRP) concentrations measured in each flume over the course of the 

ten day experiment are presented in Table 1 and Figure 3. The mean SRP concentration of the individual 

control flumes ranged from 45 to 55 µg P L-1 (with a mean concentration of 49 µg P L-1), showing that 

there was some small variation in phosphorus concentrations between flumes across the 200 m study 

reach. Throughout the experiment, the mean SRP concentrations observed in the five control flumes 



 

(equivalent to unaltered river water) declined from 55 µg P L-1 on the first day of the experiment to a 

relatively stable concentration of between 36 and 42 µg L-1 over the last five days. 

All P-treatments significantly altered the mean SRP concentrations (One-way ANOVA, F3,10 = 514.8, 

p < 0.001) compared to those in the control flumes and compared to each other (Tukey HSD, p < 0.001). 

The two different rates of iron (III) chloride addition significantly lowered SRP concentrations, varying 

from 30 to 35 µg P L-1 for the low-rate iron addition (mean = 33 µg P L-1) and between 22 and 25 µg 

SRP L-1 (mean = 23 µg L-1) for the high-rate FeCl3 additions, equivalent to reductions of the ambient 

river concentrations of between 30 and 50 %. The flumes receiving phosphorus additions had a 

significant increase in SRP, ranging from 147 to 162 µg L-1 (mean = 155 µg L-1), which was equivalent 

to a 3 to 3.5-fold increase of the ambient river concentration. To investigate potential N–limitation or P 

and N co-limitation, the SRP concentration in Flume 2 was increased to 122 µg P L-1 and nitrate-N 

concentration was increased from 6.9 to 7.9 mg NO3-N L-1. Results from this single flume treated with 

P and N confirmed that N did not limit periphyton biomass (as measured by chlorophyll a and AFDM) 

in either the shaded or non-shaded flumes (One-sample t-tests, p>0.179) (Figures 4a and 5a). This 

outcome was expected due to the very high ambient nitrate-N concentration of the river (with an average 

of 7.8 mg NO3-N L-1).  

Light treatments 

Throughout the experiments, the day length was ca. 15 hours, between 06:00 and 21:00 hr. The effects 

of the shade cloth on light intensities reaching the tile substrata are shown in Supplementary Figure S1. 

In the unshaded treatment, the mean light intensities during daylight hours were 28,000 Lx, while in 

the shaded treatment, mean light intensities during daylight hours were reduced by 78 % to 6500 Lx 

(Supplementary S1). The reduction in light intensity achieved by shading was equivalent to the 79 % 

average reduction in light intensity under full tree canopy shading, measured at multiple sites along the 

Boxford study reach prior to the commencement of the experiment. The different light treatments had 

no significant effect on stream water temperature (two-sample T-test: T = -1.690, p = 0.090), with mean 

hourly temperature recorded ranging between 11.1 and 11.3 °C. Temperatures in the flumes and river 

showed almost identical diurnal fluctuations, varying between 8.5 and 14 oC during the period of the 

study (Supplementary S2). 

Periphyton biomass response 

The mean chlorophyll a concentrations and AFDM at the end of the ten day experiment are shown in 

Figures 4 and 5 respectively, plotted against the mean SRP concentrations during the study period. 

Chlorophyll data are displayed for each individual flume (Figure 4(a), acknowledging that there was 

variation in SRP concentrations within replicate treatments that produced a gradient in SRP 

concentrations), and also as mean data from treatment replicates (Figure 4(b)).  

The addition of P did not significantly increase chlorophyll a concentrations (Tukey HSD, p = 0.676), 

demonstrating that at ambient SRP concentrations (49 µg P L-1) and above, SRP concentrations did not 

limit periphyton biomass in the River Lambourn, and that sustained phosphorus pollution incidents are 

not likely to lead to excessive periphyton growth. Reducing SRP concentrations led to significant 

decreases in chlorophyll a compared to the controls (Tukey HSD, p < 0.001). A 30 % decrease in SRP 

concentration (to approximately 33 µg SRP L-1) reduced chlorophyll a concentrations by ca. 45 and 50 

% in the unshaded and shaded treatments, respectively (Figure 4). Further reductions in SRP 

concentration to 23 µg L-1 resulted in further decreases in chlorophyll a concentration under both light 

conditions. When SRP concentration was reduced by 50 %, to ~ 25 µg L-1, chlorophyll a concentrations 

were reduced by 75 and 60 % in the unshaded and shaded treatments, respectively (Figure 4). Results 

from the two-way ANOVA testing for the effects of both P-treatment and shading on mean chlorophyll 

a concentration confirmed a significant interaction between the two factors (F3,20 = 3.687, p < 0.001), 

indicating that the effect of shading was different for different P-treatments. Shading had no significant 

effect on mean chlorophyll a concentrations in the flumes where mean SRP concentrations were 

reduced to below ambient concentrations (23 and 33 µg SRP L-1). However, in control flumes and in 

flumes where SRP was increased 3.5-fold relative to the control (to 155 µg SRP L-1), shading 

significantly reduced chlorophyll a concentrations by up to 35 % (Figure 4b).   

There was a significant correlation between the chlorophyll a concentration and AFDM measured in 

each flume (Spearman’s rho = 0.616, p < 0.001). However, the AFDM of periphyton had a greater 



 

variation between the flume sets than chlorophyll a concentration (Figure 5a) and therefore, the AFDM 

data were normalised to the values of the unshaded control in each set of three flumes (i.e. the mean 

AFDM values from the three replicate tiles in each flume were divided by the mean AFDM for the 

unshaded control flume, in that flume set) (Figure 5(b)). The phosphorus treatments were all 

significantly different from each other (Two-way ANOVA, F2, 12 = 60.04, p < 0.001), with mean 

normalised AFDM reduced by 50 % and 73 % in flumes where mean SRP was reduced to 33 and 23 

µg P L-1, respectively. As the data were normalised, we were unable to directly compare the responses 

in the treatments with the unshaded control flume in the two-way ANOVA. Instead, one-sample t-tests 

were used to determine whether the mean responses in selected treatments were significantly different 

to 1. There was no significant effect of increasing the SRP concentration to 155 µg L-1 (One-sample t-

test, t2 = -0.266, p = 0.815) (Figure 5b), providing further evidence that the River Lambourn was not 

nutrient limited in unshaded conditions over the ten day study period.  

Shading significantly affected mean normalised AFDM (Two-way ANOVA, F1,12 = 7.660, p < 0.001), 

and reduced the mean normalised AFDM by 20 % in the flumes where mean SRP was increased to 155 

µg L-1. Similarly, normalised AFDM was reduced by 28 % in the shaded controls (One-sample t-test, 

t4 = -9.019, p = 0.001) (Figure 5b). Where mean SRP concentrations were reduced to 33 and 23 µg L-1, 

shading did not have a significant effect. Therefore, the periphyton biomass, as determined by both 

chlorophyll a and AFDM, became phosphorus-limited when the SRP concentrations were reduced to 

below the current ambient river concentration of 49 µg P L-1, and became light limited when the SRP 

concentrations were at or above the ambient concentration observed during the study period.  

 The biofilms in the shaded flumes generally had a higher autotrophic index compared to the unshaded 

sections of the same flume, particularly at increased SRP concentrations (Table 1), indicating that 

shaded periphyton communities contained more heterotrophs relative to autotrophs. Reducing light 

intensity is likely to have limited autotrophic biomass accrual by reducing photosynthesis, while 

heterotrophs were relatively unaffected, and so were able to dominate the biofilm community.         

Periphyton community response 

Flow cytometry 

The relative proportions of the phenotypically-distinct groups within the autotrophic periphyton 

community (as determined by flow cytometry) after ten days are shown in Figure 6. All biofilms 

consisted predominantly of nano-and pico-chlorophytes and cyanobacteria, accounting for 80 to 90 % 

of the total autrotrophic cell count. There was relatively little differences in community composition 

between light treatments, but there were major shifts in periphyton community with changing SRP 

concentration. The proportion of cryptophytes was greatest at SRP concentrations of 23 µg L-1 for both 

unshaded (5 %) and shaded (8 %) treatments, but declined to a mean of 2 % of the total autotrophic cell 

abundance in the flumes receiving P additions. Cyanobacteria constituted ca. 50 % of the mean 

autotrophic cell abundance in the control and P-addition flume biofilms, but only 25 to 28 % in the 

flumes where SRP concentrations were reduced. In the shaded flumes, there appeared to be a threshold 

at 30 µg SRP L-1, below which cyanobacterial cells only constituted between 14 to 21 % of the total 

autotrophic cell counts.   

The proportion of diatoms / large chlorophytes did not change in response to changing SRP 

concentration, with mean proportions from the P-reduction, control and P-addition flumes remaining at 

between 10 to 14 % under both light treatments. The nano- and pico-chlorophytes showed the greatest 

compositional change in response to flume SRP concentrations, exhibiting a negative relationship with 

SRP concentration. Relative abundances of nano- and pico-chloroplasts were highest within the 

biofilms (54 to 65 % of all autotrophic cells) when SRP concentrations were lowest (~23 µg L-1). In 

contrast, the proportion of nano- and pico-chloroplasts was as low as 8 % when SRP concentrations 

were highest (~ 155 µg L-1).  

Diatom assemblage and trophic diatom index 

As TDI is purely a nutrient based index (Kelly et al. 2001), biofilm samples for diatom identification 

were only taken from unshaded biofilms. Biofilm samples were taken from seven of the fifteen flumes, 

covering the full range of SRP concentrations across the treatments. The control flumes had TDI scores 

of 46 (Flume 3) and 54 (Flume 11) (Table 1), with ca. 50 % of the diatom species identified falling 



 

within TDI sensitivity category 1 or 2 (Supplementary Table S1), indicating they favoured very low or 

low nutrient concentrations (Kelly et al. 2001). These biofilms contained high abundances of Synedra 

ulna (Nitzsch) Ehrenberg and Fragilaria capucina Desmaziere (approximately 20 and 14 % of the 

diatom population respectively). Tripling the SRP concentration resulted in an increase in the TDI to 

57 in the two flumes analysed (Table 1) with a corresponding decrease in the proportion of sensitivity 

category 1 and 2 species from ca. 50 % to ca. 28 %. Cocconeis pediculus Ehrenberg (11 %) and 

Cyclotella meneghiniana Kützing (9 %) were the more abundant diatom species at higher SRP 

concentrations (Supplementary Table T1). Both of these species have a sensitivity score of 4, suggesting 

they favour high concentrations of nutrients (Kelly et al. 2001). The addition of nitrogen in combination 

with phosphorus (Flume 2) did not lead to further increases in TDI compared to the increases in 

phosphorus concentration alone (Table 1). This further confirms the results from total periphyton 

biomass analysis that N was not limiting or co-limiting periphyton communities in the River Lambourn. 

Decreasing SRP concentration to ~ 23 µg P L-1 reduced the TDI to 37 and 39, with the proportion of 

species tolerant of low and very low nutrient concentrations increasing from 50 to 63 %. As with the 

control treatment, Synedra ulna (27 % in Flume 9 and 24 % in Flume 4) and Fragilaria capucina (13 

% in Flume 9 and 15 % in Flume 4) dominated the diatom flora. 

River water quality 

Mean values of water quality parameters from the longitudinal survey for the year following the in-

stream flume mesocosm experiment are presented in Supplementary Table T1. The mean SRP 

concentrations across all six sites (Figure 7) were consistently below the 49 µg SRP L-1 threshold 

identified within this study (ranging from 18 to 38 µg SRP L-1), due to higher than average rainfall 

diluting point source phosphorus inputs. These low SRP concentrations may well have led to 

phosphorus limitation of periphyton biomass along the entire length of the River Lambourn throughout 

the period from June 2012 to April 2013. The nitrate concentration along the entire the River Lambourn 

was high throughout this period, suggesting that periphyton communities in the River Lambourn were 

unlikely to be nitrogen limited or nitrogen and phosphorus co-limited. At these relatively low SRP 

concentrations, the influence of light on controlling periphyton biomass within the River Lambourn 

would likely have been relatively minor. However, as explained above, this monitoring period was very 

wet, particularly through the summer of 2012.  Under more usual spring – autumn rainfall and flow 

conditions, SRP concentrations would be higher and light would likely be the dominant control on 

periphyton biomass. 

Discussion 

The chlorophyll and AFDM data reveal that periphyton biofilms at ambient nutrient concentrations 

were not phosphorus limited or phosphorus and nitrogen co-limited. However, when SRP concentration 

was reduced to ca. 33 µg L-1, there were significant decreases in periphyton biomass. This suggests that 

the phosphorus-limiting threshold of the River Lambourn was at or below 49 µg SRP L-1; the current 

ambient river concentration of the River Lambourn and indicates that the  threshold of ca. 100 µg L-1 

suggested by Bowes et al. (2007) and Bowes et al. (2012b) is not universal to all rivers across the UK. 

Similar flume studies of the adjacent River Kennet (with an ambient SRP concentration of 55 µg P L-

1) also identified that the river was at the phosphorus limiting threshold (Bowes et al. 2010a). At ambient 

and increased nutrient concentrations, shaded biofilms were primarily light limited, with a 40 % 

increase in biomass in unshaded treatments, relative to shaded treatments. As SRP concentrations were 

reduced (to 33 µg L-1; low FeCl3 addition treatment), the effects of light limitation between the unshaded 

and shaded treatments were less marked, as light limitation became secondary to phosphorus limitation. 

At this point, periphyton communities in the shaded treatment were likely co-limited by phosphorus 

concentration and light intensity. As SRP concentration was decreased further to 23 µg P L-1, there was 

no difference in chlorophyll a concentration between the shaded and unshaded flumes. Therefore, at 

these low SRP concentrations, periphyton biomass was phosphorus limited to the point where light 

intensity had no effect. This finding is similar to studies by Hill et al. (2009) and Stephens et al. (2012), 

who also found light to have a great impact in controlling periphyton accrual in low P concentration 

streams. Whether light intensity or nutrient concentration is more important in controlling periphyton 

biomass therefore depends on the ambient nutrient concentration and whether or not this is below the 

nutrient-limiting threshold for a particular river. 

There was relatively little differences in autotrophic community composition between light treatments, 

although shaded biofilms developed a greater proportion of heterotrophs, as revealed by the autotrophic 



 

index data.  However, there were major shifts in periphyton community with changing SRP 

concentration, particularly with cyanobacteria, which constituted 50 % of the total periphyton cell 

abundances in the control and P-addition treatments. Previous lake research has suggested that 

cyanobacteria dominate periphyton communities at high phosphorus concentrations due to the ability 

of certain species to fix atmospheric nitrogen (Schindler 1977). Increasing SRP concentration can result 

in a reduced N: P ratio and potential nitrogen limitation of periphyton communities. Therefore, 

cyanobacteria are thought to have a competitive advantage over other autotrophic groups as their ability 

to fix nitrogen eliminates this resource limitation (Schindler et al. 2008; Vrede et al. 2009). However, 

our study found that nitrogen did not limit periphyton biomass in the River Lambourn, and suggests 

that changes in community composition were in response to the high phosphorus concentration (rather 

than low nitrogen concentration or low N: P ratio). This may indicate that chlorophytes and diatoms are 

better able to sequester nutrients under ambient conditions, but when the nutrient stress is removed, 

cyanobacteria may be able to outcompete other autotrophic functional groups and gain a competitive 

dominance within the biofilm. This study has demonstrated that phosphorus concentrations can play a 

major role in structuring periphyton communities, as has been shown in other studies. For example, a 

mesocosm study conducted by Van der Grinten et al. (2004) also showed that under nitrogen-replete 

conditions, cyanobacteria dominated the periphyton community at higher phosphorus concentrations. 

The increase in cyanobacteria with increasing SRP concentration could have important implications for 

water quality and water resources / supply, as well as impacting recreation, ecosystem integrity and 

human and animal health due to the toxicity of some cyanobacterial blooms (Downing et al. 2001). The 

flow cytometry data showed that biofilm community composition became dominated by nano- and 

pico-chlorophytes when SRP concentrations were reduced to 23 µg L-1, accounting for between 54 and 

65 % of the total autotrophic cell count. The increased dominance of these small algae within the biofilm 

as P concentrations were reduced suggests that the community may have become nutrient stressed. The 

larger surface area to volume ratio of these small autotrophs may have provided a competitive advantage 

for the cells to  take up nutrients when in short supply (Lewis 1976).  

The flow cytometry and TDI results both show changes in community structure and species 

composition when ambient SRP concentration in the River Lambourn was both increased and 

decreased. However, analysis of total periphyton biomass led to the conclusion that the phosphorus-

limiting threshold of the River Lambourn is at or below the 49 µg L-1 ambient concentration, in terms 

of periphyton biomass. This concurs with the work of Bowes et al. (2012b) which found that although 

the phosphorus-limiting threshold of the River Thames was ca. 100 µg L-1, it was only when SRP 

concentrations were reduced and maintained at concentrations of ca. 30 µg L-1 that there was a change 

in diatom community structure and the TDI. This suggests that it is plausible that rivers across Britain 

have two phosphorus thresholds, one which affects periphyton biomass accrual rate (phosphorus-

limiting threshold) and a lower threshold which affects the ecology and periphyton community 

structure. Further work is necessary to confirm this important observation and to identify the P threshold 

that would deliver improvements in ecological status (TDI) through a shift in diatom community. 

The subsequent monthly water quality monitoring surveys along the length of the River Lambourn 

showed that SRP concentrations were relatively uniform along the entire river, and during the March 

to September period (when significant algal growth can potentially occur), they were all lower than the 

49 µg SRP L-1 concentration observed during the flume study.  Therefore the results on this algal 

limitation study are likely to be applicable to the entire River Lambourn.  

Conclusions  

This experiment on the River Lambourn has shown that SRP concentration is important in determining 

whether light intensity or nutrient concentration exert a greater influence on periphyton biomass. At an 

ambient SRP concentration of ca. 49 µg P L-1, the river appears to be at the phosphorus-limiting 

threshold. This result provides evidence that despite being recently revised (and lowered) (UKTAG 

2013), the UK targets to achieve good water quality status, in terms of mean annual SRP concentration, 

may still be too high, with the current phosphorus standard to achieve WFD good ecological status for 

this stretch of the River Lambourn set at an annual average of 76 µg P L-1.  

Increased shading did not alter the phosphorus threshold concentration. At ambient phosphorus 

concentration and above, light exerts a critical influence on periphyton biomass. In the River Lambourn, 

it is light intensity that controls periphyton biomass at SRP concentrations > 49 µg L-1. As SRP 

concentrations are reduced to ca. 33 µg L-1, light and nutrients appear to co-limit periphyton biomass. 



 

Further reductions in SRP concentration (~ 23 µg L-1) resulted in phosphorus limitation of periphyton 

growth. As such low SRP concentrations would be difficult to achieve in many lowland rivers across 

the highly populated south of England, manipulating light intensity through the addition of riparian 

shading could be a viable alternative catchment management tool to reduce periphyton accrual and meet 

the requirements of European legislation. Similar conclusions have been reached in field and modelling 

studies in both the UK (Bowes et al. 2012b; Hutchins et al. 2010) and the USA (Bernhardt and Likens 

2004; Greenwood and Rosemond 2005; Mebane et al. 2014; Schiller et al. 2007).  

Despite periphyton biomass (determined by chlorophyll a) not changing when SRP concentrations were 

increased above the ambient SRP concentration, community structure shifted, with cyanobacteria 

dominating the periphyton community at higher SRP concentrations. Alongside this, diatom 

communities shifted to be dominated by less nutrient-sensitive species at increased SRP concentrations 

and more nutrient sensitive species at reduced SRP concentrations. This study has shown that despite 

the River Lambourn being at the phosphorus-limiting threshold for periphyton growth rate, ambient 

SRP concentrations must be reduced further to improve community structure and ecological status.    

 List of Figure captions 

Table 1: Average soluble reactive phosphorus concentrations measured in each flume at each site over 

the course of the experiment, with average chlorophyll a, ash free dry mass, and autotrophic index of 

the biofilms after ten days. Trophic diatom index data were calculated for unshaded biofilms in selected 

flumes covering the full range of SRP concentrations. 

Fig. 1. Map of study site, showing location of Thames basin (a), location of River Lambourn within the 

Thames basin (b) and (c) River Lambourn catchment showing the location of the flume studies (green 

circle) and water quality monitoring sites (red circles). 

Fig. 2. Experimental design, showing treatments and soluble reactive phosphorus concentrations in 

each flume. Grey areas represent shaded areas of the flume. Black arrow indicate direction of flow of 

incoming river water. The inset photograph shows a set of 6 flumes deployed within the study reach, 

facing downstream.  The green shading cloth can be seen covering half of the tiles in the downstream 

sections of each flume 

Fig. 3. Soluble reactive phosphorus (SRP) concentrations monitored in each flume during the course of 

the experiment. Average SRP concentrations (in µg L-1) for each flume presented in the legend. 

Fig. 4. Relationship between soluble reactive phosphorus (SRP) concentration and chlorophyll a 

concentration at the end of the 10 day flume experiment at both light levels. (a) Data points are mean 

chlorophyll a values based on analysis of three tiles from each individual flume ± one standard error. 

Filled black symbols = shaded tiles, unfilled symbols = unshaded tiles. (b) Boxplots of the mean 

chlorophyll concentrations of the four replicate treatments; (P-addition, control, and two levels of P-

reduction). The Y axis is the same for both graphs, to show reduction in biomass due to shading. 

Fig. 5 Relationship between soluble reactive phosphorus (SRP) concentration and ash free dry mass 

after 10 day experiment (a) and (b) after data normalised to the mean AFDM observed in the control 

flume of each set of three flumes, at both light levels. Data points are mean AFDM values based on 

analysis of three tiles from each flume ± one standard error. Filled black symbols = shaded tiles, unfilled 

symbols = unshaded tiles. 

Fig. 6 Changes in periphyton biofilm community composition based on cell abundances, at different 

nutrient concentrations at the end of the 10 day experiment in (a) unshaded and (b) shaded conditions 

Fig. 7. Soluble reactive phosphorus concentrations at multiple points along the River Lambourn 2012-

2013. Locations of sampling points are shown in Figure 1. 

Supplementary data 

S1. Light intensities monitored within flumes in full light and under shading cloths, throughout the 10 

day experiment.   Light loggers were submerged at a depth of 4 cm. 



 

S2. Water temperatures in shaded and unshaded regions of two flumes, and River Lambourn river 

water during the course of the 10 day experiment.  

Table S1. Diatom species list with TDI scores. 

Table S2. Average nutrient concentrations from longitudinal surveys along the River Lambourn, 

conducted at monthly intervals between May 2012 and April 2013.  
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Fig. 1. Map of study site, showing location of Thames basin (a), location of River Lambourn within the 

Thames basin (b) and (c) River Lambourn catchment showing the location of the flume studies (green 

circle) and water quality monitoring sites (red circles). 

  



 

 

Fig. 2. Experimental design, showing treatments and soluble reactive phosphorus concentrations in 

each flume. Grey areas represent shaded areas of the flume. Black arrow indicate direction of flow of 

incoming river water. The inset photograph shows a set of 6 flumes deployed within the study reach, 

facing downstream.  The green shading cloth can be seen covering half of the tiles in the downstream 

sections of each flume 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Fig. 3. Soluble reactive phosphorus (SRP) concentrations monitored in each flume during the course of 

the experiment. Average SRP concentrations (in µg L-1) for each flume presented in the legend. 

 

 

 

 

 

 

 

 

 



 

 

 

 

Fig. 4. Relationship between soluble reactive phosphorus (SRP) concentration and chlorophyll a 

concentration at the end of the 10 day flume experiment at both light levels. (a) Data points are mean 

chlorophyll a values based on analysis of three tiles from each individual flume ± one standard error. 

Filled black symbols = shaded tiles, unfilled symbols = unshaded tiles. (b) Boxplots of the mean 

chlorophyll concentrations of the four replicate treatments; (P-addition, control, and two levels of P-

reduction). The Y axis is the same for both graphs, to show reduction in biomass due to shading. 

 

 



 

 

 

Fig. 5 Relationship between soluble reactive phosphorus (SRP) concentration and ash free dry mass 

after 10 day experiment (a) and (b) after data normalised to the mean AFDM observed in the control 

flume of each set of three flumes, at both light levels. Data points are mean AFDM values based on 

analysis of three tiles from each flume ± one standard error. Filled black symbols = shaded tiles, unfilled 

symbols = unshaded tiles. 

 

 

 



 

 

Fig. 6 Changes in periphyton biofilm community composition based on cell abundances, at different 

nutrient concentrations at the end of the 10 day experiment in (a) unshaded and (b) shaded conditions 

 

 

 

 

 

 

 

 



 

 

 

 

Fig. 7. Soluble reactive phosphorus concentrations at multiple points along the River Lambourn 2012-

2013. Locations of sampling points are shown in Figure 1. 

 

 

 

 

 

 

 

 

 



 

Table 1: Average soluble reactive phosphorus concentrations measured in each flume at each site over 

the course of the experiment, with average chlorophyll a, ash free dry mass, and autotrophic index of 

the biofilms after ten days. Trophic diatom index data were calculated for unshaded biofilms in selected 

flumes covering the full range of SRP concentrations. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Table S1. Diatom species list with TDI scores. 

Flume 10. P addition treatment. Average SRP = 161.7 µg L-1 

Genus Species Abundance (A) Percentage Sensitivity (S) A x S 

Achnanthes conspicua 3 1 4 12 

Achnanthes oblongella 4 1 2 8 

Achnanthidium biasolettiana 8 3 4 32 

Achnanthidium minutissimum 11 4 2 22 

Amphora libyca 4 1 4 16 

Campylodiscus  3 1   

Cocconeis pediculus 34 11 4 136 

Cocconeis placentula 10 3 3 30 

Cyclotella meneghiniana 25 8 4 100 

Cymbella affinis 6 2 1 6 

Cymbella lanceolata 6 2 2 12 

Diatoma vulgare 8 3 5 40 

Fragilaria bidens 3 1 3 9 

Fragilaria capucina 16 5 1 16 

Fragilaria 
capucina var. 

rumpens 
gracilis 

5 2 2 10 

Fragilaria vaucheriae 4 1 4 16 

Fragilariforma virescens 3 1 3 9 

Gomphonema truncatum 6 2 3 18 

Navicula lanceolata 14 5 4 56 

Navicula menisculus 4 1 5 20 

Navicula tripuncta 9 3 4 36 

Nitzschia amphibia 11 4 5 55 

Nitzschia filiformis 7 2 4 28 

Nitzschia fonticola 6 2 4 24 

Nitzschia linearis 16 5 4 64 

Nitzschia recta 11 4 4 44 

Planothidium  8 3 2 16 

Pseudostaurosira brevistriata 8 3 4 32 

Rhoicosphenia abbreviata 6 2 4 24 

Surirella angusta 4 1 3 12 

Synedra acus 5 2 3 15 

Synedra rumpens 5 2 2 10 

Synedra ulna 27 9 2 54 

Sum   300   982 

Weighted mean sensitivity 3.27    
Trophic diatom index 57    



Flume 11. Control. Average SRP = 54.2 µg L-1 

Genus Species Abundance (A) Percentage Sensitivity (S) A x S 

Achnanthes  10 3 3 30 

Achnanthidium minutissimum 3 1 2 6 

Amphora  5 2 4 20 

Cocconeis placentula 35 12 2 70 

Cyclotella meneghiniana 11 4 4 44 

Cymbella affinis 9 3 1 9 

Diatoma vulgare 4 1 5 20 

Fragilaria  10 3 2 20 

Fragilaria bidens 7 2 3 21 

Fragilaria capucina 32 11 1 32 

Gomphonema minutum 4 1 4 16 

Gomphonema olivaceum 4 1 3 12 

Gomphonema truncatum 4 1 3 12 

Navicula lanceolata 9 3 4 36 

Navicula tripuncta 4 1 4 16 

Nitzschia amphibia 21 7 5 105 

Nitzschia linearis 14 5 4 56 

Nitzschia palea 11 4 4 44 

Nitzschia recta 5 2 4 20 

Nitzschia sigmoidea 4 1 3 12 

Pinnularia  1 < 1 2 2 

Planothidium  13 4 2 26 

Reimeria sinuata 7 2 3 21 

Staurosirella pinnata 7 2 4 28 

Synedra acus 6 2 3 18 

Synedra parasitica 4 1 5 20 

Synedra ulna 56 19 2 112 

Sum   300   828 

Weighted mean sensitivity 2.76    
Trophic diatom index 44       

 

 

 

 

 

 

 

 



 

Flume 15. Fe addition. Average SRP = 23.6 µg L-1 

Genus Species Abundance (A) Percentage Sensitivity (S) A x S 

Achnanthes conspicua 3 1 4 12 

Achnanthes oblongella 10 3 2 20 

Achnanthidium biasolettiana 4 1 4 16 

Cocconeis pediculus 17 6 4 68 

Cocconeis placentula 16 5 3 48 

Cyclotella meneghiniana 7 2 4 28 

Cymbella affinis 6 2 1 6 

Diatoma vulgare 7 2 5 35 

Eunotia exigua 10 3 1 10 

Fragilaria capucina 46 15 1 46 

Gomphonema olivaceoides 31 10 2 62 

Navicula cari 5 2 4 20 

Navicula cryptonella 9 3 5 45 

Navicula lanceolata 16 5 4 64 

Nitzschia amphibia 4 1 5 20 

Nitzschia capitellata 3 1 5 15 

Nitzschia inconspicua 3 1 5 15 

Nitzschia linearis 7 2 4 28 

Nitzschia sublinearis 3 1 2 6 

Planothidium  7 2 2 14 

Rhoicosphenia abbreviata 5 2 4 20 

Reimeria sinuata 6 2 4 24 

Synedra rumpens 4 1 2 8 

Synedra ulna 71 24 2 142 

Sum  300   772 

Weighted mean sensitivity 2.57    
Trophic diatom index 39    

 

 

 

 

 

 

 

 

 

 



 

Flume 2. PN combined addition. Average SRP = 122.1 µg L-1, average NO3 – N = 7.92 mg L-1 

Genus Species Abundance (A) Percentage Sensitivity (S) A x S 

Achnanthes conspicua 5 2 4 20 

Amphipleura pellucida 1 < 1 1 1 

Amphora pediculus 4 1 4 16 

Cocconeis pediculus 30 10 4 120 

Cocconeis placentula 12 4 2 24 

Cyclotella meneghiniana 29 10 4 116 

Cymbella affinis 4 1 1 4 

Cymbella cistula 7 2 2 14 

Diatoma vulgare 6 2 5 30 

Encyonema silesiacum 3 1 3 9 

Fragilaria  12 4 4 48 

Fragilaria capucina 20 7 1 20 

Fragilaria exigua 6 2 4 24 

Gomphonema olivaceum 6 2 3 18 

Meridion circulare 3 1 1 3 

Navicula angustata 5 2 5 25 

Navicula cryptocephala 6 2 4 24 

Navicula lanceolata 6 2 4 24 

Navicula menisculus 6 2 5 30 

Nitzschia disputata 6 2 3 18 

Nitzschia filiformis 4 1 4 16 

Nitzschia fonticola 9 3 4 36 

Nitzschia linearis 26 9 4 104 

Nitzschia recta 11 4 4 44 

Nitzschia sigmoidea 6 2 3 18 

Planothidium lanceolata 7 2 4 28 

Reimeria sinuate 5 2 3 15 

Staurosirella elliptica 4 1 4 16 

Synedra acus 14 5 3 42 

Synedra ulna 37 12 2 74 

Sum  300   981 

Weighted mean sensitivity 3.27    
Trophic diatom index 57    

 

 

 

 

 

 



 

Flume 3. Control. Average SRP = 46.2 µg L-1 

Genus Species Abundance (A) Percentage Sensitivity (S) A x S 

Achnanthidium biasolettiana 4 1 2 8 

Achnanthes oblongella 4 1 2 8 

Amphipleura pellucida 2 1 1 2 

Cocconeis pediculus 31 10 4 124 

Cocconeis placentula 15 5 2 30 

Cyclotella meneghiniana 19 6 4 76 

Cymatopleura librile 1 < 1 4 4 

Cymbella  4 1 2 8 

Cymbella affinis 2 1 1 2 

Diatoma vulgare 5 2 5 25 

Ellerbeckia arenaria 2 1 5 10 

Fragilaria  3 1 4 12 

Fragilaria capucina 49 16 1 49 

Gomphonema olivaceum 7 2 3 21 

Gomphonema truncatum 4 1 4 16 

Navicula gregaria 2 1 3 6 

Navicula lanceolata 8 3 4 32 

Navicula protracta 4 1 4 16 

Navicula tripuncta 8 3 4 32 

Nitzschia affinis 5 2 4 20 

Nitzschia amphibia 5 2 5 25 

Nitzschia fonticola 6 2 4 24 

Nitzschia linearis 21 7 4 84 

Nitzschia recta 4 1 4 16 

Planothidium lanceolata 6 2 4 24 

Psammothidium subatomoides 3 1 2 6 

Staurosirella pinnata 3 1 4 12 

Surirella brebissonii 2 1 5 10 

Synedra acus 6 2 3 18 

Synedra ulna 65 22 2 130 

Sum   300   850 

Weighted mean sensitivity 2.83    
Trophic diatom index 46    

 

 

 

 

 

 



 

Flume 7. P addition. Average SRP = 147.6 µg L-1 

Genus Species Abundance (A) Percentage Sensitivity (S) A x S 

Achnanthidium biasolettiana 8 3 4 32 
Achnanthes conspicua 8 3 4 32 

Achnanthes oblongella 8 3 2 16 

Amphora Libyca 4 1 4 16 

Amphora pediculus 10 3 4 40 

Cocconeis pediculus 34 11 4 136 

Cocconeis placentula 7 2 2 14 

Cyclotella meneghiniana 28 9 4 112 

Cymbella affinis 8 3 1 8 

Cymbella lanceolata 11 4 2 22 

Diatoma vulgare 11 4 5 55 

Encyonema minutum 12 4 4 48 

Encyonema silesiacum 8 3 3 24 

Fragilaria  2 1 2 4 

Fragilaria capucina 20 7 1 20 

Fragilariforma virescens 3 1 3 9 

Navicula lanceolata 8 3 4 32 

Navicula menisculus 5 2 5 25 

Navicula tripuncta 8 3  0 

Nitzschia amphibia 8 3 5 40 

Nitzschia angustata 9 3 4 36 

Nitzschia capitellata 4 1 5 20 

Nitzschia disputata 5 2 3 15 

Nitzschia filiformis 7 2 4 28 

Nitzschia linearis 12 4 4 48 

Nitzschia recta 13 4 4 52 

Nitzschia sigmoidea 3 1 3 9 

Psammothidium didymium 3 1 5 15 

Stephanodiscus  2 1 5 10 

Synedra acus 5 2 3 15 

Synedra ulna 26 9 2 52 

Sum   300     985 

Weighted mean sensitivity 3.28    
Trophic diatom index 57       

 

 

 

 

 

 

 



 

Flume 9. Fe addition.  SRP = 22.7 µg L-1 

Genus Species Abundance (A) Percentage Sensitivity (S) A x S 

Achnanthidium biasolettiana 3 1 2 6 

Achnanthes conspicua 2 1 4 8 

Amphora pediculus 3 1 4 12 

Asterionella formosa 14 5 3 42 

Cocconeis pediculus 17 6 4 68 

Cocconeis placentula 8 3 2 16 

Cyclotella meneghiniana 3 1 4 12 

Cymbella cistula 3 1 2 6 

Diatoma vulgare 3 1 5 15 

Encyonema minutum 3 1 4 12 

Encyonema silesiacum 12 4 3 36 

Eunotia exigua 9 3 1 9 

Eunotia minor 5 2 1 5 

Fragilaria capucina 40 13 1 40 

Fragilariforma virescens 2 1 3 6 

Gomphonema olivaceoides 30 10 2 60 

Gomphonema truncatum 2 1 4 8 

Navicula cari 3 1 4 12 

Navicula lanceolata 14 5 4 56 

Nitzschia angustata 1 < 1 4 4 

Nitzschia capitellata 6 2 5 30 

Nitzschia linearis 7 2 4 28 

Nitzschia filiformis 2 1 4 8 

Planothidium lanceolata 8 3 4 32 

Reimeria sinuata 3 1 4 12 

Staurosira elliptica 4 1 4 16 

Stephanodiscus  1 < 1 5 5 

Surirella angustata 1 < 1 3 3 

Synedra rumpens 10 3 2 20 

Synedra ulna 81 27 2 162 

Sum   300   749 

Weighted mean sensitivity 2.50    
Trophic diatom index 37    

 

 

 

 

 



 

Table S2. Average nutrient concentrations from longitudinal surveys along the River Lambourn, conducted at 

monthly intervals between May 2012 and April 2013.  

 

 

 

 

S1. Light intensities monitored within flumes in full light and under shading cloths, throughout the 10 day 

experiment.   Light loggers were submerged at a depth of 4 cm. 



 

 

 

S2. Water temperatures in shaded and unshaded regions of two flumes, and River Lambourn river water during 

the course of the 10 day experiment.  
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