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Abstract 28 

Rising sea levels and increased storminess are expected to accelerate the erosion of soft-cliff 29 

coastlines, threatening coastal infrastructure and livelihoods. In order to develop predictive 30 

models of future coastal change, we need fundamentally to know how rapidly coasts have been 31 

eroding in the past, and to understand the driving mechanisms of coastal change. Direct 32 

observations of cliff retreat rarely extend beyond 150 years, during which humans have 33 

significantly modified the coastal system. Cliff retreat rates are unknown in prior centuries and 34 

millennia. In this study, we derived retreat rates of chalk cliffs on the south coast of Great Britain 35 

over millennial timescales by coupling high-precision cosmogenic radionuclide geochronology 36 

and rigorous numerical modelling. Measured 10Be concentrations on rocky coastal platforms 37 

were compared with simulations of coastal evolution using a Monte Carlo approach to determine 38 

the most likely history of cliff retreat. The 10Be concentrations are consistent with retreat rates of 39 

chalk cliffs that were relatively slow (2-6 cm yr-1) until a few hundred years ago. Historical 40 

observations reveal that retreat rates have subsequently accelerated by an order-of-magnitude 41 

(22-32 cm yr-1). We suggest that this acceleration is the result of reduced sediment supply that 42 

has allowed thinning of cliff-front beaches, exacerbated by both periods of increased regional 43 

storminess and anthropogenic modification of the coast.  44 

Significance Statement 45 

Cliffed, rocky shorelines erode when energetic waves impact on the coast. Coastal cliff retreat 46 

threatens coastal and clifftop assets and livelihoods. Understanding causes and rates of past 47 

erosion is vital to quantifying these risks, particularly when confronted with expected increases 48 

in storminess and sea-level rise, and given continued human occupation and engineering of 49 

coastal regions. Historical observations of cliff retreat span at most the last 150 years. We derived 50 

past cliff retreat rates over millennial timescales for chalk cliffs on the south coast of Great Britain 51 

by interpreting measured cosmogenic nuclides with numerical models. Our results provide 52 

evidence for accelerated erosion in recent centuries which we suggest is driven by reduced 53 

sediment supply and thinning of beaches in the face of environmental and anthropogenic changes.  54 

Introduction 55 

Rocky coasts are ǲerosional environments which form as a result of the landward retreat of 56 

bedrock at the shorelineǳ (1). They leave scant evidence of any previous state, making it difficult 57 

to interpret their history. Cliff retreat is driven by a combination of wave-driven cliff base erosion, 58 

subaerial weathering, and mass wasting processes, whose efficiencies are dependent on lithology 59 



 3 

and climate. Sediment generated through mass wasting processes such as abrasion, plucking, 60 

landslides and rock-falls tends to be rapidly reworked and transported away by waves and 61 

currents, particularly for softer rock types.  62 

The retreat of sea cliffs due to mass wasting processes threatens human livelihoods and both 63 

public and private clifftop infrastructure and development; quantitative estimates of the rate of 64 

cliff retreat are necessary to assess the associated risk. Rising sea levels and increased storminess 65 

may lead to accelerated coastal erosion rates in the future, potentially increasing hazard exposure 66 

(2–5). In order to accurately assess and predict coastal hazard in the face of future climate and 67 

land-use changes, it is necessary to understand the dynamics of cliff erosion over length and time 68 

scales relevant to the suite of processes that drive changes. In order to establish the context for 69 

modern change, we must quantify the natural variability and the long-term behavior of cliff 70 

retreat. Historical records are too short to allow us to do this: they typically span no longer than 71 

~150 years (6, 7), which can be less than the characteristic return period of significant coastal 72 

failures (8), and they coincide with the period over which humans have significantly modified the 73 

coast. It is therefore vital that we obtain longer, reliable records of coastal change to compare 74 

with historical observations in order to understand how coastal erosion may have changed 75 

through time, what the drivers are, and how coasts may continue to evolve into the future (5).  76 

Measurement of in-situ concentrations of cosmogenic radionuclides (CRNs) provide a versatile 77 

geochronometer for geomorphic studies, which facilitates dating of surface exposure and the 78 

deposition and burial of sediments, and estimation of weathering and erosion rates (9).  The 79 

technique has recently been applied to rocky coasts to estimate rates of cliff retreat (10, 11) and 80 

to understand the Quaternary history of exposure, inheritance and reoccupation of shore 81 

platforms (12). Here we report a long-term record of cliff retreat in the relatively soft chalk cliffs 82 

of East Sussex, UK, which have been observed to be eroding at rates of 10-80 cm yr-1 over the last 83 

150 years (7). Our long-term record was generated by coupling high-precision measurement of 84 

concentrations of 10Be on a coastal platform with a numerical and statistical model that inverts 85 

these data for rates of cliff retreat at millennial timescales. 86 

The model assumes that the coastal profile evolves through equilibrium retreat such that cliff 87 

height, platform gradient and beach width are constant through time (Fig. 1a). In nature, stable 88 

beaches play an important role in mediating cliff erosion by providing protective cover to 89 

dissipate wave energy; however, mobile beaches may provide abrasive tools to erode the cliff toe 90 

(13). Beach cover on a shore platform will also shield the platform, at least in part, from the 91 

incoming cosmic ray flux that produces 10Be (10). The model presented here assumes beach 92 

width and cover is constant through time, and of sufficient thickness to completely shield the 93 

underlying platform from the production of 10Be. As the cliff recedes, the rocky platform is 94 
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exposed to the production of 10Be. Exposure is mediated, however, by a number of variables, 95 

including the rate of cliff retreat and the cover of water (10–12). The local water depth is dictated 96 

by tides, relative sea-level history and vertical down-wearing of the platform. This generates a 97 

theoretical Ǯhumpedǯ pattern of 10Be concentration with distance offshore (10). We extend this 98 

model to account for beach cover, the intrinsic variability of 10Be production (14), the influence 99 

of cliff height (topographic shielding) (15), and use an established glacial isostatic adjustment 100 

model (16) to provide relative sea-level history for the past 7000 years covered by the 101 

simulations. We develop a rigorous statistical analysis to compare the resulting predictions with 102 

measured 10Be concentrations in order to generate quantitative estimates of cliff retreat histories 103 

(Fig. 1b) (see Materials and Methods section for a full description of the numerical and statistical 104 

model). 105 

We interrogate the erosion of the Cretaceous chalk cliffs in East Sussex, UK (Fig. 2), where cliff 106 

retreat has generated wide coastal platforms characterized by abundant bands of chemically inert 107 

and erosionally resistant flint (Fig. 2a and 2b). Both the lithology and structure of the chalk are 108 

relatively uniform along the examined section of the coast, although there are known subtle 109 

variations in jointing pattern, in the orientation of gentle fold axes, and the associated dip of sub-110 

horizontal bedding of the chalk and flint bands (17). Our modeling assumes that the geological 111 

properties of the cliff and platform have been constant as retreat has occurred. Waves approach 112 

predominantly from the open Atlantic Ocean into the relatively narrow English Channel (Fig. 2c).  113 

Previous studies suggest the wave directions have been consistent during the mid-late Holocene 114 

(18), although storminess may have varied (19, 20). The coastline is managed as part of the South 115 

Downs National Park and is designated a Site of Special Scientific Interest, a Marine Conservation 116 

Zone, an Area of Outstanding Natural Beauty and a Heritage Coast by the UK government. There 117 

has been little direct human intervention; the chalk cliffs therefore evolve without any attempts 118 

to control erosion (21).  119 

Chalk cliff heights range from 12 m near Cuckmere Haven up to 150 m at Beachy Head. The cliffs 120 

are near vertical along the length of the coastline and are connected to a low gradient rock 121 

platform extending several hundred meters offshore (Fig. 2d, 2e). At the junction between cliff 122 

and platform there are intermittent fringing beaches composed of flint pebbles and cobbles mixed 123 

with sand.  These are known to have been more continuous and of larger volume during the 19th 124 

century (7). Frequent cliff failures result in aprons of chalk debris that are subsequently reworked 125 

by wave action. A variety of cliff failure mechanisms have been observed, including vertical 126 

collapses, wedge collapses, rockfalls, rotational failures and toppling (17); all of these processes 127 

can result in several meters of clifftop retreat in a single event. Erosion of platforms appears to 128 
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occur through a combination of vertical downwearing due to frost action, mechanical and 129 

biological abrasion (22), and sub-horizontal step retreat (23).  130 

Mapped clifftop positions from 1873-2001 historical maps and aerial photographs reveal that cliff 131 

retreat rates vary between 0.05 and 0.8 m y-1 (Fig. 2c) (7). Extrapolating this range of historical 132 

retreat rates back in time, a ~350 m platform (widest observed sub-aerially exposed platform at 133 

the study site) can form in between 450 and 7000 years, and therefore certainly within the 134 

Holocene. The model and CRN data presented here allowed us to constrain more precisely the 135 

platform age and cliff retreat rates.  136 

Samples of in situ flint exposed on the rock platform were collected along transects roughly 137 

perpendicular to the cliff face at Hope Gap (HG; Fig. 2d) and Beachy Head (BH; Fig. 2e) at low tides 138 

during spring tides 24th-25th July 2013. Cliff heights at HG and BH are 15 m and 50 m, respectively. 139 

These transects were chosen to maximize platform width (minimizing platform gradient) in 140 

order to sample as far offshore as possible. We collected samples from local topographic highs on 141 

sections of the platform away from areas that exhibited significant roughness due to runneling or 142 

block removal (Fig 3). Distance to a fixed position on the cliff and the height of the cliff were 143 

measured with a laser range finder. In addition, we sampled rock from inside a sea cave near to 144 

HG to estimate inherited 10Be concentration prior to platform exposure. 145 

10Be sample preparation was carried out at the Scottish Universities Environmental Research 146 

Centre (SUERC) using isotope dilution chemistry. 10Be/9Be analyses by Accelerator Mass 147 

Spectrometry (AMS) were conducted at Lawrence Livermore National Laboratory (LLNL) to 148 

determine 10Be concentrations (see Methods section for full details of chemistry and AMS 149 

measurements). 150 

In order to interpret Holocene cliff retreat rate, we compared the measured distributions of 10Be 151 

concentrations across the coastal platform to predicted concentrations from numerical modeling 152 

of coastal retreat and 10Be accumulation.  We searched for the most likely cliff retreat rate 153 

histories by comparing observed 10Be concentrations to modeling results via maximum likelihood 154 

estimation (MLE) using Markov Chain Monte Carlo (MCMC) (24) ensembles (each with 200k 155 

iterations). We modeled three possible scenarios for the history of cliff retreat: (i) steady rate of 156 

cliff retreat for the entire Holocene; (ii) linear change in erosion rate throughout the Holocene 157 

(either acceleration or deceleration); (iii) step change in erosion rate at an unknown time 158 

(acceleration or deceleration). The presence of a beach was incorporated assuming that no 10Be 159 

production occurs beneath the beach, i.e. that the beach thickness is sufficient to diminish 10Be 160 

production entirely. Beach width was treated as a free parameter in the MCMC procedure, but is 161 

held constant throughout any single cliff retreat model run, as there is little information about 162 
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beach width change during the Holocene. Estimates and confidence intervals of cliff retreat rates 163 

and beach width for each scenario were obtained from the MCMC-derived posterior probability 164 

distributions as the median and 95% confidence limits (see Supplementary Materials). 165 

Results 166 

Broadly, concentrations of 10Be across the coastal transects show a ǲhumpedǳ profile (10) (Fig. 4a 167 

and 4b). One sample (HG-12) showed anomalously high 10Be concentration and we therefore 168 

treated it as an outlier. Despite taking care to sample only in-situ flint nodules, it is possible that 169 

this HG-12 sample was not in-situ and had been transported for a significant period at the surface, 170 

allowing high exposure to cosmic rays. We collected sample HG-15 from an inward-directed face 171 

8 m deep inside a cave in the 30 m high cliff, adjacent to the HG transect (Fig. 3a). This sample 172 

contained an appreciable concentration of 10Be, suggesting that any newly exposed platform may 173 

contain an inherited contribution of 10Be (up to 30-50% of the measured concentrations). This 174 

inherited contribution is likely due to production by the deep penetration of the energetic muons 175 

(25) into the landscape. The inherited concentration measured here is similar to concentrations 176 

measured on a similar platform at Mesnil-Val on the opposite side of the English Channel (10).  177 

This highlights that future CRN studies on coastal platforms should be careful to assess potential 178 

inheritance or risk significantly underestimating retreat rates. We modeled the production of 179 

muogenic 10Be as a function of depth and surface lowering rates (26) (see Materials and Methods) 180 

to compare with the measured inherited 10Be concentrations (Fig. 5). We plot the depth of the 181 

measured concentrations as the cliff height, and these concentrations are consistent with 182 

muogenic production for slow surface lowering rates in the range 0.01-0.04 mm yr-1.   183 

Prior to the MCMC inversion employed to determine most likely retreat scenario and rates, we 184 

corrected concentrations for inherited 10Be using the measured concentrations at both HG-15 and 185 

BH-13 for the HG and BH transects, respectively (shaded grey area labelled Ǯinheritanceǯ in Figs. 186 

4a and 4b). Note also that site HG-10 was sampled twice (HG-10a and HG-10b), i.e. from two 187 

different adjacent flint nodules on the rock platform. The concentrations returned from these two 188 

were within measurement error of one another (see Fig. 4a, Table S1). 189 

The most likely retreat scenarios were determined by MLE using MCMC ensembles, resulting in 190 

likelihood-weighted probability distributions (Fig. 6; see also supplementary materials). At both 191 

transects the best fit scenario included a recent step change in retreat rate, with a reduction from 192 

5.7 (+0.3/-0.3) to 1.3 (+1.1/-0.3) cm yr-1, 308 (+135/-100) years ago at Hope Gap (Fig. 6); and an 193 

increase in retreat rate from 2.6 (+0.2/-0.2) to 30.4 (+8.3/-106.) cm yr-1, 293 (+170/-80) years 194 

ago at Beachy Head (see also Table S2 and S3 in Supplementary Materials). However, both sites 195 
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have experienced a recent acceleration in erosion rates as evidenced by observed rates of ~32 196 

cm yr-1 and ~22 cm yr-1 since 1870 at Hope Gap and Beachy Head, respectively (7). 197 

Discussion 198 

To date, application of CRNs to quantify long-term coastal process rates have been few (10–12), 199 

but these techniques provide a new opportunity to integrate annual to decadal observations with 200 

long-term rates and antecedent coastal conditions. Observed rates of cliff retreat at Hope Gap 201 

(~32 cm yr-1) and Beachy Head (~22 cm yr-1) imply that the 250-350 m width of platform that 202 

we have sampled is young, forming in the last 1500 years. Such recent retreat and young platform 203 

age would result in negligible 10Be accumulation on the platform, which is inconsistent with the 204 

measured 10Be concentrations. Thus, the rates suggested by historical observations cannot be 205 

extrapolated back in time; instead, cliff retreat rates must have recently accelerated to their 206 

observed values.  207 

10Be concentrations at Hope Gap demonstrate that slower cliff retreat (~5.7 cm yr-1) persisted for 208 

much of the Holocene and do not match the historically observed higher rates (Fig. 4a). On the 209 

contrary, our modeling results suggest a recent slowdown to ~1.3 cm yr-1 over the last 300 years. 210 

This slowdown is principally allowing better fit to HG-13 and HG-14, the samples nearest the cliff. 211 

These sites may have elevated 10Be concentrations due to minimal platform downwear in this 212 

zone, sampled at ~ 1 m elevation above mean sea level in the upper intertidal zone (Fig. 3a). 213 

Nevertheless, the most landward platform sample (HG-14) is 50 m from the modern cliff; at 32 214 

cm yr-1 (the observed retreat rate since 1870s), this 50 m would have occurred in the last 156 215 

years. Hence, we may not have sampled close enough to the cliff to detect an acceleration in cliff 216 

retreat rates that must have occurred during this time. Future sampling at this site could focus on 217 

higher resolution sampling nearer the cliff to resolve the historical signal.  218 

Measured 10Be concentrations at Beachy Head indicate long-term average retreat rates that are 219 

much slower than historical rates for most of the Holocene. In contrast with nearshore samples 220 

at Hope Gap, low concentrations in the nearshore region of Beachy Head are consistent with 221 

recent, rapid retreat, as corroborated by historical observations. Low concentrations persist to 222 

145 m out from the modern cliff (Fig. 4b); at historical retreat rates of 22 cm yr-1 this cliff would 223 

have retreated 145 m in the last 650 years, implying acceleration must have occurred within this 224 

timeframe. Our modeling results suggest a significant increase in retreat rates in the last 200-500 225 

years. The large uncertainty estimates with respect to the timing of this change result from a 226 

tradeoff between the timing of acceleration in retreat rates and the increased retreat rate itself. 227 

More rapid retreat rates require the acceleration to have occurred more recently to expose the 228 

145 m of platform with consistently low 10Be concentrations.  229 
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At both sites, 10Be concentrations demonstrate that cliff retreat was slow for much of the 230 

Holocene, which contrasts with substantially higher historical rates of cliff retreat. Thus, we 231 

conclude that the coast of East Sussex, previously a relatively stable, slowly eroding coastline, has 232 

undergone a recent increase in rates of cliff retreat. 233 

We assume that equilibrium retreat is an appropriate model for the morphological evolution of 234 

the studied shorelines. Alternative morphological models include shore platforms that are 235 

widening and shallowing through time, which tends to cause deceleration in cliff retreat rates due 236 

to increased wave energy dissipation (27, 28). The platforms we have studied, however, are 237 

relatively steep (gradient 1:60 m; Fig. 3), suggesting that equilibrium retreat is appropriate over 238 

the millennial timescales studied. Moreover, our modeling concludes that platforms that were 239 

widening and shallowing through time will result in distributions of 10Be concentrations that are 240 

distinct from those predicted under the equilibrium retreat assumption (29); however, the 241 

distribution of concentrations measured in the shore platforms for this study are consistent with 242 

equilibrium retreat. Nevertheless, differences in lithological resistance or susceptibility perhaps 243 

related to jointing (17) between our two studied transects may account for the 45% differences 244 

in retreat rates, with Hope Gap recording more rapid retreat over both long timescales as 245 

revealed by 10Be concentrations, and historical timescales, compared to the equivalent time 246 

periods at Beachy Head.  247 

In addition, our modeling assumes that beach width has not changed during the Holocene. If 248 

beach widths had in fact been wider and thicker in the mid-late Holocene, less 10Be would have 249 

accumulated on the coastal platform because the platform would have been shielded by 250 

sedimentary cover (11). The influence of additional cover would require even slower long-term 251 

retreat rates to match the observed 10Be concentrations, and would increase the difference 252 

between long-term and historic cliff retreat rates. Beaches play a dual role in affecting cliff 253 

erosion: they provide the abrasive tools to achieve erosion, but also provide protective cover to 254 

dissipate wave energy before it reaches the cliff toe (13, 30). Our modeling demonstrates that the 255 

presence or absence, and variability of beach cover exerts only minor control on the distribution 256 

of 10Be across the shore platform (29). If beaches were wider and thicker in the past, then 257 

measured 10Be concentrations would be lower than if no beaches were present; lower 258 

concentrations would suggest faster apparent erosion rates than had actually occurred. In this 259 

sense, our estimates of long-term cliff retreat rates may be maxima. 260 

Acceleration of chalk cliff erosion is likely related to an increase in wave energy delivered to the 261 

cliff face, and we offer two potential explanations for this increase. The first is related to climate 262 

change during the Little Ice Age (LIA, ~600-150 years BP). A growing body of proxy-based 263 

evidence supports increased storminess in the north Atlantic c. 600-250 years BP (19)  associated 264 
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with the negative phase of the North Atlantic Oscillation that resulted in a drier, colder climate in 265 

northern Europe (20). General circulation climate model simulations have shown that during the 266 

LIA, the paths and the intensity of cyclones, and associated extremes of precipitation and wind 267 

speed, may have shifted southward below 50°N. Such conditions may have increased the delivery 268 

of wave energy to the coast due to both the number of energetic events and their severity. The 269 

second explanation is related to the availability and role of beach sediment. Sediment protects 270 

the platform against vertical downwearing and serves to dissipate wave energy otherwise 271 

available to drive cliff erosion.  Beaches within the study area are known to have been thinning 272 

during the Holocene (7), in part supplying the wider beaches to the east (down-drift) (31–33). 273 

Sediment supply to the beaches may also be related to human intervention at the coast. While 274 

there are no active interventions protecting the studied coastline, engineering activities since the 275 

late-19th century, designed to protect several km of the coastline 2-15 km to the west (updrift), 276 

have reduced the supply of littoral sediment along the studied coastline; beach widths have been 277 

observed to be declining or been lost along the length East Sussex coastline (7). Numerical 278 

modeling has demonstrated that shoreline interventions can result in significant non-local impact 279 

many km down-drift from the protected sites (3, 34).  280 

Our methods do not allow us to attribute the recent acceleration in cliff retreat rates in East 281 

Sussex to anthropogenic activity, to a response to progressive thinning of beach material or to 282 

increased storminess during the LIA. However, these results would suggest that beaches play an 283 

important role in regulating coastal erosion along the East Sussex coast of southern Great Britain.  284 

The dynamics and fate of beaches on shore platforms and how they link to long-term coastal 285 

evolution remains an outstanding research area within coastal geomorphology (35).  286 

Conclusions 287 

Efforts to forecast future coastal change at rocky coasts in the face of rising sea level and increased 288 

storminess require detailed understanding of past rates of cliff retreat in response to 289 

environmental conditions over long timescales. Cosmogenic radionuclide samples from coastal 290 

platforms that are a common coastal landform globally offer a promising approach to obtaining 291 

such records (35). Here, cosmogenic 10Be concentrations from two shore platforms on the coast 292 

of East Sussex in southern Great Britain reveal that retreat rates between 2-6 cm yr-1 prevailed 293 

for most of the Holocene, and contrast dramatically with historical records of rapid retreat at 22-294 

32 cm yr-1 at the same sites during the last 150 years (7). Our measurements demonstrate that 295 

acquisition of long-term records of coastal change can reveal marked changes in coastal dynamics 296 

in the relatively recent past. At our study site, these changes likely reflect beach dynamics that 297 

has led to thinning of beach sediment, which in turn has increased cliff retreat rates. 298 
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Materials and Methods 299 

Sample preparation and analysis 300 

We processed samples at SUERC according to modified protocols developed for this study. We 301 

crushed and sieved flint nodule samples to 0.25-0.50 mm size fraction and performed magnetic 302 

separation to remove magnetically susceptible particles. 303 

To purify flint (amorphous SiO2 with the same chemical formula as quartz, but a different 304 

structure) and remove atmospherically derived 10Be adhered to the outer parts of the grains (36), 305 

each sample was washed and leached in sub-boiling 2% nitric acid. Samples were dried and 306 

etched in 35% hexaflorosilicic acid, followed by repeated 16% hydrofluoric acid etches. The 307 

samples were then dried and aliquots assayed to determine their elemental abundances by ICP-308 

OES. Samples contained high levels of impurities, including Al, Ca, Na, K, Mg, Ti, and/or Fe, and 309 

were additionally etched; upon re-assay, elemental concentrations remained constant, and we 310 

therefore judged that observed concentrations were inherent to the flint material.  311 

Samples were transferred to a cleanroom, rinsed in 18.ʹ MΩ water and dried. Samples were then 312 

massed (~50-60 g of flint) and ~200 µg low-background beryl-derived Be carrier was added by 313 

mass. The samples were dissolved in sub-boiling hydrofluoric acid. The hydrofluoric acid was 314 

evaporated and the resulting digestion cakes were fumed to dryness at least 3 times to convert 315 

to chloride form, then taken up in hydrochloric acid (37). Insoluble residues were removed by 316 

centrifugation. In order to reduce the high concentrations of cations and anions in the solution, 317 

samples were first precipitated at pH8 as hydroxides (38). Post-precipitation, ~30 mg of anions 318 

and cations were still present in each sample. Because the vast majority of the ions in solution 319 

were cations, the samples were passed though anion exchange columns using 2 ml of AG 1-X8 320 

(200-400 dry mesh) resin to remove iron, using standard protocols. After conversion to sulfate 321 

form with sulfuric acid, samples were passed through large (20 ml) cation exchange AG 50W-X8 322 

(20-50 dry mesh size) resin columns to remove impurities (39), including Ti, Al, and B, and to 323 

isolate Be. Elution curves for these large columns with high cation loads were developed prior to 324 

sample processing and milliequivalent (meq) calculations were made for each sample based on 325 

post-precipitation ICP-OES data to ensure that cation loads were at or below ~50% of the 326 

available column capacity. After cation elution, yield test samples were collected from the Be 327 

fractions to determine their purity and to ensure that sufficient material was available for high 328 

quality isotopic analyses; Be fractions from large columns were ~75% (~150 µg) with a few 100 329 

µg of each of Al, Mg, and K. Nearly all of the missing Be was lost during the first pH8 hydroxide 330 

precipitation, rather than during subsequent ion exchange chromatography. To further purify the 331 

Be fractions, these solutions were dried down, dissolved in sulfuric acid, and passed through an 332 
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additional 2 ml cation column using standard procedures (as above, but using an elution curve 333 

for the smaller columns). After the second cation column, Be fractions were free of impurities and 334 

no additional Be was lost during the second elution. 335 The final Be fractions were precipitated at pH8 as hydroxides, centrifuged, washed with 18.ʹ MΩ 336 

water, centrifuged, decanted, and dried. The dried material was ignited in a furnace to convert to 337 

Be oxide, mixed with Nb in a 1:1 molar ratio and packed into stainless steel cathodes for isotopic 338 

analysis at LLNL by AMS (40). 339 

At the LLNL AMS facility, each cathode was measured at least three times. Initial sample 9Be3+ 340 

beam currents averaged ~18 uA, ~75% of standard cathodes. The data were normalized to the 341 

07KNSTD3110 standard with a reported 10Be/9Be ratio of 2.85×10-12, which is consistent with the 342 

revised 10Be decay constant (41). Secondary standards produced by K. Nishiizumi were run as 343 

unknowns to confirm the linearity of the isotopic measurements. 344 

Two full-process blanks (Be carrier only) were processed with each batch of samples. The average 345 

measured blank isotopic ratio for each batch was subtracted from the measured isotopic ratios 346 

of the samples in that batch with uncertainties (i.e. standard deviation samples and blanks) 347 

propagated in quadrature (see Table S1). The 10Be/9Be blank ratios for 2 blanks run with the 348 

samples in one batch (HG samples) averaged 2.1±0.07×10-15, whereas 2 blanks in the second 349 

batch (BH samples) averaged 6.3±2.0×10-15, both representing a relatively small portion (~3-350 

11% and ~11-35%, respectively) of the measured sample isotopic ratios of samples in each batch. 351 

Modeling 10Be Production 352 

The concentration of 10Be in rock, N (atoms g-1), at depth below the rock platform surface, z, (m) 353 

evolves through time, t, according to (29): 354 

NePSSS
dt

dN
izz

i

iWGT   )/( *

 355 

Here the first term on the right hand side reflects production of radionuclides, and the second 356 

term their decay.  The subscript i refers to different production pathways; for 10Be this is 357 

dominated by spallation (26), with a minor contribution from muogenic production. Production 358 

due to muons is modelled with a single exponential term (25). ST is a topographic shielding scaling 359 

factor that adjusts the incoming cosmic ray flux depending on the proportion of the sky blocked 360 

by the presence of the cliff, and is modelled following established procedures (15). ST varies with 361 

distance from the cliff, and the model assumes a vertical cliff of constant height in space and time. 362 

SG is a scaling factor reflecting temporal variation in incoming cosmic ray flux due to solar activity 363 

and deviation in the strength of Earthǯs magnetic field, calculated following Lifton et al. (14). SW 364 
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is a scaling factor reflecting shielding of the platform due to water cover, averaged over a single 365 

tidal cycle, calculated following Regard et al. (10). We used a glacio-isostatic adjustment model 366 

for the UK to predict relative sea level change at the field sites (16). Pi is the surface production 367 

rate specific to the production pathway. For spallation, the value of P = 4.008 at g-1 yr-1 was 368 

obtained for the field site from the Lifton et al. (14) scaling scheme. For muogenic production a 369 

single median value of P = 0.028 at g-1 yr-1 was used to integrate both fast muon interactions and 370 

negative muon capture reactions (25). ��∗ =  �� ��⁄  is a production pathway-specific attenuation 371 

length scale, where ρr is rock density (1800 kg/m3 used here for chalk) (17) and Λi is the 372 

attenuation factor. For spallation, Λ = 1600 kg m-2 was used, and Λ = 42000 kg m-2 was used for 373 

muogenic production. λ = 4.99 × 10-7 is the 10Be radioactive decay constant (42, 43).  374 

Prediction of the expected 10Be concentration inherited (Fig. 5) due to deep penetration of 375 

energetic muons Nμ (atoms g-1), where the subscript μ refers to the muogenic production 376 

pathway, were calculated assuming steady-state surface lowering rate ε (mm yr-1)  (26) according 377 

to: 378 
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Determining Retreat History 380 

In order to find the retreat rate histories that best replicate the observed 10Be concentrations, we 381 

performed a Markov Chain Monte Carlo (MCMC) analysis (24) to produce posterior probability 382 

density functions for cliff retreat rates (similar to Hurst et al. (44)). A Metropolis-Hastings 383 

algorithm was used to vary parameters (45). We calculate and maximize the likelihood L for a 384 

given set of parameters: 385 
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where n is the number of observations of 10Be concentration N, the superscripts meas and mod refer 387 

to corresponding measured and modelled 10Be concentrations, and σ is the confidence range of 388 

measured 10Be concentrations.  389 

Three scenarios of cliff retreat were run for comparison with measured 10Be concentrations: i) A 390 

single retreat rate ε1 applied through the entire Holocene; ii) A step change in retreat rate from ε1 391 

to ε2 at time t; iii) A gradual change in retreat rate from ε1 to ε2 throughout the Holocene (7 ka BP 392 

to present). A fixed beach width W was assumed throughout each model run. After each run in 393 

the MCMC, new values for ε1, ε2, t and W were randomly selected from a Gaussian probability 394 
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distribution centered on the previous accepted values, with standard deviations tailored to a 395 

target acceptance rate of 23% (46). The likelihood of each iteration is compared to that of the last 396 

accepted parameter set such that if the ratio of the current to the last accepted iteration >1 then 397 

the new parameter set is accepted. If the ratio <1, then the new parameters may be accepted with 398 

a probability of acceptance equal to the likelihood ratio (to allow the chain to fully explore the 399 

parameter space). The ǲburn inǳ period was less than 1000 iterations in all cases, and each MCMC 400 

was run for 200k iterations (45). The posterior probability distribution of each parameter was 401 

generated as a likelihood-weighted frequency distribution from the Markov Chain iterations. 402 

Parameter values and confidence intervals were then determined as the median and 95% limits 403 

on the probability distribution (see supplementary materials for plots). 404 
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Figure Legends 522 

Figure 1: Setup for modeling the accumulation of 10Be on a coastal platform. (a) The model 523 

assumes equilibrium retreat such that as the coast evolves, the cross section morphology remains 524 

steady while translating shoreward according to the prescribed retreat rate. Beach width was 525 

held constant during each model run, and the elevation of the coastal profile tracks relative sea 526 

level change. (b) Schematic illustration of a rocky coast and platform showing the expected 527 ǲhumpedǳ relationship between distance from the cliff and 10Be concentration. 528 

Figure 2: Location and observed historical cliff retreat rates. (a) Photograph of platform and 529 

Seven Sisters chalk cliffs. (b) Location map showing study area in Cretaceous Chalk in East Sussex, 530 

United Kingdom. (c) Shaded relief map derived from stitched LiDAR topography and multibeam 531 

bathymetry (data courtesy of the Channel Coast Observatory (CCO); www.channelcoast.org). 532 

Mapped 1870s and 2001 cliff lines and associated observed cliff retreat rates from are plotted 533 

along the coast after Dornbusch et al. (7). The box plot shows the 5th, 25th, 50th, 75th and 95th 534 

percentile of these historic retreat rates above the legend. The wave rose diagram shows wave 535 

conditions during 2014 with dominant wave approach from SW (data courtesy of CCO). (d) and 536 

(e) Shaded relief draped with 2008 aerial photographs (data courtesy of CCO) for field sites at (d) 537 

Hope Gap and (e) Beachy Head, respectively. Black triangles show the locations of flint samples 538 

collected for CRN analysis for use in this study. Average 20th century retreat rates are 0.32 and 539 

0.22 m y-1, respectively. 540 

Figure 3: Swath profiles of platform morphology from stitched LiDAR and multibeam elevation 541 

data (data courtesy of the Channel Coast Observatory; www.channelcoast.org) and sample 542 

locations (black triangles) for (a) Hope Gap and (b) Beachy Head transects. Black lines are mean 543 

elevation within a 10 m wide swath, grey shaded region shows the range of elevations within the 544 

swath.  545 

Figure 4: Measured 10Be concentrations and 1σ uncertainties (open circles and whiskers 546 

respectively), and most likely retreat scenarios (colored lines and shaded regions showing 547 

median and 95% confidence interval) for (a) Hope Gap and (b) Beachy Head transects. 548 

Concentrations of 10Be generally increase and then decrease offshore. The sample highlighted in 549 

red on the Hope Gap transect (a) was treated as an outlier (see Discussion in text). The minimum 550 

measured concentration in each transect was assumed to represent the inherited concentration 551 

of 10Be (see text for further discussion). The most likely retreat scenarios in both cases were a 552 

http://www.channelcoast.org/
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recent step change in retreat rate, with (a) a reduction from 5.7 (+0.3/-0.3) to 1.3 (+1.1/-0.3) cm 553 

yr-1, 308 (+135/-100) years ago at Hope Gap; and (b) an increase in retreat rate from 2.6 (+0.2/-554 

0.2) to 30.4 (+8.3/-106.) cm yr-1, 293 (+170/-80) years ago at Beachy Head. 555 

Figure 5: Steady-state 10Be concentrations as a function of depth generated by deep-penetrating 556 

muons for surface lowering rates of up to 0.1 mm yr-1. Red symbols show measured inherited 557 

concentrations with depth taken as the local cliff height for each site. Measured inheritance is 558 

consistent with surface lowering rates of 0.01-0.04 mm yr-1. 559 

Figure 6: Example probability density (top row) and cumulative probability (bottom row) of the 560 

two retreat rates, the timing of change, and beach width for the step-change scenario MCMC 561 

ensemble at Hope Gap. Values and uncertainties were taken as the median (solid line) and 95% 562 

confidence range (dashed lines and grey shading) from the cumulative density plots on the 563 

bottom row. 564 
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Figure 2: Location and observed historical cliff retreat rates. (a) Photograph of platform and 

Seven Sisters chalk cliffs. (b) Location map showing study area in Cretaceous Chalk in East Sussex, 

United Kingdom. (c) Shaded relief map derived from stitched LiDAR topography and multibeam 

bathymetry (data courtesy of the Channel Coast Observatory (CCO); www.channelcoast.org). 

Mapped 1870s and 2001 cliff lines and associated observed cliff retreat rates from are plotted 

along the coast after Dornbusch et al. (7). The box plot shows the 5th, 25th, 50th, 75th and 95th 

percentile of these historic retreat rates above the legend. The wave rose diagram shows wave 

conditions during 2014 with dominant wave approach from SW (data courtesy of CCO). (d) and 

(e) Shaded relief draped with 2008 aerial photographs (data courtesy of CCO) for field sites at (d) 

Hope Gap and (e) Beachy Head, respectively. Black triangles show the locations of flint samples 

collected for CRN analysis for use in this study. Average 20th century retreat rates are 0.32 and 

0.22 m y-1, respectively. 
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Figure 3: Swath profiles of platform morphology from stitched LiDAR and multibeam elevation 

data (data courtesy of the Channel Coast Observatory; www.channelcoast.org) and sample 

locations (black triangles) for (a) Hope Gap and (b) Beachy Head transects. Black lines are mean 

elevation within a 10 m wide swath, grey shaded region shows the range of elevations within the 

swath.  
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Figure 4: Measured 10Be concentrations and 1σ uncertainties (open circles and whiskers 
respectively), and most likely retreat scenarios (colored lines and shaded regions showing 

median and 95% confidence interval) for (a) Hope Gap and (b) Beachy Head transects. 

Concentrations of 10Be generally increase and then decrease offshore. The sample highlighted in 

red on the Hope Gap transect (a) was treated as an outlier (see Discussion in text). The minimum 

measured concentration in each transect was assumed to represent the inherited concentration 

of 10Be (see text for further discussion). The most likely retreat scenarios in both cases were a 

recent step change in retreat rate, with (a) a reduction from 5.7 (+0.3/-0.3) to 1.3 (+1.1/-0.3) cm 

yr-1, 308 (+135/-100) years ago at Hope Gap; and (b) an increase in retreat rate from 2.6 (+0.2/-

0.2) to 30.4 (+8.3/-106.) cm yr-1, 293 (+170/-80) years ago at Beachy Head. 
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Figure 5: Steady-state 10Be concentrations as a function of depth generated by deep-penetrating 

muons for surface lowering rates of up to 0.1 mm yr-1. Red symbols show measured inherited 

concentrations with depth taken as the local cliff height for each site. Measured inheritance is 

consistent with surface lowering rates of 0.01-0.04 mm yr-1. 
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Figure 6: Example probability density (top row) and cumulative probability (bottom row) of the 

two retreat rates, the timing of change, and beach width for the step-change scenario MCMC 

ensemble at Hope Gap. Values and uncertainties were taken as the median (solid line) and 95% 

confidence range (dashed lines and grey shading) from the cumulative density plots on the 

bottom row. 

 



Supplementary Materials 

Table S1 contains data on measured 10Be concentrations conducted for this study. Figures S1-

S12 show the MCMC chains of accepted parameter combinations for each retreat scenario, for 

each transect, and likelihood-weighted histograms for each parameter from which parameter 

estimates and uncertainties were determined (Table S2-S3). At Hope Gap, similar likelihoods 

were obtained for the single retreat rate, linear change in retreat rate, and a step change in 

retreat rate scenarios. 

At Beachy Head, a step change in retreat rate performs significantly better than either a 

constant retreat rate or gradual change in retreat rate. There is a trade-off between ε2 and t 

such that a more recent change time coupled to a higher retreat rate produces similar profiles 

to an older change time and lower recent retreat rate (Fig. S13). Thus, we are unable to 

constrain whether a more rapid retreat rate initiated more recently, or a slightly slower rate 

further back in time. As a result of this, there appear to be multiple attractor locations in the 

parameter space depending on ε2 and t. 

  



Table S1: 10Be sample and concentration data. 
 

Sample ID 

Location (British 

Nat. Grid) Distance 

from 

Cliff (m) 

Elevation 

above 

ordinance 

datum  (m) 

Mass of 

quartz 

dissolved (g) 

Mass of 

carrier 

added (g)** 

Measured 
10Be/9Be 

ratio (× 10-

14) 

± 1σ AMS 
analytical 

uncertainty 
10Be/9Be ratio (× 

10-14) 

Background-

corrected 

Concentration 10Be 

(× 103 atoms g-1)*** 

± 1σ AMS 
Analytical 

uncertainty 

(× 103 atoms g-1) 

Inheritance- 

corrected 10Be** 

(× 103 atoms g-1) 

±**** 

(× 103 

atoms g-1) Easting 

(m) 

Northing 

(m) 

             

HG-03 551032 97178 216.5 -1.54 65.737 0.973 4.825 0.139 9.31 0.28 5.11 0.39 

HG-05 551079 97093 313.5 -2.98 65.862 0.972 4.362 0.124 8.35 0.25 4.15 0.37 

HG-06 551025 97133 258.7 -1.24 59.316 0.973 4.881 0.185 10.44 0.42 6.25 0.49 

HG-07 551021 97165 226.8 -2.01 64.127 0.974 4.363 0.130 8.59 0.27 4.39 0.38 

HG-08 551017 97216 177.8 -0.52 57.464 0.974 4.539 0.115 9.99 0.27 5.80 0.38 

HG-09 551004 97198 190.1 -0.64 68.858 0.971 5.995 0.190 11.12 0.37 6.92 0.45 

HG-10a 551014 97248 146.6 -0.11 61.812 0.972 4.341 0.176 8.85 0.38 4.65 0.46 

HG-10b 551012 97249 144.9 -0.11 56.102 0.972 3.909 0.148 8.73 0.35 4.53 0.44 

HG-11 551009 97283 111.3 0.17 53.048 0.971 2.989 0.095 6.93 0.24 2.73 0.36 

HG-12 551003 97309 84.6 0.42 50.808 0.971 7.578 0.166 19.19 0.43 14.99 0.51 

HG-13 550998 97333 61.0 0.24 56.553 0.970 2.658 0.096 5.71 0.23 1.52 0.35 

HG-14 550992 97342 49.8 0.41 50.353 0.971 2.120 0.088 5.01 0.24 0.82 0.36 

HG-15* 550906 97384 -5.0 5.0 53.321 0.970 1.905 0.106 4.20 0.27 0 0.38 

CFG1405A - - - - - - 0.207 0.130 - - - - 

CFG1405B - - - - - - 0.217 0.106 - - - - 

             

BH-05 555919 95501 79.3 -0.50 52.287 0.975 1.901 0.097 3.26 0.57 0.36 0.78 

BH-13* 555939 95516 57.8 0.37 61.283 0.973 1.954 0.136 2.87 0.53 0 0.75 

BH-14 555913 95477 103.7 -0.53 54.364 0.976 2.015 0.107 3.40 0.56 0.52 0.77 

BH-15 555892 95463 124.3 -0.94 41.660 0.974 1.811 0.075 3.77 0.69 0.90 0.87 

BH-16 555893 95441 144.8 -1.21 41.172 0.974 2.004 0.114 4.44 0.75 1.57 0.92 

BH-17 555877 95427 162.9 -1.81 49.262 0.970 5.828 0.211 13.97 0.78 11.09 0.95 

BH-18 555870 95413 178.6 -1.58 45.440 0.972 3.848 0.115 9.39 0.68 6.52 0.86 

BH-19 555854 95402 195.4 -2.35 42.785 0.972 2.644 0.121 6.24 0.73 3.37 0.90 

BH-20 555842 95388 212.7 -2.29 52.843 0.972 5.617 0.210 12.51 0.73 9.64 0.90 

BH-21 555814 95382 227.9 -2.77 52.663 0.971 2.968 0.097 5.88 0.57 3.01 0.77 

BH-22 555805 95366 246.7 -2.90 50.237 0.972 3.013 0.180 6.29 0.72 3.42 0.89 

BH-23 555813 95349 259.4 -3.55 52.866 0.972 3.014 0.125 5.98 0.60 3.11 0.80 

CFG1410A - - - - - - 0.770 0.059 - - - - 

CFG1410B - - - - - - 0.485 0.074 - - - - 

             

 

* Normalized to the 07KNSTD3110 standard with an assumed ratio of 2.85 × 10-12. Values corrected for chemistry background using average and standard 

deviation of two full chemistry blanks processed in each batch with errors in sample and blank propagated in quadrature. 
** Carrier concentration 204 µg Be g-1. 
*** All HG samples were corrected for inheritance with HG-15, which was a fully shielded sample taken from a cave in the cliff. BH samples were corrected 

for inheritance with BH-05, assuming little accumulation of CRNs. 
**** Error propagated as �௖ = √�௔ଶ + �௕ଶ where σa is the error of the measured concentration, σb is the error of the measured concentration used for the 

correction (HG-15/BH-05). 



Table S2: Results of Monte Carlo simulations for Hope Gap transect 

Parameters 

Retreat Rate Scenario 

1. Constant 2. Step Change 3. Linear Change 

Retreat Rate 1 (cm yr-1) ͷ.Ͷ  −଴.ଷ+଴.ଷ ͷ.͹  −଴.ଷ+଴.ଷ ͳ͹.ͺ  −ଶ.଻+ଶ.଼ 

Retreat Rate 2 (cm yr-1) - ͳ.͵  −଴.ଷ+ଵ.ଵ ͵.͹  −ଵ.଴+ଵ.଴ 

Change Time (yr BP) - ͵Ͳͺ  −ଵ଴଴+ଵଷହ - 

Beach Width (m) Ͷ͵.͵ −ଵ.଴+ଶ.ଵ Ͷ͹.Ͳ −ଵ.଴+ଵ.଺ ͶͲ.ͺ −ହ.଺+ସ.଼ −log ሺ�ሻ 41.1 33.7 40.5 

 

Table S3: Results of Monte Carlo simulations for Beachy Head transect. 

Parameters 

Retreat Rate Scenario 

1. Constant 2. Step Change 3. Linear Change 

Retreat Rate 1 (cm yr-1) Ͷ.͹  −଴.ସ+଴.ସ ʹ.͸  −଴.ଶ+଴.ଶ ͳ.ͺ  −଴.଼+ଵ.ଵ 

Retreat Rate 2 (cm yr-1) - ͵Ͳ.Ͷ  −ଵ଴.଺+଼.ଷ  ͸.͵  −଴.଼+଴.଻ 

Change Time (yr BP) - ʹͻ͵ −଼଴+ଵ଻଴ - 

Beach Width (m) Ͷʹ.͹  −ଷ.଺+ଷ.଴ ͳ͹.͹ −ହ.ହ+ଷ.଻ ͵ͷ.ͷ  −ସ.ସ+ଷ.଺ −log ሺ�ሻ 121.7 83.7 116.9 

 

 

 



 

Figure S1: MCMC results for accepted parameters for Hope Gap using a single retreat rate. There were two 

attractor states in the parameter space with a switch to the more likely state occurring after ~125k iterations in 

the chain. Inset plots show burn in period. 

 

Figure S2: Likelihood weighted histograms giving parameter estimates for Hope Gap from MCMC inversion for 

single retreat rate scenario. Most likely values taken as the median with 95% confidence intervals. Note these plots 

include all data from Figure S1. 



 
Figure S3: MCMC results for accepted parameters for Beachy Head using a single retreat rate. Inset plots show 

burn in period. 

 

Figure S4: Likelihood weighted histograms giving parameter estimates for Beachy Head from MCMC inversion 

for single retreat rate scenario. Most likely values taken as the median with 95% confidence intervals. Note these 

plots include all data from Figure S3. 



 

Figure S5: MCMC results for accepted parameters for Hope Gap using a linearly changing retreat rate. Inset plots 

show burn in period. 

  



 

 

Figure S6: Likelihood weighted histograms giving parameter estimates for Hope Gap from MCMC inversion for 

linearly changing retreat rate scenario. Most likely values taken as the median with 95% confidence intervals. Note 

these plots include all data from Figure S5.  



 

 

Figure S7: MCMC results for accepted parameters for Beachy Head using a linearly changing retreat rate. Inset 

plots show burn in period. 



 

Figure S8: Likelihood weighted histograms giving parameter estimates for Hope Gap from MCMC inversion for 

linearly changing retreat rate scenario. Most likely values taken as the median with 95% confidence intervals. Note 

these plots include all data from Figure S7. 

  



 

 

Figure S9: MCMC results for accepted parameters for Hope Gap using a step change retreat rate scenario. Inset 

plots show burn in period. 

  



 

 

Figure S10: Likelihood weighted histograms giving parameter estimates for Hope Gap from MCMC inversion for a 

step change retreat rate scenario. Most likely values taken as the median with 95% confidence intervals. Note 

these plots include all data from Figure S9. 

  



 

 

Figure 11: MCMC results for accepted parameters for Beachy Head using a step change retreat rate scenario. Inset 

plots show burn in period. 

  



 

 

Figure S12: Likelihood weighted histograms giving parameter estimates for Beachy Head from MCMC inversion 

for a step change retreat rate scenario. Most likely values taken as the median with 95% confidence intervals. Note 

these plots include all data from Figure S11. 

 



 

Figure S13: Plot of retreat rate 2 versus the timing of the change between retreat rate 1 and retreat rate 2. Negative 

correlation reflects trade off between the retreat rate 2 and change time such that a faster recent retreat rate does 

not need to have occurred as long ago to create the observed distribution of 10Be concentrations. 

 


