
Ambrose, S. and Hargreaves, David and Lowndes, Ian 
(2016) Numerical modeling of oscillating Taylor bubbles. 
Engineering Applications of Computational Fluid 
Mechanics, 10 (1). pp. 580-600. ISSN 1997-003X 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/37615/1/Numerical%20modeling%20of%20oscillating
%20Taylor%20bubbles.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the Creative Commons Attribution licence and may be 
reused according to the conditions of the licence.  For more details see: 
http://creativecommons.org/licenses/by/2.5/

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk


Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tcfm20

Download by: [University of Nottingham] Date: 17 October 2016, At: 06:13

Engineering Applications of Computational Fluid
Mechanics

ISSN: 1994-2060 (Print) 1997-003X (Online) Journal homepage: http://www.tandfonline.com/loi/tcfm20

Numerical modeling of oscillating Taylor bubbles

S. Ambrose, D. M. Hargreaves & I. S. Lowndes

To cite this article: S. Ambrose, D. M. Hargreaves & I. S. Lowndes (2016) Numerical modeling
of oscillating Taylor bubbles, Engineering Applications of Computational Fluid Mechanics, 10:1,
580-600, DOI: 10.1080/19942060.2016.1224737

To link to this article:  http://dx.doi.org/10.1080/19942060.2016.1224737

© 2016 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 20 Sep 2016.

Submit your article to this journal 

Article views: 45

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tcfm20
http://www.tandfonline.com/loi/tcfm20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/19942060.2016.1224737
http://dx.doi.org/10.1080/19942060.2016.1224737
http://www.tandfonline.com/action/authorSubmission?journalCode=tcfm20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tcfm20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/19942060.2016.1224737
http://www.tandfonline.com/doi/mlt/10.1080/19942060.2016.1224737
http://crossmark.crossref.org/dialog/?doi=10.1080/19942060.2016.1224737&domain=pdf&date_stamp=2016-09-20
http://crossmark.crossref.org/dialog/?doi=10.1080/19942060.2016.1224737&domain=pdf&date_stamp=2016-09-20


ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2016
VOL. 10, NO. 1, 580–600
http://dx.doi.org/10.1080/19942060.2016.1224737
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ABSTRACT
In this study, computational fluid dynamics (CFD)modeling is used to simulate Taylor bubbles rising
in vertical pipes. Experiments indicate that in large diameter (0.29m) pipes for an air–water system,
the bubbles can rise in a oscillatorymanner, depending on themethodof air injection. TheCFDmod-
els are able to capture this oscillatory behavior because the air phase is modeled as a compressible
ideal gas. Insights into the flow field ahead and behind the bubble during contraction and expan-
sion are shown. For a bubble with an initial pressure equal to the hydrostatic pressure at its nose,
no oscillations are seen in the bubble as it rises. If the initial pressure in the bubble is set less than or
greater than the hydrostatic pressure then the length of the bubble oscillateswith an amplitude that
depends on themagnitude of the initial bubble pressure relative to the hydrostatic pressure. The fre-
quency of the oscillations is inversely proportional to the square root of the head of water above the
bubble and so the frequency increases as the bubble approaches the water surface. The predicted
frequencyalsodepends inverselyon the square rootof theaveragebubble length, in agreementwith
experimental observations and an analytical model that is also presented. In this model, a viscous
damping term due to the presence of a Stokes boundary layer for the oscillating cases is introduced
for the first time and used to assess the effect on the oscillations of increasing the liquid viscosity by
several orders of magnitude.
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1. Introduction

Numerous experimental studies have investigated the
rise of elongated, bullet-shaped gas bubbles in pipes
charged with either stagnant fluids (e.g., Figure 1) or
cocurrent flows. These bubbles, called Taylor bubbles,
are a key feature of the slug flow regime commonly seen
in multiphase flows in the industrial context. They also
occur in nature; for example, Parfitt (2004) states that
Strombolian-type volcanic eruptions are widely accepted
to be driven by the rise and burst of large Taylor bub-
bles. Taylor bubbles have attracted a great deal of interest,
including the characterization of the rise rate of the bub-
bles (Davies and Taylor, 1950; Dumitrescu, 1943) and
the determination of the flow fields ahead of (Nogueira,
Riethmuler, Campos, and Pinto, 2006a), in the liquid film
around (Brown, 1965) and in the wake region behind
(Nogueira, Riethmuller, Campos, and Pinto, 2006b) the
bubbles. Others have investigated the change of bub-
ble shape within liquids of different transport properties
(e.g., Kang, Quan, and Lou, 2010).

In this paper, commercial computational fluid dynam-
ics (CFD) software is used to simulate the flow observed
in the experiments detailed in Pringle, Ambrose,

CONTACT D. M. Hargreaves david.hargreaves@nottingham.ac.uk

Azzopardi, and Rust (2015), with the ultimate goal of
producing a validated model suitable for running simu-
lations under conditions that are difficult to create in a
laboratory (e.g., larger-scale, higher-dynamic viscosity).

The experiments of Pringle et al. (2015) were con-
ducted in a vertical Perspex pipe 10 m in length and with
an internal diameter of 0.29m. The pipe was partially
filled with water and open to the atmosphere at the top.
Compressed air was injected into the base of the pipe via
a system of nozzles, with the ensuing small bubbles coa-
lescing into a Taylor bubble. Examples of the range of
bubble lengths that were produced are shown in Figure 1.

These air–water Taylor bubbles theoretically have a
Froude number, Fr, of 0.351, an Eötvös number, Eo, of
1.57 × 104 and a Morton number, M, of 1.35 × 10−11.
These dimensionless numbers are, for completeness,

Fr = w√
gD

, (1)

Eo = ρgD2

σ
, (2)

M = gμ4

ρσ 3 , (3)
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Figure 1. A variety of experimentally-produced Taylor bubbles
ranging in length from 0.3m to over 1m. For the shortest bub-
ble, the approximate positions of the nose, tail and wake regions
are indicated.

where w is the vertical component of the rise velocity, g
is the acceleration due to gravity, D is the diameter of the
pipe, ρ is the density of the liquid, μ is the dynamic vis-
cosity of the liquid and σ is the surface tension. The rise
velocity of the bubble is assumed to be in the ‘Indepen-
dent of viscosity and surface tension’ regime proposed by
White and Beardmore (1962, Figure 6, p. 357) and the
bubble rise rates observed by Pringle et al. (2015) are con-
sistent with theoretical predictions and empirical models
for this regime (Dumitrescu, 1943; Viana, Pardo, Yanez,
Trallero, and Joseph, 2003).

Pringle et al. (2015) demonstrated that if air is injected
into quiescent water then Taylor bubbles can exist in
pipes that are 0.29m in diameter, which is significantly
larger than previously suggested for the air–water system.
They further went on to show that if the gas injection
ends abruptly then the bubble length and apparent rise
rate oscillate. The oscillation frequency is lower for longer
bubbles and as the bubble rises through the fluid, the fre-
quency of the oscillations increases and the amplitude
decreases. This is because as the head of the water above
the rising bubble decreases, so does the force required to
displace it.

This oscillatory behavior, similar to that observed
in the experiments reported by Pringle et al. (2015),
has been inferred to occur within volcanoes during
Strombolian-type eruptions. Vergniolle, Brandeis, and
Mareschal (1996) recorded acoustic pressure in the air
during a period of explosive activity at the Stromboli vol-
cano and observed oscillations in these readings during
the rise of the bubble before eruption. They present a
theoretical model for these oscillations, which is derived

from the assumption that the bubble behaves as a simple
harmonic oscillator. A similar derivation is presented
in Pringle et al. (2015) and an alternative derivation is
presented in section 2 of this paper.

The only other experimental study to report oscilla-
tions as a Taylor bubble rises through liquid in a tube is
James, Lane, Chouet, and Gilbert (2004), who recorded
these oscillationswith pressuremeasurements at the inte-
rior wall of the tube. Their interpretations of these data
are qualitative but are consistent with themodel solutions
of Pringle et al. (2015) and Vergniolle et al. (1996). Such
oscillations have generally not been observed in previous
CFD studies of Taylor bubbles because the air is mod-
eled as incompressible. The work is continued in James,
Lane, andCorder (2008), who present solutions validated
by experimental data, which show that the liquid surface
rises due to bubble expansion as the bubble moves into
regions of lower hydrostatic pressure. They confirm that
slug oscillations occur when an initial gas overpressure is
used; however, no detail is provided. In this paper, CFD
software is used tomodel and gain a better understanding
of this oscillatory behavior.

It should be noted that the oscillations seen in these
bubbles that result in the displacement of the column of
water ahead of the Taylor bubbles should not be con-
fused with any oscillations seen at the rear of the bub-
ble. Numerous studies, notably Polonsky, Barnea, and
Shemer (1999) and Hayashi, Hosoda, Tryggvason, and
Tomiyama (2014), have focused on the changing shape of
the rear of the bubble. This effect is due to the relatively
high-speed falling wall film around the bubble emerging
as an annular jet into the fluid behind the bubble. The
oscillations that are discussed in the present work result
from an initial imbalance between the internal pressure
in the bubble and the local hydrostatic pressure. The bub-
ble expands and contracts depending on the sense of this
imbalance and since the water below the bubble cannot
be moved, the water above the bubble is moved bodily
upwards. This is confirmed by the observation that the
free surface above the bubble moves in phase with the
motion of the nose of the bubble (Pringle et al., 2015).
Further, it has been known since Dumitrescu (1943) that
the rate of rise of a Taylor bubble is determined by the
hydrodynamics of the liquid above it. And, since the
liquid film around the bubble cannot transport apprecia-
bly more fluid during the expansion/contraction of the
bubble, the liquid must be pushed ahead of the bubble,
ostensibly as a plug flow.

In recent years, CFD studies using the volume of
fluid (VOF) multiphase model have replicated obser-
vations from experimental studies such as bubble rise
rate and wake behavior (Araujo, Miranda, Pinto, and
Campos, 2012; James et al., 2008; Ndinisa, Wiley, and
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Fletcher, 2005; Taha and Cui, 2004). Other interface
reconstruction schemes have been used to model the
gas–liquid interface. For example, Suckale, Nave, and
Hager (2010) developed a numerical model using a level-
set method and an analysis of these results suggest that
a stable bubble cannot be sustained above a Reynolds
number of 100. This corresponds to a maximum pipe
diameter of less than 0.01m for awater–air system,which
is contrary to the findings of many experimental studies.
James, Llewellin, and Lane (2011) questioned whether
this discrepancy is the result of a physical instability or
a numerical instability, and pointed out that the sim-
ulations were terminated by numerical divergence and
not by a physical mechanism. Kang et al. (2010) used a
front-tracking method to successfully simulate the rise
of Taylor bubbles in 2D axisymmetrical pipes, but no
studies have used this method to model 3D Taylor bub-
bles. Lu and Prosperetti (2009) also simulated axisym-
metric Taylor bubbles rising through liquids in a vertical
tube, but their model neglected the flow in the gas and
tracked the interface using a set of marker points linked
by cubic splines.

Recently, Yan, Zhang, and Che (2012) addressed the
problem of small dispersed bubbles in slug flow by apply-
ing a coupled system of equations that allows different
length-scales to be resolved for the different regimes –
one length-scale for the Taylor bubble, modeled using a
VOF model, and a different length-scale for the much
smaller, dispersed bubbles in the wake. Theymodel these
small bubbles using a mixture model, which is com-
monly used to model the bubbly flow regime. Other
similar models have been developed, such as the Hybrid
Interface RESolving-Two FluidModel ofMarschall, Hin-
richsen, and Polifke (2008). Neither of these approaches
are pursued in the present work due to the encouraging
results seen with the approach used.

CFD studies such as Taha and Cui (2004) and
Araujo et al. (2012) have produced Taylor bubbles
with the rise velocity agreeing with that predicted by
Dumitrescu (1943). These studies use an approach in
which the Taylor bubble is held at a constant position by
having walls move vertically downwards around it. This
approach does not take into consideration the hydro-
static pressure experienced by the bubble, nor does it
include the free surface at the top of the liquid column,
so it cannot be used to model the expansion and oscil-
latory behavior reported in the experiments of Pringle
et al. (2015). Instead, the entire flow domain must be
modeled, amethod previously used by James et al. (2008).
It is noted that the bubble rise rate simulated in that study
was 15 to 20% slower than the experimental rise velocity.

It should be mentioned that other numerical
approaches such as Lattice Boltzmann techniques have

been applied to the modeling of Taylor bubbles (Ghosh,
Patil, Mishra, Das, and Das, 2012; Yang, Palm, and Seh-
gal, 2002), although these are often atmuch smaller scales
than the bubbles discussed in this paper.

The paper now continues by describing an analyti-
cal model for bubble rise and oscillation and presents
an analysis and discussion of the model’s predictions in
section 2. This is followed in section 3 by a review of the
CFD methods used, particularly the VOF model. Using
this approach, an investigation is presented that com-
pares the rise rate of non-oscillatory bubbleswith existing
correlations, the analytical model and the experimental
work of Pringle et al. (2015). Additionally, Appendix 1
describes a validation of the CFD modeling techniques
in relation to the experimental results of van Hout, Gulit-
ski, Barnea, and Shemer (2002). In section 4, all aspects
of the numerical simulations are examined, including
the sensitivity of the oscillation frequency to the bub-
ble length and initial pressure. The way in which oscil-
lations are damped by means of an increase in the
dynamic viscosity of the liquid when the Morton num-
ber approaches those seen in volcanic conduits is shown.
Finally, section 5 presents the conclusions drawn from
the work.

2. The bubble rise and oscillationmodel

Consider the situation presented in Figure 2(a). A verti-
cal tube of diameter D contains a cylindrical bubble of
length L, the top of whose nose is positioned at a distance
H below the surface of the water. The bubble is rising at a
given velocity,w0, but may be considered to be stationary
in the first part of the following argument. The pressure,
P(L), in the bubble is assumed to be given by the ideal gas
law

P(L) = nR0T
V

= k
πD2L/4

, (4)

where n is the number of moles of the constituent gases
(considered fixed), R0 is the universal gas constant, T is
the temperature (considered fixed), and V is the volume
of the bubble. If the pressure in the bubble is equal to the
hydrostatic pressure at its top (or nose) then the bubble
will not oscillate. Note that L is the equilibrium length of
the bubble, defined as being the unperturbed length of
the bubble, this length being defined by the hydrostatic
pressure at the nose of the bubble.

When the pressure in the bubble is perturbed by a
small (say, positive) amount above the hydrostatic pres-
sure, this results in an increase in the bubble length of
h, with h � L, as shown (in an exaggerated form) in
Figure 2(b). Any elongation takes place at the nose of
the bubble because any bubble expansion is precluded at
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Figure 2. Schematic of the idealized Taylor Bubble in (a) its equi-
librium state and (b) with the bubble length perturbed by the
small amount h.

the tail due to the presence of the lower wall of the tube.
The plug of liquid above the bubble is therefore moved
upwards at the velocity ḣ. It is assumed that there is no
flow of liquid in the film that, in reality, exists around the
bubble.

Since the bubble expands according to Equation (4),
for a small change in length, h,

P(L + h) = 4k
πD2

(
1

L + h

)
,

≈ 4k
πD2L

(
1 − h

L

)
,

≈ P(L)
(
1 − h

L

)
. (5)

Womersley (1955), in his seminal work on the
pulsatile flow in arteries, proposed the dimensionless

number

α = R
√

�

ν
, (6)

where α is now known as the Womersley number in
his honor, R is the radius of the pipe, � is the angular
frequency of the pulsing flow and ν is the kinematic vis-
cosity. TheWomersley number is the ratio of the transient
inertial force to the viscous force. When α > 10, with
inertial effects dominating, the ‘flow is essentially one of
piston-like motion with a flat velocity profile’ (Ku, 1997,
p. 402). For the water flow considered in the present
work, the motion is clearly in the piston-like or plug flow
regime.

There are viscous forces acting on the plug of water
above the bubble as itmoves up and down inside the tube.
The plug of liquid which oscillates above the bubble is
analogous to the situation in which a Stokes boundary
layer is found – with an oscillatory flow next to a solid
wall. So, if the plug of water is moving bodily as

w(t) = W0 cos�t, (7)

where W0 is the amplitude of the velocity variation in
the oscillatory flow, the velocity component tangential to
the wal, w(y, t) at a given point near the wall of the tube
varies as

w(y, t) = W0[cos�t − e−κy cos(�t − κy)], (8)

where y is the wall-normal coordinate and κ is a
wavenumber

κ =
√

�

2ν
. (9)

The wall shear stress τw is given by

τw = −μ
dw
dy

∣∣∣∣
y=0

. (10)

The derivative is evaluated as

dw
dy

∣∣∣∣
y=0

= √
2κW0 cos

(
�t + π

4

)
, (11)

where it is seen thatW0 cos(�t + π/4) is a phase-shifted
version of the velocity of the forcing oscillation (or plug
rise and fall in this application, Equation (7)). While,
at present, it is assumed that the bubble is stationary, it
should be noted that it is also assumed that this oscilla-
tory boundary layer is formed even when the height of
the plug of liquid decreases as the bubble rises. In this
case, the assumption ismade that even as the frequency of
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oscillation changes, the timescales for the boundary layer
to develop are shorter.

A simple application of Newton’s Second Law to the
perturbed, upper plug of water reveals

ρπR2Hḧ = πR2(ρgH + patm)

(
1 − h

L

)
− πR2patm

− 2πRHτw − πR2ρgH, (12)

where the terms on the right-hand side are the forces due
to the pressure acting on the lower and upper surfaces
of the plug, the wall shear stress and gravity, respectively.
Rearranging Equation (12) gives

ḧ + 2ζωnḣ + ω2
nh = 0, (13)

with a natural frequency

ωn =
√
1
L

[
g + patm

ρH

]
(14)

and a critical damping coefficient

ζ =
√

μ

ρωnR2
. (15)

The critical damping coefficient arises from the sub-
stitution of Equation (11) into Equation (10) and
thence substituting for τw in Equation (12). Ignoring
the phase shift in Equation (11) it can be seen that
w(t) = ḣ.

These results are equivalent to those found using sim-
ilar methods by Pringle et al. (2015), Oguz and Pros-
peretti (1998) and Vergniolle et al. (1996), although
damping was only considered by Oguz and Prosperetti.
In addition, Oguz and Prosperetti found on analysis that
the viscous damping is insignificant, although their bub-
bles are several orders of magnitude smaller than the
ones being considered here. They also demonstrate that,
in the limit α � 10, the critical damping coefficient ζ

becomes

ζ = 4μ
ρωnR2

, (16)

which is derived via the wall shear stress for Poiseuille
flow. This has consequences when the Morton number is
increased as the dynamic viscosity increases dramatically,
as is observed in volcanic conduits.

To this point, the bubble has been assumed to be sta-
tionary. Clearly however the bubble is rising, so if a con-
stant rise velocity w0 is now assumed it can be calculated
in this particular regime from

Fr = w0√
gD

= 0.351, (17)

which in this case gives a rise velocity of 0.59ms−1. So,
H and L in Equation (14) are now functions of time, with
H(t) = H0 − w0t, trivially. Again assuming the ideal gas
law for the bubble and an initial length L0 it can be shown
that the equilibrium length L(t) varies as

L(t) = L0
(
1 − ρgw0t

patm + ρgH0

)−1
, (18)

whereH0 is the initial height of the water plug. As closed
analytical solutions of Equation (13) are difficult since the
coefficients are now both functions of time, a numeri-
cal solution is required. The ode45 ordinary differential
equation solver inMATLAB (2012) was used to solve this
equation. Figure 3 shows various outputs from themodel
using a parameter set based on the experimental work of
Pringle et al. (2015) (see Table 1). In Figure 3 it can be
seen that the length is normalized by the tube diameter
D, the velocity is normalized by the initial velocity w0,
and the time is normalized by the ratio D/w0.

In Figure 3(a), the liquid column length decreases lin-
early during the bubble rise to zero as the bubble breaks
the surface. As the bubble rises, the equilibrium bub-
ble length L(t) increases according to Equation (18).
The bubble, in this example, is initially under-pressured
(below the hydrostatic pressure) and so the initial sur-
face displacement h is less than zero; Figure 3(d) shows
the oscillation superimposed on the increase in the equi-
librium length of the bubble as it rises – without oscil-
lation, the surface would rise due to the decompression
of the rising bubble. As the bubble approaches the sur-
face, the amplitude of the oscillation decreases, while the
frequency increases (Figure 3(b)). Both predictions are
consistent with the assumptions made in the derivation
of the analytical model. Near to the surface the model
predicts ever-increasing frequencies, but in reality the
breaking process prevents the bubble reaching this point
with an identifiable plug of liquid above it.

Figure 3(c) shows the normalized surface velocity,
which is a superposition of bubble rise velocity, w0 and
ḣ. This confirms the experimental observation that the
bubble appears to rise in a uneven manner, accelerating
and decelerating as it goes. In fact, this is seen at the
nose of the bubble – the tail of the bubble continues to
rise at the velocity w0. The critical damping coefficient in
this case isO(1 × 10−3) throughout most of the rise and
therefore the damping is negligible. The critical damping
coefficient quickly tends to zero as the height of the liq-
uid plug tends to zero (Figure 3(b) and Equations (15)
and (14)). Any reduction in the amplitude of the oscilla-
tions is entirely due to the decrease in H(t) and not the
damping, at least in this case.
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Figure 3. Variation for the analytical oscillating bubble model of non-dimensionalized time against non-dimensionalized (a) bubble
length and liquid columnheight, (b) angular frequency and critical damping coefficient, (c) surface velocity, and (d) surface displacement.

Table 1. Parameter set used for model testing from Pringle
et al. (2015).

Initial height of water plug, H0 3.36 m
Initial equilibrium length of bubble, L0 0.64 m
Initial length decrease below equilibrium 0.04 m
Radius of pipe 0.145 m
Atmospheric pressure 101325 Pa
Density of water 1000 kgm−3

Dynamic viscosity of water 0.001 kgm−1 s−1

Bubble rise velocity,w0 0.591 ms−1

3. Numerical model

In this study, the commercial CFD solver ANSYS (n.d.)
FLUENT v12.1 is used.

3.1. Governing equations

The solver uses a finite-volume method to solve the
momentum and continuity equations. The continuity
equation is derived by applying conservation of mass to a
finite volume. The momentum equations (Navier–Stokes

equations) are derived from an application of Newton’s
Second Law. This constraint requires that the rate of
change of momentum acting on the particle be equal to
the sum of the forces acting upon it. Due to the turbulent
nature of the flow in the wake region behind the Taylor
bubble, the unsteady Reynolds-averaged Navier–Stokes
(URANS) equations are used:

∂ρ

∂t
+ ∇ .(ρu) = 0, (19)

∂

∂t
(ρu) + ρ(u.∇)u = −∇p + ∇2[(μ + μt)u] + FS,

(20)

where u is the velocity, p is the pressure, ρ is the den-
sity, FS is the surface tension force, and μ and μt are
the dynamic and turbulent eddy viscosities, respectively.
Here, u, p and ρ represent time-averaged quantities.

In the RANS approach, the flow variables, such
as pressure, velocity and density, are split into mean
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and fluctuating components, which are then ensemble-
averaged. The result of this is an additional term to rep-
resent the effects of turbulence in the flow, hence a model
is needed to close the equations. Preliminary studies on
the air–water system studied here show that the realiz-
able k − ε (RKE) model (Shih, Liou, Shabbir, Yang, and
Zhu, 1995) is the most suitable turbulence model to use
for this application, given the constraints of the available
computational power.

The rationale for using URANS – an approach that
is often criticized by practitioners who use, for example,
large eddy simulation (LES)methods – is as follows. First,
the computational resources were not available to per-
form an acceptable LES, and second, this study is largely
concerned with accurately capturing the oscillations of
the bubbles and not, in particular, the wake behind the
bubble. While it is clear from the results that the progres-
sion will be to show that the breakup at the tail of the
bubble is not resolved as accurately as it might be using
an LES and a finer grid, the flow at the nose of the bubble
and in the Stokes boundary layer is accurately modeled
using the chosen URANS model. Indeed, around the ris-
ing Taylor bubble, thin shear layers of liquid are seen,
which then form jets behind the bubble. Further evidence
to support the application of this model is presented in
section 3.2.

However, inaccuracies in the modeling of the wake
may result in an error in the calculated rate at which
volume is lost from the bubble, which will result in a
reduction in its length. Nevertheless, it has been shown
that the length of the bubble does not materially affect
its rise rate. What would be affected is the frequency of
oscillation because this does depend on the length of the
bubble and is something that will be discussed later in the
paper.

The RKEmodel has two transport equations – one for
the turbulent kinetic energy, k, and one for the dissipation
rate, ε:

∂

∂t
(ρk) + ∇ .(ρku) = ∇ ·

[(
μ + μt

σk

)
∇k

]

+ μtS2 − ρε, (21)

∂

∂t
(ρε) + ∇ · (ρεu) = ∇ ·

[(
μ + μt

σε

)
∇ε

]

+ C1εS − ρC2
ε2

k + √
νε

, (22)

where S is themodulus of themean rate of strain tensor, ν
is the kinematic viscosity and σk and σε are the turbulent
Schmidt numbers. In this model, C1 is given by

C1 = max
[
0.43,

η

η + 5

]
, (23)

where η = Sk/ε. The remaining model constants, C2, σk
and σε have been determined empirically and have val-
ues of 1.9, 1.0 and 1.2, respectively. The turbulent eddy
viscosity is

μt = ρCμk2

ε
, (24)

as in the standard k − ε model. In the realizable model,
Cμ is not a constant but is calculated using the mean
strain rate and the rates of rotation (Shih et al., 1995).

A multiphase model, capable of producing a dis-
tinct interface between the gas and liquid phases, is also
required. The VOF method is one of the most com-
monmethods for representing the slug flow regime using
CFD. It models the interface by solving a continuity
equation for the gas volume fraction αG in each cell:

∂αG

∂t
+ u · ∇αG = 0, (25)

where αG is the volume fraction of gas (Hirt and
Nichols, 1981). Here it is assumed that there is no mass
transfer between the phases. The liquid volume fraction
is then calculated by observing the constraint

αG + αL = 1, (26)

where αL is the volume fraction of liquid, which must
be satisfied to conserve mass. An explicit formulation
of the VOF allows the use of a ‘geometric reconstruc-
tion’ scheme to reconstruct the interface, based on the
‘piecewise linear interface calculation’ (PLIC) method
(Youngs, 1982). This approach does not produce the
smearing at the interface seen in other, implicit methods
– it does, however, mean that an upper bound is placed
on the size of the time step that can be used.

Although RANS turbulence models were principally
developed to study single-phase flows, it is suggested that
their application to modeling multiphase flows should
be considered. Due to the large difference in densities
between the two fluids, there is a high density ratio in
the vicinity of the interface. This results in the invalida-
tion of the assumption of zero velocity divergence, used
in the derivation of the turbulent kinetic energy equation.
Sawko andThompson (2010) derived expressions for tur-
bulent kinetic energy and turbulence dissipation which
are not dependent on this assumption. This method has
been shown to significantly increase the accuracy of a
VOF simulation modeling a two-phase stratified flow
and, although not used in these simulations, could be
considered for use in future work.

Surface tension is approximated by the use of the con-
tinuum surface force (CSF) model (Brackbill, Kothe, and
Zemach, 1992) where a force FS acts at the interface of
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the two fluids. This is calculated using

FS = σκn, (27)

where σ is the surface tension coefficient, κ is the radius
of the curvature and n is the surface normal of the inter-
face, which in terms of the volume fraction α is

n = ∇αG, (28)

while κ is given by

κ = ∇ · ∇αG

|∇αG| . (29)

To include compressible effects, the air is assumed to
be an ideal gas,

ρG = (patm + p)
Mw

R0T
, (30)

where the operating pressure is taken as atmospheric
pressure, p is the static (gauge) pressure,Mw is themolec-
ular weight of the air and T is the temperature. The liquid
phase is assumed to be incompressible and the flow is
assumed to be isothermal.

The density ρ and viscosity μ that appear in Equa-
tions (19) to (22) are constructed from volume fraction-
weighted sums of the phase density and viscosity. For
example, for the density

ρ = αGρG + αLρL,

the notation of Equation (26) is used.

The PISO algorithm was used throughout to couple
the velocity and pressure.While this was originally devel-
oped for transient, compressible flows, it can be used for
incompressible flows. Indeed, in this two-phase applica-
tion there are cells in the domain where the local density
is the volume fraction-weighted sum of a constant den-
sity (the water phase) and a variable density phase (the
air). So, the incompressible case can be viewed as a spe-
cial case of the compressible case for this multiphase
application.

3.2. Domain andmesh

A 3D model of the flow domain was constructed using
ANSYS ICEM-CFD Computer-Aided Design and mesh-
ing software. The flow domain is a vertical cylinder of
height 9.5m and with an internal diameter D of 0.29m
(Figure 4(a)), with z=0 coincident with the base of the
cylinder. Again using ICEM, a structured O-Grid mesh
was created (Figure 4(b)). This choice of mesh permits
a refinement normal to the pipe walls to resolve the
film around the Taylor bubble and the Stokes bound-
ary layer, whilst retaining a relatively coarse mesh near
to the center of the pipe. The use of hexahedral meshes
has been shown to deliver better quality simulations than
tetrahedral meshes (Abdulkadir, Hernandez-Perez, and
Azzopardi, 2011) and so have been adopted in the cur-
rent study.

X

Y

Z

(a) (b)

Figure 4. Details of the domain used in the simulations in section 4: (a) the domain and (b) an xy cross-section of the mesh. Note: The
domain has a total height of 9.5m and a diameter of 0.29m; the mesh has a spacing of 0.0005m at the wall rising to 0.0075m at the
center.
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A series of preliminary studies were undertaken to
evaluate the level of error introduced by the numerical
modeling. There are multiple potential sources of error
in a CFD simulation which must be minimized. These
errors fall into the following categories: errors in the
physical modeling of the problem, discretization errors,
errors in the CFD code and computational round-off
errors. To ensure minimal discretization errors in the
spatial domain, a grid convergence study was undertaken
on the computation of the rise velocity of the bubble
by using the Grid Convergence Index (GCI) method of
Roache (1998). Temporal convergencewas computed in a
similar manner. The application of the GCI method con-
cluded that the error introduced by spatial discretization
was found to be 0.411% at an average vertical grid spacing
of 0.008m, with a spacing at the wall of 0.0025m rising to
0.0075m, and temporal discretization to be 0.175% using
a time step of 0.0005 s.

The results produced by the chosen RKE model
was compared to the experimental results presented in
Pringle et al. (2015). The RKEmodel was found to under-
predict the rise velocity of Taylor bubbles by approxi-
mately 17% with a Froude number of Fr = 0.291.

3.3. Initial and boundary conditions

A base case model was created, against which all fur-
ther simulations except the validation ofAppendix 1were
compared. In this base case, the model pipe was initially
filled with water to a depth of 5m, with 4.5m of air above
this. A bubble of air was then introduced close to the base
of the pipe by specifying the volume fraction of air to be
unity in an appropriate region. It is not essential to match
the depth of water in the experiments (6m) to the simu-
lations, because it is the distance of the bubble from the
top of the liquid column which is important for bubble
dynamics (i.e., a simulated bubble 2m from the top of a
5-m column of water behaves the same as a bubble 2m
from the top of a 6-m column).

The initial size and shape of the bubble was varied to
represent the range of different laboratory experiments
performed. The bubble’s initial shape for the base case is
that of a hemisphere attached to a cylinder with a radius
of 0.14m and a length of 0.5m, giving a total length of
0.64m. This is similar to the bubbles observed in the
experiments of Taha and Cui (2004). The initial pressure
in the bubble was set at a constant value matching the
hydrostatic pressure at the nose of the bubble. Contour
plots of the initial volume fraction and static pressure are
shown in Figure 5. The initial velocity field was set to zero
everywhere.

The reference pressurewas set as atmospheric pressure
(101,325 Pa) and specified at a location which was always

(a) (b)

Figure 5. Contour plots of (a) the initial volume fraction (where
red represents the air and blue represents the liquid), and (b) the
initial gauge pressure after a hydrostatic distribution has been
specified.

within the gas phase above the upper liquid surface. The
water surface level was tracked by a user-defined function
(UDF) which determines themaximum level of the water
surface at each time step.

4. Results

4.1. Bubble rise

In the base case, the Taylor bubble was initialized with
a pressure equal to the hydrostatic pressure at its nose.
This is akin to a slow injection of gas at the base of the
pipe in the experiment, followed by a very gradual shut
off of the valves. In the experimental study, this produced
the formation and rise of a Taylor bubble with no notice-
able oscillations observed during its ascent. The solution
from the CFDmodel for this case replicates the expected
behavior – a stable Taylor bubble is produced and the liq-
uid surface rises at a constant rate until a rapid expansion
of the bubble is observed as it approaches the surface,
which can be seen in the middle line of Figure 6. This
effect has been previously noted for Taylor bubbles in
pipes that are 0.025m in diameter (James et al., 2008).
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Figure 6. Variation of water surface height over time for various
initial pressures in the bubble in intervals of 10 kPa, ranging from
a 30 kPa under-pressure (lowest line) to a 30 kPa over-pressure
(highest line). Note: The central line is for a bubble initialized at
the hydrostatic pressure.

Since an isothermal, ideal gas model is being used,
given an initial hydrostatic pressure distribution, for a
bubble of initial volume 0.0365m3, with its nose at a
depth of 3.36m, the surface would be expected to rise by
0.168m due to the expansion of the bubble. This closely
matches the value of surface rise of 0.170m from the
numerical simulation (Figure 6). As the pressure is spec-
ified at the nose of the bubble, this is slightly below the
actual pressure in the bubble because of the complex way
inwhich the hydrostatic pressure varies around the hemi-
spherical nose region of the bubble. This causes a small
initial under-pressure which results in relatively small
oscillations, even for a bubble that is meant to have an
internal pressure equal to the hydrostatic pressure. Fur-
ther, no increase in the bubble length is observed, as any
expansion due to reduced hydrostatic pressure is offset by
the loss of small bubbles into the wake region. Indeed, the
mean length of the bubble is seen to increase by no more
than 5% in these simulations.

Due to the oscillatory nature of the bubble rise, a
continuous tracking of the bubble position is required
to compute the rise velocity accurately. A compara-
tive analysis of the theoretical predictions and experi-
mental results suggests a non-dimensional rise rate of
Fr = 0.351. However, the base case CFD model simu-
lation computed a lower value of Fr ≈ 0.290. At higher
Froude numbers, previous CFD studies have also dis-
played a similar under-prediction of the rise velocity
(James et al., 2008). Indeed, as is discussed inAppendix 1,
this difference is due to the inability of the RANS model
to accurately predict the turbulent flow in the falling
film. Experimental measurements were taken at the nose

of the bubble, as the position of the base of the bub-
ble is difficult to track continuously due to the shedding
of smaller bubbles. Estimates of this base velocity were
recorded and found to be comparable to the nose velocity,
with the exception of the rapid expansion as the bubble
approaches the liquid surface.

4.2. Oscillating bubbles

In the experimental studies, the initial pressure inside the
bubble is influenced by themethod used to shut off the air
injection tap. An analysis was carried outwith the numer-
ical model to investigate the effect of varying the initial
pressure inside the bubble. An initial pressure inside the
bubble that is above the hydrostatic pressure means that
the bubble is initially compressed, so it tends to expand
before contracting again, and then expand once more as
it enters an oscillatory mode. Conversely, an initial pres-
sure below the hydrostatic pressuremeans that the bubble
has a larger length than it would have under stationary
hydrostatic conditions, and thus it tends to compress. The
magnitude of the difference from the hydrostatic pressure
determines the amplitude of the resultant oscillations. An
initial bubble length of 0.64mwith the nose at z=1.64m
and a depth of water 5m were used in this part of the
investigation.

If the first peak in surface height (Figure 6) is con-
sidered for an initial over-pressure, the amplitude of the
surface height oscillations appears to scale linearly with
the pressure disturbance. With a 10 kPa over-pressure, a
surface height rise of approximately 0.07m is seen, then
with 20 kPa it is 0.13m and with 30 kPa it is 0.21m.
A similar trend can be observed for the under-pressure
cases, although the magnitude of the surface oscillations
is smaller. Whilst the over- and under-pressure cases
are initially out of phase by π/2, this is not maintained
throughout the bubble rise, since the frequency of oscil-
lation is a function of the height of the water column H,
and so the phase of the oscillation is observed to shift in
a non-trivial fashion.

In Figure 6, the bubble at an initial 30 kPa under-
pressure is observed to burst slightly sooner than in the
other cases. This is due to the bubble breaking up shortly
after the start of the simulation. The several smaller bub-
bles into which it breaks rise faster than the single bub-
ble would, which results in an apparent acceleration in
the first 0.5 s of the simulation. After 1 s, the bubble is
observed to reform and follows the same rise rate as the
other cases for the remainder of its progress. The fre-
quency of the oscillation determined for the reformed
bubble is not significantly altered by this initial break-
age and recombination phase. This is the only case
in which an instability (due to the under-pressure) is
observed to cause the bubble to break, and once the
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bubble recombines, it remains stable for the rest of the
rise. Incidentally, had such behavior been observed in the
initial stages of bubble rise in the experimental study, the
bubble would have been regarded as stable because sta-
bility was not evaluated until it had traveled 3m from the
base of the pipe.

Figure 7(a) shows the variation of water surface height
for the CFD simulation and analytical model for the
case with a 20 kPa overpressure. For the CFD simula-
tions, the peaks of the water column surface height were
extracted using theMATLABfindpeaks function and
frequencies were calculated from the inverse of the peak-
to-peak time. A similar process was performed by Pringle
et al. (2015) in the calculation of the frequency in the
experiments. Initially, there is good agreement between
the analytical model and the CFD for the first complete
oscillation but, as is discussed in the next paragraph, the
frequency of oscillation differs between the two and they
quicklymove out of phase with each other. However, over
the first period of the bubble rise, the mean surface level
is predicted to rise in a consistent manner for the two
models. The divergence toward the end of the transit can
be explained by the fact that the analytical model retains
the air in the bubble, while the CFDmodel sheds bubbles
in its wake. These smaller bubbles rise more slowly and
hence do not expand at the same rate as the main bubble,
resulting in a lower rise rate for the CFD predictions.

The frequency of surface height variation is shown
in Figure 7(b). The analytical model is a continuous
curve, while the CFD and experimental results are dis-
crete points for the reasons just given. The frequency of
oscillation obtained from the CFD simulations is approx-
imately 10% larger than the experimental value during
the early stages of the rise (Figure 7(b)). The CFD pre-
dictions do not quite fall within the upper error bound
of the experimental results. The error bars associated
with the experimental results are found by assuming
a binomial distribution across the ten repeated experi-
ments and represent 1 standard deviation from the mean
value. The analytical model solutions more closely repli-
cate the observed experimental behavior compared to
those of the corresponding CFDmodels, but both clearly
diverge from the experimental frequency as the surface is
approached. For the analytical model, this may have been
expected because none of the complex behavior of the
flow in the liquid ahead of the bubble is included in the
model. For the CFD model it is more surprising because
much of the flow physics in the nose region is modeled
and, as has been shown, is modeled well.

The gauge pressure was determined from the numer-
ical simulations using a monitor located on the pipe
wall at a height of 1.5m above the base of the pipe. So,
initially the monitor point is level with the bottom of
the hemispherical cap of the bubble. In Figure 8, where

0 1 2 3 4 5 6 7 8
4.9

5

5.1

5.2

5.3

Time, t (s)

Su
rf

ac
e 

H
ei

gh
t, 

H
 (

m
)

(a)

CFD Raw
CFD Peaks
Model

−8 −7 −6 −5 −4 −3 −2 −1 0
1

1.5

2

2.5

3

Time to burst, t (s) 

Fr
eq

ue
nc

y,
 f 

(H
z)

(b)

Pringle et al. (2015) CFD Model

Figure 7. Plots for a bubble 0.64m in length with a 20 kPa over-pressure of (a) the surface height for the CFD simulation (with peaks
highlighted) and the analytical model and (b) the frequency of the surface oscillations for the CFD simulation, the experiment and the
model.
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Figure 8. Comparison between pressure oscillations and surface
oscillations with an initial over-pressure of 20 kPa. Note: The pres-
sure at a height of 1.5m on the pipe wall is indicated by the heavy
line and the location of the surface by the lighter line. The max-
imum pressure in the fluid corresponds to the minimum surface
height and thus to the maximum compression of the bubble.

there is an initial over-pressure of 20 kPa and a water
depth of 5m, the pressure is π out of phase with the
surface oscillations, with the pressure inside the gas bub-
ble being at maximum when the water surface is at its
lowest level. This is due to the compression of the bub-
ble which increases the pressure inside it, which in turn
increases the pressure within the adjacent liquid film. In
the Figure 8, the pressure oscillates around a mean value
of approximately 30 kPa gauge pressure, which is some-
what lower than the hydrostatic pressure at 3.5m below
the initial water level. This deficit can be explained by the
presence of the bubble, 0.64m in length, which does not
contribute appreciably to the hydrostatic pressure.

4.3. Variation of bubble length

The initial length of the Taylor bubble, L0, was varied
across a range of values from 0.29m to 1.04m (D to
3.5D). In the models of Pringle et al. (2015), Vergniolle
et al. (1996) and section 2 of the present study the fre-
quency is proportional to L−1/2. This relationship is con-
firmed to some extent by an analysis of the experimental
studies. However, as only two initial bubble lengths have
been investigated, firm conclusions cannot be drawn. In
a subsequent analysis of CFD simulations in which many
more initial lengths were modeled, good agreement is
observed – as demonstrated in Figure 9, where frequency
is plotted against L−1/2 at specific times in the rise of the
bubble.

In section 4.2, it is proposed that the variation in fre-
quency due to changes in the initial pressure is caused by
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Figure 9. Frequency of the surface oscillations plotted against
L−1/2 for bubbles of initial length ranging from 0.28m to 1.04m
at various times prior to bursting through the water surface.

variation in the lengths of the bubbles created. The aver-
age lengths (i.e., the length of the bubble at hydrostatic
equilibrium) range from 0.70m for the 30 kPa over-
pressure case to 0.44m for the 30 kPa under-pressure
case. The differences in bubble length for these two cases
can be seen in Figure 10. In the figure, the shedding

(a) (b)

Figure 10. Taylor bubble with (a) 30 kPa over-pressure and (b)
30 kPa under-pressure.
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of smaller bubbles can be seen behind the main bub-
ble. The resolution of the mesh used is such that only
bubbles above a certain size can be resolved. Since these
shed bubbles are responsible for a loss of volume in
the main bubble, the correct modeling of them could
impact on the simulation. Despite these lost bubbles, for
each simulation, L increases as the bubble rises up to
the water surface. Plotting fL−1/2 versus time to burst
(not included for brevity) shows that all the data collapse
onto a single curve, confirming that the average bubble
length controls the oscillation frequency. These simula-
tions demonstrate that the numerical model is capable of
replicating the experimental behavior for a range of bub-
ble lengths. For all bubble lengths investigated, the Taylor
bubble remained stable, as in the base case.

4.4. Stokes boundary layer

In section 2, the model includes a viscous damping term
that was hypothesized to be due to the presence of a very
thin Stokes boundary layer caused by the vertical oscil-
lation of the plug of water ahead of the Taylor bubble.
In the air–water bubble system, the damping caused by
the presence of the Stokes boundary layer is negligible,
but it is proposed that a Stokes boundary layer should

exist because theWomersley number α is greater than 10.
Figure 11 shows the w-component of the liquid velocity
at a series of points close to the wall of a CFD simula-
tion (denoted by the circular symbols) at a location ahead
of the bubble at various times during a single expan-
sion/compression cycle of an oscillating Taylor bubble.
Because the bubble is rising, the plots are not symmetrical
but do show that an oscillating boundary layer is formed.
Indeed, using theMATLAB functionnlinfit, it is pos-
sible to fit a curve of the form of Equation (8) through
each set of points to produce instantaneous values ofW0,
� and κ . Since the depth δ of the Stokes boundary layer
is given by

δ = 2π
κ
, (31)

it was found that the value of δ varies between 2.8 mm
and 4.1mm during the oscillation cycle. This confirms
that the Stokes boundary layer is present and that out-
side of this region the fluid behaves like a plug (as wit-
nessed by the flat velocity profiles in Figure 11). Further,
Figure 12(a) shows the variation of the wall shear stress
with time at some height on the wall, well ahead of the
bubble, while Figure 12(b) shows the w-component of
the water velocity at the same height, but well outside the
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Figure 11. Plots of the w-component of velocity against the wall-normal coordinate y at a constant value of z ahead of a rising Taylor
bubble at various points during an expansion/contraction cycle. Note: The solid lines show fits through the data points.
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Figure 12. The variation with time of (a) the wall shear stress at a point on the wall above the rising Taylor bubble and (b) the
w-component of the velocity at the same height and well outside of the Stokes boundary layer.

Stokes boundary layer. Equation (11) predicts a phase dif-
ference between these two variables of π/4. In fact, the
CFD model predicts a phase difference of approximately
π/5, which may be due to the presence of the hemi-
spherical cap of the Taylor bubble, which creates some
additional variation in the w-component of the velocity
in the wall-normal direction.

4.5. Variation of liquid viscosity

Vergniolle et al. (1996) suggest that one of the causes of
the acoustic variations measured at volcanic sites could
be Taylor bubble oscillations. Magma is several orders
of magnitude more viscous than water, and therefore it
was deemed reasonable to test the predictions of the CFD
model as the viscosity was so increased. The values of vis-
cosity modeled range from the 0.001 Pa s of air to 45 Pa s,
which is typical of volcanic magma.

Viana et al. (2003), after analyzing data from numer-
ous experiments on Taylor bubbles in the literature,
developed a ‘universal’ correlation between Fr and R, the
buoyancy Reynolds number:

R = [D3g(ρl − ρg)ρl]0.5

μl
, (32)

where g is acceleration due to gravity and the l and g
subscripts refer to the liquid and gas phases, respectively.
The buoyancy Reynolds number is the square root of the
Archimedes number. Viana et al. (2003) demonstrated
that there are three regimes: when R > 200, in which Fr
is independent of R and where inertial forces dominate;
when R < 10, where viscous forces dominate and R is a
function of Fr (and Eo); and a transition regime, which is
more complex.

In the CFD simulations, the range of viscosities
investigated correspond to a variation in the buoyancy
Reynolds number from 10 to 5 × 105. For those simu-
lations with R > 200, it was found that there is very little
change in the Froude number over a wide range of R (a
decrease of 4% from 1 × 104 to 600). However, in the
transition regime, Froude numbers of 0.243 and 0.122
are observed at buoyancy Reynolds numbers of 50 and
10, respectively, which is consistent with the findings of
Viana et al. (2003).

For the range of liquid viscosities considered, where R
is in the inertial range, an increase in the viscosity does
not appear to significantly affect the bubble oscillation
frequency (Figure 13). This figure is constructed by deter-
mining the instantaneous frequency of oscillation for
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Figure 13. Frequency of bubble oscillations for liquids of vary-
ing viscosity for buoyancy Reynolds numbers ranging from 600
to 500,000.

various bubbles in fluids of different viscosity at various
times prior to bursting through the surface. The indepen-
dence of the frequency from the viscosity is also in agree-
ment with the form of the model presented in section 2,
whereωn is independent of the viscosity (Equation (14)).

However, the amplitude of the oscillations is clearly
dependent on the viscosity, as can be seen in Figure 14,
which shows the first three oscillations of the liquid sur-
face. Despite the lack of a key, the peaks decrease with
increasing viscosity and hence damping. Because the
peak height decreases as the bubble rises, it is problematic
to disentangle this phenomenon from that of the effect
of viscous damping on the peak height. However, if only
the first peak in Figure 14 is considered, it is possible to
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Figure 14. The first three oscillations of the surface for liquids of
varying viscosity for buoyancy Reynolds numbers ranging from60
to 500,000.

test the predictions of the analytical model. For an under-
damped case, the general solution to Equation (13) is

h(t) = e−ζω0t{A cos(ωdt) + B sin(ωdt)}, (33)

where ω0 and ωd are the undamped and damped natu-
ral frequencies, respectively. Hence, from an analysis of
Equation (15) for Womersley numbers greater than 10, it
might be expected that the first peak rise be proportional
to exp−√

μ.
Figure 15 shows a plot of the first peak rise against

exp−√
μ for buoyancy Reynolds numbers from 60 to

5 × 105. The viscosity of the fluid decreases from left
to right. There appear to be two distinct regions, three
points in the low viscosity, high Reynolds number range,
and five points in the higher viscosity, lower Reynolds
number range. In fact, the three leftmost points corre-
spond to both R<200 and a Womersley number of α <

10, which correspond to the point at which the flow is
transitioning from inertial to viscous. Hence, it is diffi-
cult to draw any conclusions from this plot, other than
that there is a clear trend – the first peak rise predicted
by the CFD simulation reduces as the viscosity increases,
which would be expected.

4.6. Flow fields

The flow field around the rising Taylor bubbles in an
air–water system was assessed at various points in the
flow domain during a typical oscillation. When in com-
pression there is a small positive, vertical component
of velocity ahead of the bubble for a length of approx-
imately D/8 (Figure 16(a)). In this case, the bubble is
still moving upwards, despite being in the compression
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Figure 15. A plot of the surface rise for the first peak in Figure 14
against exp−√

μ for various liquids for buoyancy Reynolds num-
bers ranging from 60 to 500,000.
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(a) (b)

(c) (d)

Figure 16. Streamlines (left) and velocity vectors (right) for a Taylor bubble: (a) around the nosewhilst compressing, (b) around the nose
while expanding, (c) in the wake whilst compressing, and (d) in the wake whilst expanding.

phase. The streamlines indicate that the liquid bypasses
the nose region and continues down into the film region
around the bubble. This behavior is similar to the particle
image velocimetry (PIV) results published in the litera-
ture (van Hout et al., 2002; Nogueira et al., 2006b), with
clear variations observed due to the oscillatory behavior
and differing rise velocity of the bubble.

During the expansion phase of the oscillation
(Figure 16(b)), all of the water ahead of the bubble is
forced upwards, causing the surface to rise. Some of the
flow is washed down the side of the bubble into the liquid
film, which then enters the wake behind the bubble. The
wake behind the bubble is open both in compression and
expansion, as opposed to an attached wake region behind
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the bubble observed in laminar flows (Figure 16(c) and
(d)). This phenomenon is due to the large Eo num-
ber caused by the large pipe diameter in relation to the
low-viscosity fluid used.

5. Conclusions

In this paper, it has been demonstrated that a great deal
can be learnt about the behavior of oscillating Taylor
bubbles rising in a quiescent liquid through the use of
URANS CFD simulations. Numerical modeling of this
type allows many physical (and unphysical) situations to
be modeled quickly and accurately, using parameter sets
that are simply impractical in the laboratory. However,
the validation of such models is key, and the experimen-
tal work of Pringle et al. (2015) has proved invaluable in
providing an indication of the accuracy of the numerical
modeling. In addition, the adaption and improvement of
the analytical model proposed by Pringle et al. (2015) to
include damping via the Stokes boundary layer has given
yet more insights into the role of the plug of liquid ahead
of the rising bubble.

Key to the success of the modeling approach is the
use of a compressible gas and the application of initial
over- and under-pressures, which instigate the oscilla-
tions in the rising bubble and the resultant movements
in the liquid surface. However, without initial pressure
perturbations, stable Taylor bubbles were successfully
simulated with a rise rate within 18% of the experi-
mental values. For these stable cases, the liquid surface
rise level is within 5% of the predicted values. For the
oscillating cases, the predicted numerical frequencies are
within 10% of the experimental values and display sim-
ilar behavior to the analytical model. This agreement is
strong in the early stages of the bubble rise, but as the bub-
ble approaches the surface, both the CFD model and the
analytical model diverge from the experimental observa-
tions. It is concluded that the plug-flow assumption of the
analytical model may break down as the spherical nose of
the bubble makes a greater proportion of the liquid col-
umn height near the surface. With the CFD modeling,
the divergence can perhaps be explained by the URANS
simulations artificially producing a turbulent viscosity,
which differs from the true flow physics as the bubble
approaches the surface. Alternatively, the wake region is
not modeled well by the URANS model and the shed-
ding of gas from the bubblemay be less pronounced in the
experiments. Since the frequency of oscillation is propor-
tional to L−1/2, if the numerical bubble losesmore gas (in
the form of small bubbles shed in the wake) then the fre-
quency may be observed to increase artificially quickly.

The incorporation of the damping term into the ana-
lytical model led to the investigation of the flow in the

near-wall region ahead of the rising bubble. An analysis
of the CFD solutions was able to confirm the presence
of a Stokes boundary layer and add credibility to the
inclusion of this term in the analytical model. The effects
produced by a decrease in the buoyancy Reynolds num-
ber, by increasing the liquid viscosity, were studied using
the numerical model and insights into applicability of the
Stokes boundary layer were gained.
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Appendix 1. Validation at a reduced scale

A validation study on a pipe with a smaller diameter than that
of Pringle et al. (2015) was conducted to confirm that themodel
is capable of reproducing key flow characteristics. The solutions
from the numerical model were compared against the experi-
mental studies of vanHout et al. (2002), who used PIVmethods
to investigate the flow around a single Taylor bubble rising in
stagnant water. The diameter of the pipe used in these experi-
mentswas 0.025m,which results in the dimensionless numbers
Fr = 0.35, M = 10−11 and Eo = 80.

Qualitatively, the numerical solutions compare well to the
experimental data in all respects. In particular, the flow field
around the nose of the bubble and the behavior of the wake
are very similar (Figure A1). The PIV results were averaged
over 100 experimental runs to give the velocity field, whilst
that determined from the CFD simulation is instantaneous and
results from a single simulation. This is because the CFD simu-
lations are deterministic and, using the same initial conditions,
another run should produce the same result at that instant in
time.

The axial velocity profiles within the liquid film region sur-
rounding the Taylor bubble are shown in Figure A2, adjusted by

http://dx.doi.org/10.1103/PhysRevE.81.066308
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Figure A1. Velocity vectors around a fully developed Taylor bubble. The plots on the left are for PIV results averaged over 100 Taylor
bubbles (van Hout et al., 2002). The plots on the right are instantaneous results from a CFD simulation. In the top row the results are for
a window from D/2 below the nose of the bubble to D/2 above it; the middle row is from 2D behind the tail of the bubble to the tail; the
bottom row is from 4D to 2D below the tail of the bubble.
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Figure A2. Comparison of the outlines of the bubbles and velocity measurements adjusted by position for the experimental measure-
ments in van Hout et al. (2002) and the CFD validation case.
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position. This adjustment, proposed by van Hout et al. (2002),
offsets the velocity by the position z at which it was recorded.
This is such that a measurement read at z/D = 2 with a down-
ward velocity of 1ms−1 gives a reading of −3ms−1, where
z/D = 0 is at the nose of the bubble.

The outline of the Taylor bubble is also shown in Figure A2.
At the entrance to the film at the top of the bubble the veloc-
ities are small, but as the film thickness decreases, the liquid
is observed to accelerate, by conservation of mass. The veloc-
ity reaches a maximum value of approximately 1ms−1, close to
the exit of the liquid film at the base of the bubble. The film
Reynolds number ReF for this case is given by

ReF = ρQ
μ2πR

= ρū
μ

(
2δ − δ2

R

)
, (A1)

where Q is the volumetric flow rate in the falling film, ū is the
mean velocity across the film, δ is the film thickness, and R is
the internal radius of the pipe. With ū estimated as 1ms−1, the
film Reynolds number is 2100, indicating that the film is turbu-
lent. The predicted maximum velocity in the film is 5% below
the experimental value. The liquid film thickness of the sim-
ulations at the exit is 0.00114m, as compared to 0.00117m in

the experiment, and it is this difference in film thickness that
accounts for the discrepancy in the velocity of the film velocity.
This then, through conservation ofmass, has a knock-on effect,
causing the simulated bubble rise velocity to be 5% lower than
the experimental value. Thus, the difference may be due to the
inability of the turbulencemodel or the law of the wall tomodel
the turbulent flow in the film or because the wall-normal mesh
resolution in the film region was inadequate.

It was also concluded that in the near wake region behind
the tail of the bubble there are strong similarities in the flow
behavior predicted by the numerical solutions and the experi-
mental data (Figure A1, middle plots). Within two pipe diam-
eters of the tail of the bubble, a strong vortex is observed. Near
to the wall, the axial velocity profiles are similar to those of
an annular jet. Figure A3 shows the centerline axial velocity
behind the rising bubble. The peak of the positive axial velocity
corresponds to the vertical flowwhere the two counter-rotating
vortices meet immediately behind the bubble. Beyond this
region, the centerline axial velocity reverses in direction, with
a positive axial flow near the walls and a negative flow directed
towards the central area, as can be observed in Figure A3 and,
for the time-averaged experimental data, in the lower left plot
of Figure A1.
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