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Abstract: Unprecedented asymmetric copper-catalysed addition of ZnEt2 (ZnBu2) to the exocyclic C=C bond 

of pentafulvenes C5H4(=CHAr) (Ar = 2-MeOPh and related species) yields enantiomerically enriched (up to 

93:7 er) cyclopentadienyl ligands [C5H4CHEtAr; abbreviated CpR]. Copper catalyst promotion with both chiral 

phosphoramidite ligands and a phosphate additive is vital in realising both acceptable enantioselectivities 

and reaction rates. Demonstrating the utility of these chiral cyclopentadienyl ligands enantiomeric CpR
2TiCl2 

complexes have been prepared; the (S,S) isomer is twice as active towards pancreatic, breast and colon 

cancer cell lines as its (R,R) enantiomer at 24 h. 

Asymmetric copper-catalysed 1,4-additions of organozincs, especially ZnEt2, to enones (e.g. ArCH=CHAc) 

have become commonplace in the last 10 years (Scheme 1a).[1] Although they contain an equally powerful 

anion accepting group (C5H4), equivalent copper-catalysed enantioselective carbocupration of 

pentafulvenes 1 is unknown (Scheme 1b). Such methodology could, if realised, provide rapid access to 

enantio-enriched substituted cyclopentadienyl ligands 2 having many applications in synthesis, catalysis[2] 

and biology.[3] To give just one specific example, the micromolar active anti-cancer titanocene dichloride 3 

(presently known only as a mixture of stereoisomers)[3] would become available as single enantiomers, 

facilitating biological screening and potentially access to clinical trial candidates in time.  

 

Scheme 1. Exemplary common Cu(I)-catalysed asymmetric 1,4-addition vs. unknown carbozination and 

applications. 
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A limited number of stereoselective additions of organometallics to pentafulvenes are known[4] but all are 

stoichiometric in chiral additive including: those of Hayashi using 1a (R = NMe2) and 120 mol-% ArLi/(-)-

sparteine (er 63:37 to 96:4), Mintz’s hydride transfer from nBuLi to 1b (using exocyclic =CPhMe and 100 

mol-% (-)-proline, er < 59:41), Togni’s diasterioselective addition of MeLi to the (R) enantiomer of 1c (R = 

CHcC6H11)  (dr 90:10 to 94:6) and related work by Otero using 1d (R = (-)-myrtenyl) (dr >99:1). Aside from 

these, only non-stereoselective or achiral additions to fulvenes are reported (and these are limited to Me 

and sp2 C-nucleophiles).[5] The lack of catalytic methodology is due, in part, to the stability of 

cyclopentadienide-bound kinetic products, cf. the putative rest state (A). Recently, we found such rest 

states could apparently be transmetallated with Grignard reagents allowing closure of catalytic cycles and 

effective pentafulvene carbomagnesiation.[3] Unfortunately, Cu(I)L* catalysis using RMgBr provided only 

racemic products in our own studies (library of 13 ligands).[3] We predicted, due to their higher covalency, 

organozinc-derived copper catalysts would maximise the chances of attaining the desired enantioselective 

carbocupration. However, the lack of any published Cu(I) catalyst for ZnR2 enantioselective C=C addition[1] 

strongly suggested that intermediates related to (A) were very stable and that poor catalyst turnover would 

have to be overcome. 

First trials were conducted using ZnEt2 and pentafulvene 1e as er assay of the product 2e is greatly 

simplified by rapid exchange of the [1,5]-sigmatropic / tautomers during chiral GC analysis above 100 oC. 

From an initial ligand library (Supporting Information), phosphoramidite L1 in the presence of Cu(I) 

precursors was attained as the highest enantioselective lead (Table 1). As predicted, the reaction suffered 

from very poor activity and conditions leading to the formation of the Lewis acidic cuprates (Run 1 vs. 2-6) 

were needed for even partial turnover. Higher loadings (Runs 3 and 6) favoured significant 

enantioselectivity and a marginal increase in yield. Additionally, we discovered that MTBE was the optimal 

solvent and highly purified phosphoramidite L1 is required as while its degradation product L2 engenders 

significant ligand acceleration[6] it does so with minimal enantioselectivity (Run 8). While AlR3 reagents are 

known to cleave phosphoramidites in low polarity solvents[7] this is not normally an issue with ZnR2 

reagents and we could detect no L1 degradation at the end of 16 h runs.  

Table 1. Cu(I)-phosphoramidite promoted ZnEt2 additions to pentafulvene 1e.[a] 

 

Run Cu-source (mol-%) L* (mol-%) Conditions 2e/%[b] er (2e)[b] 

1 Cu(TC) (5) L1 (10) 0 oC, toluene 2 50:50 
2 Cu(OTf)2 (5) L1 (10) 0 oC, toluene 6 58:42 

3 Cu(OTf)2 (25) L1 (50) 0 oC, toluene 16 71:29 

4 Cu(OTf)2 (15) L1 (30) 25 oC, toluene 10 64:36 

5 Cu(OTf)2 (15) L1 (30) 25 oC, MTBE 20 88:12 

6 Cu(OTf)2 (20) L1 (40) 25 oC, MTBE 24 89:11 

7 Cu(OTf)2 (20) L1’[c] (40) 25 oC, MTBE 25 63:37 

8 Cu(OTf)2 (15) L2 (30) 25 oC, MTBE 76 51:49 
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[a] Cu-source and L*  in solvent (2.0 mL) stirred for 1 h followed by 1e (0.5 mmol). After 10 min 

ZnEt2 (2.5 equiv.) added dropwise and the mixture stirred (16 h). [b] Yield and er by chiral GC 

analysis on a CP-Chirasil-DEXCB column against internal standard. [c] (S,S,S)-diastereomer of L1. 

Other phosphoramidite ligands provided a range of er values but no significant increase in activity and non 

phosphoramidite ligand classes were devoid of any enantioselectivity (Supporting Information). As electron 

deficient Cu(OTf)2 was our most effective precursor (its derived cuprates are known to favour fast additions 

in copper catalysis[1]) to  we sought for a related additive that might improve or mimic its behaviour. 

Bridging ligands are known to play a critical role in organising selective transition states in asymmetric 

copper(I) catalysis[8] but are seldom, if ever, modified to chiral units in copper-catalysed asymmetric 

catalysis. To our delight, use of the simple commercial phosphoric acid L3 had a profound effect on the rate 

of the carbozincation and to a more limited extent its enantioselectivity (Table 2).  

Table 2. Additive and ligand matching in copper-catalysed ZnEt2 additions to pentafulvene 1e.[a]   

 

Entry 
Cu(OTf)2 

(mol-%) 
L* (mol-%) 

Additive      

(mol-%) 

Yield 2e 

(%)[b] 
er (2e)[b] 

1 20 (S,R,R)- L1 (40) - 24 89:11 
2 20 (S,R,R)- L1 (30) (S)- L3 (10) 1 86:14 
3 20 (S,R,R)- L1 (30) (R)- L3 (10) 2 86:14 
4 20 (S,S,S)- L1’ (40) - 24 60:40 
5 20 (S,S,S)- L1’ (30) (S)- L3 (10) 34 90:10 
6 20 (S,S,S)- L1’ (30) (R)- L3 (10) 81 87:13 
7 20 (S,S,S)- L1’ (30) (±)-L3 (10) 58 90:10 
8 12 (S,S,S)- L1’ (18) (S)- L3 (13) 36 88:12 
9 10 (S,S,S)- L1’ (15) (R)- L3 (10) 81 85:15 

10 12 (S,S,S)- L1’ (18) (±)-L3 (13) 66 88:12 
 [a] Cu-source L* and additive  in MTBE (1.2 mL) stirred for 1 h followed by 1e (0.3 mmol) in MTBE 

(0.6 mL). After 10 min ZnEt2 (2.5 equiv.) added dropwise and the mixture stirred (16 h). [b] Yield 

and er by chiral GC on a CP-Chirasil-DEX CB column against tridecane as internal standard. 

It is clear that L3 is accommodated into the catalyst and that it affects the rate of turnover – 

mismatched with the (S,R,R)-L1 catalyst, but matched with (S,S,S)-L1’ for (R)-L3 (Runs 1 vs. 2-3 and 

4 vs. 6 and 9). As the er values were not strongly affected we also trialled low cost (±)-L3, to our 

satisfaction it could provide acceptable catalysis at lower loadings (Runs 7 vs. 10). A small library of 

phosphoric acid additives were then tested (Supporting Information) but simple (±)-L3 was still the best co-

additive. The correlation that (S,S,S)-L1’/(±)-L3 provides (-)-(S)-2e was attained by formation of the 

titanocene dichloride 3 (see later) and subsequent crystallographic confirmation that the (R,R) 

stereoisomer was formed. We believe that both the triflate and phosphate L3 are present in the 
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activated catalyst as Cu(L3)2 sources alone are ineffective when combined with L1’.  Addition of 

ZnBu2 to 1e (under conditions of run 10) proceeded analogously providing the butyl analogue 2e’ 

with an er of 90:10.  As we assumed that the methoxy group within 1e acted as a directing group 

to the chiral catalyst we tested this hypothesis using other 6-substituted pentafulvene starting 

materials containing donor groups on aryl or heteroaryl rings, using the conditions of Table 2, run 

10 (Scheme 2). Substrates 2f and 2g having 5-alkyl substituents together with 2h bearing an 

ethoxy substituent, led to an increase in the enantioselectivity of the reaction. The requirement of 

a proximal coordinating group was confirmed as vital:  Ar = 2-MeOPh (2e) gave er 86:14; Ar = 3-

MeOPh (2j) provided er 63:37, whilst Ar = 4-MeOPh (2n) led to racemic addition. The methoxy 

group in 2n is apparently too far away for favourable coordination in the enatantioselective 

transition state. These conclusions were supported by thienyl (2k) which gave only a modest er, 

and by related modifications of the OMe to alternative donor groups (see Supporting Information). 

Based on the correlation attained for 2e an (S) configuration for the major enantiomers attained 

from (S,S,S)-L1 has been tentatively assigned for 2e’-m.  

 

Scheme 2. Scope of catalytic cupration of fulvenes (1) as a function of 6-aryl unit. 

Finally, the utility of the cyclopentadienes (2) was demonstrated by the preparation of both enantiomers of 

3 through complexation of (R)- and (S)-2e to TiCl4 using a literature approach.[3] Rapid quantitative 

deprotonation of (S)-2e by nBuLi (1.1 equiv.) in Et2O at 0 °C led to the formation of the lithium substituted 

cyclopentadienide which was then cannula filtered, dried and weighed under vacuum. Transmetallation 

with titanium tetrachloride in refluxing THF for 16 h led to the formation of the enantio-enriched (R,R)-3. 

Synthesis of (S,S)-3 was carried out in an analogous way using (R)-2e. After recrystallization 

enantiomerically pure samples of (S,S)- and (R,R)-3 were obtained containing, at worst, traces of the achiral 

meso diastereomer (Supporting Information). The parent titanocene dichloride Cp2TiCl2 (Cp = C5H5) is a 

clinically-trialled anti-cancer agent of lower in vivo tissue toxicity than the more commonly encountered Pt-

based drugs (cisplatin, carboplatin). Substituted titanocenes CpR
2TiCl2 (CpR = C5H4R; R = a wide range of 

substituents) are much more cytotoxic than the parent,[5a,b],[9] but the mechanism(s) of action of these 

agents remains poorly defined – excessive cellular uptake of Cp-free ‘Ti4+’ being the most often cited 

proposal.[10] The antiproliferative activities of the enantiopure titanocenes (R,R)-3, (S,S)-3, in comparison to 

the stereoisomeric mixture (rac/meso)-3, and cisplatin 4 were evaluated in vitro at 24 h against the 

carcinoma cell lines: HCT-116 (colorectal), MiaPaCa-2 (pancreatic) and MDA-MB-468 (breast). A 24 h time 

period was selected as real-time microscopy studies indicate cancer cell death was maximised by ca. 4-6 h 

and activity was moderated after 24 h. As can be seen in Scheme 3 statistical (P<0.05) differential biological 

activity was observed in cancer cell lines for the stereoisomers of 3. Additionally, compared to cisplatin, 
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(S,S)-3 shows a >2-fold more activity against colon carcinoma, and almost twice the activity as cisplatin in 

pancreatic carcinoma. On the other hand, cisplatin is more active than (S,S)-3 in breast carcinoma. 

 

Scheme 3. Stereoisomer- dependent in vitro cytotoxicity growth inhibition for (3) vs. cisplatin (4). Cell 

growth inhibition after 24 h determined by MTT assay (GI50 in μM); GI50 values are represented as mean ± 

standard error of mean (SEM) of at least three independent experiments (n = 4 per experiment). 

The stereoisomer dependent activity of 3 can only be in accord with hydrolysis to ‘Ti4+’ species if such 

processes are biologically mediated. Hydrolysis of the parent Cp2TiCl2 has been proposed to be transferrin 

controlled, fulfilling this requirement.[10] However, recent studies have shown poor inhibition of A549 lung 

cancer cell growth by Cp2TiCl2 either in the presence or absence of transferrin or Ti-transferrin itself.[11] 

Other protein chaperons might well offer mechanism(s) for uptake of ligated titanium species into cells 

leading to mechanisms of action dependant on initial titanium ligation, as has been recently shown for the 

case of TiCl2(C5H4CH2C6H4-4-OMe)2 vs. salen-based titanium species.[12] 

In conclusion the first examples of copper-catalysed catalyzed asymmetric carbocuprate of pentafulvenes 

have been demonstrated. This allows access to a range of enantioenriched substituted cyclopentadienes 

and their metal complexes. Such species are attracting increasing contemporary attention for use in a wide 

range of applications.[2] While the enantioselectivities and yields of the present system are modest the use 

of dual phosphoamidite/phosphite copper catalysis provides a new tool for successful asymmetric 

carbocupration in what has been a very fallow area.[1,13] 

 

Experimental All synthetic and catalytic procedures, characterization data for all compounds copies of the 

NMR spectra, biological evaluations and summary X-ray crystallographic data for (R,R)- and (S,S)-3 are given 

in the Supporting Information. 
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ligand systems allows demanding catalytic 

asymmetric carbozincation of pentafulvenes to 

be realised for the first time. Derived 

titanocene dichlorides are useful biological 

probes.  


