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Executive summary 

Greenhouse gas (GHG) mitigation is a central policy objective in Scotland. The 

Climate Change (Scotland) Act 2009 sets an interim 42% reduction target for 

2020 and an 80% target for 2050 across all sectors of society (1990 baseline). As 

a priority policy area, it has become vital to better understand the co-benefits and 

adverse impacts arising from mitigation actions on our environment, economy 

and society. Integrated assessment is key in prioritising environmental actions, 

reducing adverse impacts and enhancing positive co-effects. This report aims to 

summarise evidence on the wider impacts (WI) of GHG mitigation options (MO) in 

the Agriculture, land use, land use change and forestry sectors (ALULUCF) and 

those related waste management. The key findings of the review, namely a 

summary of the wider impacts and an overview of the challenges in quantifying 

and monetising these impacts are presented in this section. The ALULUCF MOs 

and WIs assessed in this report are presented in Table 1. 

Table 1 ALULUCF mitigation options and wider impacts considered in the study 

Mitigation options 

Developing on-farm renewable energy 
sources 

Increased uptake of precision farming 
techniques 

Achieving and maintaining optimal soil pH 
level  

Anaerobic digesters for manure processing 

Agroforestry 

Incorporating more legumes in grass 
mixes/crop rotations 

Optimising use of mineral nitrogen fertiliser 

Low-emission storage and application of 
manure 

Improving livestock health 

Reduced livestock product consumption 

Afforestation 

Peatland restoration 
 

Wider impacts 

Air quality: NH3 

Air quality: NOx 

Air quality: PM 

Air quality: other 

Water quality: Nitrogen leaching 

Water quality: Phosphorous leaching 

Water quality: other 

Soil quality 

Flood management, water use 

Land cover and land use 

Biodiversity 

Animal health and welfare 

Crop health 

Household income 

Consumer and producer surplus  

Employment 

Resource efficiency 

Human health 

Social impacts 

Cultural impacts 
 

 

  



 

11 

 

Wider impacts of the GHG mitigation options in Agriculture and LULUCF: 

• Most impacts of the selected mitigation options were neutral or positive, 

with only a small proportion of adverse impacts. 

• There is robust evidence on co-benefits deriving from all MOs, with 

multiple positive impacts from on-farm renewable energy, precision 

farming, anaerobic digestion (AD), agroforestry, optimal mineral Nitrogen 

use, livestock health, reduced livestock product consumption, afforestation 

and peatland restoration, indicating the potential for delivering robust and 

varied co-benefits in a wide range of policy areas. Furthermore, co-benefits 

were identified for all MOs, though in a number of cases the evidence was 

moderate or weak.  

• There is also robust evidence of adverse impacts from AD in terms of 

mono nitrogen oxide (NOx) emissions. Similarly for the effect of peatland 

restoration on water quality due to leaching of nitrogen and phosphorous, 

particularly in the first years of restoration.  

• The effect on a number of wider impacts were variable (having both 

positive and negative effects in the same impact category), implying the 

need for specific tailored implementation which can maximise the benefits 

while reducing the adverse impacts. These variable effects were mostly 

associated with reduced livestock product consumption, afforestation, low 

emission storage and application of manure and peatland restoration. 

Variable impacts can be due to the varied technologies an MO might 

encompass (e.g. low emission storage and application of manure covers 

very different technologies), or that the effects depend on how the option is 

implemented (e.g. location is critical for afforestation), or that certain 

groups in society might experience benefits while others losses (e.g. 

reduced livestock product consumption).  

• Evidence on the impacts of some MOs were weak, reflecting knowledge 

gaps, particularly in the case of reduced livestock product consumption, 

livestock health and optimal soil pH, low emission storage and application 

of manure and more legumes.  

• Many MOs can have positive effects on air quality, water quality, resource 

efficiency and human health. Integrated approaches in these policy areas 

can promote these co-benefits. Crop health and cultural impacts may be 

affected by the lowest number of the MOs as assessed in this report, 
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nevertheless the magnitude or in some cases regional/local importance of 

these impacts calls for further investigation.  

• Household income, consumer and producer surplus, employment and 

cultural impacts were the wider impact categories where evidence on the 

effects was the weakest across the MOs, calling for a research agenda 

which explores the synergies and trade-offs of agricultural GHG mitigation 

with these areas. Soil quality, human health and social impacts were the 

impact cateogries with the least robust evidence basis. 

Quantitative aspects of impact assessment: 

• There is robust modelling capacity for most of air and water quality impacts 

and flood management. UK specific models are available to capture both 

the changes in farm management and in land use related to the MOs. 

Existing monetary values used by UK Government can be applied the 

major air pollutants (ammonia (NH3), NOx, PM), however, these values 

only include some human health impacts. Existing monetary values for 

nitrogen pollution relate only to specific locations in Scotland, while no 

monetary values were found for phosphorous pollution of water. Monetary 

values for flood risk can be captured by existing spatially explicit property 

damage values. 

• Soil quality modelling focuses on soil carbon, with other aspects (like 

hydrologic and biologic characteristics) less explored. There is a 

knowledge gap in estimating the quantitative impacts of MOs which affect 

farm management rather than land use (i.e. MO1-MO9) on soil quality. 

Furthermore, currently only the production effects and erosion impacts 

(sediment in water-bodies) of soil quality can be captured in monetary 

terms. 

• Larger scale land use changes related to afforestation and reduced 

livestock product consumption can be predicted using models that 

represent the economic drivers and the biophysical constraints. There are 

no models to quantify the finer changes potentially induced by on-farm 

renewables and planting more legumes. Similarly, existing models are 

capable of estimating the biodiversity impacts of MOs resulting from land 

use change, but finer, farm management changes related to changes in 

farm management (MO1-MO9) cannot currently be assessed. Monetary 

values suitable for national scale assessment of biodiversity are available 

(they are based on the impact of habitat improvement on charismatic and 

non-charismatic species). 
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• No models or tools were found to quantify the WIs on animal health and 

welfare and crop health. The value of production loss impacts of animal 

and crop health may be captured using market values. Existing monetary 

values for animal welfare could not be linked to the potential welfare 

outcomes of the MOs assessed in this report. 

• Economic models can quantify the impacts on household income, 

consumer and producer surplus and employment, and energy efficiency, 

though currently these models are more suited to assess larger scale 

impacts than on farm management changes. 

• Modelling the impacts of human diet on health are well-developed, and air 

and water quality related health impacts can also be modelled with existing 

tools. But a number of more specific potential health effects related to 

some mitigation options (e.g. zoonoses and antimicrobial resistance) 

cannot currently be modelled. Estimates for the monetary value of human 

health exist and are used in UK Government policy assessments.  

• Social and cultural impacts are difficult to quantify and no tools were found 

apart from those to quantify the recreational benefits of green space. 

Evidence on the monetary values of the cultural impact is limited, being 

based on impact of improvements to habitats on ‗sense of place‘. Currently 

there is no evidence on the valuation of social impacts. 

Waste: 

• The literature reviewed indicates that as waste is moved up the hierarchy, 

from residual disposal and treatment to recycling, the number of people 

employed per tonne managed (the 'employment intensity') tends to 

increase. 

• There are indications that the employment intensity for recycling varies by 

material type. The recycling of plastics and aluminium is considered in the 

literature to lead to some of the highest employment intensities. 
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1  Introduction  

1.1 Background 

GHG mitigation is a central policy objective in Scotland. The Climate Change 

(Scotland) Act 2009 sets an interim 42% reduction target for 2020 and an 80% 

target for 2050 across all sectors of society (1990 baseline). Annual targets are 

also set by legislation, along with a report on policies and proposals for meeting 

the annual targets. Agriculture, land use and land use change and forestry 

(ALULULCF) and waste sectors have important roles to play in contributing to 

Scotland‘s emission reduction targets. Between 1990 and 2014 agriculture‘s 

emissions have reduced by 14%, waste emissions have reduced by 77% and 

carbon sequestration by the land use and land use change and forestry sector 

has increased by 3.9 Mt CO2e (carbon dioxide equivalent), based on solely 

territorial emissions (not taking account of the GHG impacts associated with the 

production of materials produced overseas).1 However, further mitigation in these 

sectors will be required to achieve Scotland‘s 2050 emission reduction target.  

Long-term sustainability requires finding a balance in our environmental, 

economic and social goals, taking into account the resources used in meeting 

these. This is complicated by potential and actual synergies or trade-offs between 

the sustainability goals and by the differences in how society and individuals 

value these goals. The final impacts on human well-being happen through a 

complex network of environmental, economic and social pathways. 

As GHG mitigation has become one of the highest priority areas, it has become 

vital to understand the co-benefits and adverse impacts arising from such actions 

on our environment, economy and society (IPCC 2014). Adopting a multi-

objective perspective can help to identify areas where synergies make policies 

more robust and to mitigate the adverse impacts of policies which impose trade-

offs. 

Land use related activities can be particularly challenging because of multiple, 

often conflicting societal needs. A prime example is land use itself, as it provides 

food, fuels, area for human settlements and environmental benefits. Biological 

and chemical processes result in further need to consider trade-offs, for example 

reducing one particular form of reactive nitrogen (e.g. NH3) might cause an 

                                                      
1
 Figures are consistent with those set out in the Climate Change Plan 
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increase in other forms of reactive nitrogen pollution (e.g. NOx or nitrogen 

leaching) (Sutton ed. 2011).  

Integrated assessments require the consolidation of the various environmental 

and economic processes and a framework to evaluate the potential solutions 

against each other. For most such frameworks the ultimate end-point are the 

human welfare effects, which are quantified by translating the physical effects 

(e.g. NH3 pollution or human health effects) into monetary terms. Though difficult 

to obtain, such estimates already exist in relation to certain wider impacts and are 

important in impact assessment. 

1.2 Research aims 

As the Scottish Government further develops policies and proposals to increase 

GHG mitigation across society, a better understanding of the potential wider 

impacts of these is needed, along with developing an overview of potential co-

benefits and adverse side effects of policy, and of how key synergies and trade-

offs can be quantified. To support this work in the ALULUCF and waste sectors, 

Scottish Government identified the following research questions: 

1. What is the evidence, both quantitative and qualitative, of potential wider 

impacts (co-benefits and adverse side effects) for Scotland arising from 

climate change mitigation actions which would be relevant to the Scottish 

context?  

2. Based on a review and synthesis of quantitative evidence, which models and 

tools are assessed as the most robust to quantify and, where possible, 

monetise such wider impacts? What quantitative data would be required to 

apply these models to Scotland? What key assumptions are required? 

3. Based on a review and synthesis of qualitative evidence, what are the key 

sources of robust evidence; and what is the balance of evidence, in terms of 

the direction (positive / negative) and potential magnitude, of those wider 

impacts relevant to Scotland?  

4. From an equalities perspective, what evidence is there about the potential 

distribution of wider impacts relevant to Scotland across the population? 

5. What are the most significant gaps in research and evidence about potential 

wider impacts which are relevant to Scotland? 
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The most important questions for the Scottish Government regarding the waste 

sector were slightly different from the other sectors; two aspects of the wider 

impacts of GHG mitigation in the waste sector were considered, as requested 

from the Scottish Government: 

1. Employment benefits from diverting increased tonnages from landfill to 

recycling: an evidence review of the potential employment benefits (taking 

into account job displacement) from diverting tonnages from landfill to 

recycling. Is there any evidence for different sized benefits depending on the 

type of waste? 

2. Evidence review of the potential magnitude of non-territorial emission savings 

as a result of meeting the Scottish Government‘s waste targets and a review 

of the potential approaches to assess the non-territorial emission savings. 

 

This report considers the WIs of MOs in ALULUCF and waste sectors in 

Scotland. It provides an overview of the direction and magnitude of these impacts 

and considers appropriate models and tools for quantitative evaluation. A second 

objective is to summarise evidence on the monetary valuation of impacts in order 

to facilitate integrated assessment. The report also highlights further research 

needs in exploring the synergies and trade-offs arising from GHG mitigation in 

Scotland. 

The report is structured as follows. Section 2 sets out the methodology, 

explaining how the MOs were selected and what wider impacts were considered. 

Section 3 summarises the key messages regarding the wider impacts, their 

modelling and valuation in the ALULUCF sectors – more details of these issues 

are provided in Appendix A1, Appendix A2 and Appendix A3. Section A1.1 

describes the findings of the qualitative evidence review in the waste sector. 
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2  Approach to the evidence review 

2.1 Selection of mitigation options 

There is a wide variety of potential GHG MOs within the ALULUCF sector. For 

example, the 2015 GHG marginal abatement cost curves for agriculture (Eory et 

al. 2015) identified 26 potential measures for Scottish farming. For the current 

report to add most value it was agreed that the evidence review would focus on a 

selection of MOs. Following discussion with the Scottish Government and after 

taking into consideration the 2015 GHG marginal abatement cost curves for 

agriculture, independent expert advice received by the Scottish Government and 

a recent Department for Energy and Climate Change commissioned report (Smith 

et al, 2017) into wider impacts of climate change MOs, the following twelve MOs 

were selected. 

Table 2 Mitigation options assessed 

 Mitigation Option Brief Description 

MO1 Developing on-
farm renewable 
energy sources 

Land managed on Scottish farms often has excellent 
renewable energy potential, and renewables are an 
important part of Scotland‘s effort to reduce GHG 
emissions.  

MO2 Increased uptake 
of precision 
farming techniques 
 

Precision farming includes management practices and a 
range of technologies enabling farmers to analyse 
information on soil, crop and animal quality. This can 
contribute to reducing energy use by machinery, and/or 
the GHG emission intensity of crop and livestock 
products. 

MO3 Achieving and 
maintaining optimal 
soil pH level 
(grassland and 
arable land) 

The Scottish Government are in the planning stages of 
introducing compulsory soil testing on improved 
agricultural land. This should give farmers the tools to 
understand and manage their soil and could help reduce 
over-application of fertiliser while simultaneously 
increasing farm profitability.  

MO4 Anaerobic 
digesters for 
manure processing 
(community AD 
facilities of around 
750KW – 1 MW) 

AD of manure can reduce methane (CH4) emissions from 
storage and can provide alternative energy sources, thus 
providing further, indirect, GHG savings. 

MO5 Agroforestry 
 

Agroforestry can sequester carbon and also enable farms 
to provide a range of ecosystem services while having 
little or no negative effect on food production.  

MO6 Incorporating more 
legumes in grass 
mixes/crop 
rotations 
 

Legumes have symbiotic relationships with bacteria 
allowing them to fix atmospheric nitrogen and use this in 
place of nitrogen provided by synthetic fertilisers. They 
are also supply nitrogen to crops they are mixed with 
(e.g. clover-grass mixtures) and to subsequent crop 
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 Mitigation Option Brief Description 

rotations (e.g. peas in one year and cereals in the next). 

MO7 Optimising use of 
mineral nitrogen 
fertiliser 

Optimising the use of mineral fertiliser means that the 
fertiliser will be used more efficiently, thus reducing 
application rates. 

MO8 Low-emission 
storage and 
application of 
manure 

This approach can reduce NH3 (providing savings in 
indirect N2O emissions) and CH4 emissions, and can 
result in retaining more nutrients for target crops.  

MO9 Improving livestock 
health 
 

Livestock diseases can lead to impacts on livestock 
performance. Treating and preventing diseases tend to 
increase productivity and lead to decreases in the 
emissions intensity of the meat, milk or eggs.  

MO10 Reduced livestock 
product 
consumption 
 

Positive health impact of a dietary shift from meat-
consumption could be the single largest co-benefit of any 
GHG-mitigating measure examined. Evidence indicates 
combined GHG and health benefits warrants further 
investigation of WIs.  

MO11 Afforestation Afforestation is potentially a major contributor to reducing 
the net GHG emissions by sequestering carbon in the soil 
and as woody biomass. 

MO12 Peatland 
restoration 

Peatland restoration can reduce the carbon dioxide (CO2) 
emissions associated with the degradation of soil carbon 
content in peatlands that have been (partially) drained. 

 

As agreed with the Scottish Government a different approach has been taken in 

reviewing the wider impacts associated with the waste sector. For this sector 

attention has focused on potential employment benefits from diverting tonnages 

from landfill to recycling, with a high level consideration of non-territorial 

emissions.  

2.2 Wider impacts and the impact pathway 

The wider impacts associated with GHG mitigation in the ALULUCF and waste 

sectors are many and varied. Likewise, the pathway through which these co-

benefits and adverse side-effects arise can be complex. For example, a MO can 

have a wide range of direct effects, such as impacting on NH3 levels or the level 

of nitrogen leaching. These primary effects can then translate into intermediate 

impacts i.e. changes in air quality and water quality respectively, which in turn can 

lead to impacts on human well-being (endpoint impacts), such as changes in 

human health. 

An understanding of the different pathways through which MOs can have wider 

impacts is important in the development of policies. Once the pathways are 
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identified policies can be designed to maximize the co-benefits and mitigate the 

adverse side-effects.  

This evidence review has found that the majority of qualitative evidence focuses 

on the direct effects, but ultimately the monetary values of impacts are directly 

related with endpoint impacts. However, the relation between direct impacts and 

end-point impacts is not of a one-to-one identity: direct impacts contribute to 

multiple intermediate impacts that in turn contribute to multiple end-point impacts. 

Conversely, changes in various aspects of human well-being (e.g. human health 

or cultural well-being) depend on multiple primary impacts. Disentangling these 

complexities and quantitatively attributing the end-point or intermediate impacts to 

direct impacts is often unfeasible, but certain parts of these pathways are 

becoming well- described.  

As direct evidence on the wider impacts or agricultural production practices is 

mostly available at the direct impact level, the main focus of the report was placed 

on these impacts. For some of these impacts some level of monetary valuation is 

already available. The direct impacts considered were NH3, NOx, PM, nitrogen 

and phosphorous as the main agriculture-related drivers of air and water quality, 

ultimately impacting on agricultural production, human health and biodiversity; 

water use; animal health and crop health, which have downstream impact on 

food production; animal welfare (contributing to spiritual well-being); land cover 

and land use, which has wide-ranging impacts on agricultural production, 

biodiversity, flood regulation, human health and spiritual wellbeing; and the 

economic and social primary impact of income, consumer and producer 

surplus and employment.  

Four intermediate impacts were also included in the assessment: soil quality, 

flood regulation, biodiversity and resource efficiency. Considering soil 

quality, flood regulation and biodiversity instead of the direct impacts driving them 

(e.g. soil carbon content, soil moisture, land cover, air and water quality) is more 

suitable due to the available monetary values and valuation methodologies. The 

biodiversity impacts are considered only at the local scale, i.e. direct impacts in 

local biodiversity, rather than off-site impacts mediated through changes in air 

quality or water quality. Resource efficiency is a highly aggregated wider impact 

including material use, like nitrogen, phosphorous, water, and energy use. This 

was added as a wider impact to help the alignment of the findings with the 

Scottish Government‘s circular economy aspirations.  

Finally, three endpoint impacts were also included. Human health was explicitly 

considered as the food consumption demand side MO has a strong impact on it, 
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which cannot be captured looking at impacts upstream in the pathway. The 

scarcity of evidence on impacts related to social and cultural wellbeing 

suggested an aggregate assessment at the endpoint level. Endpoint impacts are 

the highest level of aggregation, and as such, they include wide-ranging issues, 

restricting the level of detail in the assessment, but still providing some guidance 

on the direction of impacts.  

Table 3 Wider impacts considered 

 Wider impact Type of impact 

WI1 Air quality: NH3 Direct 

WI2 Air quality: NOx Direct 

WI3 Air quality: PM Direct 

WI4 Air quality: other Direct 

WI5 Water quality: Nitrogen leaching Direct 

WI6 Water quality: Phosphorous leaching Direct 

WI7 Water quality: other (e.g. pesticides) Direct 

WI8 Soil quality Intermediate 

WI9 Flood management, water use Intermediate /Direct 

WI10 Land cover and land use Direct 

WI11 Biodiversity Intermediate 

WI12 Animal health and welfare Direct 

WI13 Crop health Direct 

WI14 
Household income (income effects and distribution of 
impact) 

Direct 

WI15 Consumer and producer surplus  Direct 

WI16 Employment (type and number of jobs) Direct 

WI17 Resource efficiency Intermediate 

WI18 Human health Endpoint 

WI19 Social impacts (cohesion, social engagement) Endpoint 

WI20 
Cultural impacts (recreation, spiritual, cultural heritage, 
landscape value) 

Endpoint 

2.3 Methodology  

This study used a rapid evidence review methodology, consisting of a literature 

review, which included peer-reviewed publications and grey literature (reports 

produced by national, international and third party organisation). International 

literature was considered for its applicability in a Scottish context. Where direct 

evidence was not available expert judgement was used, stating the likely 

importance of the WI.  
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The summarised evidence attempts to cover the most important aspects of the 

GHG MOs, highlighting trade-offs and synergies without covering the finer details 

of spatial and temporal variations or the heterogeneity of biophysical constraints 

or agricultural management; all of which might change the magnitude or direction 

of the impacts. However, significant dependencies of this kind are highlighted in 

the report.  

Some MOs cover a range of different practices on farms (e.g. renewable energy, 

low emission storage and application of manure, improving livestock health). Here 

general impacts are presented noting the key specific impacts. Similarly, the WIs 

are often composites of very varied impacts; for example cultural impacts include 

recreational, educational, spiritual and aesthetic aspects. The assessment of 

these WIs offers a high level overview, with highlight of specific issues (e.g. the 

recreational impact of afforestation is discussed in more detail).  

Beyond providing a short explanation on the processes resulting in the WIs in 

relation to the MOs, each WI of each MO is scored at a 5-level scale (from strong 

positive to strong negative effect), while the evidence available was rated as 

weak, moderate or robust. 

The MOs and the WIs are not directly comparable at an aggregated level based 

on the presented results, i.e. a MO with three positive effects is not necessarily 

more desirable than another MO with two positive effects (all other things being 

equal). This is at one hand because a 5-level scale can only distinguish positive 

and strong positive effect, meaning that there can be considerable difference 

between two impacts assessed equally. More importantly, the assessment only 

considers the physical impacts without converting these to impacts on human 

well-being. Additionally, as the WIs evaluated relate to different impact-levels, the 

interrelations between them (e.g. NH3 emissions having an impact on human 

health) means that some aspects are considered more than once in the 

qualitative assessment. This double counting should be avoided before any 

aggregated quantitative analysis to be done. 

Available tools for the assessment of the WIs in relation to the MOs were also 

reviewed, providing short description of models and tools that could (or have 

been) used to assess the WIs at the national level. 
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3  Potential wider impacts GHG mitigation in 

agriculture, land use, land use change and forestry 

3.1 Qualitative evidence 

Table 4 provides an overview of the wider impacts of the GHG mitigation options 

(detailed narratives can be found in Appendix A1 and Appendix A2). The scores 

show the direction and magnitude of impact (positive denoting favourable impact) 

and the colour scale provides an assessment of the robustness of the available 

scientific evidence (weak evidence refers to situations where there is limited 

availability of evidence and/or there are conflicting findings, while robust evidence 

refers to conclusive evidence). The majority of the WIs were positive or neutral, 

with also a high number of variable impacts (i.e. positive and negative impacts 

both possible), but there are no strongly negative impacts.  

There is evidence on co-benefits potentially arising from all MOs. Multiple robust 

co-benefits are related to from on-farm renewable energy, precision farming, AD, 

agroforestry, optimal mineral N use, livestock health, reduced livestock product 

consumption, afforestation and peatland restoration, indicating the potential for 

delivering co-benefits in a range of policy areas. Strong and robust positive 

effects were found for AD on resource efficiency, low emission manure storage 

and application on NH3 emissions, reduced livestock product consumption on 

human health, afforestation on air quality and on flood management and peatland 

restoration on soil quality and biodiversity. 

Adverse impacts were associated with eight MOs, though evidence on some of 

these was limited and therefore the impacts are uncertain. Negative impacts with 

moderate or robust evidence were found for on-farm renewables, AD, improving 

livestock health, reduced livestock product consumption, afforestation and 

peatland restoration. On-farm renewables can have a small unfavourable impact 

on land use by occupying areas could be used for other purposes. Anaerobic 

digesters produce air pollutants (NOx and PM) in the combustion process. 

Improving livestock health might negatively affect biodiversity if habitats are 

altered to reduce vector borne diseases (e.g. field drainage to reduce mud snail 

populations, which act as a vector for liver fluke) and also from certain 

medications released to the environment via livestock excreta. Reduced livestock 

product consumption might lead to increased pesticide use due to higher 

vegetable consumption. Afforestation might result in increased tick populations 

near grazing livestock, increasing the risk of tick-borne diseases. Finally, 
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increased nitrogen and phosphorous leaching is possible in the first years of 

peatland restoration. Careful planning and implementation are needed to 

minimize these effects. 

Several impacts were variable, calling for specific implementation to maximise the 

benefits while reducing adverse impacts. These variable effects were mostly 

associated with reduced livestock product consumption, afforestation, low 

emission storage and application of manure and peatland restoration. In most of 

these cases the reason behind the variable impact was that either the MO or the 

WI is an aggregation of varied technologies or impacts, respectively. For example 

low emission storage and application of manure includes various technologies 

related to manure storage and manure spreading; these technologies have 

different effects on the environment. In other cases the effects on a WI greatly 

depends on the particularities (e.g. location, species, management, ownership) of 

implementation, for example covering the digestate from AD can mitigate the 

otherwise increased NH3 emissions, and the location of afforestation and 

peatland restoration projects can define whether the cultural effect is positive or 

negative.  

The most uncertain MOs (i.e. those MOs with the highest number of WIs 

supported only by weak or moderate evidence) were reduced livestock product 

consumption, livestock health and optimal soil pH, and, to a lower extent, low 

emission storage and application of manure and more legumes. On the other 

hand, WI‘s related to afforestation and optimal use of mineral nitrogen seemed to 

be the best explored. This is to be expected for the former three MOs, as 

research has relatively recently started focusing on their GHG effects (either 

globally, like reduced livestock product consumption and livestock health, or in 

the Scottish context, like optimal soil pH). Further research could help in closing 

these knowledge gaps. Highlighted areas are soil pH impacts on water quality, 

soil quality and biodiversity, the influence of improving livestock health on 

pesticides and human health, and the effects of reduced livestock product 

consumption on the structure of agricultural production with particular emphasis 

on soil quality, biodiversity, animal health and welfare, employment, social and 

cultural impacts. 

Many MOs can have co-benefits in relation to air and water quality, resource 

efficiency and human health, and these co-benefits can be promoted by 

integrated approaches in these policy areas. The WIs that had the highest 

number of variable co-effects were soil quality, flood management and water use, 
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household income and human health. Again, policy integration of these areas and 

GHG mitigation is key in maximising the net benefits. 

The impact categories least affected by the MOs considered air quality other than 

NH3, NOx or PM, cultural impacts and crop health (four to five MOs impacting on 

any one of them). However, the magnitude of these impacts emphasises the 

importance of integrated approaches. For example, the cultural impacts of 

afforestation or peatland restoration requires the consideration of both 

environmental and social aspects in planning and management, and the likely 

impact of agroforestry on crop health calls for developing capacity to incorporate 

crops pest and diseases assessment in local and regional decisions on 

agroforestry. 

Four WIs were found to be the most uncertain (i.e. with the highest number of 

MOs with weak or moderate evidence on these impacts): household income, 

consumer and producer surplus, employment and cultural impacts. On average 

the environmental impacts were more robust, with the least uncertainty around 

NH3 and NOx emissions and resource efficiency. 
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Table 4 Summary of the WIs of the GHG MOs 
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MO1 On-farm renewables 0 + + + 0 0 0 +/- 0 - 0/- 0 0 + +/- + + +/- + 0

MO2 Precision farming + + + + + + + + + 0 + +/- + + + - + + +/- 0

MO3 Optimal soil pH +/- 0 0 0 + + + + +/- 0 +/- + + + + 0 0 + 0 0

MO4 Anaerobic digesters -/0 - - 0 +/- - 0 +/- 0 0 0 0 0 + + + ++ +/- + 0

MO5 Agroforestry + + + 0 + + + + + + + + + 0 0 0 0 + 0 +

MO6 More legumes + + + 0 - 0 0 + 0 + + 0 + 0 0 0 + 0 0 0

MO7 Optimal mineral N use + + + 0 + + 0 0 0 0 0 0 0 0 0 0 0 + 0 0

MO8
Manure storage and 

application
++ 0 + +/- + + + +/- 0 0 0 + 0 +/- 0 + +/- +/- 0 0

MO9 Livestock health + 0 0 0 + + - 0 0 0 - +/- 0 0 0 0 + +/- 0 0

MO10
Reduced livestock 

product consumption
+ 0 0 0 + + - +/- +/- + +/- +/- 0 +/- +/- +/- + ++ +/- +/-

MO11 Afforestation ++ ++ ++ + + 0 +/- +/- ++ + +/- - 0 +/- +/- +/- + + + +/-

MO12 Peatland restoration 0 0 + 0 - - +/- ++ +/- +/- ++ + - +/- 0 0 0 +/- + +/-

Legend

++ Strong positive effect

+ Positive effect

0 No siginificant effect

+/- Variable effect

- Negative effect

-- Strong negative effect

Weak evidence

Moderate evidence

Robust evidence
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3.2 Quantitative aspects: models and tools and valuation 

MO implementation typically involves trade-offs and synergies with other policy 

goals. Evidence is required to evaluate these and to identify how impacts are 

attributable to different policies. Modelling the potential impacts is an important 

part of such an exercise, along with establishing the monetary values of the WIs 

to serve as a common metric between them. 

This section summarises the modelling capacity for capturing the particular 

effects of the individual MOs on the WIs and the available monetary values. 

Model suitability is summarised in Table 5 – Table 9. The list of the WIs where 

currently robust valuation is available is presented in Table 10, a full list with 

monetary values can be found in Table 59. More detailed model and monetary 

value descriptions are provided in Appendix A2 and A3, respectively. 

There is widely applied modelling capacity for most of air and water quality 

aspects. UK-specific models are available to estimate most of the air and water 

quality effects of changes in farm management and changes in land use related 

to the MOs. No suitable models were found for some water quality aspects (e.g. 

heavy metal pollution effects of optimal soil pH and faecal microorganism effects 

of low emission manure storage and application). Monetary values (used by the 

UK Government) are available for the major air pollutants (NH3, NOx, PM), 

however, these only include health impacts of secondary PM formation, and do 

not account for other health impacts or any environmental impact (e.g. 

acidification, eutrophication). Some monetary values exist for water quality 

impacts from nitrogen pollution and general water quality status (the former is 

location specific). No monetary values were found for phosphorous pollution of 

water. 

Soil quality modelling is overwhelmingly soil carbon modelling, since this is an 

important component of structure quality. Other aspects of soil quality are not 

normally included in the relevant models (for example physical and hydrologic), 

making it unfeasible to estimate the quantitative impacts of some MOs (Anaerobic 

digesters, More legumes, Manure storage and application) on Soil quality. The 

valuation of soil quality is possible through the impacts on agricultural productivity 

(i.e. using market values). 
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The expected impacts of MOs on flood management and water use can be 

quantitatively assessed with hydrological models. On the valuation side existing 

spatially explicit property damage values can be used to value flood risk. 

Larger scale land use changes related to afforestation and reduced livestock 

product consumption can be predicted using models (e.g. econometric or agent 

based models), which capture the economic drivers (subsidies, markets) and the 

biophysical constraints of land use. No models were found to quantify the 

changes potentially induced by on-farm renewables and more legumes.  

Existing models are capable of estimating the biodiversity impacts of MOs which 

result in land use change (reduced livestock product consumption, afforestation 

and peatland restoration), but farm management changes (related to MO1-MO9) 

cannot currently be assessed. Monetary values for biodiversity are based on the 

way habitat improvements change the status of charismatic and non-charismatic 

species. 

No models or tools were found to quantify the WIs on Animal health and welfare 

and crop health. If quantitative estimates were available, the value of the animal 

and crop health effects could be captured by the production changes. Existing 

animal welfare monetary values relate to livestock systems (e.g. free range 

versus caged) and cannot be linked to welfare outcomes and therefore to the 

management changes implied by the MOs assessed in the report. 

Economic models (e.g. computable general equilibrium (CGE) models, Input-

Output (IO) models and Social Accounting Matrix (SAM)) can quantify three WIs 

(Household income, Consumer and producer surplus and Employment and part 

of Resource efficiency). But these are more suited to assess larger scale impacts 

than those occurring at the farm scale.  

For human health, dietary models are well-developed, as are those relating health 

to air and water quality related impacts. . But a number of more specific health 

effects cannot be currently modelled including zoonoses and antimicrobial 

resistance. There are existing estimates for the monetary value of some human 

health impacts.  

Social and cultural impacts are difficult to quantify and no models or tools were 

found apart from those to quantify the recreational benefits of green space. 

Evidence is also limited on the monetary values of the cultural impact; existing 

values are based on improvements to habitats on ‗sense of place‘. Currently there 

is no evidence on the valuation of social impacts. 
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Table 5 Models for air quality assessment (WIs 1-4, see model description in Appendix 
A2) 
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MO1 On-farm renewables No impact expected

EMEP4UK (regional)

SCAIL (local)

GAINS/UKIAM

EMEP4UK (regional)

SCAIL (local)

GAINS/UKIAM

EMEP4UK (regional)

SCAIL (local)

GAINS/UKIAM

MO2 Precision farming 

EMEP4UK (regional)

SCAIL (local)

GAINS/UKIAM

Farmscoper

EMEP4UK (regional)

SCAIL (local)

GAINS/UKIAM

EMEP4UK (regional)

SCAIL (local)

GAINS/UKIAM

EMEP4UK

GAINS/UKIAM

MO3 Optimal soil pH 
EMEP4UK

GAINS/UKIAM
No impact expected No impact expected No impact expected

MO4 Anaerobic digesters

EMEP4UK (regional)

SCAIL (local)

GAINS/UKIAM

EMEP4UK

GAINS/UKIAM

EMEP4UK (regional)

SCAIL (local)

GAINS/UKIAM

No impact expected

MO5 Agroforestry

DNDC

MODASS-THETIS

EMEP4UK

GAINS/UKIAM

EMEP4UK

GAINS/UKIAM

EMEP4UK

GAINS/UKIAM
No impact expected

MO6 More legumes 

EMEP4UK

GAINS/UKIAM

Farmscoper

EMEP4UK

GAINS/UKIAM

EMEP4UK

GAINS/UKIAM
No impact expected

MO7 Optimal mineral N use

EMEP4UK

GAINS/UKIAM

Farmscoper

EMEP4UK

GAINS/UKIAM

EMEP4UK

GAINS/UKIAM
No impact expected

MO8
Manure storage and 

application

EMEP4UK (regional)

SCAIL (local)

GAINS/UKIAM

Farmscoper

No impact expected

EMEP4UK (regional)

SCAIL (local)

GAINS/UKIAM

EMEP4UK (regional)

SCAIL (local)

GAINS/UKIAM

MO9 Livestock health

EMEP4UK

GAINS/UKIAM

Farmscoper

No impact expected No impact expected No impact expected

MO10
Reduced livestock product 

consumption

EMEP4UK

GAINS/UKIAM
No impact expected No impact expected No impact expected

MO11 Afforestation
FOREST-DNDC

MODDAS-THETIS

EMEP4UK

GAINS/UKIAM

EMEP4UK

GAINS/UKIAM

EMEP4UK

GAINS/UKIAM

MO12 Peatland restoration No impact expected No impact expected
No models/tools 

found
No impacts expected
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Table 6 Models for water and soil quality assessment (WIs 5-8, see model description in 
Appendix A2) 
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MO1 On-farm renewables No impact expected No impact expected No impact expected

Windfarm carbon 

calculator (wind 

turbines).  CARBINE 

(biomass fuel crops)

MO2 Precision farming 
LUCI, ADAS Wales, 

Farmscoper, NIRAMS

LUCI, ADAS Wales, 

Farmscoper

LUCI (sediment), 

ADAS Wales 

(pesticides), 

Farmscoper 

(pesticides)

Spacsys

MO3 Optimal soil pH LUCI LUCI
No models/tools 

found
Century

MO4 Anaerobic digesters

ADAS Wales, 

Farmscoper,  LUCI, 

NIRAMS

LUCI, ADAS Wales, 

Farmscoper
No impact expected

No models/tools 

found

MO5 Agroforestry DNDC, LUCI, NIRAMS
DNDC, LUCI, ADAS 

Wales

LUCI (sediment), 

ADAS Wales 

(pesticides), 

Farmscoper 

(pesticides)

DNDC, CARBINE (soil 

carbon stocks)

MO6 More legumes Farmscoper, NIRAMS No impact expected No impact expected
No models/tools 

found

MO7 Optimal mineral N use
LUCI, ADAS Wales, 

Farmscoper, NIRAMS

LUCI, ADAS Wales, 

Farmscoper
No impact expected No impact expected

MO8
Manure storage and 

application

ADAS Wales, 

Farmscoper,  LUCI, 

NIRAMS

LUCI, ADAS Wales, 

Farmscoper

No models/tools 

found

No models/tools 

found

MO9 Livestock health
ADAS Wales, 

Farmscoper,  LUCI

LUCI, ADAS Wales, 

Farmscoper

ADAS Wales 

(veterinary 

medicines)

No impact expected

MO10
Reduced livestock product 

consumption

LUCI, ADAS Wales, 

Farmscoper, NIRAMS

LUCI, ADAS Wales, 

Farmscoper

ADAS Wales 

(veterinary 

medicines)

DNDC, CARBINE (soil 

carbon stocks)

MO11 Afforestation LUCI, NIRAMS No impact expected
No models/tools 

found

CARBINE (soil carbon 

stocks)

MO12 Peatland restoration LUCI LUCI
No models/tools 

found

LULUCF Inventory 

(soil carbon stocks)
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Table 7 Models for assessing flood management and water use, land cover and land 
use, biodiversity and animal health and welfare (WIs 9-12, see model description in 
Appendix A2) 
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MO1 On-farm renewables No impact expected
No models/tools 

found

No models/tools 

found
No impact expected

MO2 Precision farming IHMS, SALTMED No impact expected
No models/tools 

found

No models/tools 

found

MO3 Optimal soil pH IHMS, SALTMED No impact expected
No models/tools 

found

No models/tools 

found

MO4 Anaerobic digesters No impact expected No impact expected No impact expected No impact expected

MO5 Agroforestry IHMS, SALTMED, LUCI LULUCF Inventory

SNH's IHN, Eco-Serve 

GIS, InVEST, 

AgBioscape, LUCI

No models/tools 

found

MO6 More legumes No impact expected
No models/tools 

found

AgBioscape, SRUC's 

Biodiv Calc, InVEST, 

Eco-Serve GIS

No impact expected

MO7 Optimal mineral N use No impact expected No impact expected No impact expected No impact expected

MO8
Manure storage and 

application
No impact expected No impact expected No impact expected

No models/tools 

found

MO9 Livestock health No impact expected No impact expected
No models/tools 

found

No models/tools 

found

MO10
Reduced livestock product 

consumption
IHMS, SALTMED

Spatial econometric 

and agent based 

models

SRUC's Biodiv Calc, 

AgBioscape

No models/tools 

found

MO11 Afforestation IHMS

Spatial econometric 

and agent based 

models, LULUCF 

Inventory

SNH's IHN, Eco-Serve 

GIS, InVEST, 

AgBioscape

No models/tools 

found

MO12 Peatland restoration IHMS, SALTMED LULUCF Inventory

SNH's IHN, SRUC's 

Biodiv Calc, Eco-Serve 

GIS, InVEST

No models/tools 

found
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Table 8 Models for assessing crop health, household income, consumer and producer 
surplus and employment (WIs 13-16, see model description in Appendix A2) 
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MO1 On-farm renewables No impact expected IO/SAM, CGE IO/SAM, CGE IO/SAM, CGE

MO2 Precision farming DSSAT/APSIM CGE CGE CGE

MO3 Optimal soil pH DSSAT/APSIM CGE CGE No impact expected

MO4 Anaerobic digesters No impact expected IO/SAM, CGE IO/SAM, CGE IO/SAM, CGE

MO5 Agroforestry
No models/tools 

found
No impact expected No impact expected No impact expected

MO6 More legumes ROTOR, LUSO No impact expected No impact expected No impact expected

MO7 Optimal mineral N use No impact expected No impact expected No impact expected No impact expected

MO8
Manure storage and 

application
No impact expected CGE No impact expected CGE

MO9 Livestock health No impact expected No impact expected No impact expected No impact expected

MO10
Reduced livestock product 

consumption
No impact expected IO/SAM, CGE IO/SAM, CGE IO/SAM, CGE

MO11 Afforestation No impact expected IO/SAM, CGE IO/SAM, CGE IO/SAM, CGE

MO12 Peatland restoration
No models/tools 

found
IO/SAM, CGE No impact expected No impact expected
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Table 9 Models for assessing resource efficiency, human health, social impacts and 
cultural impacts (WIs 17-20, see model description in Appendix A2) 

 

WI17 WI18 WI19 WI20

R
es

o
u

rc
e 

ef
fi

ci
en

cy

H
u

m
an

 

h
ea

lt
h

So
ci

al
 

im
p

ac
ts

C
u

lt
u

ra
l 

im
p

ac
ts

MO1 On-farm renewables AgRECalc, AGRILCA See air quality models
No models/tools 

found
No impact expected

MO2 Precision farming AgRECalc, AGRILCA
See air and water 

quality models

No models/tools 

found
No impact expected

MO3 Optimal soil pH No impact expected
No models found for 

assessment
No impact expected No impact expected

MO4 Anaerobic digesters AgRECalc, AGRILCA
See air and water 

quality models

No models/tools 

found
No impact expected

MO5 Agroforestry No impact expected
See air and water 

quality models
No impact expected

No models/tools 

found

MO6 More legumes AgRECalc, AGRILCA No impact expected No impact expected No impact expected

MO7 Optimal mineral N use No impact expected
See air and water 

quality models
No impact expected No impact expected

MO8
Manure storage and 

application
AgRECalc, AGRILCA

No models found for 

acid risk assessment; 

also see air and 

water quality models

No impact expected No impact expected

MO9 Livestock health AgRECalc, AGRILCA

No models found for 

zoonosis and 

antibiotic risk 

assessment; also see 

air and water quality 

models

No impact expected No impact expected

MO10
Reduced livestock product 

consumption
IO/SAM, CGE DIETRON, PRIME

No models/tools 

found
ORVal

MO11 Afforestation IO/SAM, CGE

Effects of forest-

related exercise on 

health: no models; 

also see air and 

water quality models

No models/tools 

found
ORVal

MO12 Peatland restoration No impact expected
No models/tools 

found

No models/tools 

found
ORVal
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Table 10 Robust monetary values of the wider impacts 
 Wider impact Included in the value Reference 

WI1 Air quality: 
NH3 

Cost of morbidity and mortality arising from secondary 
PM formation. Recommended use for UK national 
evaluation. 2015 prices. 

Defra (2015) 

WI2 Air quality: 
NOx 

Cost of morbidity and mortality arising from secondary 
PM formation. Recommended use for UK national 
evaluation. 2015 prices. 

Defra (2015) 

WI3 Air quality: PM Cost of morbidity and mortality from direct exposure 
and value of building soiling. Recommended use for 
UK national evaluation. 2015 prices. 

Defra (2015) 

WI4 Air quality: 
other: sulphur 
dioxide 

Cost of morbidity and mortality from direct exposure, 
from secondary PM formation and value of building 
damage. 
Recommended use for UK national evaluation. 2015 
prices. 

Defra (2015) 

WI9 Flood 
management 

Estimated flood damage values are available in the 
SEPA Flood Risk Management Strategies. 

SEPA (2015) 

WI18 Human health Impact on both life years and quality of life based on 
willingness to pay. 

(Glover and 
Henderson 
2010) 

A1.1 Research gaps 

The review revealed certain areas where the evidence about likely adverse impacts 

is not robust. Improving the evidence base in such cases can ensure that policies 

minimise these effects while maximising GHG benefits. WIs that can be either co-

benefits or adverse impacts depending the way the MO is implemented also require 

further investigation to ensure that total benefits are maximised. However, research 

capacity in terms of modelling the WIs is not equally well developed for all MOs and 

WIs, as detailed in Section 3.2. Table 11 presents those MO–WI combinations in red 

where there is a highlighted research need but inadequate modelling capacity was 

found. This emphasizes the need for investment in further research and 

development of modelling capability. The four wider impacts most affected were soil 

quality, biodiversity, animal health and welfare and human health. Orange cells in the 

same table indicate those areas where the highlighted research need can be more 

readily answered by existing models. This mainly relates to three MOs: optimal soil 

pH, reduced livestock product consumption and afforestation. 

The nature of greenhouse gas effect implies that GHG mitigation is not a spatial 

issue. However, most of the co-benefits and adverse effects are highly sensitive to 

the location of the land use or farm management change. To maximise the net 

benefits at regional or national level, spatially explicit integrative approaches are 

needed.  
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Furthermore, decision support tools which integrate the different environmental, 

economic and social aspects at a high level and offer standardised and more 

comprehensive appraisal could be useful tools for policy makers.  
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Table 11 Areas highlighted for further research 
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MO1 On-farm renewables

MO2 Precision farming 

MO3 Optimal soil pH 

MO4 Anaerobic digesters

MO5 Agroforestry

MO6 More legumes 

MO7 Optimal mineral N use

MO8 Manure storage and application

MO9 Livestock health

MO10
Reduced livestock product 

consumption

MO11 Afforestation

MO12 Peatland restoration

No adequate models found to quantify negative effect 

with weak or moderate existing evidence

Models exist to quantify negative effect with weak or 

moderate existing evidence
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4  Potential wider impacts of GHG mitigation in the 

waste sector 

4.1 Employment benefits of diversion from landfill to recycling 

4.1.1 Potential employment benefits in Scotland 

The estimation of waste industry employment impacts hinges on the derivation of 

figures for the rate of employment per tonne of waste managed in different 

operations (e.g. collection, landfilling, incineration, etc.). This is based on the 

assumption that the rate of employment per tonne of waste managed for different 

management operations differs. The relative differences in treatment destinations 

can then be used to calculate the change in the number of FTEs across a range 

of scenarios. Hence, the key inputs required to derive employment impacts are: 

1. The estimated mass flow of various waste materials in the modelled 

scenario; 

2. The change in tonnages managed under different waste management 

operations; and  

3. The employment rate i.e. number of FTEs per tonne of each type of waste 

managed under each operation.  

Employment is then usually estimated in terms of number of FTE jobs per 10,000 

tonnes of waste processed (also referred to as ‗employment intensity‘). 

Employment intensity factors can be scaled in order to derive:  

1. In the first instance, employment generated under a particular waste 

management scenario; and 

2. More importantly, the net employment impact from a waste management 

policy proposal scenario compared to the counterfactual or baseline case.  

The graphical overview of a basic employment impact model is provided in Figure 

1. This example is taken from European Commission and involved modelling 

employment factors in relation to a range of waste management processes 

across a range of scenarios (Eunomia 2014). 
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Figure 1 Example overview of employment modelling 

4.1.2 Summary of findings of literature review 

The estimate of employment benefits relies on the derivation of employment 

intensities, which in turn depends on waste mass flow and management data. A 

review of the available information for such data was carried out, with evidence 

presented by both waste management operation and material in Sections 4.1.2.1 

and 4.1.2.2 respectively. The range of employment intensity estimates the 

literature reviewed is summarised in Table 12. Although a reasonable number of 

known information sources have been studied, the review is not exhaustive. 
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Table 12 Employment intensities from various data sources (full time equivalents (FTEs) 
per 10,000 tonnes per annum) 
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SWAP, 1997 
(UK) 

                  3-67  

Murray, 1999 
(UK) 

≈
1 

≈1           6 21–40 2  

Gray et al. 2004 
(UK) 

                
5 
(biowaste
) 

4-19 

Seldman, 2006 
(USA) 

1 1   4           25 

Urban Mines 
and Walker 
Resource 
Management, 
2012 (UK) 

    5   2   2      

Eunomia, 2014 
(EU) 

        4   2      

TBU and 
Eunomia, 2003 

    2 - 3              

University of 
Glamorgan, 
2007 (AU) 

    5              

Greenpeace, 
2009 

 5         

Cottica & 
Kaulard, 1995 

≈
1 

2-4         

European 
Commission, 
2006 

         12 

Friends of the 
Earth, 2010 

        32 49 

Selected figure 
for modelling 

1 1 4 4  4 2 2 6 

Material specific data 
for recycling and 
reprocessing is in  
Section4.1.2.2) 

Notes: Figures are rounded to nearest integer. It is important to note that whilst Seldman’s study 
was published in 2006, the data was collected in 1997.  
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4.1.2.1 EMPLOYMENT BY WASTE MANAGEMENT OPERATION 

Research indicated that the level of conformity in employment estimates varies 

between the different waste management operations. The literature review for 

landfill for example, which is an established disposal route, found far greater 

conformity in results compared to reprocessing technologies. Variation in the 

levels of mechanisation and technology between reprocessing facilities may 

contribute to the large range in employment intensities presented in different 

studies.  

4.1.2.1.1 LANDFILL  

Despite the date of research and lack of methodological transparency, the 

conformity of the results from the Seldman (2006), Murray (1999) and Cottica & 

Kaurlard (1995) studies imply that 1 is an acceptable figure to use for modelling. 

Being typically large scale (high throughput) facilities with respectively low 

process technology (landfill) these figures appear reasonable compared to the 

results for other technologies. 

4.1.2.1.2 INCINERATION  

The most recent study by Greenpeace (2009) about incineration in Spain gives 

an estimate of 4.8 jobs per 10,000 tonne per annum (tpa) based on 10 

incinerators operational at the time in Spain. However, the report does note that 

the figure varies significantly between plants, giving the example of the 280,000 

tpa Zagalgabri facility operated by just eleven people (equivalent to 0.4 FTEs per 

10,000). A lower employment intensity of 1FTE/10,000t is found in both the 

Murray (1999) and Seldman (2006) studies, with the Cottica & Kaulard study 

(1995) presenting a range from 1.9-3.7 FTE/10,000t.  

Based on the literature findings, and given that incineration in most instances is a 

large scale highly mechanised process, a figure of 1 FTE/10,000t is considered 

reasonable. 

4.1.2.1.3 MECHANICAL BIOLOGICAL TREATMENT  

A detailed report on MBT (TBU and Eunomia 2003) gives personnel requirements 

as reproduced in Table 13. This suggests that a basic minimum number of staff 

are required for an MBT facility. The data indicates that at smallest viable scale 

for such a facility (40,000 tpa as indicated in the source reference), staff numbers 

may total perhaps 12 FTEs, or 3 employees per 10,000 tpa of capacity.  
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Table 13 Personnel requirements of a mechanized MBT with fermentation (source: TBU 
and Eunomia, 2003) 

Function Responsibility Number of Staff 

Operating manager Whole plant 1 

Deputy operating manager Fermentation 1 

Electrician, electronics engineer 
EMSR (Electrical, measurement, 
control and regulation technology) 

1-2 

Fitter Maintenance, repair 1 

Mobile equipment operator 
Wheel loader, grab excavator, 
container vehicles 

3-4 

Cleaning staff 
Daily cleaning and cleaning of the 
grounds, externally if necessary 

2-3 

Laboratory staff Process control, material analysis Proportional 

Replacement Estimation: ~ 25-30% Proportional 

Administration  Proportional 

Weighbridge, workshop  Proportional 

Data administration, marketing  Proportional 

A comprehensive survey of the UK organics industry by WRAP elicited data for 

10 MBT plants (Urban Mines and Walker Resource Management, 2012). The 

data was subsequently upscaled to account for plants that did not partake in the 

survey. Whilst WRAP‘s figures for AD and composting are calculated from site‘s 

annual material input, the employment figure for MBT was based on the plant‘s 

annual capacity. Data given in the report‘s Appendix 5, reveals that the 10 MBT 

sites successfully surveyed average 74,600 tpa of material input for an average 

83,000 tpa of total annual capacity, and with an average 35.6 employees per 

facility. As such, we can derive an employment intensity of 4.8FTE per 10,000 tpa 

of throughput.  

One further reference is available for a 100,000 tpa facility in Austria incorporating 

mechanical (and manual) sorting, percolation and AD, biodrying, mechanical 

material separation (heavy/light fraction separation for SRF production), exhaust 

gas treatment and onsite disposal to landfill. The report states that ―ZAK 

Ringsheim has 50 employees in total, including many administrative staff‖. A 

more simple MBT facility (without the digestion element), and where landfill is 

considered as a separate activity may be expected therefore to employ less than 

this 5 FTE per 10,000 tpa figure. Based on these comparisons, a figure of 4 FTE 

per 10,000 tpa is recommended for modelling. 
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4.1.2.1.4 WINDROW AND IN-VESSEL COMPOSTING 

WRAP‘s study surveyed 199 composting sites across the UK (Urban Mines and 

Walker Resource Management, 2012). Whilst these included windrow, in-vessel 

and also aerated pile composting facilities, aerated pile accounted for <1% of the 

surveyed input and thus did not significantly show in the results.  

Note that the report did not go into details of individual sites. Eunomia‘s research 

demonstrated an inverse relationship between site size and employment intensity 

for windrow composting sites (as may be expected), albeit with very few data 

points (Eunomia, 2014). However, this does not fully explain the differences 

between Eunomia‘s and WRAP‘s results: the average input per site for WRAPs 

study was 19,186 tpa compared to an average of 18,000 for this study.  

The lack of available data points give very little upon which to base our 

assumptions, but the Eunomia (2014) study suggests a figure of 4 FTEs per 

10,000 tpa may be reasonable for windrow compositing. The lower figure of 2 

FTEs per 10,000 tpa is selected for in-vessel composting in order both to be 

conservative and to match the figure for AD. 

4.1.2.1.5 ANAEROBIIC DIGESTION 

WRAP‘s study surveyed 19 out of the total 48 AD sites in the UK, indicating an 

average of 2 FTEs per 10,000 tpa of capacity. Neither WRAP‘s (Urban Mines and 

Walker Resource Management, 2012) nor Eunomia‘s micro study (2014) focused 

specifically on AD sites processing food waste. Both studies, however, discerned 

a similar mean employment intensity. The data is not sufficient to show any 

trends for employment intensity varying with facility throughput. The conformity of 

WRAP‘s value with Eunomia‘s supports its use in employment modelling.  
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4.1.2.1.6 WASTE COLLECTION AND REPROCESSING 

 

Table 14 illustrates the results from a study for DEMOS on waste and recycling 

collection systems (Murray, 1999). They clearly demonstrate higher employment 

intensity for recycling than residual waste collection. The values for recycling in 

particular are inclined to change, however, as recycling systems and rates have 

changed dramatically since the time of publication.  

Table 14 Employment intensity for waste collection (FTEs per 10,000 tpa) (source: 
Murray,1999) 

 Number of Staff 

Recycling collection ≈ 21 – 40 

Residual waste collection ≈ 6 

Where recycling is concerned, data in the literature often conflates employment in 

waste collection with that in sorting and in reprocessing. There is some sense in 

this approach, as studies often attempt to demonstrate in a straightforward 

manner the additional employment associated with additional recycling, and thus 

the factors used include collection, sorting and reprocessing combined. This also 

minimises issues where employment moves between collection and sorting 

operations depending on the degree of separation during the collection operation. 

However, where studies focus on the employment created by additional recycling, 

they tend to miss the potential loss of employment associated with residual waste 

collection.  

4.1.2.2 EMPLOYMENT BY MATERIAL 

Data on employment for reprocessing further suggests that employment intensity 

varies considerably depending on the material which is being reprocessed. Table 

15 shows employment intensity by material reprocessed, based on data from 

SWAP (1997), ranging from 3 FTE/ 10,000 tpa for glass reprocessing to 67 FTE/ 

10,000 tpa for plastics reprocessing. However, note that this data is almost 2 

decades old. 
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Table 15 Employment for reprocessing by material (SWAP, 1997) 

Material 
Employees/10,000 t 
(includes admin and 
reprocessors) 

Paper and Card 19 

Glass 3 

Steel 5 

Aluminium 11 

Plastic 67 

The Seldman (2006) study of the US reprocessing industry also found a high 

employment intensity for plastics reprocessing in comparison to other materials. 

The study found that 93 FTE were employed per 10,000 t of plastic reprocessed 

and paper was the least employment intensive material to reprocess (18 FTE/ 

10,000t). 

A further study undertaken by LEPU in 2004 refers to job gains by quantity of 

material reprocessed. But that ‗job gains‘ is not the same as employment 

intensities and therefore are not directly comparable with the previous source. In 

this case, the data includes employment related to collection and sorting 

operations in addition to that associated with reprocessing.  

A 2006 report by the European Commission includes an assessment of the 

impact of the packaging directive obligations on the direct and first round indirect 

employment rate in the packaging recovery and recycling industry. This gives a 

figure of 42,000 FTEs which may be associated with the stated 36 million tonnes 

recovered (in 2002) indicating around 12 FTEs per 10,000 tpa (European 

Commission, 2006). Again, however, this might not be a directly comparable 

figure as the other sources do not seem to include the first round indirect 

employment – i.e. employment up and down-stream resulting from new direct 

employment in the recycling sector. 

A more recent study by Friends of the Earth (2010) reviews employment 

intensities from a number of sources. It identifies that employment in different 

studies is taken to include some of all of the following activities associated with 

recycling:  

 Collectors; 

 Brokers (purchasing recyclable commodities for resale); 
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 Processors (businesses that bale, crush, pelletise, compost, 

demanufacture or otherwise change the form of the recyclable material for 

sale); 

 End users / recycling manufacturers (businesses that use recyclable 

materials as feedstock in the production of a new product); 

 Reusers or remanufactures (businesses that remanufacture or reuse 

recyclable material such as furniture, white goods, computers and 

electronic appliances, wood, as well as retailers that sell used 

merchandise); 

 Recycling equipment manufacturers.  

Table 16 reproduces the sources reviewed and assumptions taken by Friends of 

the Earth (2010) for the key recyclable materials considered in that study, and 

adds additional materials of interest. This study also applied a multiplier of 1.5 for 

first round indirect employment, which was increased to 1.75 for the inclusion of 

induced employment from expenditure of the additionally employed individuals.  

Table 16 Employment intensity for recycling by material (FTEs/10,000 tpa) 

Material 
Gray et al. 
2004 

Cascadia 
(2009) citing 
Seldman (2006)  

Friends of the 
Earth (2010) 
Value for 2020 

Eunomia 2014 

Glass 7.5 26 7.5 7.5 

Paper 35 18 18 18 

Plastic 156 93 93 93 

Iron & Steel 54 - 54 54 

Aluminium  110 - 110 110 

Wood 7.5 - 7.5 7.5 

Textiles 50 85 50 50 

WEEE 400 
(computer 
reuse) 296 

- 400 

Furniture 136 - - 136 

Biowaste 
5 collection  
+ 8 
processing 

4 4 5 collection 

MRFs - 10 - - 

Average all recycling 62 50 49 - 

4.1.3 Issues with the Quality of Data  

Given the findings of the above review, several key shortcomings associated with 

the data come to light. The OECD has previously recognised these intrinsic 
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difficulties in the analysis and interpretation of employment data in the waste 

management industry (OECD 1996). The key issues highlighted in the evidence 

reviewed are outlined below:  

4.1.3.1 LACK OF RECENT DATA 

Many of the studies reviewed were conducted over a decade ago. The literature 

search suggests that a limited number of primary research studies have been 

conducted, and these are repeatedly cited in more recent studies. This poses a 

particular problem for waste industry data due to the scale of development that 

has taken place since the 1990s. For example, in the case of sorting facilities (or 

material recycling facilities – MRFs) where facilities have grown in size (perhaps 

relating to increasing rates of recycling over time) economies of scale are likely to 

have been experienced, reducing the employment intensity. Reprocessing 

technology and changes in the design of products that end up in recycling 

schemes are also likely to have had significant effects on MRF employment over 

time. 

4.1.3.2 LACK OF METHODOLOGICAL TRANSPARENCY 

This was the case with many of the studies reviewed. A widely cited report by 

Gray et al. (2004), for example, fails to properly reference or provide additional 

information on its sources of information. One reference is simply labelled ―EU 

report‖. A similar instance can be seen in a study by Murray (1999), where no 

reference is given to the methodology behind the employment figures. Without 

access to the methodology behind these figures, it is difficult to understand what 

they relate to and, in turn, their practical utility. 

4.1.3.3 EMPLOYMENT METRIC 

A number of reports refer to number of employees as opposed to FTEs. In these 

cases, number of employees may not be directly comparable to number of FTEs. 

There is also inconsistency and difficulty in identifying the operations that qualify 

within the scope of employees being estimated. For example, a facility will have 

operational staff, but there are also likely to be office staff involved in the 

operation of the facility, some of whom may be responsible for a number of 

facilities. It is difficult to identify if their time has been included and if time has 

been apportioned between facilities. 
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4.1.3.4 INCLUSION OF INDIRECT/ INDUCED/ DISPLACEMENT EMPLOYMENT 

Certain studies, particularly related to recycling collection and processing, 

sometimes include indirect employment (i.e. employment up and down-stream 

resulting from new direct employment in the recycling sector) and induced 

employment (i.e. that associated with expenditure of the directly employed 

individuals) within the estimation of employment factors. Others (e.g. Eunomia 

2014) takes account of displacement factors within the estimation of employment 

intensity. This is an important consideration, since a shift to a new waste 

management system will inevitably displace some employment in other 

operations, either via direct labour, or due to shifting purchasing power away from 

certain technologies (indirect unemployment). Hence, net employment creation 

will always be less than gross estimates, and may even be zero or negative.  

4.1.3.5 DISTRIBUTION OF IMPACTS 

The literature reviewed provides limited information on the distribution of the 

various estimated employment benefits arising from shifting waste management 

operations. This is true firstly in terms of geographical distribution. This is related 

to both waste operation type (for example, closed loop recycling plants tend to be 

located near manufacturing sites and supply chains, and hence increased 

recycling by this method will not have evenly distributed employment benefits 

across the UK) and also to regional variations in the labour market.  

Further, the literature also tends to skip over the proportion of employment 

benefits that can be allocated across the range of labour skill levels. A literature 

review on the nature of employment created in the circular economy (including 

shifting waste management practices) was carried out by the Green Alliance 

(2015) and is summarised in Table 17. This research went on to estimate that net 

job creation in circular economy activity to 2030 at the current growth rate in 

Scotland would be 0.07% of the labour force. This is not comparable to earlier 

estimates as it estimates employment generated across several circular economy 

activities rather than simply landfill diversion to recycling. 

  



 

47 

 

Table 17 Literature on the nature of employment creation in circular economy activities 
(source: Green Alliance, 2015) 

Sector Study Covera
ge 

Skill level of jobs created 

Recycling 

 

EEA (2011)  EU  Low skilled work in particular, but also medium 
and high skilled jobs, ranging from collection, 
materials handling and processing to 
manufacturing products. 

ILO (2011) German
y 

16% low skilled, 47% skilled, 11% technical, 25% 
university. 

Waste collection ECOTEC 
(2002) 

EU Labour required for waste collection and 
transport, at relatively low wage rates. 

Remanufacturing APPSRG 
(2014) 

UK Skilled, with substantial training needs 

Beck 
(2011) 

USA Relatively high skill and training requirements. 

Waste 
Management 

SITA 
(2012) 

UK A range of jobs, but particularly significant 
numbers of mid-level (supervisors/ operators) and 
low level (manual) occupations. 
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Appendix A1. Qualitative assessment of the wider 

impacts of ALULUCF GHG mitigation options 

A1.1 Developing on-farm renewable energy sources (MO1) 

This MO reduces GHG emissions by increasing small scale renewable energy 

generation on farms, including wind and solar energy and biomass boilers (AD is 

discussed in Section A1.4).  

Table 18 Wider impacts of MO1 
Mitigation option: Developing on-farm renewable energy sources 

(MO1) 
 

Impact Direction/ 
magnitude 

Notes References 

WI1 Air quality: NH3 0 Across all farm scale renewable 
technologies this is unlikely to be an 
important impact, however, biomass 
burning can increase NH3 emissions. 

Saidur et al. 
2011 

WI2 Air quality: NOx + A positive effect as combustion 
processes are replaced by renewable 
energy sources (apart from biomass 
combustion based renewables).  

RoTAP 2012 
 
 

WI3 Air quality: PM + A positive effect in reducing 
particulate emissions as combustion 
processes are replaced by renewable 
energy sources (apart from biomass 
combustion based renewables). 

RoTAP 2012 

WI4 Air quality: other + A reduction in NOx reduces the 
secondary pollutant formation of 
ground level ozone.  

Gonzalez-de-
Soto et al. 
2016 

WI5 Water quality: 
Nitrogen leaching 

0 No evidence found, unlikely to be a 
significant impact. 

 

WI6 Water quality: 
Phosphorous 

0 No evidence found, unlikely to be a 
significant impact. 

 

WI7 Water quality: other  0 For renewables, such as hydro 
schemes, legislation such as Water 
Framework Directive and River Basin 
Management Plans, provide 
appropriate guidance and help to 
limit the impact on the water 
environment.  

Copestake 
2006 

WI8 Soil quality +/- More research is required to 
determine the impact of solar 
developments on plant-soil carbon 
recycling. 
The effect of wind farms varies 
depending on terrestrial setting of 
schemes.  

Armstrong et 
al. 2014 
 
Nayak et al. 
2008, Nayak 
et al. 2010, 
Smith et al. 
2011 

WI9 Flood 
management, water 

0 No evidence found, unlikely to be a 
significant impact. 
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Mitigation option: Developing on-farm renewable energy sources 
(MO1) 

 

Impact Direction/ 
magnitude 

Notes References 

use 

WI10 Land cover and 
land use 

- Renewable schemes tend to take up 
larger areas of land for the amount of 
power produced compared to 
conventional energy generation and 
fossil fuels.  

Bergmann et 
al. 2006 

WI11 Biodiversity 0/- 
 

No direct on-farm biodiversity effect 
is expected.  
Indirect positive effect though 
reduced air pollution is expected. 
Conflicts are likely to increase 
between energy developments and 
biodiversity as the number of 
schemes increase, for example 
regarding freshwater pearl mussels.  

RoTAP 2012 
 
Young et al. 
2010 
Addy et al. 
2012 

WI12 Animal health and 
welfare 

0 No evidence found, unlikely to be a 
significant impact. 

 

WI13 Crop health 0 No evidence found, unlikely to be a 
significant impact. 

 

WI14 Household income  + Farmers‘ income: boost to household 
income through incentive payments 
from government environmental 
programmes such as Feed in Tariffs. 
Recent government changes to 
incentive schemes could impact this. 
Income distribution: no significant 
impact is expected, though the 
distribution of the positive impact 
might be uneven as less prosperous 
farms might not be able to find the 
capital for the investment. 

Cherrington 
et al. 2013 
Phimister 
and Roberts 
2012 

WI15 Consumer and 
producer surplus  

+/- Varied results depending on siting 
and type of development. Increase to 
electricity prices reduces consumer 
utility.  

Bergmann et 
al. 2006 

WI16 Employment  + Diversification of farm business and 
increase in employment opportunities 
and job retention. Impacts can 
depend on use of additional incomes. 

Bergmann et 
al. 2008, 
Phimister 
and Roberts 
2011 

WI17 Resource efficiency + Renewables reduce the need for 
non-renewable energy generation.  

 

WI18 Human health +/- Positive indirect effect through 
reduced air pollution.  
Potential negative effect from the 
noise of small and micros scale wind 
turbines.  

Haines et al. 
2006 
Taylor et al. 
2013 

WI19 Social impacts + Community ownership of renewables 
(relevant to a number of on-farm 
projects) leads to a more positive 
outlook and more locally involved 
approach to developments than large 

Warren & 
McFadyen 
2010 
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Mitigation option: Developing on-farm renewable energy sources 
(MO1) 

 

Impact Direction/ 
magnitude 

Notes References 

scale developments. Renewables 
can lead to the sustainable 
development of communities across 
Scotland.  

WI20 Cultural impacts  0 On-farm renewables, due to their 
small scale, are unlikely to have a 
considerable impact on landscape or 
cultural heritage.  

 

A1.2 Increased uptake of precision farming techniques (MO2) 

Precision farming includes management practices and a wide range of 

technologies which enable the farmer to obtain and analyse more precise 

information on the soil, crop and animal qualities in order to respond with 

management specific to the in-field variation or to the individual livestock. Most 

importantly to GHG emissions these practices can improve how nitrogen and 

livestock feed resources are used on farm, reducing N2O emissions, energy use 

by machinery, and/or the GHG emission intensity of crop and livestock products 

(Eory et al. 2015). 

Table 19 Wider impacts of MO2 
Mitigation option: Increased uptake of precision farming techniques (MO2) 

Impact Direction/ 
magnitude 

Notes  References 

WI1 Air quality: NH3 + Some potential reduction is associated 
with improved spatial applications of 
fertiliser nitrogen. 
Optimizing the method of spreading 
can also decrease NH3 emissions (see 
Section A1.8). 

Novak and 
Fiorelli 2010 

WI2 Air quality: NOx + Increased fuel efficiency in machinery 
can reduce NOx emissions. 

Gonzalez-
de-Soto et 
al. 2016 

WI3 Air quality: PM + See NOx above. Gonzalez-
de-Soto et 
al. 2016 

WI4 Air quality: other + A reduction in NOx reduces the 
secondary pollutant formation of 
ground level ozone. 

Sutton ed. 
2011 

WI5 Water quality: 
Nitrogen leaching 

+ Potential improvements associated 
with reduced nitrate losses if the use of 
Nitrogen fertilisers is more precisely 
targeted to crop demand. 

Clough et al. 
2004 

WI6 Water quality: 
Phosphorous 

+ Potential improvements associated 
with reduced phosphate losses if the 
use of phosphate fertilisers is more 

Rains et al. 
2001 
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Mitigation option: Increased uptake of precision farming techniques (MO2) 

Impact Direction/ 
magnitude 

Notes  References 

precisely targeted to crop demand. 

WI7 Water quality: other  + Precision pesticide applications would 
be likely to reduce the overall loss of 
pesticides to water. 

Bajwa et al. 
2015 

WI8 Soil quality + Information on soil wetness and 
precision management of soil for 
example through precision fertiliser 
application would allow the 
development of spatially explicit 
management operations which would 
reduce machinery traffic and thereby 
contribute to potential improvements in 
soil quality. 

Bajwa et al. 
2015, 
Sylvester-
Bradley et al. 
1999 

WI9 Flood 
management, water 
use 

+ Can potentially reduce water resources 
abstraction from wells/rivers if irrigated 
crops such as potatoes, salad crops, 
root vegetables and soft fruit are 
irrigated using precision irrigation 
systems in conjunction with soil 
moisture monitoring systems. 

http://www.u
kia.org/pdfs/
switching%2
0technologie
s.pdf 

WI10 Land cover and 
land use 

0 No evidence found, unlikely to be a 
significant impact. 

 

WI11 Biodiversity + Precision farming can reduce pesticide 
use and thus improve on-farm 
biodiversity.  

Timmerman
n et al. 2003 

WI12 Animal health and 
welfare 

+/- Provides opportunities for better health 
and nutritional monitoring, but may 
impact on welfare, e.g. robotically 
milked cows unlikely to be grazed on 
pastures.  

Wathes et al. 
2008 

WI13 Crop health + Provides better opportunity to match 
fungicide products to disease risk. 

Poole and 
Arnaudin 
2014 

WI14 Household income  + Farmers‘ income: various opinions are 
represented in the literature. There is 
an argument that improved technology 
will allow farmers to generate 
increased income and hence become 
more profitable, though on smaller 
farms the costs can easily outweigh 
the financial benefits.  
Income distribution: no significant 
impact is expected, though the 
distribution of the positive impact might 
be uneven as less prosperous farms 
might not be able to find the capital for 
the investment. 

Rosch and 
Dusseldorp 
2007, 
MacLeod et 
al. 2015 

WI15 Consumer and 
producer surplus  

+ No evidence found. Higher efficiency 
can increased the producer surplus for 
the farmer and, if large scale efficiency 
improvements reduce the prices of 
agricultural products that can increase 
consumer surplus. 

 

http://www.ukia.org/pdfs/switching%20technologies.pdf
http://www.ukia.org/pdfs/switching%20technologies.pdf
http://www.ukia.org/pdfs/switching%20technologies.pdf
http://www.ukia.org/pdfs/switching%20technologies.pdf
http://www.ukia.org/pdfs/switching%20technologies.pdf
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Mitigation option: Increased uptake of precision farming techniques (MO2) 

Impact Direction/ 
magnitude 

Notes  References 

WI16 Employment  - Potential reduction in rural employment 
given the likelihood that new 
technologies would replace existing 
employees (e.g. robotic milking). 

Sassenrath 
et al. 2008 

WI17 Resource efficiency + Improved resource use efficiency 
associated with precision management 
is likely. 

Rosch & 
Dusseldorp 
2007 

WI18 Human health + Potential benefits resulting from 
reduced nutrient loss to air and water. 

Sutton et al. 
2011 

WI19 Social impacts +/- Reduced employment opportunities 
and the tendency for precision 
management technology to be 
associated with higher income 
employers could potentially reduce 
social cohesion. 
If PF machinery is pooled the 
increased importance of co-ops might 
improve cohesion. 

Sassenrath 
et al. 2008 

WI20 Cultural impacts  0 No evidence found, unlikely to be a 
significant impact. 

 

A1.3 Achieving and maintaining optimal soil pH level (MO3) 

For optimal soil chemistry, nutrient availability and plant growth it is 

recommended that the pH of arable soils is maintained at 6 or above and that for 

grassland soils at 5.8 or above (SRUC 2015). Sub-optimal liming on acidic soils 

leads to less efficient use of plant nutrients and can also result in a larger 

proportion of nitrogen applied being released as N2O (Baggs et al. 2010). 

Table 20 Wider impacts of MO3 
Mitigation option: Achieving and maintaining optimal soil pH level (MO3) 

Impact Direction/ 
magnitude 

Notes References 

WI1 Air quality: NH3 +/- Increasing soil pH is likely to increase 
nitrogen use efficiency, but higher pH 
can also lead to increases in NH3 
volatilisation. 

Goulding 
2016 

WI2 Air quality: NOx 0 No evidence found, unlikely to be a 
significant impact. 

 

WI3 Air quality: PM 0 No evidence found, unlikely to be a 
significant impact. 

 

WI4 Air quality: other 0 No evidence found, unlikely to be a 
significant impact. 

 

WI5 Water quality: 
Nitrogen leaching 

+ Increasing soil pH is likely to increase 
nitrogen use efficiency, which would 
therefore lead to lower nitrogen 
leaching. 

Goulding 
2016 

WI6 Water quality: + Increasing soil pH generally reduces Goulding 
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Mitigation option: Achieving and maintaining optimal soil pH level (MO3) 

Impact Direction/ 
magnitude 

Notes References 

Phosphorous the availability of phosphate in soils 
and therefore reduces the leaching risk 

2016 

WI7 Water quality: other  + Possible reduced loss of heavy metals. Goulding 
2016 

WI8 Soil quality + Soils with higher pH generally have 
improved fertility, which is an indicator 
of good soil quality. 

Goulding 
2016 

WI9 Flood 
management, water 
use 

+/- May positively or negatively affect 
evaporation and runoff generation 
processes at field/farm scales due to 
changes in soil structure which could 
affect water holding capacity. 

Goulding 
2016 

WI10 Land cover and 
land use 

0 No evidence found, unlikely to be a 
significant impact. 

 

WI11 Biodiversity +/-  The diversity of plant communities is 
influenced by soil pH, however net 
effects of pH changes are difficult to 
predict. 

Olsson et al. 
2009 

WI12 Animal health and 
welfare 

+ Reduced influence of liver fluke. Mccann et 
al. 2010 

WI13 Crop health + Improved crop growth associated with 
better crop health. 
 

Janvier et al. 
2007 

WI14 Household income  + No evidence found, a small positive 
impact can be expected from 
increased productivity. 

 

WI15 Consumer and 
producer surplus  

+ No evidence found, the potentially 
increased productivity can increase the 
producer surplus. 

 

WI16 Employment  0 No evidence found, unlikely to be a 
significant impact. 

 

WI17 Resource efficiency 0 No evidence found, unlikely to be a 
significant impact. 

 

WI18 Human health + Reduced availability of heavy metals in 
soils might lead to lower exposure via 
human consumption. 

Podar and 
Ramsey 
2005, Smith 
1994 

WI19 Social impacts 0 No evidence found, unlikely to be a 
significant impact. 

 

WI20 Cultural impacts  0 No evidence found, unlikely to be a 
significant impact. 

 

A1.4 Anaerobic Digestion for manure processing (MO4) 

AD of manure can reduce the CH4 emission from the manure storage and can 

provide alternative energy sources thus providing further, indirect, GHG savings. 

In this assessment the focus was on small community scale (around 750KW – 1 

MW) AD digesting manure and additional biomass. The most critical factors that 
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impact the environmental sustainability of AD plants are the feedstock type, 

feedstock source (the proportion of manure, the source of additional biomass, 

e.g. food waste or purpose-grown crops), digestate storage and how the 

digestate is spread to land (Whiting & Azapagic, 2014) which can vary greatly 

from plant to plant. Also it is important to consider what the existing land use is 

and whether there will be a significant land use change, or if existing waste 

products are being used, providing an additional benefit to their conventional 

use/storage.  

Table 21 Wider impacts of MO4 
Mitigation option: Anaerobic digesters for manure processing (MO4) 

Impact Direction/ 
magnitude 

Notes References 

WI1 Air quality: NH3 -/0 AD plants concentrate organic wastes, 
concentrating distributed sources of 
NH3 emissions. NH3 emissions are 
dependent on site management 
practices concerning the handling, 
storage and treatment of organic 
wastes and the digestate.  
The storage of solid digestate and the 
aerobic treatment of liquid effluents are 
the greatest sources of NH3 emissions. 
NH3 emissions can be higher from 
digestate than from slurry if the storage 
tank is uncovered. Covered digestate 
storage can capture up to 80% of CH4 
and NH3 from AD. A digestate cover 
that collects biogas provides additional 
energy production option. 
At spreading there are a number of 
competing factors compared with 
untreated slurry – greater total 
ammoniacal nitrogen and higher pH 
encouraging loss but lower dry matter 
which encourages more rapid 
infiltration and reduces loss. The 
literature is mixed, however, low NH3 
emission spreading techniques (see 
Section A1.8) can reduce NH3 loss by 
60%. 

Bell et al. 
2016, 
Moeller & 
Stinner 2009 
 
 
Cumby et al. 
2005 
 
Reis ed. 
2015,  
Whiting and 
Azapagic 
2014 
 
 
 
Amon et al. 
2006, Battini 
et al. 2014, 
Chantigny et 
al. 2009, 
Pain et al. 
1990 

WI2 Air quality: NOx - Combustion of produced biogas in 
engine can increase NOx emissions, 
however this can be limited by 
improvements to biogas combustion 
technologies.  

Battini et al. 
2014 

WI3 Air quality: PM - Emissions of NH3 can lead to 
ammonium nitrate PM formation.  
AD, as a local combustion site, can 
shift the PM emissions from where the 
conventional power stations are. 

Rotap 2012 



 

 

78 

 

Mitigation option: Anaerobic digesters for manure processing (MO4) 

Impact Direction/ 
magnitude 

Notes References 

WI4 Air quality: other 0 No evidence found, unlikely to be a 
significant impact. 

 

WI5 Water quality: 
Nitrogen leaching 

+/- The literature is inconclusive, some 
experiments finding lower, others 
higher nitrogen leaching from digestate 
than from raw slurry. Best 
management practices can help 
mitigating negative effects. 

Nkoa 2014 

WI6 Water quality: 
Phosphorous 

- No evidence found, higher 
concentration of phosphorous in 
digestate than in raw slurry might pose 
risk of increased runoff. 

Nkoa 2014 

WI7 Water quality: other  0 No evidence found, unlikely to be a 
significant impact. 

 

WI8 Soil quality +/- Grassland yields were found to be 
higher with digestate than with slurry, 
potentially as a result of enhanced 
plant available nutrients. 
Long term accumulation of 
micronutrients (e.g. copper, zinc) can 
occur, impeding soil quality. 

Walsh et al. 
2012 
 
 
Nkoa 2014 

WI9 Flood 
management, water 
use 

0 No evidence found, unlikely to be a 
significant impact. 

 

WI10 Land cover and 
land use 

0 Varying results depending on previous 
land use and production systems used.  
Land use change away from 
conventional food crops is sometimes 
thought to be a concern, approximately 
0.5% of UK arable cropping land is 
used for growing crops for AD and the 
current risk for intensive production of 
a single crop as monoculture is seen 
as low. 

Börjesson & 
Tufvesson 
2011 
 
Röder 2016 

WI11 Biodiversity 0 No evidence found, unlikely to be a 
significant direct impact on on-farm 
biodiversity. 

 

WI12 Animal health and 
welfare 

0 No evidence found, unlikely to be a 
significant impact. 

 

WI13 Crop health 0 No evidence found, unlikely to be a 
significant impact. 

 

WI14 Household income  + Farmers‘ income: costs of installing 
plant can be expensive. Benefits for 
developers is available through 
incentive payments s, however 
changes to incentive schemes could 
impact this. Also using existing waste 
streams to meet on site energy 
demands can significantly lower bills.  
Income distribution: no significant 
impact is expected, though the 
distribution of the positive impact might 
be uneven as less prosperous farms 

Röder 2016 
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Mitigation option: Anaerobic digesters for manure processing (MO4) 

Impact Direction/ 
magnitude 

Notes References 

might not be able to find the capital for 
the investment. 

WI15 Consumer and 
producer surplus  

+ No evidence found, increased income 
could mean higher producer surplus. 

 

WI16 Employment  + Across the UK it is estimated that the 
number of jobs in biomass combustion 
and AD would be 35,000 – 50,000 by 
2020. Employment potential is 
predicted to be higher than other 
renewable technologies due to 
additional elements of feedstock 
production, supply and plant operation.  

McDermott 
2012 

WI17 Resource efficiency ++ AD recycles energy embedded in 
agricultural and other waste sources.  

 

WI18 Human health +/- Increasing the amount of renewables 
can help mitigate the negative impacts 
of climate change on human health 
and air pollution.  
At the same time the more dispersed 
combustion can require additional 
effort in reducing pollution and there is 
an indirect negative effect from 
increased NH3 emissions. 

Haines et al. 
2006 
 
 

WI19 Social impacts + Community schemes could bring a 
sense of public engagement if done 
effectively.  

Walker et al. 
2010 

WI20 Cultural impacts  0 No evidence found, unlikely to be a 
significant impact. 

 

A1.5 Agroforestry (MO5) 

Agroforestry systems are multifunctional systems of woody vegetation (trees or 

shrubs) either combined with crops (silvoarable) or established on grazed pasture 

(silvopastoral). It also includes the use of trees and hedgerows as buffer zones. 

The trees and shrubs can be utilised for timber, fuel or fruit. The main GHG effect 

of agroforestry is the carbon sequestration in the vegetation and in the soil (Eory 

et al. 2015). 
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Table 22 Wider impacts of MO5 
Mitigation option: Agroforestry (MO5) 

Impact Direction/ 
magnitude 

Notes References 

WI1 Air quality: NH3 + Trees are known to remove NH3 from 
the atmosphere downwind of sources 
e.g. intensive livestock production. 

Bealey et al. 
2014 

WI2 Air quality: NOx + Reduction of NOx emissions from 
fertiliser production and from soil, as a 
result of reduced use of nitrogen 
fertiliser per unit area. 

Pacyna et al. 
1991, Skiba 
et al. 1997 

WI3 Air quality: PM + There is evidence for reduction of 
particulates and odour from 
shelterbelts.  

Tyndall & 
Colletti 2007 

WI4 Air quality: other 0 No evidence found, unlikely to be a 
significant impact. 

 

WI5 Water quality: 
Nitrogen leaching 

+ Extended root net of multiple species 
with different root architecture can 
reduce losses. 

Bergeron et 
al. 2011 

WI6 Water quality: 
Phosphorous 

+ Potential reduction in run off as trees 
act as landscape level buffers. 

Jose 2009 

WI7 Water quality: other  + Reduced use of agrochemicals as a 
result of smaller area of arable or 
grassland per unit area. Also 
increased presence of natural enemies 
of pests due to increased 
agrobiodiversity can lead to reduced 
pesticide use. 

Stamps and 
Linit 1997 

WI8 Soil quality + The literature suggests that 
agroforestry stores more carbon than 
agricultural systems but there is 
relatively little evidence in temperate 
systems. Possibly more benefit to soil 
carbon from trees planted into arable 
systems than trees planted in 
grassland. Additionally, soil erosion is 
reduced. 

Upson & 
Burgess, 
2013, 
Beckert et al. 
2016 

WI9 Flood 
management, water 
use 

+ Potential improvement due to buffer 
strip effect. 

 

WI10 Land cover and 
land use 

+ Soil protection is likely to increase 
although very much depend on 
species combinations and 
management.  

Mead 1995 

WI11 Biodiversity + Increased species diversity in cropping 
can increase biodiversity. 

McAdam et 
al. 2007 

WI12 Animal health and 
welfare 

+ Can provide shelter for animals – this 
can be shade in summer but also 
reduction of windchill in winter. 

Karki & 
Goodman 
2009 

WI13 Crop health + Increased biodiversity and tree cover 
increases the presence of natural 
enemies to pests. This benefit can be 
enhanced by proper design. 

Dix et al. 
1995 

WI14 Household income  0 No evidence found, unlikely to be a 
significant impact. 
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Mitigation option: Agroforestry (MO5) 

Impact Direction/ 
magnitude 

Notes References 

WI15 Consumer and 
producer surplus  

0 No evidence found, unlikely to be a 
significant impact. 

 

WI16 Employment  0 No evidence found, unlikely to be a 
significant impact. 

 

WI17 Resource efficiency 0 No evidence found, unlikely to be a 
significant impact. 

 

WI18 Human health + The air and water quality 
improvements would have an indirect 
positive effect on human health, but no 
specific literature is found on this. 

 

WI19 Social impacts 0 No evidence found, unlikely to be a 
significant impact. 

 

WI20 Cultural impacts  + Landscape diversity, provision of 
recreation and possible use of native 
or rare trees, including production of 
fruit and nuts for local consumption. 

 

A1.6 Incorporating more legumes in grass mixes and crop 

rotations (MO6) 

Legumes have symbiotic relationships with bacteria which allow them to fix 

atmospheric nitrogen and use this in place of nitrogen provided by synthetic 

fertilisers. They are also able to supply nitrogen to crops they are mixed with (e.g. 

clover-grass mixtures) or to a certain extent to subsequent crops in a rotation 

(e.g. peas in one year and cereals in the next). 

Table 23 Wider impacts of MO6 
Mitigation option: Incorporating legumes in grass mixes and crop rotations (MO6) 

Impact Direction/ 
magnitude 

Notes References 

WI1 Air quality: NH3 + NH3 emissions will be reduced due to 
the reduction in nitrogen fertiliser 
applications.  
However, NH3 emissions from the crop 
itself are likely to be higher than the 
baseline due to the residues of the 
legumes containing more nitrogen. The 
overall balance is likely to be positive.  

Nett et al. 
2015, Bath 
et al. 2006, 
Larsson et 
al. 1998, 
Mannheim et 
al. 1997 

WI2 Air quality: NOx + Reduction of NOx emissions from 
fertiliser production and from soil, as a 
result of reduced nitrogen fertiliser 
applications. 

Jensen and 
Hauggaard-
Nielsen 2003 

WI3 Air quality: PM + Indirect benefits resulting from the 
reduced nitrogen fertiliser production 
process. As the NH3 emissions are 
likely to be reduced, there will be a 
reduction in the secondary PM 
formation. 

Sutton ed. 
2011 
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Mitigation option: Incorporating legumes in grass mixes and crop rotations (MO6) 

Impact Direction/ 
magnitude 

Notes References 

WI4 Air quality: other 0 No evidence found, unlikely to be a 
significant impact. 

 

WI5 Water quality: 
Nitrogen leaching 

- Increased risk of leaching during the 
post-harvest period from the 
biologically fixed nitrogen and crop 
residues compared to crops which 
receive fertilisers. This can be 
mitigated by having winter coverage of 
crops. 

Jensen & 
Hauggaard-
Nielsen 
2003, 
Hauggaard-
Nielsen et al. 
2003, 
Engström & 
Lindén 2012 

WI6 Water quality: 
Phosphorous 

0 No evidence found, unlikely to be a 
significant impact. 

 

WI7 Water quality: other  0 No evidence found, unlikely to be a 
significant impact. 

 

WI8 Soil quality + Legumes improve soil fertility. Some 
legumes are deep rooting, and 
therefore can extract nutrients from 
deeper layers of the soil. 

Jensen & 
Hauggaard-
Nielsen 
(2003) 

WI9 Flood 
management, water 
use 

0 Unlikely to have a significant effect as 
long as leafy growth and rooting 
depths are similar to previous land 
cover. 

Doorenbos 
and Pruitt 
1977 
 

WI10 Land cover and 
land use 

+ Potential for legumes to be used as 
cover crops over winter. 

 

WI11 Biodiversity + Increased diversity. Jensen & 
Hauggaard-
Nielsen 2003 

WI12 Animal health and 
welfare 

0 No evidence found, unlikely to be a 
significant impact. 

 

WI13 Crop health + Increased use of break-crops in the 
rotations and thus reduce the survival 
of pests and pathogens is likely, 
though this effect will depend on the 
crops involved.  

Jensen & 
Hauggaard-
Nielsen 2003 

WI14 Household income  0 On a rotation basis, farmers‘ income is 
unlikely to be affected. Nevertheless, it 
is perceived that growing grain 
legumes is a riskier crop to grow and 
may not be profitable for them. 
Income distribution: no significant 
impact is expected. 

Reckling et 
al. 2016a 

WI15 Consumer and 
producer surplus  

0 No evidence found, unlikely to be a 
significant impact. 

 

WI16 Employment  0 No evidence found, unlikely to be a 
significant impact. 

 

WI17 Resource efficiency + Reduced use of synthetic nitrogen 
fertilisers. 

 

WI18 Human health 0 No evidence found, unlikely to be a 
significant impact. 

 

WI19 Social impacts 0 No evidence found, unlikely to be a 
significant impact. 
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Mitigation option: Incorporating legumes in grass mixes and crop rotations (MO6) 

Impact Direction/ 
magnitude 

Notes References 

WI20 Cultural impacts  0 No evidence found, unlikely to be a 
significant impact. 

 

A1.7 Optimising the use of mineral nitrogen fertilizer (MO7) 

Optimising the use of mineral nitrogen fertiliser is assumed to mean that the 

fertiliser will be used more efficiently and therefore the losses from the system will 

be reduced. As well as reducing fertiliser applications rates, optimising the use of 

mineral fertiliser could also result from the optimising the method of applications.  

Table 24 Wider impacts of MO7 
Mitigation option: Optimising the use of mineral nitrogen fertilizer (MO7) 

Impact Direction/ 
magnitude 

Notes References 

WI1 Air quality: NH3 + Optimising the application of mineral 
fertilisers will reduce the emissions of 
NH3.  

Emissions are dependent on fertiliser 
type, weather and soil conditions. In 
general applying with a regard to rates, 
times and placement, improved crop 
nitrogen uptake will mitigate NH3 
emissions, with minimal increases via 
the other loss pathways (e.g. nitrate 
leaching, denitrification to N2O). 
Optimizing the method of spreading 
can also decrease NH3 emissions e.g.  

 decreasing the surface area of 
urea based fertilisers through band 
application, injection, incorporation  

 decreasing the time that emissions 
can take place, i.e. through rapid 
incorporation or via irrigation; 

 decreasing the source strength of 
the emitting surface, i.e. through 
urease inhibitors 

 applying under cooler conditions 
and prior to rainfall (noting to avoid 
run-off) are associated with lower 
NH3 emissions. 

 Avoiding the application of 
fertilisers straight after grass 
cutting 

Emissions of NH3 from urea-based 
fertilisers (5%–40% nitrogen loss as 
NH3) are much greater than from other 
fertiliser types (e.g. ammonium nitrate, 
0.5%–5% nitrogen loss as NH3) due to 
an increase in pH. 

Bittman et al. 
2014 
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Mitigation option: Optimising the use of mineral nitrogen fertilizer (MO7) 

Impact Direction/ 
magnitude 

Notes References 

Switching from urea to ammonium 
nitrate fertiliser will reduce NH3 
emissions, with an effectiveness of 
around 90%. However, N2O emissions 
might increase, especially when the 
ammonium-nitrate-based fertilisers are 
applied to moist or wet soils. 

WI2 Air quality: NOx + Reduction of NOx emissions from 
fertiliser production and from soil, as a 
result of reduced nitrogen fertiliser 
applications. 

Pacyna et al. 
1991, Skiba 
et al. 1997 

WI3 Air quality: PM + Indirect benefits resulting from the 
reduced nitrogen fertiliser production 
process, as reduced NH3 emissions 
results in less secondary PM 
formation. Also reduced NH3 losses 
from soils resulting in reduced PM 
formation. 

Sutton ed. 
2011 

WI4 Air quality: other 0 No evidence found, unlikely to be a 
significant impact. 

 

WI5 Water quality: 
Nitrogen leaching 

+ Nutrient use efficiency will be 
improved. This potentially leads to 
reduced nitrogen leaching due to 
reduced fertiliser losses (result of 
reduced fertiliser application and/or 
optimised application techniques). 

Goulding et 
al. 2008 

WI6 Water quality: 
Phosphorous 

+ Nutrient use efficiency will be 
improved. This potentially leads to 
reduced multi-nutrient fertiliser 
applications and/or reduced losses due 
to optimised application techniques 
resulting in reduced losses. 

Goulding et 
al. 2008 

WI7 Water quality: other  0 No evidence found, unlikely to be a 
significant impact. 

 

WI8 Soil quality 0 No evidence found, unlikely to be a 
significant impact. 

 

WI9 Flood 
management, water 
use 

0 No evidence found, unlikely to be a 
significant impact. 

 

WI10 Land cover and 
land use 

0 No evidence found, unlikely to be a 
significant impact. 

 

WI11 Biodiversity 0 Unlikely to be an impact. 
Small indirect positive effect though 
reduced nitrogen emissions to air and 
water is expected. 

 

WI12 Animal health and 
welfare 

0 No evidence found, unlikely to be a 
significant impact. 

 

WI13 Crop health 0 Unlikely to be an impact as it is likely to 
be a relatively small change in fertiliser 
applications. If fertiliser applications 
were to be reduced by 30-50%, there 
would probably be a negative effect on 
yield. 
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Mitigation option: Optimising the use of mineral nitrogen fertilizer (MO7) 

Impact Direction/ 
magnitude 

Notes References 

WI14 Household income  0 The net impact from fertiliser savings 
and time and money spent on 
advice/decision support tools/etc. can 
be either positive or negative, but it is 
likely to be insignificant. 

Eory et al. 
2015 

WI15 Consumer and 
producer surplus  

0 No evidence found, unlikely to be a 
significant impact. 

 

WI16 Employment  0 No evidence found, unlikely to be a 
significant impact. 

 

WI17 Resource efficiency 0 The impact is highly uncertain as it will 
be affected by the utilisation of soil 
mineral, and any marginal changes in 
the nitrogen offtake. 

 

WI18 Human health + Potential benefits resulting from 
reduced nutrient loss to air and water. 

 

WI19 Social impacts 0 No evidence found, unlikely to be a 
significant impact. 

 

WI20 Cultural impacts  0 No evidence found, unlikely to be a 
significant impact. 

 

A1.8 Low-emission storage and application of manure (MO8) 

Low emission storage of manure reduces NH3 (providing savings in indirect N2O 

emissions) and CH4 emissions via various methods, like reduced contact with air, 

reduced temperature or reduced pH. Low-emission manure spreading 

technologies ensure minimal contact of the manure with air, therefore reducing 

NH3 emissions. The retained Nitrogen during low-emission storage could 

increase NH3 and N2O losses when applied to the soil unless low-emission 

spreading techniques are implemented.  

Table 25 Wider impacts of MO8 
Mitigation option: Low-emission storage and application of organic fertiliser (MO8) 

Impact Direction/ 
magnitude 

Notes References 

WI1 Air quality: NH3 ++ Reduced with: band spreaders, 
injection and rapid incorporation. 
 
Slurry store covers can reduce NH3 by 
40-80%. Taller, narrower tanks (and 
deeper lagoons) have a lower surface 
area: volume ratio, which reduces NH3. 
This also reduces the size and cost of 
covers, but increases the cost of 
storage as it increases the wall area 
and thickness. Slurry acidification 
reduces NH3 but may present odour 
and human health risks. 

NAAC 2010, 
Bittman et al. 
2014 
Van der 
Zaag et al. 
2015 
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Mitigation option: Low-emission storage and application of organic fertiliser (MO8) 

Impact Direction/ 
magnitude 

Notes References 

WI2 Air quality: NOx 0 No evidence found, unlikely to be a 
significant impact. 

 

WI3 Air quality: PM + Reduced NH3 emissions results in less 
secondary PM formation. 

Sutton ed. 
2011 

WI4 Air quality: other + 
 
 
- 

Reduced odour with band spreaders, 
injection and rapid incorporation. Most 
manure covers reduce odour. 
Slurry acidification may increase 
odour. 

NAAC 2010, 
Van der 
Zaag et al. 
2015 

WI5 Water quality: 
Nitrogen leaching 

+ Reduced with band spreaders, 
injection and rapid incorporation, but 
shallow injection can increase leaching 
on some soil types 

NAAC 2010, 
Natural 
England 
2015 

WI6 Water quality: 
Phosphorous 

+ Slurry injection and trailing shoe 
spreading reduce phosphorous losses. 

Uusi-
Kamppa and 
Heinonen-
Tanski 2008, 
McConnell et 
al. 2013 

WI7 Water quality: other  + Slurry injection reduces the runoff of 
faecal microorganisms. 

Uusi-
Kamppa and 
Heinonen-
Tanski 2008 

WI8 Soil quality + 
 
- 

Reduced soil compaction with 
umbilical systems.  
Slurry acidification may reduce soil pH 
(pers comm). 

NAAC 2010 

WI9 Flood 
management, water 
use 

0 Minimal effects possible via changed 
soil structure, affecting infiltration and 
soil water conveyance. 

Amrakh et al. 
2016 

WI10 Land cover and 
land use 

0 No evidence found, unlikely to be a 
significant impact. 

 

WI11 Biodiversity 0 No direct on-farm biodiversity effect is 
expected. Indirect positive effect 
though reduced air pollution is 
expected. 

 

WI12 Animal health and 
welfare 

+ Health effect from reduced pasture 
contamination with band spreading.  

NAAC 2010 

WI13 Crop health 0 No evidence found, unlikely to be a 
significant impact. 

 

WI14 Household income  +/- Farmers‘ income might be positively or 
negatively impacted (cost of equipment 
and operation versus reduced need for 
nitrogen fertiliers, reduced rainwater in 
the tanks if they are covered with an 
impermeable cover and reduced crop 
contamination with more precise 
manure application. 
Income distribution: no significant 
impact is expected. 

Frelih-Larsen 
et al. 2014, 
Weiske et al. 
2006, Van 
der Zaag et 
al. 2015 
 

WI15 Consumer and 
producer surplus  

0 No evidence found, unlikely to be a 
significant impact. 

 
 

WI16 Employment  + No evidence found, a small positive  
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Mitigation option: Low-emission storage and application of organic fertiliser (MO8) 

Impact Direction/ 
magnitude 

Notes References 

impact is possible in the form of higher 
skilled jobs required due to increased 
technical complexity of the methods. 

WI17 Resource efficiency + 
 
 
- 

Reduced NH3 lead to increased 
nitrogen retention and lower 
requirement for synthetic nitrogen. 
Slurry acidification may increase 
corrosion rates and shorten life of 
slurry tanks (pers comm 2016).  

 

WI18 Human health - 
 
 
+ 

Slurry acidification may increase risk to 
farmers, via exposure to strong acids 
and H2S. 
Potential benefits resulting from 
reduced nutrient loss to air and water. 

Van der 
Zaag et al. 
2015 
 

WI19 Social impacts 0 No evidence found, unlikely to be a 
significant impact. 

 

WI20 Cultural impacts  0 No evidence found, unlikely to be a 
significant impact. 

 

A1.9 Improving livestock health (MO9) 

Diseases can lead to impacts on livestock performance such as (Skuce et al. 

2016): (i) fewer units of product e.g. milk, meat or wool; (ii) animals taking longer 

to reach their target market weight; (iii) delayed onset and reduced quality of 

production e.g., for milk; (iv) lost production i.e. lambs or calves aborted due to 

infection; (v) premature culling; (vi) waste of animal products condemned at 

abattoir; (vii) reduced reproductive performance; or (viii) premature death of 

animals. Treating and preventing diseases therefore tend to increase productivity 

and lead to decreases in the emissions intensity of the meat, milk or eggs. For 

example, treating for diseases that affect feed conversion efficiency (such as liver 

fluke and parasitic gastroenteritis) will lead to a reduction in the amount of feed 

consumed and the amount of volatile solids and nitrogen excreted per kg of 

output, which will in turn reduce emissions associated with feed production and 

manure management. Health can be improved through preventative controls 

(such as changing housing and management to reduce stress and exposure to 

pathogens, vaccination, improved screening and biosecurity, disease vector 

control) and curative treatments such as antiparasitics and antibiotics. The wider 

impacts of improving livestock health therefore depend on the specific species, 

system and, health challenge and control option. The table below seeks to 

illustrate the wider impacts that could arise from improving health, rather than 

provide a comprehensive analysis. 
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Table 26 Wider impacts of MO9 
Mitigation option: Improving livestock health (MO9)  

Impact Direction/ 
magnitude 

Notes References 

WI1 Air quality: NH3 + Measures that improve feed 
conversion efficiency (either at the 
animal or flock/herd level) will reduce 
the amount of nitrogen excreted per kg 
of meat/milk/eggs produced, leading to 
reductions in NH3 from manure 
management and direct deposition of 
nitrogen. Examples of diseases with a 
significant impact on feed conversion 
efficiency include fasciolosis and 
parasitic gastroenteritis (see Skuce et 
al. 2016, Annex 2). 

Skuce et al. 
2016 

WI2 Air quality: NOx 0 No evidence found, unlikely to be a 
significant impact. 

 

WI3 Air quality: PM 0 No evidence found, unlikely to be a 
significant impact. 

 

WI4 Air quality: other 0 No evidence found, unlikely to be a 
significant impact. 

 

WI5 Water quality: 
Nitrogen leaching 

+ See NH3  

WI6 Water quality: 
Phosphorous 

+ Measures that improve feed 
conversion efficiency (either at the 
animal or flock/herd level) will reduce 
the amount of phosphorous excreted 
per kg of meat/milk/eggs produced.  

Skuce et al. 
2016 

WI7 Water quality: other  - Potential issues of aquatic ecotoxicity 
with some measures, e.g. SP dips. 

Beynon 2012 

WI8 Soil quality 0 No evidence found, unlikely to be a 
significant impact. 

 

WI9 Flood 
management, water 
use 

0 No evidence found, unlikely to be a 
significant impact. 

 

WI10 Land cover and 
land use 

0 No evidence found, unlikely to be a 
significant impact. 

 

WI11 Biodiversity - Potential negative impacts via control 
of wild animal/plants and habitat 
alteration to reduce vector/pathogen 
populations (e.g. badger culling to 
reduce TB transmission or field 
drainage to reduce mud snail 
populations, which act as a vector for 
liver fluke). 
Further negative impacts of medication 
to dung invertebrates and indirect 
impacts further up the food chain. 

SCOPS 2016 
 
 
 
 
 
 
Adler et al. 
2016 
http://www.dr
beynonsbugf
arm.com/CM
SDocuments/
/Fact%20she
et%202_Par
asiticides_Au
g%202016.p
df 

http://www.drbeynonsbugfarm.com/CMSDocuments/Fact%20sheet%202_Parasiticides_Aug%202016.pdf
http://www.drbeynonsbugfarm.com/CMSDocuments/Fact%20sheet%202_Parasiticides_Aug%202016.pdf
http://www.drbeynonsbugfarm.com/CMSDocuments/Fact%20sheet%202_Parasiticides_Aug%202016.pdf
http://www.drbeynonsbugfarm.com/CMSDocuments/Fact%20sheet%202_Parasiticides_Aug%202016.pdf
http://www.drbeynonsbugfarm.com/CMSDocuments/Fact%20sheet%202_Parasiticides_Aug%202016.pdf
http://www.drbeynonsbugfarm.com/CMSDocuments/Fact%20sheet%202_Parasiticides_Aug%202016.pdf
http://www.drbeynonsbugfarm.com/CMSDocuments/Fact%20sheet%202_Parasiticides_Aug%202016.pdf
http://www.drbeynonsbugfarm.com/CMSDocuments/Fact%20sheet%202_Parasiticides_Aug%202016.pdf
http://www.drbeynonsbugfarm.com/CMSDocuments/Fact%20sheet%202_Parasiticides_Aug%202016.pdf
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Mitigation option: Improving livestock health (MO9)  

Impact Direction/ 
magnitude 

Notes References 

WI12 Animal health and 
welfare 

+/- Most measures should lead to 
improved animal welfare, however 
there are potential inter-temporal 
effects – over use of antimicrobials 
could lead to resistance and reduced 
treatment efficacy in the future.  

Oliver et al. 
2011 

WI13 Crop health 0 No evidence found, unlikely to be a 
significant impact. 

 

WI14 Household income  0 Farmers‘ income: No significant impact 
expected in general, though cases 
might vary widely depending on the 
disease, treatment and transfer 
payments. 
Income distribution: no significant 
impact is expected. 

 

WI15 Consumer and 
producer surplus  

0 No significant impact expected in 
general, though cases might vary 
widely depending on the disease, 
treatment and transfer payments. 

 
 
 
 

WI16 Employment  0 No evidence found, unlikely to be a 
significant impact. 

 

WI17 Resource efficiency + Improved health should lead to 
improved resource use efficiency. 

 

WI18 Human health +/- Negative impact via increased 
antimicrobial resistance.  
Potential positive impact via reduced 
human exposure to zoonoses (e.g. 
salmonella, toxoplasmosis, chlamydia). 

Oliver et al. 
2011 

WI19 Social impacts 0 No evidence found, unlikely to be a 
significant impact. 

 

WI20 Cultural impacts  0 No evidence found, unlikely to be a 
significant impact. 

 

A1.10 Reduced livestock product consumption (MO10) 

Reduced livestock product consumption can contribute to GHG mitigation as 

livestock products are the most GHG intensive components of the diet (Steinfeld 

et al. 2006). Diet related emissions of UK high meat-eaters were found to be 

28%, 54%, 84%, 89% and 149% higher than medium meat-eaters, low meat-

eaters, fish-eaters, vegetarians and vegans, respectively (Scarborough et al. 

2014). 

Assuming no change in exports, GHG emissions (including UK and overseas 

emissions) would be reduced by 19% with a 50% reduction in livestock 

consumption in the UK (-40% dairy, -64% meat) (Audsley et al. 2011). That paper 

reported that net effect would greatly depend on the alternative land use and the 
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substitution in the diet. Substitution of red meat with white meat could reduce 

emissions by 9%, while reducing white meat consumption by 50% would mitigate 

3.3% of the related GHG emissions. At the same time reducing livestock product 

consumption by 50% would decrease the land area used for food production 

domestically and overseas by 28-48%, mostly releasing UK grassland areas from 

food production. If the red meat in the diet were replaced with white meat, the 

grassland area would be reduced somewhat further, but the increased demand 

for tillable land both in the UK and abroad would overweight this gain, in total 

releasing 25-44% land. Reducing white meat consumption only would have only a 

minor positive effect on land use. The study estimated that currently 36% of the 

UK food consumption related GHG emissions occur overseas. With the study‘s 

assumption on constant proportion of production, exports and imports most of the 

GHG effects happened in the UK.  

However, due to exports and imports, some of the GHG mitigation would manifest 

abroad. The gross value added of agriculture and food manufacturing (not 

including wholesale, retail and catering) was £5.4bn in 2014 (Office for National 

Statistics 2015), while in 2010 food exports and food imports were £4.5bn and 

£1.1bn, respectively (the former including £4bn drink export) (Scottish 

Government 2012). 47% of the Scottish primary produce (agriculture and fishery) 

was purchased by non-Scottish purchasers (including rest of the UK) (Scottish 

Government 2012). These statistics show that trade with the rest of the UK and 

abroad is important for the Scottish agricultural and food sector, though these 

numbers do not reveal how a shift in consumption patterns would impact on 

exports, imports and ultimately on domestic production.  

The domestic environmental impacts and GHG effects of reduced livestock 

product consumption are dependent on the strength of the relationship between 

domestic consumption and domestic production. For example, domestic 

production might be less affected by reduced livestock consumption if export 

markets for livestock products are available and most of the increase in fruit and 

vegetable consumption would be provided by imports. Though consumption 

based environmental metrics are likely to change significantly with a change in 

the diet, a large proportion of these impacts might manifest abroad, leaving the 

wider impacts related to domestic production less affected. Wolf et al. (2011) 

modelled three alternative, reduced meat diets for Europe and found that though 

first order effects include, amongst other changes, a drop of 44% in cattle 

production, second order effects only show a 9% reduction. Similar effects can be 
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seen in GHG mitigation and in all other environmental impacts analysed, just as 

in a similar study by Tukker et al. (2011). 

One of the major co-benefit of reduced meat and dairy product consumption can 

be improved human health (McMichael et al. 2006). However, it is important to 

note that a healthy diet is not necessarily associated with lower GHG emissions, 

as the overall GHG effect depend on the substitutions made and the total calorie 

intake goals. Vieux et al. found (2012) that an isocaloric substitution of meat 

consumption (capping it at 50g day-1) with vegetables and fruits did not reduce 

the GHG emissions in France, and analysing dietary recommendations in the 

United States showed that following the 2010 US Dietary Guidelines (even with a 

reduced total caloric intake) would increase GHG emissions (Tom et al. 2015).  

Summarising, the domestic GHG and environmental impacts and health impacts 

of this MO will heavily depend on:  

• The reduction in livestock product consumption regarding changes in the 

share of dairy, white meat and read meat products, 

• Whether calorie intake is reduced as well or not, 

• Substitution of the livestock products with cereals, vegetables, fruits, 

oils/nuts/seeds, etc. (with particular attention to products which might have 

negative environmental impacts, like palm oil and soya, or can be less 

healthy, like more processed food), 

• Reaction of exports, imports and domestic production to consumption 

change, 

• Alternative use of released land and 

• Re-structuring of the supply chain in order to reduce negative economic 

impacts. 

Table 27 Wider impacts of MO10 
Mitigation option: Reduced livestock product consumption (MO10) 

Impact Direction/ 
magnitude 

Notes References 

WI1 Air quality: NH3 + Acidification and eutrophication 
are reduced with healthy diets in 
Europe due to reduced nitrogen 
pollution; when only income 
effects are included the benefits 
are much higher than when 
second order rebounds 
(economy-wide reactions on 
change in demand for foodstuffs) 

Tukker et al. 
2011 
 
 
 
 
 
 
Westhoek et 
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Mitigation option: Reduced livestock product consumption (MO10) 

Impact Direction/ 
magnitude 

Notes References 

are considered. 
Isocaloric replacement of 25-50% 
of livestock consumption with 
plant-based products in the EU 
would reduce nitrogen emissions 
by 40%. 

al. 2014 

WI2 Air quality: NOx 0 No evidence found, effects can 
depend on substitution (as related 
to transport and processing). 

 

WI3 Air quality: PM 0 No evidence found, effects can 
depend on substitution (as related 
to transport and processing). 

 

WI4 Air quality: other 0 No evidence found, unlikely to be 
a significant impact. 

 

WI5 Water quality: 
Nitrogen leaching 

+ Acidification and eutrophication 
are reduced with healthy diets in 
Europe; when only income effects 
are included the benefits are 
much higher than when second 
order rebounds (economy-wide 
reactions on change in demand 
for foodstuffs) are considered. 

Tukker et al. 
2011 

WI6 Water quality: 
Phosphorous 

+ Acidification and eutrophication 
are reduced with healthy diets in 
Europe; when only income effects 
are included the benefits are 
much higher than when second 
order rebounds (economy-wide 
reactions on change in demand 
for foodstuffs) are considered. 

Tukker et al. 
2011 

WI7 Water quality: other  - Ecotoxicity (mostly related to 
pesticide use from higher 
consumption of vegetable food) 
increases with healthier diets in 
Europe. 

Tukker et al. 
2011 

WI8 Soil quality +/- No evidence found, impacts 
would greatly depend on 
alternative use. 

 

WI9 Flood 
management, water 
use 

+/- The impact on water scarcity 
varies depending on the diet, 
though most of the impact 
happens outwit of the UK (not 
including knock-on effect on land 
use)  

Hess et al. 
2015 

WI10 Land cover and 
land use 

+ Isocaloric replacement of 25-50% 
of livestock consumption with 
plant-based products in the EU 
would reduce per capita land use 
by 23%.  
In Scotland the most substantial 
impact would be a move from 
grasslands towards alternative 
uses (e.g. forestry).  

Westhoek et 
al. 2014 
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Mitigation option: Reduced livestock product consumption (MO10) 

Impact Direction/ 
magnitude 

Notes References 

WI11 Biodiversity +/- No evidence found, impacts 
would greatly depend on what 
land areas will be released (e.g. 
extensive or intensive grasslands, 
arable land) and on the alternative 
use (e.g. sustainable forestry, 
arable production or bioenergy 
production).  

 

WI12 Animal health and 
welfare 

+/- No evidence found. The effect 
could depend on consumer 
demand for animal welfare and 
the economics of intensification vs 
extensification of livestock 
production. 

 

WI13 Crop health 0 No evidence found, unlikely to be 
a significant impact. 

 

WI14 Household income  +/- Substituting livestock products 
with other food products might 
result either in savings or higher 
food expenses for the consumers. 
If GHG emission-based food 
taxes were introduced, also 
resulting in lower meat 
consumption (highest tax rates on 
beef, coffee drinks, lamb, cheese, 
animal fats, pork, other meat, 
bread, tea and cocoa), all socio-
economic classes would reduce 
their food intake, and the tax 
burden would fall 
disproportionately on households 
in the lowest socio-economic 
class. 
Household income of those in the 
livestock supply chain could 
decrease. 

 
 
 
 
Kehlbacher 
et al. 2016 

WI15 Consumer and 
producer surplus  

+/- The impacts are negative on the 
livestock related parts of the food 
chain while positive on producers 
and processors of plant-based 
food products and also on some 
other sectors, like transport. As 
much of Scotland‘s agricultural 
land is only suitable for livestock 
but not vegetable/grain 
production, the overall effects – 
as far as Scottish consumption 
will affect Scottish production – 
are more likely to be negative.  

Lock et al. 
2013 

WI16 Employment  +/- No evidence found, likely to follow 
production changes described in 
the previous point. 

 

WI17 Resource efficiency + As livestock numbers are reduced Westhoek et 
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Mitigation option: Reduced livestock product consumption (MO10) 

Impact Direction/ 
magnitude 

Notes References 

part of the ecological pyramid 
related to human consumption is 
eliminated, therefore resource use 
efficiency increases (e.g. nitrogen 
use efficiency of the European 
food system can increase from 
18% to 41-47%. 

al. 2014 

WI18 Human health ++ Reductions in livestock production 
consumption leads to 2,000 – 
37,000 avoided premature death 
per annum in the UK, depending 
on the diet changes (modelled 
diet scenarios were based on the 
Committee on Climate Change 
Fourth Carbon Budget). 
Population aggregate risks in the 
UK would be reduced 3% to 12% 
for coronary heart disease, 
diabetes mellitus and colorectal 
cancer if meat consumption is 
reduced. 
Following the UK dietary 
guidelines would avoid 33,000 
premature death per annum from 
cardiovascular diseases and 
cancer in the UK (4,300 in 
Scotland).  
Human toxicity is reduced with 
healthier diets in Europe. 

Scarborough 
et al. 2012a 
 
 
 
 
 
Aston et al. 

2012 
 
 
 
Scarborough 
et al. 2012b 
 
 
Tukker et al. 
2011 

WI19 Social impacts +/- No evidence found, effects would 
depend on larger and smaller 
scale changes in the food supply 
chain. 

 

WI20 Cultural impacts  +/- No evidence found, effects might 
arise in food culture and also from 
the induced land use change. 

 

A1.11 Afforestation (MO11) 

Afforestation has been and can further be a major contributor to reducing the net 

GHG emissions by sequestering carbon in the soil and as woody biomass.  

Forestry practice is covered by the UK Forestry Standard (Forestry Commission 

2011). Additionally, the UK Woodland Assurance Standard (UKWAS 2008) 

contains explicit commitments to low impact silvicultural systems which may 

include, but is not exclusively restricted to, continuous cover forestry operations. 

Certification bodies such as the Forestry Stewardship Council and Programme for 

the Endorsement of Forest Certification also provide accreditation and 
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endorsement of sustainably managed forests. Adherence to standards will ensure 

that potential adverse impacts are minimised. 

Table 28 Wider impacts of MO11 
Mitigation option: Afforestation (MO11) 

Impact Direction/ 
magnitude 

Notes References 

WI1 Air quality: NH3 ++ NH3 is captured by trees downwind, 
which can be of particular 
importance near livestock 
operations. 
 

Patterson et 
al. 2008, 
Famulari et 
al. 2015, 
Bealey et al. 
2014 

WI2 Air quality: NOx ++ A number of studies from around 
the world which are transferable to 
Scotland show that trees can 
remove NOx and improve air quality 
in both urban and rural areas. 

Cohen et al. 
2014, Nowak 
et al. 2006  
 

WI3 Air quality: PM ++ Reduced concentration of PM10 
(and other pollutants). 
 
 
Coniferous species and broadleaf 
trees with hairy leaves have a 
greater effectiveness at capturing 
particles than other broadleaf trees. 

Cohen et al. 
2014, Powe 
and Willis 
2004 
Beckett et al. 
2000 
 
 

WI4 Air quality: other + Reduced concentration of carbon 
monoxide and sulphur dioxide. 
 
 
Urban trees generally reduce ozone 
and carbon monoxide; evidence on 
similar effects of forests has not 
been found. 

Cohen et al. 
2014, Powe 
and Willis 
2004 
Nowak et al. 
2000, Nowak 
et al. 2006, 
Taha 1996 

WI5 Water quality: 
Nitrogen leaching 

+ Afforestation of arable land can 
reduce nitrogen leaching although 
nitrogen leaching can occur from 
mature forests which have 
achieved full canopy cover.  
 
 
 

 
 
The amount of nitrogen leaching 
depends on tree type, with higher 
leaching rates from broadleaf 
woodland. 
Harvesting can lead to short time 
releases of nitrogen although this 
depends on harvest method, and 
fluxes may be less than from arable 
land. 

Hansen et al. 
2007, 
Bastrup-Birk 
& Gundersen 
2004, 
Reynolds & 
Edwards 
1995 
Elberling 
2006 
 
Nisbet et al. 
2011 

WI6 Water quality: 
Phosphorous 

0 Tree planting and harvesting have 
the potential to release 

Nisbet et al. 
2011, 
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Mitigation option: Afforestation (MO11) 

Impact Direction/ 
magnitude 

Notes References 

Phosphorous into waterbodies, 
however woodland buffer strips 
along water courses can reduce 
erosion and phosphate leaching. 
Forestry operations are carried on 
in accordance with the Forest and 
Water Guidelines it is unlikely to be 
an effect. 

Stevenson et 
al. 2016 
 
Nisbet 2002 

WI7 Water quality: other   
 
 
 
 
 
 
 
 
 
-  
 
 
 
 
0 
 
 
 
 
 
- 
 
 
 
 
 
 
 
 
 
- 
 
 
+ 

Although afforestation has the 
potential to produce adverse 
impacts on water quality, where 
forests are planted and managed in 
accordance with the UK Forestry 
Standard adverse impacts are likely 
to be avoided. However potential 
issues associated with afforestation 
are listed here to highlight the 
importance of ensuring that the 
Forest Standard is followed. 
Changes in algal populations in 
lakes in Ireland related to 
afforestation in catchments in 
Ireland which were more than 20% 
forested, but no effect on less 
afforested catchments. 
No change in turbidity, water 
colour, or iron or manganese 
concentrations in water in two 
afforested catchments in Argyll 
where forestry operations are 
carried on in accordance with the 
Forest and Water Guidelines. 
Badly located forests, particularly 
conifers on poorly buffered soils 
can cause acidification by 
scavenging atmospheric sulphur 
and nitrogen.  
Forests close to rivers can provide 
shade help rivers to adapt to 
climate change, but some species 
can cast heavy shade and lowers 
water temperature excessively if 
planted close to river banks. 
Poor practice during planting and 
harvesting can release sediment 
into watercourses. 
Afforestation around arable fields 
can reduce spray drift of pesticides 
into watercourses by 60 – 90 %. 

 
 
 
 
 
 
 
 
 
 
Stevenson et 
al. 2016 
 
 
 
Nisbet 2002 
 
 
 
 
 
Nisbet et al. 
2011 
 
 
Nisbet et al. 
2011 
 
 
 
 
Nisbet et al. 
2011 
 
Nisbet et al. 
2011 

WI8 Soil quality +/-  Afforestation on mineral soils can 
increase soil carbon stocks. 
However drainage and afforestation 
of organic soils releases soil 
carbon. The UK Forestry Standard 

Bradley et al. 
2005, 
Grüneberg et 
al. 2014  
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Mitigation option: Afforestation (MO11) 

Impact Direction/ 
magnitude 

Notes References 

does not permit afforestation on 
organic soils and therefore 
mitigates this risk. 

WI9 Flood 
management, water 
use 

++ 
 

There is evidence that trees 
(coniferous to a larger degree than 
broadleaved) use/intercept more 
water than shorter vegetation types  
Infiltration rates may be significantly 
enhanced (and thus runoff reduced) 
where grazed pasture is planted 
with woodland  
Floodplain woodland may lead to 
significant increases in flood 
storage and flood peak travel times  

Bosch and 
Hewlett 1982 
 
Marshall et 
al. 2014 
 
 
Thomas and 
Nisbet 2007 

WI10 Land cover and 
land use 

+ Afforestation inherently involves a 
change in land use and in general 
considered as a positive outcome. 
However, opportunity costs of the 
previous land use need to be 
considered. For example 
afforestation of prime agricultural 
land would result of less of 
agricultural production, whereas 
afforestation of semi-natural 
grassland would cause much less 
loss of existing income.  
 
Afforestation alters landscape 
value. Public perception of 
landscape change is dependent on 
the proposed change and 
knowledge of the previous land use 
history.  

 
 
 
 
 
 
 
 
 
 
 
 
Hanley et al. 
2009, 
Habron 1998 

WI11 Biodiversity +/- The effect on biodiversity will 
depend on the type of tree planting 
and the previous use of the 
afforested land.  
UK Forestry Standards require the 
conservation and enhancement of 
biodiversity in afforestation and 
forest management. 

Forestry 
Commission 
2011 

WI12 Animal health and 
welfare 

- Probably little effect in most 
instances, although afforestation on 
peatlands might increase tick 
abundance. 

Gilbert 2013 

WI13 Crop health 0 No evidence found, unlikely to be a 
significant impact. 

 

WI14 Household income  +/- Land owners‘ income: depends on 
the balance of the opportunity costs 
of the land and any government 
payments. 
Income distribution: Likely to 
depend on the balance of 
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Mitigation option: Afforestation (MO11) 

Impact Direction/ 
magnitude 

Notes References 

employment opportunities 
associated with afforested land 
compared to those associated with 
the previous land use. 

WI15 Consumer and 
producer surplus  

+/- Will reduce agricultural production, 
but increase production of timber 
products. 

CJC 
Consulting 
2013 

WI16 Employment  +/- Potential to increase employment in 
rural Scotland in forestry activities, 
timber processing and through 
associated leisure and tourism 
activities. However will displace 
some jobs in other land based 
sectors e.g. agriculture. 

CJC 
Consulting 
2013 

WI17 Resource efficiency + 
 

The produced wood can be used 
for fuel or as construction material. 

CJC 
Consulting 
2013 

WI18 Human health + Woodlands can enhance 
recreational opportunity, encourage 
people to exercise more and 
improve quality of life. 
Forests provide pest and disease 
regulation, noise regulation and 
soil, air and water regulation; all 
improving contributing to positive 
human health outcomes. 
Additionally, woodlands improve 
physical and mental health via 
providing recreational space. 
Woodland has positive impacts on 
health because it can absorb 
pollutants, encourage exercise and 
reduce stress.  

Ambrose-Oji 
et al. 2014 
 
 
Bateman et 
al. 2011 
 
 
 
 
 
Mourato et 

al. 2010, 
Nowak et al. 
2013, Tiwary 
et al. 2009 

WI19 Social impacts + Woodlands located close to 
settlements can provide space for 
community activities. 

Ambrose-Oji 
et al. 2014 

WI20 Cultural impacts  +/- Woodlands can enhance 
recreational opportunity and can 
contribute to landscape and 
aesthetic amenity. 
Recreational demand varies to the 
nature of the forest recreation site 
such as the size and type of 
woodland, facilities and the 
recreational activities available on 
site. Woodland also indirectly 
influences recreation, for example: 
via effects on water quality, 
affecting recreational fishing, 
swimming or boating, air quality 
(through health effects or visibility), 
climate/temperature (through 

Ambrose-Oji 
et al. 2014,  
Jones et al. 
2010, 
Bateman et 
al. 2011, 
Forestry 
Commission 
2011  
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Mitigation option: Afforestation (MO11) 

Impact Direction/ 
magnitude 

Notes References 

shading, cooling and shelter from 
extreme weather) and biodiversity 
(through bird watching or nature 
viewing). 
Afforestation might negatively 
impact landscape, historic and 
recreational values of the land in 
certain places; afforestation 
projects should follow the UK 
Forestry Standards, and ―should be 
designed […] to take account of the 
historical character and cultural 
values of the landscape. […] to take 
account of landscape designations, 
designed landscapes, historic 
landscapes and the various policies 
that apply.‖ 
Those involved in activities related 
to the current use of land which is 
to be afforested may view 
afforestation as a challenge to the 
cultures associated with those land 
uses e.g upland farming and 
sporting activities. 

A1.12 Peatland restoration (MO12) 

Scotland has large areas of peatland which are significant carbon reservoirs, 

storing 1,780 Mt of carbon (Smith et al. 2007). However, land management 

activities have resulted in 70 % of blanket bog (Artz et al. 2014) and 90 % of 

raised bog in Scotland (Lindsay and Immirzi, 1996) are estimated to be degraded 

with the result that they have switched from being GHG sinks to GHG sources. 

Peatland restoration which raises the water table and restores semi-natural 

vegetation can reduce the CO2 emissions associated with the degradation of 

peatlands and may return peatlands to being net GHG sinks. Peatland restoration 

is likely to improve the biodiversity of these international important habitats and is 

likely to have complex interactions with hydrology and landscape value. 

Table 29 Wider impacts of MO12 
Mitigation option: Peatland restoration (MO12) 

Impact Direction/ 
magnitude 

Notes References 

WI1 Air quality: NH3 0 No evidence found, unlikely to be a 
significant impact. 

 

WI2 Air quality: NOx 0 No evidence found, unlikely to be a 
significant impact. 
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Mitigation option: Peatland restoration (MO12) 

Impact Direction/ 
magnitude 

Notes References 

WI3 Air quality: PM + Could be a small reduction in 
airborne PM from reduced heather 
burning and eroding peat. 

 

WI4 Air quality: other 0 No evidence found, unlikely to be a 
significant impact. 

 

WI5 Water quality: 
Nitrogen leaching 

- Rewetting of peatland sites can 
increase nitrogen leaching 
particularly in the early years of 
restoration. The risk is increased 
where fertiliser has been applied or 
where trees are felled during 
restoration. 

Similä et al. 
2014, 
Menberu et 
al. 2015, 
Kieckbusch 
and 
Schrautzer 
2007 

WI6 Water quality: 
Phosphorous 

- Rewetting of peatland sites can 
increase phosphorous leaching 
particularly in the early years of 
restoration. The risk is increased 
where fertiliser has been applied or 
where trees are felled during 
restoration. 

Similä et al. 
2014, 
Menberu et 
al. 2015, 
Kieckbusch 
and 
Schrautzer 
2007, 
Cummins 
and Farrell 
2000 

WI7 Water quality: other  - 
 
 
 
 
 
 
 
+ 

Rewetting of peatland sites can 
increase organic carbon leaching, 
particularly in the early years of 
restoration.  
 
 
 
 
 
In the longer term peatland 
restoration can reduce organic 
carbon leaching in some 
catchments. 
Removing dissolved organic carbon 
from water increases water 
treatment costs. 

Similä et al. 
2014, 
Menberu et 
al. 2015, 
Kieckbusch 
and 
Schrautzer 
2007 
Armstrong et 
al. 2010 

 
Wallage et 
al. 2006 

WI8 Soil quality ++ Reduced carbon loss from 
degraded peat is an intended 
outcome of peatland restoration. 

Lilly, et al. 
2009 

WI9 Flood 
management, water 
use 

Flood 
management 
+/- 
 
 
 
 
 
 
 

Drainage speeds-up flow, which 
can lower water tables. This 
increases the ability of the drained 
area to absorb rainfall, which can 
help reduce flood risk downstream. 
Net effects are difficult to measure. 
Impacts depend on topography, 
layout of drainage or other 
management intervention and 
location in the headwater 

Acreman and 
Holden 2013 
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Mitigation option: Peatland restoration (MO12) 

Impact Direction/ 
magnitude 

Notes References 

 
 
 
 
 
 
 
Water use  
-- 
 

catchment with respect to the 
drainage network. So in some 
cases blocking peatland drains will 
reduce flood risk, in other cases it 
can increase flood risk. Re-
vegetating wetlands reduces the 
speed of overland flow and 
potentially reduces the flood peak 
during some events. 

There is strong evidence that 
wetlands evaporate more water 
than other land types, such as 
forests, savannah grassland or 
arable land. Many studies of 
wetlands conclude that wetlands 
reduce the flow of water in 
downstream rivers during dry 
periods (relevant for Scottish dry 
spells which are likely to become 
more frequent as a result of climate 
change). 

 
 
 
 
 
 
Bullock and 
Acreman 
2003 
 

WI10 Land cover and 
land use 

+/- Change from afforested plantation 
forestry to semi-natural peatland 
alters landscape value. Public 
perception of landscape change is 
dependent on the proposed change 
and knowledge of the previous land 
use history.  
Deforestation limits the use of 
peatlands for timber production. It 
allows peatlands to increase carbon 
sequestration in peat, but this has 
to be offset against reduced in 
carbon sequestration in timber. 

Hanley et al. 
2009, 
Habron 1998 

WI11 Biodiversity ++ Scotland holds 13 % of the world‘s 
peatlands which are globally 
important habitats, although 80 % 
of Scottish peatlands are currently 
degraded. Near-natural peatlands 
are protected under the Ramsar 
convention and the EU habitats 
Directive. Peatland restoration aims 
to restore natural peat forming 
vegetation. 

Ramsar 1971 

WI12 Animal health and 
welfare 

+ Tick numbers are reduced when 
afforested peatlands are restored, 
potentially reducing tick-born 
diseases in nearby livestock. 

Gilbert 2013 

WI13 Crop health - Could be a small negative effect on 
crop health if cropland on drained 
peat was rewetted (not full 
restoration but higher water table 
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Mitigation option: Peatland restoration (MO12) 

Impact Direction/ 
magnitude 

Notes References 

under arable to reduce carbon 
loss), although more applicable to 
England than Scotland as the area 
of cropland on drained peat in 
Scotland is small (around 8.6 kha) 
and the focus of peatland 
restoration is on afforested peat or 
semi-natural grassland. 

WI14 Household income  +/- Land owners‘ income: depends on 
the balance of the opportunity costs 
of the land and any government 
payments. 
Income distribution: no evidence, 
and unlikely to be an important 
impact 

 

WI15 Consumer and 
producer surplus  

0 No evidence, but the impact might 
be important. Regarding consumer 
surplus indirect impacts of 
restoration on water quality may be 
worth investigating in more detail – 
specifically impacts on water 
treatment costs. Regarding 
producer surplus, impacts depend 
on previous land uses, which 
primarily include forestry, grouse 
and deer management, grazing of 
livestock (sheep). Impacts will 
depend on the scale of restoration 
and other local factors. There is 
anecdotal evidence that land 
managers have opted for restoring 
parts of their lands because of 
positive side-effects on production-
related activities (Andrew McBride, 
personal comm. 6 June 2016). For 
example, blocking drains and 
gullies may decrease mortality 
rates amongst grouse chicks. 
Hence, the assumption of positive 
opportunity costs of restoration may 
not hold in all cases and requires 
further investigation. 

Glenk et al. 
2014 

WI16 Employment  0 No evidence found, unlikely to be a 
significant impact. 

 

WI17 Resource efficiency 0 No evidence found, unlikely to be a 
significant impact. 

 

WI18 Human health +/- Human health may benefit from 
reduced tick numbers, particularly 
with the increasing prevalence of 
the tick-borne infection Lyme‘s 
disease. 
Increased incidence of midges is 
possible if restoration takes place in 

Gilbert 2013 
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Mitigation option: Peatland restoration (MO12) 

Impact Direction/ 
magnitude 

Notes References 

proximity to popular camping 
grounds or hiking paths. 
Impacts on health may also be 
related to recreational 
opportunities.  

 
Martin-
Ortega et al. 
2014 

WI19 Social impacts + No evidence found, but the impact 
might be important, especially for 
rural communities that engage in 
peatland restoration activities, as 
well as communities that have 
strong traditional ties to peatlands 
(e.g. crofting communities) 

 

WI20 Cultural impacts  +/- No evidence, but the impact might 
be important.  
Peatlands provide important 
cultural services, though the current 
provision of these services cannot 
be easily transferred to assess the 
impacts that peatland restoration 
will have. E.g. hunting is an 
important benefit currently but 
restoration via reduced burning 
activities may be detrimental to this 
activity.  
Accessibility might be an important 
factor in recreational benefits. 
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Appendix A2. Review of models and tools for 

quantitative assessment of the wider impacts of 

ALULUCF GHG mitigation options 

A2.1 Models and tools for air quality (WI1-WI4) 

The models described for assessing air quality focuses on a combination of air 

dispersion models (EMEP4UK, SCAIL) which can output deposition and 

concentrations values to a grid or receptor, and an integrated model which can 

explore abatement scenarios and provide benchmarks for protection of 

ecosystems and air quality and human health (UKIAM, GAINS). DNDC is a 

process based model which predicts crop yield, carbon sequestration, nitrate 

leaching loss, and emissions of carbon and nitrogen gases in agroecosystems. 

Most of the MOs outlined in this report can be assessed by way of altering input 

emissions to the models. The models can be used to explore national and local 

scale effects, although the models are restricted down to a resolution at the 1km 

scale (EMEP4UK, UKIAM). However, individual local scale modelling can be 

carried out by models such as SCAIL to assess source to receptor impacts at the 

farm level. 

A2.1.1 EMEP4UK 

Table 30 Model description: EMEP4UK 
Model/tool name EMEP4UK  

  References 

Impacts 
assessed 

Air pollutants  

Sectors covered Agriculture, industry, transport, stationary combustion 
(all emission sectors) 

 

Geographical 
scope  

Country/Regional  

Modelling 
approach 

The EMEP4UK model is a 3D eulerian atmospheric 
chemistry transport model (ACTM) driven by the 
numerical weather prediction model weather and 
research forecast (WRF).  
The model is used to simulate photo oxidants and both 
inorganic and organic aerosols. The EMEP4UK model 
calculates hourly to annual average tropospheric 
atmospheric composition and deposition of various 
pollutants; including speciated components of PM10, 
PM2.5, secondary organic aerosols (SOA), elemental 
carbon (EC), secondary inorganic aerosols (SIA), 
sulphur dioxide, NH3, NOx, and ozone. Dry and wet 

Vieno et al. 2010 
 
 
 
 
 
 
Simpson et al. 
2012 
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Model/tool name EMEP4UK  

  References 

deposition of pollutants are routinely calculated by the 
model.  
EMEP4UK initially was developed as a regional 
application of the EMEP MSc-W model which is used to 
support the Convention on Long Range Transboundary 
Air Pollution (CLRTAP). However, now the EMEP4xyz 
can be apply virtually anywhere in the world from Global 
run to nested regions at high resolutions. 

Main model 
outputs  

UK pollutant maps (up to 1km x 1km grid) 
e.g.  
https://eip.ceh.ac.uk/apps/atmospheric 
http://www.emep4uk.ceh.ac.uk/2014 

 

Main data needs Country/Global emission inventory 
Driven by real meteorology, therefore an EMEP 
compatible meteorological dataset is required. The 
EMEP4UK rv4.8 currently uses the WRF model version 
3.7.1 (Weather Research and Forecasting) as 
meteorological driver. 

 

Main limitations Level of expertise to run and making scenarios into 
emission maps.  

 

Validation/ 
robustness 

EMEP4UK has been compared with other models.  
Also validated with measurement networks. 
The EMEP MSC-W model is extensively validated and 
verified and the model performances are reported 
annually in the EMEP status report. 
http://emep.int/publ/emep2016_publications.html. 

Carslaw et al. 
2011a 
Carslaw et al. 
2011b 
Dore et al. 2015 
Vieno et al. 2010 
Vieno et al. 2014 
Vieno et al. 2016a 

Scottish/UK 
case study 
examples 

EMEP4UK has been used to model: 
Ozone during a summer heat wave 
Multiple years UK atmospheric composition PM air 
episodes 
PM2.5 mitigation  

 
Vieno et al. 2010 
Vieno et al. 2014 
Vieno et al. 2016a 
Vieno et al. 2016b 

Examples of 
integrated use 

The EMEP-MSc-W model has been integrated with the 
GAINS model 

Simpson et al. 
2012 

A2.1.2 UKIAM 

Table 31 Model description: UKIAM 
Model/tool name UKIAM (UK Integrated Assessment Model)  

  References 

Impacts 
assessed 

An integrated assessment modelling tool to support 
policy in relation to air pollutants and GHGs. 

 

Sectors covered Agriculture, industry, transport – all sectors 
Pollutants covered: sulphur dioxide, NOx, PM, NH3. 
UKIAM has also been extended to include GHG 
emissions. 

ApSimon et al. 
2009 

Geographical 
scope  

UK and regional  

Modelling 
approach 

UKIAM projects UK emissions for sulphur dioxide, NOx, 
NH3, PM10 and PM2.5 for future scenarios providing data 
on pollutant deposition, criteria for ecosystem protection, 
urban air quality and human health and data on potential 

Oxley et al. 2003, 
Oxley et al. 2013 
 
 

http://www.emep4uk.ceh.ac.uk/2014
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Model/tool name UKIAM (UK Integrated Assessment Model)  

  References 

emission abatement measures. 
UKIAM uses pre-calculated source–receptor matrices 
derived from atmospheric modelling to estimate the 
response of baseline concentrations and deposition to 
changes in different sources both within and outside the 
UK. 
Abatement measures have been defined and 
incorporated into a Multi-Pollutant Measures Database 
giving percentage reductions in emissions achieved for 
each pollutant for a selected source, together with unit 
costs. 
UKIAM remains an independent model paralleling 
GAINS but model at 1 to 5 km resolution over the UK 
using the FRAME model. 

 
Oxley et al. 2013, 
AMEC 2009 
 
 
 
 
 
 
Dore et al. 2007, 
Fournier et al. 
2004 

Main model 
outputs  

Cost data analysis tables, deposition maps.  

Main data needs Emissions inventories and scenarios  

Main limitations Time consideration need to be given for the multiple 
model runs. 

 

Validation/ 
robustness 

Model output from FRAME have been validated against 
measurements and compared with other models. 
In general, it is less easy to validate modelled data on 
source attribution of pollutant concentrations and 
deposition against measurements. 

Dore et al. 2015 

Scottish/UK 
case study 
examples 

PM2.5 emission abatement strategies and sensitivity to 
human health (in London). 
UK assessment of traffic emissions and future scenarios 
and the UK's air quality strategy. 

Oxley et al. 2015 
 
Oxley et al. 2011 

Examples of 
integrated use 

Already an integrated model  

A2.1.3 DNDC 

Table 32 Model description: DNDC 
Model/tool name DNDC (Denitrification-Decomposition model)  

  References 

Impacts 
assessed 

Predicts crop yield, carbon sequestration, nitrate 
leaching loss, and emissions of carbon and nitrogen 
gases in agroecosystems. 

 

Sectors covered Agriculture  

Geographical 
scope  

Site or regional  

Modelling 
approach 

DNDC is a process-oriented computer simulation model 
of carbon and nitrogen biogeochemistry in 
agroecosystems. The entire model is driven by four 
primary ecological drivers, namely climate, soil, 
vegetation, and management practices. 
The model consists of two components: 
1. Soil climate, crop growth and decomposition 
sub-models. Predicts soil temperature, moisture, pH, 
redox potential (Eh) and substrate concentration profiles. 
These are driven by ecological drivers (e.g., climate, 
soil, vegetation and anthropogenic activity).  

Gilhespy et al. 
2014 
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Model/tool name DNDC (Denitrification-Decomposition model)  

  References 

2. Nitrification, denitrification and fermentation sub-
models. Predicts emissions of CO2, CH4, NH3, nitric 
oxide, N2O and dinitrogen from the plant-soil systems.  
DNDC has been modified for application into the UK to 
produce UK-DNDC, and which was updated. It uses UK-
specific input data. At the regional scale, UK-DNDC 
utilises its own databases. 
Manure-DNDC represents the manure life cycle on 
farms and predict GHG and NH3 emissions from 
livestock manure systems. 
http://www.dndc.sr.unh.edu/model/GuideDNDC95.pdf  

 
 
 
Brown et al. 2002 
Cardenas et al. 
2013 
 
 
Li et al. 2012 

Main model 
outputs  

Simulated results including daily and annual crop 
biomass, carbon and nitrogen pools/fluxes, water budget 
and daily fluxes of NH3, CH4, N2O, nitric oxide, and 
dinitrogen. 
These are recorded in a series of files (csv). 

 

Main data needs 3 main datasets are required: 
1. Crop management parameters inputs are 
required (e.g. crop type, rotation, tillage, fertilization, 
irrigation etc.). 
2. Climate data for the years to be simulated 
should be provided (temperature, precipitation are 
required, additional data e.g. wind speed, solar radiation 
and relative humility can be provided).  
3. Soil parameters include texture, bulk density, pH 
etc. 
Background concentrations of NH3 and CO2 can also be 
set. 

 

Main limitations Large data input requirements  

Validation/ 
robustness 

DNDC has now been used to simulate various cropping, 
grazing and forest systems in many countries. The 
agreement between the model simulations and 
measured values vary, with some studies reporting poor 
agreement.  

Giltrap et al. 2010 

Scottish/UK 
case study 
examples 

N2O emissions from soils at county level for the UK. 
Four MOs were assessed and the results showed there 
were differences in the emission factors according to 
location. 

Cardenas et al. 
2013 

Examples of 
integrated use 

DNDC has been developed into various other sub-
models: Wetland-DNDC, Forest-DNDC, CAPRI-DNDC. 
The INTEGRATOR model uses CAPRI-DNDC. 

Gilhespy et al. 
2014 
 
De Vries et al. 
2011 

A2.1.4 GAINS 

Table 33 Model description: GAINS 
Model/tool name GAINS (The Greenhouse gas –Air pollution INteractions and Synergies) 

  References 

Impacts 
assessed 

Estimates the environmental effects of air pollution 
under consideration of GHG emissions. The model 
simulates the flow of pollutants from their sources to 
their multiple effects, and estimates costs and impacts of 

Amann et al. 
2011a 
Klimont & 
Winiwarter 2014 

http://www.dndc.sr.unh.edu/model/GuideDNDC95.pdf
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Model/tool name GAINS (The Greenhouse gas –Air pollution INteractions and Synergies) 

  References 

policy interventions. Assesses economic sectors and 
options for emission control, costs of implementation in 
terms of reducing ecosystem and human health impacts. 
GAINS agriculture: An NH3 module for GAINS has been 
developed for NH3 emissions from animal manure at 4 
stages – housing, storage, application and grazing. 
Emission factors and a set of abatement measures are 
defined for each stage. 

Sectors covered Agriculture, Industry, Transport 
Pollutants covered: sulphur dioxide, NOx, volatile organic 
acid, PM, NH3, CO2, CH4, N2O. 

 

Geographical 
scope  

Individual countries, regions and global  

Modelling 
approach 

Cost-benefit source-receptor model taking into account 
atmospheric chemistry, quantification of ecosystem and 
human health responses 

 

Main model 
outputs  

Cost data analysis tables, deposition maps.  

Main data needs Cost data (investment costs, operating costs (fixed & 
variable)), future scenarios & baseline projections of 
economic activities. 

 

Main limitations Dependent on complete emission inventories  

Validation/ 
robustness 

No information  

Scottish/UK 
case study 
examples 

EU member states including UK. Outputs included: 
Health impact indicators, critical load exceedance for 
nitrogen and acidification. 

Amann et al. 
2011b 

Examples of 
integrated use 

Various assessments of EU and UNECE policies, e.g. 
National Emission Ceilings Directive, Gothenburg 
Protocol 

 

A2.1.5 MODDAS-THETIS 

Table 34 Model description: MODDAS-THETIS 
Model/tool name MODDAS-THETIS  

  References 

Impacts 
assessed 

Estimates the pollutant recapture by trees for NH3 and 
PM 

 

Sectors covered Agriculture (NH3) and combustion sources (PM)  

Geographical 
scope  

Site based assessments (single source)  

Modelling 
approach 

MODDAS-THETIS is a flexible two-dimensional (along 
wind and vertical) model that can be used to examine 
the pollutant abatement potential of tree shelter-belt 
structures in the landscape. MODDAS is a Lagrangian 
stochastic model for gaseous dispersion and THETIS is 
turbulence model designed for transfer within the 
planetary boundary layer as well as within a plant 
canopy.  
The model scenario setup is based around a woodland 
schema where different blocks of canopy are designed 
of varying height and width and density (Leaf Area Index 
- LAI). Source strength and the source length can also 

Loubet et al. 2006 
Foudhil 2005 
 
 
 
 
 
Bealey et al. 2014 
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Model/tool name MODDAS-THETIS  

  References 

be configured.  

Main model 
outputs  

Data table of pollutant recapture % 
Concentrations and deposition plots - before, within and 
after the canopy. 

 

Main data needs Source emissions  

Main limitations Can only be used for single sources  

Validation/ 
robustness 

Both models have been validated in conditions similar to 
those modelled here, specifically MODDAS in an NH3 
release experiment over a developed maize canopy and 
a grassland, and THETIS over several canopy 
arrangements. 

Loubet et al. 
2006, 
Foudhil 2005 
Dupont and 
Brunet, 2006 

Scottish/UK 
case study 
examples 

No real-life scenarios applied as yet.  
Modelling of a housing scenario showed that a 30-50 m 
deep tree shelter belt could capture up to 15-20% of the 
NH3 emitted. 

 
Bealey et al. 2014 

Examples of 
integrated use 

Not yet.  

A2.1.6 SCAIL 

Table 35 Model description: SCAIL 

Model/tool name 
SCAIL (Simple Calculation of Atmospheric Impact 
Limits) 

 

  References 

Impacts 
assessed 

Estimates concentrations and deposition from local 
sources 

 

Sectors covered Agriculture (NH3, nitrogen and acid deposition, PM) 
and combustion sources (NOx, sulphur dioxide, 
nitrogen and acid deposition, PM) 

 

Geographical 
scope  

Site based assessments (multi-sources)  

Modelling 
approach 

SCAIL is a suite of screening tools for assessing the 
impact from agricultural and combustion sources on 
semi-natural areas like SSSIs and SACs. SCAIL 
provides an estimate of the amount of acidity, nitrogen 
or sulphur deposited to an ecosystem. 
Meteorology in the model is provided by 40 
meteorological stations around the UK 
SCAIL uses the air dispersion model Aermod. 

Hill et al. 2014a 
www.scail.ceh.ac.uk  

Main model 
outputs  

Data table of source contribution to pollutant 
concentration and deposition. Provides critical load 
exceedance statistic for ecosystems 

 

Main data needs Background concentration and deposition maps 
Meteorological data (wind speed, wind direction) 
Emission, livestock numbers, storage/spreading 
volumes etc 

 

Main limitations Only for use in local site-based assessments  

Validation/ 
robustness 

SCAIL has been validated against measurements 
taken around farms and anaerobic digesters. 
Provides a best estimate for pollutant impacts. 

Hill et al. 2014b, 
Bell et al. 2016 

Scottish/UK 
case study 

Used across UK and in Scotland by SEPA for 
permitting purposes 

 

http://www.scail.ceh.ac.uk/
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Model/tool name 
SCAIL (Simple Calculation of Atmospheric Impact 
Limits) 

 

  References 

examples 

Examples of 
integrated use 

Not yet.  

A2.2 Models and tools for water quality (WI5-WI7) 

The models selected are able to assess the effects of MOs at at least farm scale, 

with scope for upscaling to catchment, regional or national scales. All of the 

models listed have been successfully used in UK studies to assess the wider 

effects of GHG MOs. The Farmscoper model and the ADAS Wales Framework 

are related suites of models able to assess the impacts of mitigation measures on 

a range of pollutants and pathways. The LUCI model is a GIS based ecosystem 

services model which assess the effects of land use and management and is able 

to include the effects of afforestation and peatland restoration as well as 

measures to reduce GHG emissions from agricultural activities. DNDC, 

mentioned in the previous section (A2.1.3), is also capable of modelling certain 

water quality impacts. 

A2.2.1 ADAS Wales 

Table 36 Model description: ADAS Wales 
Model/tool name ADAS Wales   

 Diffuse Pollution Emission Modelling Framework References 

Impacts 
assessed 

Nitrate, phosphorus, sediment, pesticides, veterinary 
medicines, N2O, CH4 and CO2 

Emmett et al. 
2014 
 

Sectors covered Agriculture  

Geographical 
scope  

Catchment scale, parameterized for Wales.  

Modelling 
approach 

The framework is similar to the Defra Farmscoper model 
(see Section A2.2.3), and combines a suite of models to 
calculate emissions of nitrate, phosphorus, sediment, 
pesticides, veterinary medicines, N2O, CH4 and CO2. 
The framework is stratified by Robust Farm Type and 
reported emissions for each of the Water Framework 
Directive river catchments in Wales. The modelling 
framework uses a combination of process based and 
inventory models.  
Emissions of pesticides and veterinary medicines are 
calculated using the regulatory MACRO and PRZM 
models. 
Phosphorus and sediment losses are calculated using 
the PSYCHIC model. 
Nitrate losses are calculated using the N-CYCLE, 

Anthony and 
Gooday 2010, 
Emmett et al. 
2014 
 
 
 
 
 
Jarvis 1994, 
Carsel et al. 1984 
Davison et al. 
2008 
 
Scholefield et al. 
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Model/tool name ADAS Wales   

 Diffuse Pollution Emission Modelling Framework References 

NITCAT and MANNER models. 
 
 
CH4 and N2O emissions are calculated using the tier one 
and two IPCC methodology with modifications to 
represent the effects of observed levels of soil 
compaction and poaching on N2O emissions. Indirect 
N2O emissions from leached nitrate were calculated 
using the appropriate nitrogen leaching model.  
The framework contains a meta-model of export 
coefficients derived from process based models 
describing the effects of 40 individual mitigation methods 
for pollutant emissions to air and water.  
The modelling framework provides a consistent 
assessment of multiple pollutants to air and water from 
agriculture in Wales, which explicitly links the impact of 
MOs intended to improve water quality with their 
secondary impacts on emissions of GHGs. 

1991, Lord 1992, 
Chambers et al. 
1999 
Baggott et al. 
2006, IPCC 2006 

Main model 
outputs  

Emissions of nitrate, phosphorus, sediment, pesticides, 
veterinary medicines, N2O, CH4 and CO2 

 

Main data needs Spatial database of agricultural activity, separated by 
farm system type. Data on agricultural practices 
(stocking levels, crop rotations, fertiliser application 
rates, manure management) and uptake of the 
mitigation measure e.g. June Agricultural Census, British 
Survey of Fertiliser Practice and Farm Practice Survey. 
Water Framework Directive Catchment boundaries. 
Monthly average rainfall, temperatures and number of 
rain days on a 5 by 5 km

2
 grid. 

Soil particle size distribution (percentage sand, silt and 
clay), organic matter content bulk density and HOST 
class of the dominant soil series within each 1 km

2
 

squares. 
Digital Elevation Model. 
Land cover data.  
Discharge consents database for non-agricultural 
pollution inputs. 

Anthony et al. 
2012 

Main limitations Has currently only been developed for Wales, although 
parameterisation may be similar between Wales and 
Scotland. 

 

Validation/ 
robustness 

Gives a consistent framework for using several existing 
well established models. 

 

Scottish/UK 
case study 
examples 

Used to evaluate the effect of Welsh Government Agri-
Environment schemes. 

Anthony et al. 
2012 

Examples of 
integrated use 

This tool is itself an integrated suite of models. It has 
been integrated with the LUCI model as part of the 
Welsh Government Glastir Monitoring and Evaluation 
Programme. 
The Farmscoper model incorporates a similar suite of 
models to the ADAS Wales model but also includes 
additional models to assess emissions of NH3. 
Farmscoper integrates emission data with unit costings 
for measure implementation in an algorithm which 

Emmett et al. 
2014 
 
 
Anthony and 
Gooday 2010 
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Model/tool name ADAS Wales   

 Diffuse Pollution Emission Modelling Framework References 

optimizes measures to maximize benefits for the range 
of wider impacts.  

A2.2.2 LUCI 

Table 37 Model description: LUCI 
Model/tool name LUCI (Land Utilisation and Capability Indicator) formerly Polyscape 

  References 

Impacts 
assessed 

Water quality (nitrogen, phosphorous and sediment run-
off) flood risk, carbon sequestration, habitat connectivity. 

 

Sectors covered Mountains, moors and heaths; Semi-natural grasslands; 
Enclosed farmland; Woodland; Freshwater, wetlands 
and floodplains; Urban 

 

Geographical 
scope  

Site to catchment or landscape scale.  

Modelling 
approach 

LUCI is GIS-based spatially explicit ecosystem service 
model. It is a process-based tool which maps ecosystem 
services using a range of algorithms that maintain 
biophysical principles and spatial connections using 
lookup tables, combined with topographic routing of 
water, sediment and nutrients over the landscape. It is 
spatially explicit at the resolution of the topographic data 
layer used: model applications to date have used a 5m 
by 5m resolution. 

Jackson et al. 
2013 

Main model 
outputs  

Agricultural productivity, carbon stock and condition, 
flood mitigation and concentration. Accumulation of 
nitrogen, phosphorous over the landscape. In stream 
discharge, nitrogen and phosphorous concentration and 
load 

 

Main data needs Required spatial data layers: Digital Elevation Model 
topography layer, Land use (several supported, for UK 
LCM2007), Soil type (several supported, for UK 
NATMAP) 
If available: Long term annual average precipitation and 
predicted evapotranspiration, Detailed river network 
Lookup tables (values provided for supported datasets): 
Soil and biomass carbon, land use export coefficients for 
nitrogen and phosphorous, cost distance for species 
dispersal, soil fertility, drainage and waterlogging 

 

Main limitations Does not report uncertainty. Does not include valuation.  

Validation/ 
robustness 

Quantitative. Provides spatially explicit ecosystem 
service trade off maps. 

 

Scottish/UK 
case study 
examples 

Welsh Government Glastir Monitoring and Evaluation 
Programme (GMEP).  
Loweswater catchment modelling for Defra.  
Natural England Bassenthwaite catchment project.  

Emmett et al. 
2014 
 
Norton et al. 2014 

Examples of 
integrated use 

In the GMEP project LUCI has been integrated with the 
Multimove habitat and species model and with ADAS 
Wales Diffuse Pollution Emission Modelling Framework. 
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A2.2.3 Farmscoper 

Table 38 Model description: Farmscoper 
Model/tool name Farmscoper  

  References 

Impacts 
assessed 

NH3, nitrate, phosphorus, pesticides, N2O, CH4 and CO2 Anthony and 
Gooday 2010 

Sectors covered Agriculture  

Geographical 
scope  

Farm scale, England and Wales and had been scaled to 
catchment level 

Zhang et al. 2012 

Modelling 
approach 

The framework is similar to the ADAS Wales Diffuse 
Pollution Emission Modelling Framework, and combines 
a suite of models to calculate emissions of NH3, nitrate, 
phosphorus, sediment, N2O, CH4 and CO2. Farms can 
be models based on Robust Farm Type within soil and 
climate zones.  
Emissions of pesticides are calculated using the 
MACRO and model. 
Phosphorus are calculated using the PSYCHIC model. 
Nitrate losses are calculated using the NEAP_N, N-
CYCLE, NITCAT, MANNER and EDEN models. 
 
 
NH3 emissions are calculated using the NARSES and 
MANNER models.  
 
 
CH4 and N2O emissions are calculated using the tier one 
and two IPCC methodology with modifications to 
represent the effects of observed levels of soil 
compaction and poaching on N2O emissions. Indirect 
N2O emissions from leached nitrate were calculated 
using the appropriate nitrogen leaching model.  
The framework contains a meta-model of export 
coefficients derived from process based models 
describing the effects of 97 individual mitigation methods 
for pollutant emissions to air and water.  
FARMSCOPER can estimate the cost and effectiveness 
of mitigation methods individually, so that mitigation 
methods of interest can easily be identified. It also 
allows for the evaluation of multiple mitigation methods, 
as these will not simply be the sum of the impacts of the 
individual methods, due to interaction and competition 
between methods 

Emmett et al. 
2014 
 
Anthony and 
Gooday 2010 
 
Jarvis 1994 
 
Davison et al. 
2008 
Lord & Anthony 
2000, Scholefield 
et al. 1991, Lord 
1992, Gooday et 
al. 2008 
Webb & 
Misslebrook 2004, 
Chambers et al. 
1999 
Baggott et al. 
2006, IPCC 2006 
 
 
 
 
Anthony and 
Gooday 2010 

Main model 
outputs  

Emissions of NH3, nitrate, phosphorus, pesticides, N2O, 
CH4 and CO2. Optimisation of combined MOs. 

Anthony and 
Gooday 2010 

Main data needs Spatial database of agricultural activity, separated by 
farm system type. Data on agricultural practices 
(stocking levels, crop rotations, fertiliser application 
rates, manure management) and uptake of the 
mitigation measure e.g June Agricultural Census, British 
Survey of Fertiliser Practice and Farm Practice Survey. 
Monthly average rainfall, temperatures and number of 
rain days on a 5 by 5 km

2
 grid. 

Soil particle size distribution (percentage sand, silt and 
clay), organic matter content, bulk density and HOST 

Anthony and 
Gooday 2010 
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Model/tool name Farmscoper  

  References 

class of the dominant soil series  
Digital Elevation Model. 
Land cover data.  

Main limitations Has currently only been developed for England and 
Wales, although parameterisation may be similar for 
Scotland. 

 

Validation/ 
robustness 

Gives a consistent framework for using several existing 
well established models. 

 

Scottish/UK 
case study 
examples 

Farmscoper was developed and used to model the 
benefits of MOs at a farm scale in Defra project 
WQ0106. 
It has been upscaled for use at a catchment scale in the 
Hampshire Avon Demonstration Test Catchment, and 
have a modified version of Farmscoper forms the basis 
of the ADAS Wales Diffuse Pollution Emission Modelling 
Framework 

Anthony and 
Gooday 2010 
Zhang et al. 2012 
Emmett et al. 
2014 
 

Examples of 
integrated use 

This tool is itself an integrated suite of models Anthony and 
Gooday 2010 

A2.2.4 NIRAMS 

Table 39 Model description: NIRAMS 

Model/tool name 
NIRAMS (Nitrogen Risk Assessment Model for 
Scotland) 

 

  References 

Impacts 
assessed 

Nitrogen leaching Dunn et al. 
2004a, 2004b 

Sectors covered Agriculture  

Geographical 
scope  

Scotland  

Modelling 
approach 

Calculates N balances, weekly nitrogen leaching and 
catchment scale nitrogen transport 

 

Main model 
outputs  

Streamwater nitrogen concentrations draining from 
agricultural land; outputs are reliable above 30 km

2
 

resolution 

 

Main data needs Land use, soil, topographical, meteorological data  

Main limitations Predicting long term changes; uncertainty of grassland N 
balances  

 

Validation/ 
robustness 

Successfully reproduced weekly nitrogen flows in eight 
test catchments 

 

Scottish/UK 
case study 
examples 

Nitrogen leaching and water nitrate concentration in 
Scotland 

 

Examples of 
integrated use 

  

A2.3 Models and tools for soil quality (WI8) 

CARBINE is a forest carbon model which has been developed by Forest 

Research (the Forestry Commission‘s research agency) to assess the effects of 
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forest-related activity on soil carbon stocks under UK conditions. It has been 

developed primarily to assess changes in mineral soils, but is being developed to 

improve modelling of effects on organic soils. The Windfarm Carbon Calculator 

has been developed specifically to assess the effects of wind turbine 

developments on the carbon stocks landscapes in Scotland, particularly those 

with high carbon soils. Although primary developed to assess the effect of large 

windfarm developments it could also be applied to smaller on-farm turbines 

schemes. 

A2.3.1 CARBINE 

Table 40 Model description: CARBINE 
Model/tool name CARBINE  

  References 

Impacts 
assessed 

C stocks of stands and forests in living and dead 
biomass and soil, and associated harvested wood 
products 

 

Sectors covered Forestry  

Geographical 
scope  

UK at stand, forest and national level  

Modelling 
approach 

The model consists of four sub-models or 
‗compartments‘ which estimate carbon stocks in the 
forest, soil, and wood products and, additionally, the 
impact on the GHG balance of direct and indirect fossil 
fuel substitution attributable to the forestry system. 
The model is able to represent all of the introduced and 
native plantation and naturally-occurring species 
relevant to the UK. The forest carbon sub-model is 
further compartmentalised to represent fractions due to 
tree stems, branches, foliage, and roots. The soil carbon 
sub-model runs independently of the forest sub-model. 
Initial soil carbon is estimated based on land use/cover 
and soil texture (sand, loam, clay and peat). The 
timecourse of any soil carbon stock change is assumed 
to follow an exponential form with the magnitude of the 
stock change and rate constant dependent on the soil 
type and on the particular land-use transformation. 

Robertson et al. 
2003 

Main model 
outputs  

C stocks of stands and forests in living and dead 
biomass and soil, and associated harvested wood 
products. 
Impact on the GHG balance of direct and indirect fossil 
fuel substitution 

 

Main data needs Areas and age-class distributions of each tree species.  
Estimates of stand structure and growth obtained from 
yield tables applied at the stand level. 
Pre-afforestation land use/cover and soil texture (sand, 
loam, clay and peat).  

 
Edwards and 
Christie 1981 

Main limitations The impact of different forest management regimes can 
only be assessed for the range of tree species, yield 
classes and management regimes represented in 
published yield tables. 
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Model/tool name CARBINE  

  References 

The standard thinning regime assumed for most species 
is based on recommended practice. However, actual 
forest management departs significantly from these 
recommendations. Unmanaged or ‗semi-natural‘ forest is 
poorly modelled as it is assumed to follow the same 
growth patterns as unthinned productive forest up to the 
maximum potential carbon stock. 
Uncertainty of modelling change in soil carbon stocks for 
forests on organic soils is high, although an improved 
version of CARBINE is being developed which 
incorporates elements of the ECOSSE soil model to 
address this. 

Validation/ 
robustness 

Although widely used by Forest Research the model has 
not been subject to peer view. However, the results have 
been validated against available field data. The soil sub-
model is based on the established Roth-C model. 

Coleman et al. 
1997 

Scottish/UK 
case study 
examples 

CARBINE is used by Forest Research to model carbon 
stocks of UK forests, and is used to generate estimates 
of change in forest carbon stocks for the UK LULUCF 
inventory. 

Thompson and 
Matthews 1989, 
Mason and Kerr 
2004, 
Broadmeadow 
and Matthews 
2003, Brown et al. 
2016a 

Examples of 
integrated use 

An improved version of CARBINE is being developed 
which incorporates elements of the ECOSSE soil model 
to improve modelling of change in soil carbon stocks for 
afforested organic soils. 

 

A2.3.2 SPACSYS 

Table 41 Model description: SPACSYS 
Model/tool name SPACSYS  

  References 

Impacts 
assessed 

Predicts crop yield, carbon sequestration, nitrate 
leaching loss, and emissions of carbon and nitrogen 
gases in agroecosystems. 

Wu et al. 2007 

Sectors covered Agriculture  

Geographical 
scope  

Site  

Modelling 
approach 

The model describes crop yield, nitrate and carbon 
cycling, and it includes a soil water component that 
includes representation of water flow to field drains as 
well as downwards through the soil layers. The model is 
process based for the crop and the soil components. 
The model can also be run in a 3D-root mode at the 
single plant level to assess the effects of root growth on 
the uptake of nitrogen. The root growth, direction and 
elongation rates are modelled. 

Wu et al. 2007 

Main model 
outputs  

Simulated results including daily and annual crop 
biomass, carbon and nitrogen pools/fluxes, water budget 
and daily fluxes of NH3, CH4, N2O, nitric oxide, and 
dinitrogen. 

Wu et al. 2015 
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Model/tool name SPACSYS  

  References 

Main data needs Crop management, Soil parameters include texture, bulk 
density, pH etc., and daily climate data (max & min 
temperature, precipitation, wind speed and either vapour 
pressure or relative humidity, and either global and net 
radiation or cloudiness and sunshine hours). 

 

Main limitations Required inputs, and the sparse level of validation, 
particularly for cropping systems in the UK. 

 

Validation/ 
robustness 

The model has been validated for N2O emissions for 
grassland and arable systems in the UK and Italy. At the 
China sites the model was validated for soil carbon and 
N2O emissions. The 3D root model has been validated 
against white clover, winter wheat.  

Wu et al. 2015, 
Abalos et al. 2016 
Perego et al. 
2016 
Zhang et al. 
2016a & 2016b 
Bingham & Wu 
2011 

Scottish/UK 
case study 
examples 

The model has been validated against N2O emissions 
from a manuring trial conducted in Edinburgh. The 
model has also been validated against grassland for the 
south-west of England. 

Wu et al. 2015 
Abalos et al. 2016 

Examples of 
integrated use 

No information  

A2.3.3 Windfarm carbon calculator 

Table 42 Model description: Windfarm carbon calculator 
Model/tool name Windfarm carbon calculator  

  References 

Impacts 
assessed 

The Windfarm carbon calculator is the Scottish 
Government‘s tool to support the process of determining 
wind farm developments in Scotland. The tool assesses, 
in a comprehensive and consistent way, the carbon 
impact of wind farm developments.  

 

Sectors covered Windfarms  

Geographical 
scope  

Scotland on a site by site basis  

Modelling 
approach 

The latest version of the carbon calculator is a web-
based application linked to central database, which 
stores all of the data entered.  
Emissions due to construction and operation of the 
windfarm area estimated from life cycle analysis. 
Peat which is removed is assumed to be instantaneously 
oxidized. The carbon dynamics of disturbed peat on site 
are modelled using IPCC Tier 1 methodology as default, 
although more complex modelling can be 
accommodated where available. 
Change in the carbon stocks of forests can be modelled 
using either a simple methodology based on yield 
classes or more detailed modelling based on the 3PG 
tree growth model. 

Scottish 
Government 
 
Nayak et al. 2008, 
Nayak et al. 2010, 
Smith et al. 2011 
 
 
 
 
Xenakis et al. 
2008 
 

Main model 
outputs  

Loss of carbon due to production, transportation, 
erection, operation and decommissioning of wind farm 
and back up generation provision; change in carbon 
dynamics of peatlands; changes in carbon stocks due to 
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Model/tool name Windfarm carbon calculator  

  References 

forestry clearance; impacts of forestry management on 
windfarm carbon emission savings 

Main data needs Emission factor for displaced power source, site capacity 
factor, and rated capacity of turbines. 
Life cycle analysis data for carbon losses due to 
production, transportation, erection, operation and 
decommissioning of wind farm. 
Areas of peat affected removed and affected by 
drainage. Peat depth. Data on the extent and type of 
structures on site and extent of restoration of drained 
peat.  
Area and average carbon stock of forest felled. 
Average temperature. 

 

Main limitations IPCC emission factors are used for emissions from 
drained peatlands. These may not be appropriate for UK 
peatlands, particularly blanket bogs.  
Model is site specific. 

 

Validation/ 
robustness 

Model has been peer reviewed  Nayak et al. 2010 

Scottish/UK 
case study 
examples 

Model and previous versions of it is the standard tool for 
assessing the carbon balance of Scottish Windfarms. 

 

Examples of 
integrated use 

No information  

A2.4 Models and tools for flood management and water use 

(WI9) 

The models selected were chosen because they are best able include the effects 

of some or all of the land cover and soil factors which are likely to be affected by 

the MOs and have consequences for flood risk and water use. 

A2.4.1 IHMS 

Table 43 Model description: IHMS 
Model/tool name IHMS  

  References 

Impacts 
assessed 

Changes in water resources (surface and groundwater) 
availability due to land use and climate changes 

Ragab and 
Bromley 2010, 
Ragab et al. 2010 
 

Sectors covered Water resources, Hydrology and Agriculture   

Geographical 
scope  

Catchment scale  

Modelling 
approach 

Distributed – Physically based hydrological process-daily 
based.  

 

Main model 
outputs  

All water balance components, evaporation, infiltration, 
stream flow, groundwater recharge, runoff, plant water 
uptake, groundwater levels, soil moisture, wetness 

Ragab and 
Bromley 2010 
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Model/tool name IHMS  

  References 

index, 

Main data needs Rainfall, climate, soils, land cover, elevation, vegetation/ 
land cover parameters, stream parameters 

Ragab and 
Bromley 2010  

Main limitations Not for national scale (i.e. UK as a whole), best for 
catchment scale.  

 

Validation/ 
robustness 

Has been validated for several catchment without 
problems.  

D‘Agostino et al. 
2010; Montenegro 
and Ragab 2010, 
2012 

Scottish/UK 
case study 
examples 

Currently is successfully used for Eden Catchment, 
Scotland and 5 other catchment across the UK; Pang, 
Don, Frome, Fowey and Ebbw.  

DRY project-
NERC grant 
(2014-2018): 
http://www1.uwe.
ac.uk/et/research/
dry/dryprojectsum
mary.aspx  

Examples of 
integrated use 

Linked to MODFLOW (groundwater flow model)and SWI 
(Seawater intrusion model) models  

Ragab et al. 2010 

A2.4.2 SALTMED 

Table 44 Model description: SALTMED 
Model/tool name SALTMED  

  References 

Impacts 
assessed 

Changes in water balance components, crop growth, 
yield and nitrogen cycle due to changes in land use, 
water availability, field, Nitrogen fertilizers, and climate 
changes (e.g. CO2, temperature, drought etc.)  

Ragab 2015a 

Sectors covered Agriculture   

Geographical 
scope  

Field scale  

Modelling 
approach 

Field scale model, physically-biologically based process-
daily based 

Ragab 2015a 

Main model 
outputs  

All water balance components, evaporation, infiltration, 
irrigation, drainage, biomass, dry matter, yield, plant 
water uptake, soil moisture, soil salinity, soil nitrogen, 
etc. 

Ragab 2015a 

Main data needs Rainfall, climate, soils, land cover, vegetation 
(crops/trees) parameters, land management parameters, 
nitrogen-fertilizers (organic, inorganic) input, .yjv 

 

Main limitations Field scale only  

Validation/ 
robustness 

Has been validated for several fields worldwide without 
problems  

Ragab et al. 
2015b, Pulvento 
et al. 2015 
(There are at 
least 20 papers 
on validation of 
SALTMED)  

Scottish/UK 
case study 
examples 

Currently is in use at Harper Adams University, UK  See more at 
Water4Crops EU 
funded project 
web site at: 
http://www.water4

http://www1.uwe.ac.uk/et/research/dry/dryprojectsummary.aspx
http://www1.uwe.ac.uk/et/research/dry/dryprojectsummary.aspx
http://www1.uwe.ac.uk/et/research/dry/dryprojectsummary.aspx
http://www1.uwe.ac.uk/et/research/dry/dryprojectsummary.aspx
http://www.water4crops.org/
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Model/tool name SALTMED  

  References 

crops.org/  

Examples of 
integrated use 

Will be integrated into a catchment scale model as part 
of the DRY project 

DRY project-
NERC grant 
(2014-2018): 
http://www1.uwe.
ac.uk/et/research/
dry/dryprojectsum
mary.aspx  

A2.5 Models and tools for land use and land cover (WI10) 

Changes in land use and land cover are likely to be driven by a number of other 

factors as well as climate change mitigation measures, and the effect of these 

measures may be small compared to other demands on land such as the need to 

provide timber, food, housing and recreational opportunities and may also change 

in response to climate change and market and policy forces. It is therefore difficult 

to separate out the effects of MOs on land use and land cover from wider effects. 

The LULUCF inventory contains information on land use and land cover for each 

UK administration, and is able to protect change in land use and management 

and consequent change in GHG emissions and soil carbon stocks. The LULUCF 

inventory is able to produce projections of the effect of land use and management 

on GHG emissions and carbon stocks to 2050 using scenarios which can be 

developed based on policy aspirations or projected market trends. 

To assess the land use effects of larger scale changes caused by afforestation 

policy or a change in demand for livestock products, land allocation models, like 

spatial econometric models, can be used.  

A2.5.1 LULUCF Inventory 

Table 45 Model description: LULUCF Inventory 
Model/tool name LULUCF Inventory  

  References 

Impacts 
assessed 

GHG emissions and removals and change in carbon 
stocks in living biomass, soil, dead organic matter and 
harvested wood products as a result of change in land 
use and management. 

Brown et al. 
2016a 

Sectors covered Grassland, Cropland, Forest, Wetland, Settlement Land, 
Other Land 

 

Geographical 
scope  

UK administrations, Jersey, Guernsey, the Isle of Man 
and the Falkland Islands. Can be disaggregated to local 
authority level. 

 

Modelling 
approach 

The LULUCF inventory uses methodology laid out by the 
Intergovernmental Panel on Climate Change (IPCC).  

IPCC 2006,  
IPCC 2013 

http://www.water4crops.org/
http://www1.uwe.ac.uk/et/research/dry/dryprojectsummary.aspx
http://www1.uwe.ac.uk/et/research/dry/dryprojectsummary.aspx
http://www1.uwe.ac.uk/et/research/dry/dryprojectsummary.aspx
http://www1.uwe.ac.uk/et/research/dry/dryprojectsummary.aspx
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Model/tool name LULUCF Inventory  

  References 

Much of the UK LULUCF inventory uses a simple ―Tier 
1‖ approach in which a default emission factor (EF) for 
an activity is multiplied by ―activity data‖ such as the 
area of land undergoing a particular activity or the 
quantity of material involved. For more significant 
activities more complex methodologies are used e.g the 
CARBINE model is used to generate estimates of 
change in carbon stocks in Forests, an exponential 
model is used to assess change in soil carbon stocks, 
and UK specific emission factors are being developed 
for peatland drainage and rewetting. 
The UK LULUCF inventory is compiled by aggregating 
inventories for the constituent administrations. 
Emissions and removals can be disaggregated to a 
statistical basis to be mapped at Local Authority level. 
The LULUCF inventory is able to produce projections of 
the effect of land use and management on GHG 
emissions and carbon stocks to 2050 using scenarios 
which can be developed based on policy aspirations or 
projected market trends. 

Main model 
outputs  

GHG emissions and removals; change in carbon stocks 
in living biomass, soil, dead organic matter and 
harvested wood products. 

 

Main data needs Data on land use and management, including the extent 
of farming practices, peat extract activity, and wildfires. 
To produce projections to 2050 scenarios for change in 
land use and management are needed. 

 

Main limitations In its current form the LULUCF inventory is does not use 
spatially explicit activity data, and so apportions activity 
to soil type and climate on a statistical (proportional) 
basis. However a methodology is being developed which 
will allow the LULUCF inventory to assimilate spatially 
explicit land use data and track ―land use change 
vectors‖ for particular land parcels. 
In some cases the IPCC default Tier 1 EF may not fully 
reflect UK conditions. For example the IPCC Tier 1 EFs 
for Wetland Drainage and Rewetting (WDR) are more 
relevant to fens and raised bogs than to the blanket 
bogs prevalent in much of Scotland. A DBEIS (formerly 
DECC) funded research project which is due to report in 
autumn 2016 is compiling improved EFs and activity 
data for WDR activities in the UK. 

 

Validation/ 
robustness 

The LULUCF inventory is compiled using internationally 
agreed methodology, and the annual inventories are 
subject to international review. 

 

Scottish/UK 
case study 
examples 

Used to produce annual GHG inventories for the 
LULUCF sector for the UK and its constituent 
administrations. 

Brown et al. 
2016a, Salisbury 
et al. 2016 

Examples of 
integrated use 

Uses the CARBINE forest carbon model to assess 
change in forest carbon stocks. 
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A2.5.2 Spatial econometric models 

Table 46 Model description: Spatial econometric models 
Model/tool name Spatial econometric models  

  References 

Impacts 
assessed 

Agricultural land use and production, impacts of market 
and policy changes (e.g. prices, subsidies) and impacts 
of changes in biophysical constraints 

Fezzi and 
Bateman 2011 

Sectors covered Agriculture  

Geographical 
scope  

England and Wales, 5x5 km  

Modelling 
approach 

Spatially disaggregated, structural econometric model of 
agricultural land use and production 

 

Main model 
outputs  

Land use shares in each grid square, crop and livestock 
production 

 

Main data needs Historic spatial data on land use, livestock and crop 
production, prices 
Data for future scenarios (e.g. prices) 

 

Main limitations Does not exist for Scotland (though being developed by 
a PhD student in SRUC) 

 

Validation/ 
robustness 

No information  

Scottish/UK 
case study 
examples 

Climate change impacts on food production 
 

Fezzi et al. 2015 

Examples of 
integrated use 

No information  

A2.5.3 Agent based land use models 

Table 47 Model description: Agent based land use models 
Model/tool name Agent based land use models  

  References 

Impacts 
assessed 

Agricultural land use and production, impacts of market 
and policy changes (e.g. prices, subsidies) and impacts 
of changes in biophysical constraints 

Murray-Rust et al. 
2014a, 2014b 

Sectors covered Rural land use  

Geographical 
scope  

Europe/UK  

Modelling 
approach 

Empirical agent-based model  

Main model 
outputs  

Depends on the model, an example: economic (gross 
margin difference), environmental (land use cover, 
nitrogen use, diversity) and social (access to green 
space) outputs 

Guillem et al. 
2015 

Main data needs Spatial land use data, climatic and soil data, data on 
farmers‘ behaviour 

 

Main limitations Difficult to validate, mostly only calibration happens Brown et al. 
2016b 

Validation/ 
robustness 

See above  

Scottish/UK 
case study 
examples 

Land use and ecosystem services in a Scottish arable 
catchment 
Energy crop production in the UK  

Guillem et al. 
2015 
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Model/tool name Agent based land use models  

  References 

Alexander et al. 
2013 

Examples of 
integrated use 

Skylark population model Guillem et al. 
2015 

A2.6 Models and tools for biodiversity (WI11) 

The selection of models and tools for the assessment of biodiversity impacts 

focussed on those determining direct effects on terrestrial biodiversity. 

Collectively these models cover a range of indicators recommended by the 

European BioBio project (Herzog et al. 2012) including those relating to Habitat 

Diversity and Species Diversity of key groups (i.e. spiders, vascular plants and 

bees). Models/Tools for assessing biodiversity impacts are primarily related to 

habitat type with some tools (i.e. AgBioscape and SRUC's Biodiversity Calculator) 

also having the potential to model different land management options (e.g. crop 

rotations in the case of AgBioscape). Consequently the models outlined below 

are typically effective for detecting impacts of MOs that result in changes to 

landcover (i.e. Agroforestry, Afforestation, Peatland restoration, Reduced 

livestock product consumption and Incorporating legumes in grass mixes and 

crop rotations). Models/tools are less sensitive in detecting impacts of MOs that 

influence habitat quality or that involve finer changes to land management (e.g. 

Increased uptake of precision farming techniques, Achieving and maintaining 

optimal soil pH level and Optimising mineral nitrogen fertilisation).  

A2.6.1 Interactive Habitat Network User Tool 

Table 48 Model description: Interactive Habitat Network User Tool 
Model/tool name Interactive Habitat Network User Tool  

  References 

Impacts 
assessed 

The interactive online tool assesses the impact of land 
use change (e.g. afforestation/peatland restoration) on 
structural and functional ecological connectivity for four 
key habitats (i.e. Broadleaved woodland, Heathland, 
Neutral grassland and Wetland).  
For those wishing to create additional networks (e.g. for 
a specific species) or utilise the system in GIS additional 
information is available from SNH Natural Spaces 
website and/or Phil Baarda, SNH. These include: 
Spatial datasets- habitat networks indicated above, acid 
grassland network, hotspots for habitat creation (i.e. for 
Broadleaved woodland, Wetland and, Neutral 
grassland). 
Users manual-Outlines modelling procedure using GIS 

http://www.snh.go
v.uk/land-and-
sea/managing-
the-land/spatial-
ecology/habitat-
networks-and-
csgn/interactive-
habitat-network-
tool/  
 
http://gateway.snh
.gov.uk/natural-
spaces/index.jsp 
Blake & Mattisson 

http://www.snh.gov.uk/land-and-sea/managing-the-land/spatial-ecology/habitat-networks-and-csgn/interactive-habitat-network-tool/
http://www.snh.gov.uk/land-and-sea/managing-the-land/spatial-ecology/habitat-networks-and-csgn/interactive-habitat-network-tool/
http://www.snh.gov.uk/land-and-sea/managing-the-land/spatial-ecology/habitat-networks-and-csgn/interactive-habitat-network-tool/
http://www.snh.gov.uk/land-and-sea/managing-the-land/spatial-ecology/habitat-networks-and-csgn/interactive-habitat-network-tool/
http://www.snh.gov.uk/land-and-sea/managing-the-land/spatial-ecology/habitat-networks-and-csgn/interactive-habitat-network-tool/
http://www.snh.gov.uk/land-and-sea/managing-the-land/spatial-ecology/habitat-networks-and-csgn/interactive-habitat-network-tool/
http://www.snh.gov.uk/land-and-sea/managing-the-land/spatial-ecology/habitat-networks-and-csgn/interactive-habitat-network-tool/
http://www.snh.gov.uk/land-and-sea/managing-the-land/spatial-ecology/habitat-networks-and-csgn/interactive-habitat-network-tool/
http://www.snh.gov.uk/land-and-sea/managing-the-land/spatial-ecology/habitat-networks-and-csgn/interactive-habitat-network-tool/
http://gateway.snh.gov.uk/natural-spaces/index.jsp
http://gateway.snh.gov.uk/natural-spaces/index.jsp
http://gateway.snh.gov.uk/natural-spaces/index.jsp
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Model/tool name Interactive Habitat Network User Tool  

  References 

ArcMap including spatial data requirements (Blake & 
Mattisson 2012). 
Tools: ArcMap GIS tool to help automate the creation of 
new networks.  

2012 

Sectors covered Agriculture, Forestry, Peatlands  

Geographical 
scope  

Central Scotland Green Network area, Loch 
Lomond and the Trossachs national park and the 
Scottish Borders 

 

Modelling 
approach 

GIS based model utilising least-cost modelling 
procedures based on Forest Research landscape 
ecology model BEETLE (Biological and Environmental 
Evaluation Tools for Landscape Ecology). 

http://www.snh.go
v.uk/docs/B69251
7.pdf,  
Watts et al. 2010 

Main model 
outputs  

A series of spatial maps illustrating extent of existing 
habitat networks. Interactive online tool enables altering 
current land use (e.g. creation of a new woodland of a 
specific size in a specific location) and determining the 
impact of this change on the extent of existing networks. 
Summary information on network metrics (i.e. the 
number of networks and the size of each network) are 
provided.  

 

Main data needs Scenarios are inputted by manually drawing the area of 
proposed land use change and proposed new habitat on 
the online GIS system. New habitat networks are then 
generated to determine the impact. New habitat 
networks can be calculated for species with either high 
or moderate dispersal. 

 

Main limitations Online tool restricted with respect to the habitats and 
geographical locations noted above.  
Networks are not based on actual species but Generic 
Focal Species for the habitat in question. This generic 
species is given either moderate or low dispersal 
powers.  
Decisions for land-use change should not solely be 
based on habitat network modelling and additional 
factors should be taken into account. For example, 
creation of native woodland on a SSSI raised bog may 
increase the extent of a Broadleaved woodland but 
would result in the loss of a valuable habitat. 

 

Validation/ 
robustness 

Models based on spatial datasets that categorise 
habitats at a specific point in time. Potential errors with 
respect to incorrect categorisation of habitats and 
changes to land cover.  
Differences in habitat quality are not acknowledged 
during network creation.  
Little scientific evidence investigating the impact of 
functional/structural connectivity on actual species 
dispersal. 

 

Scottish/UK 
case study 
examples 

Habitat network modelling has been used to explore the 
extent of current habitat networks in Falkirk, Ayrshire 
and Glasgow to prioritise areas habitat creation to 
optimise ecological connectivity. 
 
Outputs from this tool are of direct relevance to the 
BioBio Indicator Habitat Diversity 

Chetcuti et al., 

2011 
Moseley et al. 
2008, 
Smith et al. 2008 
http:/www.forestry
.gov.uk/fr/ infd-

http://www.snh.gov.uk/docs/B692517.pdf
http://www.snh.gov.uk/docs/B692517.pdf
http://www.snh.gov.uk/docs/B692517.pdf
http://www.forestry.gov.uk/fr/infd-6w7evk
http://www.forestry.gov.uk/fr/infd-6w7evk
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Model/tool name Interactive Habitat Network User Tool  

  References 

6w7evk 
Herzog et al. 
2012 

Examples of 
integrated use 

Potential integration with other spatial datasets available 
for Scotland including: suitability mapping for native 
woodland creation, carbon stock mapping, changes to 
distribution of ‗prime‘ land under climate change and 
Ecosystem Service Mapping. 

Lilly & Baggaley 
2013, Towers et 
al. 2011, Brown et 
al. 2008, Winn et 
al. 2015a 

A2.6.2 SRUC’s Biodiversity Calculator 

Table 49 Model description: SRUC's Biodiversity Calculator 
Model/tool name SRUC’s Biodiversity Calculator  

  References 

Impacts 
assessed 

The calculator assesses the impact of land use change 
(e.g. from winter wheat to unimproved pasture) on the 
number of vascular plant and spider species in a field. 

Yelloy 1999 

Sectors covered Agriculture, Peatlands  

Geographical 
scope  

Scotland  

Modelling 
approach 

Biodiversity data were collected from agricultural land 
covers across Scotland. From these data predictive 
models were generated from Generalised Linear 
Interactive Modelling using linear regression to 
determine the importance of measured environmental 
variables (e.g. altitude, land use) on response variables 
(i.e. the number of vascular plant and spider species). 
Resultant models predict the richness of plant and 
spider assemblages in a field based on specific input 
parameters (e.g. current land cover, proposed new land 
cover, altitude, stocking density).  

Murphy et al. 
1998 
 

Main model 
outputs  

Interactive tool provides graphical and textual 
information on the predicted number of vascular plant 
and spider species in the current land use and in the 
proposed new land use, alongside the mean value for a 
field of the type in question.  

 

Main data needs The interactive tool requires manual inputting via 
text/drop down menus of the follow information: 
Field altitude and area, current and proposed land use, 
years since sown, stocking density, uncultivated 
headland width, number of cuts, presence of hedgerows 
and vegetation type. 

 

Main limitations The model is restricted to the following land covers: 
spring barley, improved pasture, set-aside, winter wheat, 
oilseed rape, spring barley, heather moorland, gorse 
grassland, unimproved pasture, root crops. 
The model is restricted to spiders and vascular plants. 
Model simply reports the number of species and 
provides no information on which species are present 
and their rarity/ conservation status.  
Interactive tool restricts environmental variables to those 
that the user can easily determine. Environmental 
variables included in the initial linear regression models 

 

http://www.forestry.gov.uk/fr/infd-6w7evk
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Model/tool name SRUC’s Biodiversity Calculator  

  References 

that are not readily measured (e.g. soil organic content) 
are omitted to facilitate use by target audience (e.g. 
farmer/agricultural advisor). 
The tool calculates the impact of land use change at a 
field level and the importance of landscape 
heterogeneity at promoting biodiversity is thus not taken 
into account.  

Validation/ 
robustness 

The original models (i.e. inclusive of environmental 
variables that are not readily measured) were found to 
be accurate +/- 4 species for vascular plants and 68% 
accurate for spiders. Removal of environmental 
variables that are difficult to determine from the 
interactive tool will decrease prediction accuracy. 
Original modelling determined different optimum models 
for different field types. The interactive tool draws results 
from a single model for each response variable and thus 
robustness of predictions are reduced. 
Prior to tool creation a prototype determined functionality 
of interface and outputs on the proposed interface for 
non-experts and target users. This determined that the 
interface was easy to navigate and outputs easy to 
interpret.  
The final online tool was tested by a novice user, by an 
expert and the author.  

Downie et al. 
1999, 
Wilson et al. 2003 

Scottish/UK 
case study 
examples 

The interactive tool was based on data collected from 
across Scotland encompassing the main agricultural 
land uses in Scotland. Predictive models were 
generated from these data and the accuracy of these 
models tested. 
Impact of changes to management practices (e.g. 
reduction in grazing intensity, creation of water margins) 
on spider and vascular plant richness. This information 
was combined with expert opinion to determine the 
impact of implementing management practices to 
promote biodiversity. 
Tool outputs are of direct relevance to the BioBio 
Species Diversity Indicators Vascular Plants and Spiders  

Downie et al. 
1999, 
Wilson et al. 
2003, 
McCracken 2000 
 
McCracken 2000 
 
 
 
 
 
Herzog et al. 
2012 

Examples of 
integrated use 

The biodiversity calculator has the potential to generate 
metrics for use in cost-benefit analyses (e.g. to explore 
the synergies and trade-offs when implementing 
different adaptation or agri-environment options). 

 

A2.6.3 Eco-Serve GIS 

Model/tool name Eco-Serve GIS  

  References 

Impacts 
assessed 

GIS based Toolkit that generates spatial maps for nine 
ecosystem services (i.e. Accessible Nature, Carbon 
Storage, Local Climate Regulation, Water Purification, 
Air purification, 
Noise regulation, Education, Green travel and 
Pollination). Maps illustrate both requirement for each 
service (i.e. human demand) and capacity to deliver that 

Winn et al. 2015a 



 

 

127 

 

Model/tool name Eco-Serve GIS  

  References 

service. Multi-functionality of delivery across ecosystem 
services are also assessed. 

Sectors covered Agriculture, Forestry, Peatlands  

Geographical 
scope  

England, Scotland and Wales  

Modelling 
approach 

EcoServ-GIS uses simplified and generalised models of 
the relationships between landscape variables and 
ecosystem services. Ecosystem Service Capacity is 
determined by identifying habitats/ecosystems that 
provide a particular service and giving these a grade 
based on their capacity to provide that service. Demand 
for each service is also graded based on both the 
number of beneficiaries and the potential benefits 
derived. Both demand and capacity grades range from 
low to high (1 to 100) and are relative to the study area 
in question.  
The multi-functionality toolbox creates a multi-
functionality score based on the proportion of services 
that are met. 

 

Main model 
outputs  

The toolkit creates a series of ecosystem service maps 
(including both requirement and delivery), multi-
functionality maps, habitat maps, ecological connectivity 
maps and Biodiversity Opportunity Areas. The resulting 
maps are visually interpreted to determine where 
ecosystem services occur, and indicating where there is 
relatively high demand for a service, or high capacity to 
deliver a service.  
This tool is designed for simultaneously comparing 
several ecosystem services. The following metrics are 
calculated: mean capacity, mean demand, mean GI 
assets capacity, multi-functionality score, priority multi-
functionality score, number of Ecosystem Service 
Benefiting Areas, and number of Management Zones.  

 

Main data needs OS MasterMap data. Potential to incorporate a range of 
other datasets (e.g. Digital Terrain Models, Core paths, 
Native Woodland Scotland Survey). Incorporation of 
additional spatial datasets will increase the number of 
ecosystem services that can be mapped. 
Software requirements: ArcGIS Desktop (version 
10.2.2), an Advanced level license with the Spatial 
Analyst extension.  

 

Main limitations Ecosystem services mapped are restricted to the nine 
services outlined above. 
Mapping output is influenced by the underlying accuracy 
and resolution of the input spatial datasets. 
Many of the ecosystem services relate to populated 
areas and the toolkit is therefore less applicable to 
remote/non-urban areas (e.g. upland landscapes).  
The resultant ecosystem service maps do not attempt to 
quantify the actual level of service delivery/demand but 
instead provides a relative measure for the target area. It 
is therefore not applicable to compare maps from 
different target areas. 
Information is largely not incorporated on habitat, or 
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Model/tool name Eco-Serve GIS  

  References 

ecosystem quality.  
Outputs are based on relatively simple models and 
capacity and demand only provide a proxy for service 
provisioning.  
Limitations are dependent on the ecosystem service in 
question. 
Winn et al. (2015a) suggest that alterative tools such as 
InVEST are more suitable. InVEST has not been as 
extensively tested in the UK. 
Interpretation of maps for use in decision making 
requires expert opinion and should consider other 
information. 

 
 
 
 
 
 
 
 
Winn et al. 2015a 

Validation/ 
robustness 

The toolkit was developed in Durham, NE England and 
subsequently tested in the South Downs National 
Park and NIA, the Nene Valley NIA (Northamptonshire) 
and within Somerset. 
Reliability of service maps range from Low in the case of 
Pollination to High in the case of Education and 
Accessible nature.  

Winn et al. 2015a 

Scottish/UK 
case study 
examples 

The EcoServ-GIS toolkit was used to evaluate the 
multiple benefits derived from green networks in the 
Cumbernauld Living Landscape project. Identifying the 
most valuable green networks with respect to the 
delivery of multiple ecosystem services and helping to 
define management priorities for each area. 
Outputs from this toolkit are relevant to the BioBio 
Species Diversity Indicator Bees and Habitat Diversity  

Winn et al. 2015b 
 
 
 
 
 
Herzog et al. 
2012 

Examples of 
integrated use 

Potential to incorporate output ecosystem service maps 
with other spatial datasets such as suitability mapping 
for native woodland creation and changes to distribution 
of ‗prime‘ land under climate change. 
The digital habitat map produced from the Eco-Serve 
GIS can be used to produce automated ecological 
network maps (e.g. thus potential integration with SNH‘s 
integrated habitat network modelling tools) and to map 
biodiversity opportunity areas. 

Towers & Sing 
2012, Brown et al. 
2008 

A2.6.4 AgBioscape 

Table 50 Model description: AgBioscape 
Model/tool name AgBioscape  

  References 

Impacts 
assessed 

AgBioscape is a GIS based modelling system that 
simulates interactions between a range of target focal 
species (e.g. crop pests, natural predators and farmland 
birds), crop, management and landscape characteristics. 
Model simulations explore the impact of pre-determined 
cropping, field and landscape modifications on, for 
example, pest and natural predator populations across 
time. This can help to determine optimum modifications 
(e.g. those resulting in the lowest pest or highest 
predator densities). 

Begg 2013, 
http://www.pure-
ipm.eu/ 
 

Sectors covered Agriculture  

http://www.pure-ipm.eu/
http://www.pure-ipm.eu/
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Model/tool name AgBioscape  

  References 

Geographical 
scope  

Simulated landscapes.   

Modelling 
approach 

Discrete time population models (e.g. pest population 
dynamics) are combined with spatially explicit simulated 
agricultural landscapes. A matrix population modelling 
approach is used to spatially simulate the population 
dynamics of local populations over time. A series of land 
use/management scenarios are assigned to a simulated 
agricultural landscape to enable the user to alter 
landscape metrics (e.g. area and location of hedgerows) 
and to specify temporal changes in landscape structure 
(e.g. cropping patterns).The population matrix and 
simulated agricultural landscapes are overlaid. 
Transition matrices are used to specify demographical 
changes in life cycle stages that occur over time as a 
function of interactions (both within and between 
species), habitat, landscape and environmental 
conditions. 

 

Main model 
outputs  

Model produces a series of spatially explicit simulated 
populations (e.g. pest population density) over time 
based on the specific scenarios inputted (e.g. different 
crop rotations). Metrics can be obtained from these 
scenarios (e.g. annual aphid population densities over a 
100 year period) to compare scenarios.  

 

Main data needs Modelling requires information on target species ecology 
(e.g. specificity of pest species, dispersal, life-history 
information, habitat specific survival rates). 

 

Main limitations Outputs of models are dependent on the availability and 
reliability of ecological data on target species. Accuracy 
of ecological inputs will impact model predictability.  
Modelling does not take into account impact of habitat 
quality on target species ecology (e.g. survival rate). 
Model currently is based on simulated landscapes. 
Model is currently not openly available. 

 

Validation/ 
robustness 

AgBioscape model outputs are largely consistent with 
empirical findings highlighting the influence of landscape 
composition and crop management on crop-pest 
systems.  
Modelling has, however, only been conducted on 
simulated landscapes without ground truthing on actual 
landscapes. 

Begg 2013 

Scottish/UK 
case study 
examples 

AgBioscape was used to compare different rotational 
control strategies for the maize pest Diabrotica virgifera 
virgifera. Simulated models were used to evaluate 
strategies for control of cereal aphids by parasitic wasps. 
AgBioscape was also used to explore the impact of agri-
environment prescriptions on populations of farmland 
birds, crop pests and natural predators over a 350 year 
period. 
Outputs from this toolkit are relevant to the BioBio 
Species Diversity Indicator Bees and Habitat Diversity. 

Begg 2013 
 
Begg & Dye 2015 
 
Herzog et al. 
2012 

Examples of 
integrated use 

Development of the AgBioscape modelling approach 
could assist in the development of a decision support 
tool for land-managers/ policy makers/agricultural 
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Model/tool name AgBioscape  

  References 

advisors. This tool could explore different scenarios with 
respect to the placement and nature of agri-environment 
schemes/compulsory greening measures and to 
spatially determine optimum configurations for pest 
regulation and/or biodiversity.  

A2.7 Models and tools for animal health and animal welfare 

(WI12) 

Animal health and/or animal welfare are likely to be affected by many MOs. The 

animal health modelling literature is substantial, usually specific for certain 

diseases, livestock species and management/treatment. No models or tools were 

found for assessing the general health or welfare impacts. 

A2.8 Models and tools for crop health (WI13) 

Precision farming (MO2) and Optimal soil pH (MO3): In principle, the 

measures that affect the productivity of the crop and therefore may have an 

impact on the crop health can be assessed with dynamic deterministic models of 

crop growth combined models of the soil carbon, nitrogen and water cycle. The 

measures identified include optimizing pH, and precision farming which are 

operating by increasing the nutrient supply to the crop. In general, the models 

have not been validated against data from crops receiving low levels of fertilizer 

nitrogen, and therefore there is a tendency for the yield predictions to be less 

reliable.  

MO6 Incorporating legumes in grass mixes/ crop rotations: Many of the 

dynamic and deterministic crop models (e.g. APSIM, DSSAT etc.) can be used to 

model crop rotations, and do simulate the sequence effects where one crop 

influences the environment under which the following crop grows and hence 

affects the yield. However, these models do not consider the effects of the 

accumulation of soil borne diseases and weeds and thus the impact these will 

have on yield. The approaches that consider the break crop effect of legume on 

the rotation are either rule-based (Rule based rotation generator) or a 

combination of models which describe the effects of the sub-components (e.g. 

LUSO).  
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A2.8.1 APSIM 

Table 51 Model description: APSIM 
Model/tool name APSIM  

  References 

Impacts 
assessed 

(1) The yield loss based on expected yield in the 
absence of disease and expected disease effects on 
leaf area duration 

(2) The effect of eyespot on green leaf area and the 
yield (eyespot model being developed) 

Poole & Arnaudin 
2014 
 
Al-Azri et al. 2015 

Sectors covered Crop production  

Geographical 
scope  

World wide  

Modelling 
approach 

Dynamic deterministic model of crop and soil processes  

Main model 
outputs  

Yield, green leaf area, leaf area duration, N2O, leaching 
changes in soil carbon 

https://www.apsim
.info/Documentati
on.aspx  

Main data needs Daily weather data, soils characteristics, management of 
the crop, (1) expected effect on the leaf area duration, 
(2) data required to predict of disease development in 
relation to crop growth stages 

Poole & Arnaudin 
2014, Al-Azri et 
al. 2015 

Main limitations The model has been validated for typical management 
practices 

 

Validation/ 
Robustness 

APSIM has been used extensively across the world to 
predict yields 

 

Scottish/UK 
case study 
examples 

Development of eyespot model Al-Azri et al. 2015 

Examples of 
integrated use 

Green leaf retention calculator Poole & Arnaudin 
2014 

A2.8.2 DSSAT 

Table 52 Model description: DSSAT 
Model/tool name DSSAT  

  References 

Impacts 
assessed 

The effect of disease on the crop is a required input to 
the model. Therefore the model assesses the effect on 
yield from a level of disease severity. 

http://abe.ufl.edu/j
jones/ABE_5646/
Week%207/Pest
%20Module%20fr
om%20DSSAT4
%20Volume%204
.pdf 

Sectors covered Crop production  

Geographical 
scope  

World wide  

Modelling 
approach 

Dynamic deterministic model of crop and soil processes  

Main model 
outputs  

Yield, green leaf, N2O, leaching changes in soil carbon http://dssat.net/  

Main data needs Daily weather data, soils characteristics, management of 
the crop, impact of the disease on the green leaf area 

http://dssat.net/ 
http://abe.ufl.edu/j
jones/ABE_5646/

https://www.apsim.info/Documentation.aspx
https://www.apsim.info/Documentation.aspx
https://www.apsim.info/Documentation.aspx
http://abe.ufl.edu/jjones/ABE_5646/Week%207/Pest%20Module%20from%20DSSAT4%20Volume%204.pdf
http://abe.ufl.edu/jjones/ABE_5646/Week%207/Pest%20Module%20from%20DSSAT4%20Volume%204.pdf
http://abe.ufl.edu/jjones/ABE_5646/Week%207/Pest%20Module%20from%20DSSAT4%20Volume%204.pdf
http://abe.ufl.edu/jjones/ABE_5646/Week%207/Pest%20Module%20from%20DSSAT4%20Volume%204.pdf
http://abe.ufl.edu/jjones/ABE_5646/Week%207/Pest%20Module%20from%20DSSAT4%20Volume%204.pdf
http://abe.ufl.edu/jjones/ABE_5646/Week%207/Pest%20Module%20from%20DSSAT4%20Volume%204.pdf
http://abe.ufl.edu/jjones/ABE_5646/Week%207/Pest%20Module%20from%20DSSAT4%20Volume%204.pdf
http://dssat.net/
http://dssat.net/
http://abe.ufl.edu/jjones/ABE_5646/Week%207/Pest%20Module%20from%20DSSAT4%20Volume%204.pdf
http://abe.ufl.edu/jjones/ABE_5646/Week%207/Pest%20Module%20from%20DSSAT4%20Volume%204.pdf
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Model/tool name DSSAT  

  References 

Week%207/Pest
%20Module%20fr
om%20DSSAT4
%20Volume%204
.pdf 

Main limitations The model has been validated for typical management 
practices 

 

Validation/ 
robustness 

DSSAT and the family of crop models embedded in the 
framework have been used extensively across the world 
to predict yields, soil carbon & nitrogen flows 

http://dssat.net/  

Scottish/UK 
case study 
examples 

Used to predict potato yield under climate change Daccache et al. 
2011a & 2011b 

Examples of 
integrated use 

No information  

A2.8.3 LUSO 

Table 53 Model description: LUSO 
Model/tool name LUSO (The Land Use Sequence Optimiser)  

  References 

Impacts 
assessed 

Optimizes the crop rotation, based on any expected 
seasonal and price situation. The model describes the 
effects of weeds and diseases on the crop rotation. It 
also describes the nitrogen contribution the legume 
makes to the following crop as a fertilizer equivalent. 

Lawes & Renton 
2010 

Sectors covered Crop rotations that include cereals and legumes  

Geographical 
scope  

Developed for Australian farming conditions  

Modelling 
approach 

Nitrogen – rule based 
Weeds – based on the RIM model that describes 
seedbank dynamics. 

 

Main model 
outputs  

The effect of the nitrogen cost, weeds and diseases on 
the profitability of the cropping sequence. 

 

Main data needs Length of the sequence, details on the weed seedbank, 
and the weed population dynamics, nitrogen costs, soil 
nitrogen status, soil disease population and details on 
the costs.  

 

Main limitations Developed for Australian systems, and would need UK 
specific data (like nitrogen application to crops, weed 
prevalence and disease burden). 

 

Validation/ 
robustness 

No information  

Scottish/UK 
case study 
examples 

No information  

Examples of 
integrated use 

No information  

http://abe.ufl.edu/jjones/ABE_5646/Week%207/Pest%20Module%20from%20DSSAT4%20Volume%204.pdf
http://abe.ufl.edu/jjones/ABE_5646/Week%207/Pest%20Module%20from%20DSSAT4%20Volume%204.pdf
http://abe.ufl.edu/jjones/ABE_5646/Week%207/Pest%20Module%20from%20DSSAT4%20Volume%204.pdf
http://abe.ufl.edu/jjones/ABE_5646/Week%207/Pest%20Module%20from%20DSSAT4%20Volume%204.pdf
http://abe.ufl.edu/jjones/ABE_5646/Week%207/Pest%20Module%20from%20DSSAT4%20Volume%204.pdf
http://dssat.net/
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A2.8.4 ROTOR 

Table 54 Model description: ROTOR 
Model/tool name ROTOR (Rule based rotation generator)  

  References 

Impacts 
assessed 

Evaluates a range of feasible rotations on gross 
margins, leaching losses, fertilizer requirements and 
N2O emissions. 

Reckling et al. 
2016a, 2016b 

Sectors covered Crop rotations.  

Geographical 
scope  

EU  

Modelling 
approach 

IPCC assessment of the leaching losses and N2O 
emissions.  

 

Main model 
outputs  

leaching losses, fertilizer requirements and N2O 
emissions 

 

Main data needs Agronomists define input variables such as crops, 
restriction values, and describe environmental, 
economic and phytosanitary indicators of the crops 
within the rotations. 

 

Main limitations Based on expert opinion.  

Validation/ 
robustness 

Based on the judgment of experts. At this stage the 
inputs may be revised and the model re-run. 

 

Scottish/UK 
case study 
examples 

Used to assess Scottish rotations as part of the EU 
project Legume Futures. 

 

Examples of 
integrated use 

No information  

A2.9 Models and tools for economic impacts (WI14-WI16) 

In assessing both the farm and off-farm wider economic effects (both co-benefits 

and adverse side effects) multi-sectoral economic models of Scotland exist which 

can quantify all of these effects, and separately distinguish by sector and activity 

where relevant. In principle the models below can explore and quantify the 

qualitative and quantitative consequences of a host of MOs – and the details 

below give examples of such uses. In each case however, it is appropriate to 

ensure that the modelling system being used is able to reflect important aspects 

of the economic question being addressed in that use. For example, models of a 

single ―Agriculture‖ sector – but with multiple non-agricultural activities identified - 

can be useful for qualitative descriptions of within and outwith agriculture effects, 

but are unable to capture what might be important heterogeneity within that 

sector; models which appropriate consider land use and competing uses would 

be appropriate for exploring cases where there might be alternative uses of this 

factor of production. 
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A2.9.1 CGE models 

Table 55 Model description: CGE models 
Model/tool name CGE models (e.g. AMOS)  

  References 

Impacts 
assessed 

System-wide consequences of exogenously determined 
policy/non-policy options and disturbances 

Harrigan et al. 
1991 

Sectors covered All industrial sectors of economy, which could be 
separately identified at level of policy interest (with 
sufficient data and disaggregation). Current IO accounts 
for Scotland provide, for example, 98 sectors using 
Standard Industrial Classification 2007, mapping to 
national economic accounts. 

Scottish 
Government 2016 

Geographical 
scope  

AMOS model framework has been applied to single 
region/nation analysis and inter-regional analysis. 
Application framework has been applied based on 
availability of model inputs, see below.  

Jersey: 
Learmonth et al. 
2007 
Scotland: FAI & 
Macaulay & 
Arkleton 2003, 
Lecca et al. 
2014a 
UK: Allan et al. 
2007a 
Inter-regional UK: 
Gilmartin et al. 
2013  

Modelling 
approach 

CGE model solves for equilibria in all markets for all 
goods and factors of production simultaneously. 
Comparative static or dynamic framework can show 
impacts in conceptual or annual time periods, and 
trajectory of variables between equilibria. Framework 
flexible to consider alternative model specifications, and 
so adapt to specific focus of application. 

Lecca, McGregor 
and Swales 2013 
Lecca, Swales 
and Turner 2009 

Main model 
outputs  

Economic variables (e.g. gross domestic product, 
aggregate employment, unemployment, household 
income) as well as sectoral levels of gross output, value-
added, intermediate inputs, employment, and capital 
stocks. Also included are (endogenously determined) 
energy use (by sector), prices and costs of goods and 
factor inputs (including wages, return on capital). Energy 
use by sector is linked to CO2 emissions, so that 
production-oriented measures of emissions are 
automatically tracked. (Consumption-oriented measures 
can be developed given appropriate trade-related data.) 

 

Main data needs Uses IO and SAM as benchmark dataset for economic 
and sectoral structures, while behavioural specification 
and parameters appropriate for spatial scale and 
economy under consideration are required to configure 
relationships within and between markets. (These draw 
on new or existing econometric evidence.) 

Scottish 
Government 
2016, Emonts-
Holley et al. 2016 

Main limitations Typically non-stochastic, calibrated to a single year‘s 
SAM and focus typically on policy simulation, not 
forecasting or historical analysis. 

 

Validation/ 
robustness 

Tests on calibration accuracy; test simulations to check 
e.g. homogeneity properties of the model; extensive 
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Model/tool name CGE models (e.g. AMOS)  

  References 

sensitivity analysis, drawing on statistical estimates 
where available; outputs subject to peer review. 

Scottish/UK 
case study 
examples 

Impact of onshore wind on rural and urban areas of 
North East Scotland 
Impact of expenditures related to establishing renewable 
energy capacity, including local content 
 
System-wide impact of energy efficiency improvements 
in production sectors for Scotland and UK 
 
 
System-wide impact of household energy efficiency 
improvements 
Energy-economy-environmental impacts on Scotland of 
a carbon tax – ―double dividend‖ and the importance of 
revenue recycling 
Impact on Scotland of foot and mouth outbreak, 2001 

Phimister and 
Roberts 2012 
Gilmartin and 
Allan 2015; Allan 
et al. 2014a 
Hanley et al. 
2006; Allan et al. 
2007a; Anson 
and Turner 2009, 
Turner 2009 
Lecca et al. 
2014b 
 
Allan et al. 2014b 
 
FAI & Macaulay 
& Arkleton 2003 

Examples of 
integrated use 

There are examples of CGEs having been combined 
with energy systems models and with micro-simulation 
models, but these are at a very early stage of 
development. 

 

A2.9.2 IO and SAM models 

Table 56 Model description: IO and SAM models 
Model/tool name IO and SAM models 

  References 

Impacts 
assessed 

Changes in quantities or prices and system-wide 
consequences 

Miller and Blair 
2009 

Sectors covered All sectors of economy. For example, Scottish Input-
Output tables are now (August 2016) available for years 
1998 to 2013, covering 98 sectors and consistent with 
ESA 2010 (Scottish Government, 2016). Single 
―Agriculture‖ sector covering SIC2007 sector 01, with 
four sectors covering forestry and fishing activities. 
Disaggregation of sectors possible to focus on area of 
policy interest and address heterogeneity within 
industrial sectors, while disaggregation of categories of 
consumption permit examination of impacts across, e.g. 
household income types or household characteristics. 

Allan et al. 2007b 

Geographical 
scope  

Local, regional or national (with inter-regional/inter-
national configurations possible) 

 

Modelling 
approach 

Static typically, deterministic, using inter-sectoral 
linkages to quantify system-wide impacts of changes in 
individual sectors or elements of demand or inputs. 

 

Main model 
outputs  

Economic variables (e.g. gross domestic product, 
employment, household income, the sectoral levels of 
output, value-added, employment and capital stocks) as 
well as variables linked to sectoral output, including 
GHG emissions. 

 

Main data needs IO accounts for regions/nations of interest showing  
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Model/tool name IO and SAM models 

  References 

production and consumption linkages between and 
within sectors and elements of consumption, e.g. 
households, exports, etc. Non-survey approaches allow 
estimation of IO accounts for smaller spatial levels, 
although (more time-consuming) survey-based 
approaches can capture more refined treatment of local 
differences in, e.g. linkages. 

Main limitations Assumptions in modelling using IO include passive 
supply curve for all factors of production (no crowding 
out of activity) and that sectoral production inputs are 
combined in fixed proportions. (So typically motivated in 
terms of high unemployment and unused capacity in 
short-run, but in regional context also by factor mobility 
in long-run.) 

Miller and Blair 
2009 

Validation/ 
robustness 

-  

Scottish/UK 
case study 
examples 

Impact of community owned vs. community benefit-
paying windfarm on the Shetland Islands, using SAM 
model for Shetland to show alternative impacts of 
locally-retained incomes from renewable energy project 
Impact of new onshore windfarm on farming households 
in north east Scotland 
Impacts of community wind power in rural areas in 
Scotland 
 
Disaggregation of sea fishing sector to address 
heterogeneity of economic linkages within fishing fleet 
Review of economic multipliers for Scottish agriculture 
 
Database of disaggregation of household types within 
SAM for Scotland 2009 
IO accounts used to examine economic value of 
services produced by specific sectors for region/nation 
 
Impacts of changes of forestry and afforestation on 
Scotland and UK 
 
 
Uses and approach of IO/SAM modelling in context of 
new biofuels production, including treatment of land in 
such models. 

Allan et al. 2011 
 
 
 
Phimister and 
Roberts 2012 
Okkonen and 
Lehtonen 2016 
Seafish 2006 
 
Scottish 
Government 
2010 
Ross 2016 
 
Cambridge 
Econometrics 
2005, 2008 
McGregor and 
McNicholl 1992, 
Eiser and 
Roberts 2002 
Allan 2015 

Examples of 
integrated use 

IO/SAM database are used as the benchmark datasets 
and inputs to CGE models, which is a more flexible 
framework for exploring the range of factor supply 
assumptions and production structures, of which 
IO/SAM are a special case. Extensions of IO/ SAMs to 
incorporate energy and environmental variables are 
common. 
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A2.10 Models and tools for resource efficiency (WI17) 

The energy and material recycling and resource use efficiency impacts arise from 

the improved utilization of nitrogen, energy and other resources on farm for the 

agricultural production related MOs (MO1-MO9). These changes can be captured 

by the models and tools developed to estimate the GHG emissions and emission 

intensity of livestock and crop production, like whole-farm models life cycle 

assessment tools and carbon calculators (e.g. AGRILCA (Williams et al. 2006), 

AgRECalc (http://www.agrecalc.com/) or CoolFarmTool 

(https://www.coolfarmtool.org/)). The challenge with whole-farm approaches is the 

derivation of national level assessment from the farm-level models. On the other 

hand, no national level models were found which could capture the management 

changes implied by the implementation of MO1-MO9. 

The resource use impacts of Reduced livestock product consumption and 

Afforestation can be estimated via economy wide models (see Section A2.9) if 

they are capable of tracking biomass, energy and nitrogen flows. 

A2.11 Models and tools for human health (WI18) 

The reviewed GHG MOs can affect human health in various ways, from a 

reduction in water and air pollutants to a change in the diet and exercise level or 

an increase in antimicrobial resistance. Below is a list of the health impacts based 

on Section 3:  

 NH3 emissions: MO1, MO2, MO4, MO5, MO7, MO8 

 NOx emissions: MO1, MO4 

 PM emissions: MO1, MO4, MO5, MO11 

 H2S emissions: MO8 

 N leaching: MO2, MO7 

 P leaching: MO2 

 Release of pesticides and other chemicals to water: MO2, MO5, MO9, 

MO10, MO11 

 Heavy metals in the soil: MO3 

 Zoonosis: MO9 

 Antimicrobial resistance: MO9 

 Risk from handling acids: MO8 

http://www.agrecalc.com/
https://www.coolfarmtool.org/
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 Diet: MO10 

 Exercise and mental health: MO11, MO12 

 Noise: MO1 

The effects of air pollution (NH3, sulphur dioxide and PM10) on human health have 

been explored and monetised, and they are included in the damage costs values 

used in the UK (Defra 2011a).  

The human health impacts from nitrate pollution of watercourses and eventually 

drinking water consist of risk of metheamoglobinaemia and risk of cancer from 

nitrite-derived carcinogenic compounds. Though some estimates for these effects 

are available (van Grinsven et al. 2010), no model was found to assess this risk.  

Though models exist to predict the risk of high-pesticide exposure of agricultural 

workers (Mage et al. 2000), no model was found which could assess the pesticide 

exposure of the general population. 

As pH can affect plant-absorbable metal concentrations (e.g. lead, copper, zinc, 

nickel, aluminium) in soils (Section A1.3), maintaining an optimal soil pH (MO3) 

might decrease the risk of excessive consumption of these materials from crops. 

The CLEA software (Jeffries 2009) is a tool used by the Environment Agency to 

assess soil contamination risks; however, as it only covers home-grown produce 

it was not included in the assessed models. A tool suitable for assessing the risk 

of metal exposure as depending on soil pH for commercial agricultural land was 

not found. Similarly no models or tools were found for assessing the health risk 

arising from exposure to strong acids and H2S (related to MO8: Low emission 

storage and application of organic fertiliser). 

Improving animal health (MO9) might decrease zoonosis incidents but could 

contribute to the prevalence of antimicrobial resistance (Section A1.9). Though 

the literature on the various vectors‘ prevalence, their control mechanisms and 

the human health risk is wide (Lloyd-Smith et al. 2009), and estimates to the total 

aggregate human health effects and costs of selected pathogens exists for some 

countries (Lake et al. 2010, Scallane et al. 2015, Scharff 2012) an integrated tool 

linking livestock management and human illness prevalence was not found. As 

for the use of antimicrobials in the livestock sector and the potential effects on 

human health currently available data do not allow the quantification of these 

relationships (Rushton et al. 2014). 
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Assessing the health impacts of a change in diet (MO10) is possible and already 

done by comparative risk assessment models (Section A2.11.1). 

Finally, the potential effects of afforestation (MO11) on human health (arising 

from increased exercise levels and benefits to mental health – as opposed to the 

air purification effects of trees) have been explored in England, deriving per ha 

values for woodlands (based on woodland quality and proximity to urban areas) 

(Bateman et al. 2011). Nevertheless, a tool to assess these impacts was not 

found. 

A2.11.1 DIETRON and PRIME 

Table 57 Model description: DIETRON and PRIME 
Model/tool name DIETRON and PRIME (Preventable Risk Integrated 

ModEl) 
 

  References 

Impacts 
assessed 

Impact of diet on cardiovascular disease and cancer 
mortality (the models are being expanded to include 
physical activity, smoking and alcohol consumption) 

Scarborough et 
al. 2012b, Smed 
et al. 2016 

Sectors covered Agriculture  

Geographical 
scope  

UK  

Modelling 
approach 

Comparative risk assessment: association between food 
components and coronary heart disease, stroke, cancer 
derived from individual meta-analyses (sugars not 
included as meta-analysis were not available) 

Scarborough et 
al. 2012b 

Main model 
outputs  

Mortality and costs to NHS Scarborough et 
al. 2010 

Main data needs Baseline and alternative diet composition  

Main limitations The correlation between health effects are not included 
(e.g. serum cholesterol and BMI or fruit and vegetables 
and dietary fibre), therefore some overestimation is 
possible; assumes a linear dose-response relations; a 
shift in an average diet is modelled (no disaggregation 
allows for dietary groups)  

Scarborough et 
al. 2012b 

Validation/ 
robustness 

No information  

Scottish/UK 
case study 
examples 

UK GHG emission based food taxes 
UK healthy diets 

Briggs et al. 2013, 
Scarborough et 
al. 2010 

Examples of 
integrated use 

Similar comparative risk assessment models are linked 
a detailed agricultural modeling framework (IMPACT 
(the International Model for Policy Analysis of 
Agricultural Commodities and Trade)) and to a life cycle 
GHG model 

Springmann et al. 
2016a & 2016b 
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A2.12 Models and tools for social and cultural impacts (WI19, 

WI20) 

Tools or models to assess the social impacts of the MOs were not found. 

Cultural impacts can be classified following the ecosystem services approach, 

whereby cultural ecosystem services are usually grouped as aesthetic, spiritual, 

educational and recreational services (Millennium Ecosystem Assessment 2005). 

Recreational impacts are the most studies of these, particularly in relation to 

greenspaces. This is of relevance to the MOs Afforestation (MO11) and Peatland 

restoration (MO12), in some cases possibly to MO5 (Agroforestry) as well. 

A2.12.1 ORVal 

Table 58 Model description: ORVal 
Model/tool 
name 

ORVal (The outdoor recreation valuation tool)  

  References 

Impacts 
assessed 

Recreational benefits – afforestation, peatland restoration http://leep.exeter.
ac.uk/orval/  

Sectors 
covered 

Recreation sites   

Geographical 
scope  

England  

Modeling 
approach 

A map-based tool using a statistical model of recreational 
demand (person-level model aggregated to England) 

Day and Smith 
2016 

Main model 
outputs  

Welfare values of currently accessible and proposed 
greenspaces (individual site level or aggregated by regions)  

 

Main data 
needs 

Map of proposed recreation sites, data on their 
characteristics 

 

Main 
limitations 

  

Validation/ 
robustness 

No available information  

Scottish/UK 
case study 
examples 

Developed for England  

Examples of 
integrated 
use 

  

http://leep.exeter.ac.uk/orval/
http://leep.exeter.ac.uk/orval/
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Appendix A3. Review of the monetary values of the 

wider impacts 

Monetary values can be derived from a number of sources including impacts on 

market prices, changes to costs or willingness to pay for changes to take place 

(e.g. improvements in environmental quality). Consequently there are differences 

in what these different approaches actually measure, with non-market 

approaches that estimate willingness to pay (e.g. contingent valuation, discrete 

choice experiments) able to capture total economic welfare and hence 

consumers' surplus. These approaches are also able to include a wider range of 

co-benefits in valuation scenarios (simultaneous valuation of multiple benefits 

may be preferred to summation of individual estimates). However, there may be 

concerns over the robustness of such estimates due to the often hypothetical 

nature of the changes being valued and the lack of a real transaction. 

Consequently, market price and cost based values, although arguably less 

complete, may be considered more defensible.  

A further complication is that the direction of change being valued may be 

important. Implied property rights (for a given existing level of environmental 

quality) and loss aversion suggest that the value of lost benefits associated with a 

decline in environmental quality will be higher than the value of benefits gained 

from an improvement in quality of equal magnitude. We might also expect 

diminishing margin utility to be observed. For example in the context of water 

quality, values for changes improvements from poor to moderate or good quality 

may have higher values that when the change is from good to high quality, even 

where biological or chemical change is of similar magnitude. There may also be 

threshold effects, for example where a change from bad to poor status is not 

considered acceptable or given a lower value than a change from poor to 

moderate. These potential marginal values are illustrated in Figure 2. 

The monetary values are presented in Table 59 with some explanation on their 

relevance. Further notes can be found in Sections 1.1-A3.13. 
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Table 59 Monetary values of the wider impacts 
 Wider impact Monetary value Notes Reference 

WI1 Air quality: NH3 Low central: £1,843 t
-1 

Central: £2,363 t
-1 

High central: £2,685 t
-1

 

Cost of morbidity and mortality based on willingness to 
pay. 
Recommended use for UK national evaluation; 
Relates to pollution from all sources and locations; 
2015 prices 

Defra 2015 

WI2 Air quality: NOx Low central: £2,020 t
-1 

Central: £5,050 t
-1 

High central: £8,080 t
-1 

Values if PM is also valued: 
Low central: £1,683 t

-1 
Central: £4,209 t

-1 
High central: £6,734 t

-1
 

Cost of morbidity and mortality based on willingness to 
pay. 
Recommended use for UK national evaluation; 
Relates to pollution from agricultural sources; 
2015 prices 

Defra 2015 

WI3 Air quality: PM Low central: £9,103 t
-1 

Central: £11,625 t
-1 

High central: £13,211 t
-1

 

Cost of morbidity and mortality based on willingness to 
pay, also includes value of building soiling. 
Recommended use for UK national evaluation; 
Relates to pollution from agricultural sources; 
2015 prices 

Defra 2015 

WI4 Air quality: other Values for sulphur oxides : 
Low central: £1,581 t

-1 
Central: £1,956 t

-1 
High central: £2,224 t

-1
 

Cost of morbidity and mortality based on willingness to 
pay, sulphur oxides values also include materials damage. 
Recommended use for UK national evaluation; 
Relates to pollution from all sources and locations; 
2015 prices 

Defra 2015 

WI5 Water quality: 
Nitrogen leaching 

Lowest value: £4,278 nitrate–nitrogen t
-1 

Highest value: £17,148 nitrate–nitrogen t
-1

 
Nr damage to ecosystems (not including human health) 
Based on WTP for a ‗healthy Baltic Sea‘ study (achieving 
50% reduction in nitrogen load) 
2008 prices 
Water quality monetary values highly depend on the 
location and the baseline pollution load - values are 
worked back from proposed change in eutrophication 
status to required change in nitrogen emissions rather 
than reflecting a damage cost per unit of nitrogen. 

Brink et al. 
2011 

WI6 Water quality: 
Phosphorous 

 No values specific to phosphorous could be identified. 
Linking impacts to changes in water quality status 
suggested 
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 Wider impact Monetary value Notes Reference 

WI7 Water quality: 
other 

£911.67 t
-1

 (all pesticides) Value based on costs to water companies of pesticide 
removal (to meeting drinking water standards) in England 
between 2004-5 and 2008-9 (£92m) divided by average 
application of all pesticides in England 

Own 
calculation 
based on 
NAO 2010 
and FERA 
2016 

 Water quality: 
general status 
change 

Rivers: £1.81 hh
-1

 %
-1 

Lochs: £1.20 hh
-1

 %
-1

  
Public WTP per household per 1% increase in the 
proportion of rivers or lochs in good status in Scotland 
River Basin District 

Glenk et al. 
2011 

WI8 Soil quality  Increased productivity due to higher yields and/or lower 
costs.  
Values will depend on chosen soil quality parameter, its 
initial starting conditions, crop types and cropping systems 

 

WI9 Flood 
management, 
water use 

Average annual damage cost per flooded 
property (residential and non-residential) 
based on main (10 highest) areas of risk 
across 14 Local Plan Districts: 
Minimum: £462 
Maximum: £13,684 
Mean: £2,581 
Median: £2,136 

Value of flood management and water use will be context 
specific, e.g. the number and types of property protected 
from flood damage for different severity and probability.  
Estimated flood damage values are available in the SEPA 
Flood Risk Management Strategies 

SEPA 2015 

WI10 Land cover and 
land use 

 Value of land cover/use changes will depend on what is 
being changed. Move to less intensive production may 
see reduction in gross margins, but increase in co-benefits 
covered by other WI categories. Similarly a land use 
change from agriculture to forestry will change both 
provisioning services and other ecosystem services co-
benefits. 
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 Wider impact Monetary value Notes Reference 

WI11 Biodiversity Value of BAP habitat improvements 
(charismatic species):  
Arable margins: £1.76 - £2.58 ha

-1 
Blanket bog: £25.24 - £36.56 ha

-1 
Hedgerows: £26.01 - £37.68 ha

-1 
Limestone pavement: £42.31 - £57.69 ha

-

1 
Lowland heath: £44.73 - £64.77 ha

-1 
Low Hay meadow: £21.90 - £31.43 ha

-1
 

Purple moor. grass: £27.96 - £40.55 ha
-1 

Upland calcareous grassland: £15.93 - 
£23.45 ha

-1 
Upland hay meadow: £11.11 ha

-1 
Upland heath: £29.18 - £42.25 ha

-1 
Coastal floodplain: £38.36 - £55.53 ha

-1 
Fens: £5.52 - £8.29 ha

-1 
Lowland raised bog: £6.36 - £9.54 ha

-1 
Wet reed beds: £15.96 - £23.40 ha

-1 
Native woodland: £33.90 - £49.09 ha

-1 
Arable fields: £0.52 - £0.76 ha

-1 
Improved grassland: £3.07 - £4.44 ha

-1
 

Values are based on a choice experiment that elicited 
general public WTP for a range of ecosystem services, 
these values were then allocated to Biodiversity Action 
Plan (BAP) habitats based on expert assessment of the 
supply of each ecosystem services. The range of values 
(where identified) reflects two scenarios: 1) the current 
'maintenance' area of habitats achieve BAP targets, 2) 
'maintenance' area plus restoration and expansion targets 
are achieved (as per 2006 UK BAP Habitat Targets, 
http://jncc.defra.gov.uk/Docs/UKBAP_SpeciesTargets-
2006.xls). Single values indicate no difference between 
scenarios, zero values are omitted. 
The values listed are total UK values for charismatic 
(animals, amphibians, birds, and butterflies) and non-
charismatic (trees, plants, insects and 'other bugs') 
species divided by habitat extent to determine per ha 
values. 

Christie et al. 
2011 
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 Wider impact Monetary value Notes Reference 

WI11 Biodiversity 
(cont.) 

Value of BAP habitat improvements (non-
charismatic species):  
Arable margins: £1.63 - £3.12 ha

-1 
Blanket bog: £6.57 - £13.10 ha

-1 
Hedgerows: £3.88 - £7.74 ha

-1 
Limestone pavement: £7.69 - £19.23 ha

-1 
Lowland calcareous grass: £3.69 - £7.14 
ha

-1 
Low dry acid grass: £1.79 - £3.57 ha

-1 
Lowland heath: £9.28 - £18.67 ha

-1 
Low Hay meadow: £6.67 - £13.33 ha

-1 
Purple moor. grass: £6.05 - £12.09 ha

-1 
Upland calcareous grassland: £7.08 - 
£14.16 ha

-1 
Upland hay meadow: £0.00 - £11.11 ha

-1 
Upland heath: £6.30 - £12.55 ha

-1 
Coastal floodplain: £8.01 - £15.96 ha

-1 
Fens: £1.66 - £2.76 ha

-1 
Lowland raised bog: £3.53 - £7.42 ha

-1 
Wet reed beds: £3.19 - £5.32 ha

-1 
Native woodland: £8.06 - £16.09 ha

-1 
Arable fields: £0.34 - £0.67 ha

-1 
Improved grassland: £0.84 - £1.67 ha

-1
 

  

WI12 Animal health and 
welfare 

 Impacts on livestock growth (time to target liveweight, 
liveweight achieved) and vetenary costs. 
Animal welfare values (beyond production and health 
impacts) have typically been elicited with reference to 
production system (e.g. caged versus non-caged eggs, 
stocking density, environmental enrichment) rather than 
actual welfare outcomes. 
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 Wider impact Monetary value Notes Reference 

WI16 Employment  Type I direct and indirect output 
multiplier, income effect, employment 
effect, GVA effect 
Agriculture (SIC 01)  
Output multiplier: 1.39 
Income effect: 0.20 
Employment effect: 16.84 
GVA effect: 0.55 
Forestry planting (SIC 02.1, 02.4) 
Output multiplier: 1.44 
Income effect: 0.34 
Employment effect: 18.86 
GVA effect: 0.67 
Repair and installation of machinery 
and equipment (SIC 33) 
Output multiplier: 1.25 
Income effect: 0.43 
Employment effect: 9.70 
GVA effect: 0.73 

Use of Scottish Input-Output tables and multipliers to 
determine impacts on employment and incomes. Type I 
multipliers/effects reflect direct and indirect impacts on 
industry sector and its supply chain; Type II multipliers 
also include induced effects throughout the economy. 
Multipliers and effects stated based on impact of £1m 
additional final demand in sectors relevant to GHG 
measures (SIC 33 represents on-farm renewables and AD 
plant installations). 
For example, if an additional £5m demand for AD plant 
installations is identified then direct and indirect impact on 
employment will be 5 x 9.7 = 49 FTE jobs within the SIC 
33 sector and its supply chain; direct, indirect and induced 
employment throughout the economy will be 5 x 12 = 60 
FTEs, indicating an additional 11 FTEs throughout the 
economy. In terms of employment income, direct and 
indirect effects will be 5 x 0.43 = £2.15m with a further 
£0.3m in induced employment income. Care is needed 
where increases in final demand are not permanent as 
these employment and income effects will be short-term, 
there is no proscribed way (i.e. in the Green Book) to 
account for this. 
 

Scottish 
Government 
2016 
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 Wider impact Monetary value Notes Reference 

WI16 Employment 
(cont.) 

Type II direct, indirect and induced 
output multiplier, income effect, 
employment effect, GVA effect: 
Agriculture (SIC 01)  
Output multiplier: 1.51 
Income effect: 0.23 
Employment effect: 17.93 
GVA effect: 0.62 
Forestry planting (SIC 02.1, 02.4) 
Output multiplier: 1.65 
Income effect: 0.39 
Employment effect: 20.68 
GVA effect: 0.79 
Repair and installation of machinery 
and equipment (SIC 33) 
Output multiplier: 1.52 
Income effect: 0.49 
Employment effect: 12.00 
GVA effect: 0.88 
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 Wider impact Monetary value Notes Reference 

WI16 Employment 
(cont.) 

Type I multipliers for forestry: 
Planting and related services 
Income effect: 2.1 
Employment effect: 1.4 
GVA effect: 1.8 
Harvesting and related services 
Income effect: 2.4 
Employment effect: 1.8 
GVA effect: 2.1 
Type II multipliers for forestry: 
Planting and related services 
Income effect: 2.5 
Employment effect: 1.5 
GVA effect: 2.1 
Harvesting and related services 
Income effect: 2.8 
Employment effect: 1.9 
GVA effect: 2.5 

 CJC 
Consulting 
2013 
 

WI17 Recycling Nutrient costs: 
Nitrogen: £0.67 kg

-1
 nitrogen (£230 t

-1
 

ammonium nitrate) 
Energy costs: 
Red diesel: £0.50 l

-1 
DERV: £1.17 l

-1 
Electricity: £0.11 kWh

-1
 

Reduction in energy and material (e.g. purchased 
nutrients) costs. 

SAC 2015 

WI18 Human health QALY: £60,000 Impact on both life years and quality of life based on 
willingness to pay. 

Glover and 
Henderson 
2010 
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 Wider impact Monetary value Notes Reference 

WI20 Cultural impacts Value of improvements to BAP habitats: 
Arable margins: £0.41 - £0.54 ha

-1 
Blanket bog: £17.00 - £21.66 ha

-1 
Hedgerows: £20.01 - £25.50 ha

-1 
Limestone pavement: £15.38 - £23.08 ha

-

1 
Lowland calcareous grass: £12.07 - 
£15.52 ha

-1 
Lowland heath: £23.52 - £30.06 ha

-1 
Low Hay meadow: £15.24 - £20.00 ha

-1 
Upland calcareous grassland: £16.81 - 
£21.68 ha

-1 
Upland hay meadow: £11.11 ha

-1 
Upland heath: £27.32 - £34.81 ha

-1 
Coastal floodplain: £22.63 - £28.83 ha

-1 
Lowland raised bog: £8.13 - £10.25 ha

-1 
Wet reed beds: £3.19 ha

-1 
Native woodland: £23.63 - £30.13 ha

-1 
Improved grassland: £3.30 - £4.20 ha

-1
 

 
Urban community woodland: £2,850 ha

-1
 

year
-1

 
Peri-urban, high facilities: £4,000 ha

-1
 

year
-1

  
Peri-urban, low facilities: £400 ha

-1
 year

-1
 

Rural, high facilities: £2,400 ha
-1

 year
-1

 
Rural, low facilities: £180 ha

-1
 year

-1
 

Values are based on a choice experiment that elicited 
general public WTP for a range of ecosystem services, 
these values were then allocated to Biodiversity Action 
Plan (BAP) habitats based on expert assessment of the 
supply of each ecosystem services. The range of values 
(where identified) reflects two scenarios: 1) the current 
'maintenance' area of habitats achieve BAP targets, 2) 
'maintenance' area plus restoration and expansion targets 
are achieved (as per 2006 UK BAP Habitat Targets, 
http://jncc.defra.gov.uk/Docs/UKBAP_SpeciesTargets-
2006.xls). Single values indicate no difference between 
scenarios, zero values are omitted. 
The values listed are total UK values for 'sense of place' 
divided by habitat extent to determine per ha values. 

Christie et al. 
2011 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Bateman et 
al. 2011 
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A3.1 Air quality (WI1-WI4) 

The available value estimates for air pollutants are well established and conform to 

the UK guidance for policy appraisal. The values for each of the emissions include 

health impacts in terms of morbidity and mortality, in addition those for PM and 

sulphur oxides include building soiling and impact on materials respectively. The 

potential for eutrophication and acidification damage to ecosystems are not included. 

These values are to be used according to the guidance document provided by Defra 

(Defra 2011b). 

A3.2 Water quality (WI5-WI7) 

Valuation studies with respect to water quality typically elicit the public‘s WTP for 

changes in water quality status: as an indicator this is commonly derived from a 

combination of underlying biological and chemical parameters. In turn water quality 

status is combined with further indicators (status of beds and banks, flow, and 

wildlife) to determine ecological status as required by the Water Framework 

Directive.  

There are advantages to this approach: it reflects an outcome that can be more 

readily understood by those whose values are being elicited without the need for 

specialist knowledge; it is less sensitive to the context of individual water bodies (e.g. 

specific pressures) so values are more widely applicable (in terms of value transfer 

and evaluating a range of management interventions).  

In order to estimate the value of changes in specific water quality pressures, such as 

diffuse pollution from nitrates or phosphorus, it is necessary to link current water 

quality status to emissions and determine what change in emissions would be 

required to achieve the desired status change. From such calculations it is then 

possible to estimate the values per unit change in emissions. 

An alternative approach to valuation is to determine the costs that are imposed by 

pollutants. For example between 2004-5 and 2008-9 water companies in England 

spent £189m removing nitrates and £92m removing pesticides from water supplies 

(NAO, 2010). However there remains a difficulty in relating these figures back to 

actual emissions of these pollutants such that a unit (per tonne) value can be 

estimated. Using data on pesticide applications in England (FERA, 2016) to estimate 

average pesticide applications over the same period as the cost data indicates that 

the cost to water companies of removing pesticides was £0.91 per kg of product 
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applied (across all pesticide types). This is a crude figure as it does not account for 

the actual quantity of pesticides reaching water bodies, or specific types of pesticide 

that may more likely to reach water (due to crop type, targeted pest or solubility), the 

timing of applications (relative to water flow and dilution) or their environmental 

persistence.  

Applying a similar approach to the cost of removing nitrates from water supply (using 

the same area that pesticides were applied to combined with typical nitrogen 

application rates (kg/ha) for tillage crops) gives a value of £4.58 per tonne of nitrogen 

applied. This clearly is significantly different from the even the lowest nitrogen 

leaching value (£4,278/t) but reflects the fact that completely different impacts are 

being valued. The lower value considers only the cost of removing nitrates from 

public water supplies rather than the broader range of eutrophication impacts, and is 

based on costs incurred in meeting a standard rather than WTP. It does not account 

for the actual degree of nitrate leaching as it is applied to total nitrogen applications, 

i.e. there is a much larger denominator.  

  

Figure 2 Marginal values for changes in water quality status categories 

A3.3 Soil quality (WI8) 

Values will depend on chosen soil quality parameter, its initial starting conditions; the 

nature of management change, and how this impacts quality parameters; crop types 

and cropping systems. The types of impact observed may include changes in 

productivity due to higher or lower yields and/or changes in production costs. 

Improved soil quality may increase soil fertility and structure leading to improvements 
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in growth and yield and reduced nutrient inputs, enhanced workability may also 

reduce cultivation costs (see values for WI14 material and energy recycling).  

There may also be a number of ecosystem service co-benefits that arise from 

improved soil quality such as better water retention (WI9) and higher biodiversity 

(WI11). 

A3.4 Flood management, water use (WI9) 

Value of flood management and water use will be context specific, e.g. the number 

and types of property protected from flood damage for different severity and 

probability. Estimated flood damage values are available in the SEPA Flood Risk 

Management Strategies. 

A3.5 Land cover and land use (WI10) 

Value of land cover/use changes will depend on what is being changed. Move to less 

intensive production may see reduction in gross margins, but increase in co-benefits 

covered by other WI categories. Similarly a land use change from agriculture to 

forestry will change both provisioning services and other ecosystem services co-

benefits. 

A3.6 Biodiversity (WI11) 

Values are based on a choice experiment that elicited general public WTP for a 

range of ecosystem services, these values were then allocated to Biodiversity Action 

Plan (BAP) habitats based on expert assessment of the supply of each ecosystem 

service. The range of values (where identified) reflects two scenarios: 1) the current 

'maintenance' area of habitats achieves BAP targets, 2) 'maintenance' area plus 

restoration and expansion targets are achieved (as per 2006 UK BAP Habitat 

Targets, http://jncc.defra.gov.uk/Docs/UKBAP_SpeciesTargets-2006.xls). Single 

values indicate no difference between scenarios, zero values are omitted. 

The values listed are total UK values for charismatic (animals, amphibians, birds, 

and butterflies) and non-charismatic (trees, plants, insects and 'other bugs') species 

divided by habitat extent to determine per ha values. 

http://jncc.defra.gov.uk/Docs/UKBAP_SpeciesTargets-2006.xls


 

 

153 

 

A3.7 Animal health and welfare (WI12) 

Impacts on livestock growth (time to target liveweight, liveweight achieved) and 

veterinary costs. Valued via market prices. 

Animal welfare values (beyond production and health impacts) have typically been 

elicited with reference to production system (e.g. caged versus non-caged eggs, 

stocking density, environmental enrichment) rather than actual welfare outcomes. 

A3.8 Crop health (WI13) 

Impacts on crop yield and crop protection costs, specific to crop types. Valued via 

market prices. 

A3.9 Household income (WI14) 

Impacts on aggregate household incomes can be estimated using income effects 

and multipliers from the Scottish IO tables as per WI16 (employment). Specific 

regional data (e.g. regional SAM models) would be required to determine spatial 

distribution using this approach unless the aggregate data can be linked to well 

defined geographical area (thus limiting leakage).  

A3.10 Employment (WI16) 

Scottish Input-Output tables and multipliers can be used to determine impacts on 

employment and incomes. Type I multipliers/effects reflect direct and indirect 

impacts on industry sector and its supply chain; Type II multipliers also include 

induced effects throughout the economy. 

Multipliers and effects stated based on impact of £1m additional final demand in 

sectors relevant to GHG measures (SIC 33 represents on-farm renewables and AD 

plant installations). 

For example, if an additional £5m demand for AD plant installations is identified then 

direct and indirect impact on employment will be 5 x 9.7 = 49 FTE jobs within the SIC 

33 sector and its supply chain; direct, indirect and induced employment throughout 

the economy will be 5 x 12 = 60 FTEs, indicating an additional 11 FTEs throughout 

the economy. In terms of employment income, direct and indirect effects will be 5 x 

0.43 = £2.15m with a further £0.3m in induced employment income. Care is needed 
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where increases in final demand are not permanent as these employment and 

income effects will be short-term, there is no proscribed way (i.e. in the Green Book) 

to account for this. 

Additionally, employment can be valued via WTP, for example rural households were 

found to be willing to pay £1.08/year for every additional full-time job created by 

renewable schemes (Bergmann et al. 2006). 

A3.11 Human health (WI18) 

Change in number of cases of ill-health. Economic value can be captured through 

the valuation of quality life years. It may already be captured with respect to other 

impacts such as air quality where damage costs reflect morbidity and mortality,  

Increased potential for physical and recreational activity (e.g. through afforestation). 

The economic values of new recreational opportunities will be context specific and 

reflect location (ease of access, remoteness), available substitutes, site facilities and 

type of activity that are possible. Diminishing marginal utility (as per water quality) is 

also likely to be observed with respect to site size. 

A3.12 Social cohesion, social engagement (WI19) 

Difficult to measure and consequently value.  

A3.13 Cultural impacts (WI20) 

Values are based on a choice experiment that elicited general public WTP for a 

range of ecosystem services, these values were then allocated to Biodiversity Action 

Plan (BAP) habitats based on expert assessment of the supply of each ecosystem 

service. The range of values (where identified) reflects two scenarios: 1) the current 

'maintenance' area of habitats achieves BAP targets, 2) 'maintenance' area plus 

restoration and expansion targets are achieved (as per 2006 UK BAP Habitat 

Targets, http://jncc.defra.gov.uk/Docs/UKBAP_SpeciesTargets-2006.xls). Single 

values indicate no difference between scenarios, zero values are omitted. 

The values listed are total UK values for 'sense of place' divided by habitat extent to 

determine per ha values. 
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