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A heavy metal P-type ATPase OsHMA4 prevents
copper accumulation in rice grain
Xin-Yuan Huang1,*, Fenglin Deng2,*, Naoki Yamaji2, Shannon R.M. Pinson3, Miho Fujii-Kashino2, John Danku1,

Alex Douglas1, Mary Lou Guerinot4, David E. Salt1 & Jian Feng Ma2

Rice is a major source of calories and mineral nutrients for over half the world’s human

population. However, little is known in rice about the genetic basis of variation in

accumulation of copper (Cu), an essential but potentially toxic nutrient. Here we identify

OsHMA4 as the likely causal gene of a quantitative trait locus controlling Cu accumulation in

rice grain. We provide evidence that OsHMA4 functions to sequester Cu into root vacuoles,

limiting Cu accumulation in the grain. The difference in grain Cu accumulation is most likely

attributed to a single amino acid substitution that leads to different OsHMA4 transport

activity. The allele associated with low grain Cu was found in 67 of the 1,367 rice accessions

investigated. Identification of natural allelic variation in OsHMA4 may facilitate the

development of rice varieties with grain Cu concentrations tuned to both the concentration of

Cu in the soil and dietary needs.
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C
opper (Cu) is an essential micronutrient for all living
organisms. In plants, Cu acts as a redox-active cofactor
and participates in multiple biological processes such as

photosynthesis, respiration, cell wall remodelling, oxidative stress
resistance and ethylene perception1,2. Cu deficiency reduces
growth rates, seed set and yield due to impaired photosynthesis
and pollen fertility. Cu also plays important roles in human
health as an enzymatic cofactor involved in cellular respiration,
free radical detoxification, pigmentation, neuron development,
connective tissue formation and iron transport3,4. Currently,
more than two billion people worldwide suffer from
micronutrient deficiencies such as iron (Fe), zinc (Zn) and
Cu5,6. Cu deficiency causes immune defects and anaemia3,7. The
estimated average requirement for Cu is 260–685 mg per day for
children depending on age, 700 mg per day for adults and 1,000 mg
per day for women during pregnancy and lactation8. In the
human diet, Cu is enriched in meat, fish and nuts. However, such
food is not usually available to most populations suffering from
micronutrients deficiencies. Therefore, biofortification to increase
Cu in staple foods such as rice is one approach to provide the
minimum amount of dietary Cu for these populations.

On the other hand, Cu is toxic when present in excess, mainly
due to its role in generating highly reactive oxygen species that
cause cellular damage1–3. Due to the over use of Cu-containing
fungicides, and the release of Cu in industrial wastewater and
from mining activities, Cu contamination of cultivated soils and
irrigation waters has become problematic in certain regions. For
example, Cu is ranked as the fourth most contaminating heavy
metal of agricultural lands in China9. Thus, it is important to
develop rice (Oryza sativa L.) cultivars that are both tolerant to
Cu and that can exclude excess Cu from the grain.

Because Cu is both essential and toxic depending on
concentration, organisms including plants have developed a
finely tuned homoeostatic network to control cellular Cu
concentrations. Cu homoeostasis in plants depends on the
control of root uptake, root-to-shoot translocation, vacuolar
compartmentation and distribution/redistribution of Cu to
various organs. In plants, Cu is mainly taken up in roots by
CTR-like high-affinity Cu transporters (COPT) such as COPT1
in Arabidopsis thaliana10 and rice11. Several heavy metal P-type
ATPases have been shown to function in Cu homoeostasis in
Arabidopsis and rice. AtHMA5 is involved in loading Cu into the
xylem for root-to-shoot translocation and/or Cu detoxification in
roots12,13. AtHMA6/PAA1 and AtHMA8/PAA2 are responsible
for transporting Cu into chloroplasts. AtHMA6/PAA1 transports
Cu across the chloroplast envelope, while the thylakoid
membrane localized AtHMA8/PAA2 likely transports Cu into
the thylakoid lumen14,15. AtHMA7/RAN1 has been proposed to
deliver Cu to ethylene receptors16,17. In rice, OsHMA5 has been
shown to be involved in loading Cu to the xylem for root-to-
shoot translocation18. A yellow stripe-like protein, YSL16, is
required for recycling Cu from older tissues to the young
developing tissues as well as grains19. However, many
transporters involved in other Cu transport processes remain
unidentified.

We previously identified 134 quantitative trait loci (QTL) that
control variation in the concentration of 16 elements (P, Mg, K, S,
Ca, As, Cd, Co, Cu, Fe, Mn, Mo, Ni, Rb, Sr and Zn) in unmilled
rice grain using two synthetic rice mapping populations20. On the
basis of a recombinant inbred population derived from a cross
between Lemont (LM, japonica) and TeQing (TQ, indica;
LT-RILs), and a TeQing-into-Lemont backcross introgression
lines (TILs) population, 12 QTLs controlling grain Cu
concentration were identified in either one or both mapping
populations under flooded and unflooded field conditions20.
Among them a major QTL for grain Cu was detected on

chromosome 2 (designated qGCu2-1), which explains up to
43% of variation in grain Cu in the LT-RILs. In this study,
we identify the gene most likely responsible for this QTL. We find
that qGCu2-1 likely encodes a heavy metal P1B-type ATPase,
OsHMA4. OsHMA4 localizes to the vacuolar membrane of root
cells and we provide evidence that it functions in sequestering Cu
into the vacuoles. Loss-of-function of OsHMA4 results in
increased root-to-shoot translocation of Cu, and subsequently
increases Cu accumulation in rice grain. Furthermore, we provide
evidence that the genotypic difference in grain Cu results from
different transport activities of OsHMA4 for Cu due to a single
amino acid substitution.

Results
Map-based cloning of qGCu2-1. To confirm the qGCu2-1 QTL
for grain Cu accumulation we detected previously20, we grew the
LT-RIL and TIL populations over multiple years under both
flooded and unflooded field conditions. This Cu QTL was
consistently detected in grain of both the LT-RILs and TILs,
irrespective of year or growth conditions (Fig. 1a,b). Furthermore,
qGCu2-1 was also detected in both grain and leaf tissue from TILs
cultivated in the greenhouse (Fig. 1b). The reproduction of the
qGCu2-1 Cu QTL in greenhouse-cultivated material enabled us to
fine map the QTL using greenhouse cultivated plants (Fig. 1b).

To fine map the qGCu2-1 locus, we crossed four LT-RIL lines
containing the chromosome fragment from TQ in the mapping
region with LM and generated F2 progeny by self-pollination. Five
plants with recombinations between markers H24454 and
H26652 were isolated from 1,258 F2 plants. These selected
F2 plants were self-pollinated and integration of grain Cu
concentration and genotypic data of F2:3 progeny families
narrowed the QTL interval down to a 273 kb region between
the markers RM3294 and RM6378 (Fig. 1c). Among 41 genes in
this region (Supplementary Table 1), 2 genes encoding putative
heavy metal transporters were identified as candidate genes: a
metal cation transporter gene (LOC_Os02g10230, OsZTP29) and
a Cu-transporting ATPase gene (LOC_Os02g10290, OsHMA4).
OsZTP29 shares 80% amino acid identity with the zinc
transporter ZTP29 in Arabidopsis21. Sequence analysis revealed
two synonymous single-nucleotide polymorphisms (SNPs) in the
coding sequence of OsZTP29 between the LM and TQ cultivars
(Fig. 1d). Five SNPs and five small insertions and deletions were
found in the promoter sequence of OsZTP29, which did not
change its expression level between TQ and LM (Supplementary
Fig. 1a), suggesting that OsZTP29 is likely not the casual gene for
qGCu2-1. However, comparison of OsHMA4 sequences identified
two SNPs in the coding region of OsHMA4 between TQ and LM.
Among the two SNPs, only one SNP altered the amino acid
sequence, with a valine (V) in TQ and an alanine (A) in LM at
amino acid 914 (Fig. 1d). Structure prediction showed
that OsHMA4 has eight transmembrane domains and the
polymorphic V914A occurs in the seventh transmembrane
domain. Homology modelling indicates that V914A localizes in
the membranous Cu-binding site I, which includes the conserved
YN and CPC motifs22 (Fig. 1e,f; Supplementary Fig. 2). A single
SNP in the 3 kb promoter region was also found between LM and
TQ, but this did not alter the expression level of OsHMA4
(Supplementary Fig. 1b) and there is no known cis element at
this SNP.

Taking advantage of the existence of residual heterozygosity in
TILs, we developed appropriate near isogenic lines (NIL) by
generating heterogeneous inbred families (HIFs) (Supplementary
Fig. 3)23,24. TIL626 was identified to be heterozygous at the
OsHMA4 locus. The HIF626-TQ and HIF626-LM lines were
isolated in the next generation. These lines are identical at the
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majority of loci in the genome and only differ in a small genomic
region containing homozygous OsHMA4 alleles from TQ or LM,
respectively (Supplementary Fig. 3). Elemental analysis showed
that HIF626-TQ accumulated significantly higher concentrations
of Cu in both grain and leaf than HIF626-LM (Fig. 2a), suggesting
that the TQ allele contributes to high Cu in the grain. This is
consistent with the prior QTL mapping results, where TQ was
found to contribute the qGCu2-1 allele for higher grain Cu20.

Phenotypic analysis of oshma4 knockout mutant. To test
whether OsHMA4 has a biological role consistent with being the
causal gene for qGCu2-1, we obtained a T-DNA insertion mutant
of OsHMA4. The T-DNA insertion in the fifth intron of OsHMA4
completely interrupts its expression (Supplementary Fig. 4a–c).
The T-DNA oshma4 mutant is slightly shorter and has lower

fertility compared to the wild-type (WT; Supplementary
Fig. 5a–f). Elemental analysis showed that the Cu concentration
in the grain of oshma4 was 138% higher than that of the WT
(Po0.001, Student’s t-test, n¼ 12) (Fig. 2b). Of the 22 elements
measured, Cu is the only element that showed a major change in
concentration in the grain of oshma4, suggesting a specific effect
of OsHMA4 on Cu (Fig. 2b). We also only observed a significant
difference in grain Cu concentration between HIF626-TQ and
HIF626-LM (Fig. 2b).

To further assess whether OsHMA4 may be the causal gene for
qGCu2-1, we crossed oshma4 and WT with HIF626-TQ and
HIF626-LM, respectively. The Cu concentration in grain of
oshma4�HIF626-TQ F1 and oshma4�HIF626-LM F1 plants
were significantly lower than that of the oshma4 mutant (Fig. 2c),
similar to the level in the grains of HIF626-TQ and HIF626-LM,
respectively, suggesting that both the TQ and LM OsHMA4 alleles
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are functional. However, a significant difference in grain Cu
concentration between oshma4�HIF626-TQ F1 and oshma4�
HIF626-LM F1 was observed (Fig. 2c), indicating different
functional activity of the TQ and LM OsHMA4 alleles.
Furthermore, transfer of a WT DNA fragment containing the
OsHMA4 promoter region and the entire open reading frame
(ORF) into the oshma4 knockout mutant totally suppressed its
high grain Cu phenotype (Fig. 2d; Supplementary Fig. 4d). These
results demonstrate that OsHMA4 is indeed responsible for the
high grain Cu phenotype found in oshma4 knockout mutant and
both OsHMA4 alleles are functional, although their transport
activity is different.

The high Cu phenotype of the oshma4 mutant was observed
not only in the grain but also in the blade and sheath of the flag
leaf, as well as the upper nodes and internodes of the main tiller at
the harvesting stage (Supplementary Fig. 5g,h). These results
indicate that OsHMA4 may not specifically control Cu in the
grain but in all above ground tissues. Further analysis of seedlings
grown in nutrient media with either normal or elevated Cu
concentrations showed that oshma4 plants had significantly lower
Cu concentrations in the roots and higher Cu concentrations in
the shoots compared with the WT (Fig. 2e,f). However, there was
no difference in other metal concentrations, including Cd, Ag, Co
and Pb (Supplementary Fig. 6a–e). Cu concentration in the xylem
sap was also higher in oshma4 than in the WT (Fig. 2g).
Furthermore, the Cu concentration in the root cell sap, which is
mainly composed of the contents of the vacuole25, was
significantly lower in the oshma4 mutant compared to the WT
(Fig. 2h).

We also compared Cu tolerance between the oshma4 mutant
and WT. The oshma4 mutant was more sensitive to elevated Cu
concentrations in the growth media compared with the WT
(Fig. 2i,j; Supplementary Fig. 5i). Furthermore, such increased Cu
sensitivity of oshma4 was rescued in the transgenic complemen-
tation lines (Fig. 2i,j).

Expression pattern and subcellular localization of OsHMA4.
Expression of OsHMA4 was observed in most organs throughout
the growth period of Nipponbare grown in a paddy field (Fig. 3a).
However, the expression of OsHMA4 was generally much higher
in the roots compared with other organs (Fig. 3a). Similar
expression pattern was observed in TQ grown in a greenhouse
(Supplementary Fig. 7a). Expression of OsHMA4 was strongly
induced by high Cu treatment in the roots but not in the shoots
(Fig. 3b,c). OsHMA4 was also slightly induced by Ag and
Cd treatment but suppressed by Pb and Mn treatment
(Supplementary Fig. 7b). Under Cu-depleted growth conditions,
expression of OsHMA4 was downregulated in the root (Fig. 3d).
Such downregulation was also observed under Fe depletion but
not under Zn or Mn depletion (Supplementary Fig. 7c). The
induction by excess Cu and downregulation by Cu deficiency
suggested a critical role for OsHMA4 in Cu homoeostasis in roots.

Using laser microdissection, we observed that OsHMA4 was
mainly expressed in the central cylinder of the mature root
(Fig. 3e). To further investigate the tissue-specific localization
of OsHMA4, we expressed GFP-OsHMA4 in the OsHMA4
mutant under the control of the native promoter of OsHMA4
(Supplementary Fig. 5j). Immunostaining with an anti-green
fluorescent protein (GFP) antibody revealed OsHMA4 to
accumulate in the vascular tissues of the stele, mainly in pericycle
cells (Fig. 3f). This observation was further supported by b-
glucuronidase (GUS) staining of the OsHMA4 promoter-GUS
transgenic rice lines (Supplementary Fig. 7d–f).

Analysis of the subcellular localization of GFP-OsHMA4 after
stable heterologous expression in Arabidopsis showed OsHMA4

to be localized to the tonoplast (Fig. 3g). We observed that
OsHMA4 from both TQ and LM were localized to the tonoplast,
suggesting that the V914A variation has no effect on the
subcellular localization of OsHMA4 (Fig. 3g). Subcellular
localization of OsHMA4 was further investigated in transgenic
rice expressing GFP-OsHMA4 under the control of the native
promoter of OsHMA4. Western blot analysis with a GFP
antibody showed a single band with the predicted size in the
rice transgenic line, but not in WT, indicating the specificity of
the GFP antibody (Supplementary Fig. 8a). In situ immunostain-
ing with this GFP antibody further showed that at least part of the
signal was localized to the tonoplast, with the immunostaining
being observed on the inside facing side of the nuclei
(Supplementary Fig. 8c–e). We further showed that the tonoplast
localization of OsHMA4 is unlikely to be affected by excess Cu
(Supplementary Fig. 8f). Immunoblotting with GFP antibody of
sucrose-density gradient separated microsomal membranes from
GFP-OsHMA4 expressing rice roots revealed a weak signal
for GFP-OsHMA4 in the tonoplast and plasma membrane
(Supplementary Fig. 8b).

Heterologous expression in Arabidopsis and yeast. Sequence
analysis revealed that OsHMA4 shares 56.5% sequence identity
with Arabidopsis AtHMA5. AtHMA5 has been shown to be
involved in Cu translocation from roots to shoots and/or Cu
detoxification in roots12,13. To investigate whether expression of
OsHMA4 in athma5 could improve its tolerance to excess Cu, we
heterologously expressed GFP-OsHMA4 from TQ and LM in
athma5 using the 35S promoter (Supplementary Fig. 9a). When
grown in low Cu, the root elongation of athma5 knockout mutant
was similar to that of the WT and transgenic lines carrying GFP-
OsHMA4 from either TQ or LM in the athma5 background
(Fig. 4a,b; Supplementary Fig. 10a,b). However, under high Cu,
the root elongation of the athma5 mutant was significantly
inhibited, but the introduction of OsHMA4 from either TQ or LM
into the athma5 mutant significantly increased its Cu tolerance
(Fig. 4a,b; Supplementary Fig. 10a,b). Quantification of Cu
showed that the Cu concentration in athma5 was lower in the
shoots and higher in the roots compared with the WT when
grown with 50 mM Cu. However, in the transgenic lines
expressing either allele of OsHMA4, Cu levels in both roots and
shoots were similar to that of the athma5 mutant (Fig. 4c,d).
These results suggest that although OsHMA4 can suppress the Cu
sensitivity of athma5 this is not achieved by restoring root-to-
shoot translocation of Cu, but rather most likely by enhancing
sequestration of Cu into root vacuoles. To rule out the ectopic
effect of overexpression of OsHMA4 driven by 35S promoter, we
also expressed OsHMA4 in athma5 using the AtHMA5 native
promoter. Expression of the LM OsHMA4 allele from the
AtHMA5 native promoter significantly enhanced the resistance
of athma5 to excess Cu, whereas the TQ allele had no consistent
affect (Fig. 4a,b; Supplementary Fig. 9b; Supplementary
Fig. 10a,b). These results suggest that the TQ OsHMA4 allele is
hypofunctional relative to the LM allele.

To investigate whether expression of OsHMA4 in WT
Arabidopsis could improve its tolerance to excess Cu, we
heterologously expressed GFP-OsHMA4 in Col-0 WT using the
35S promoter (Supplementary Fig. 9c). These transgenic lines
were more tolerant to Cu stress compared with non-transgenic
WT (Supplementary Fig. 11a–d). Quantification of Cu showed
that under excess Cu, the GFP-OsHMA4 expressing lines
accumulated more Cu in roots than that of WT, further
supporting a role for OsHMA4 in sequestration of Cu into root
vacuoles (Supplementary Fig. 11e,f). The expression of Cu
deficiency responsive genes was not markedly affected in the
Arabidopsis lines expressing GFP-OsHMA4 with the exception of
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ZIP2, which was induced in shoots of some lines (Supplementary
Fig. 9d).

To characterize the Cu transport activity of OsHMA4, we
expressed OsHMA4 in the yeast WT strain BY4741 using a low
copy number centromeric plasmid pYEC2/CT–GFP. GFP signals

were specifically observed at the vacuolar membrane of
yeast transformed with either pYEC2-OsHMA4(TQ)–GFP or
pYEC2-OsHMA4(LM)–GFP (Fig. 5a), supporting the tonoplast
localization of OsHMA4 we observed in both rice and
Arabidopsis. Yeast expressing OsHMA4-GFP were more tolerant
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to Cu stress than those transformed with the empty vector
(Fig. 5c,d), supporting a function for OsHMA4 in transport of
Cu into yeast vacuoles. Expression of the cucumber tonoplast-
localized CsHMA5.1 and CsHMA5.2 using a similar low copy
number centromeric plasmid has also been shown to improve Cu
tolerance in yeast26.

To further test the Cu transport activity of OsHMA4, we
expressed OsHMA4 in the yeast ccc2 mutant using a high copy
number 2m origin plasmid pYES2. The Cu-transporting P-type
ATPase CCC2 localizes at the late- or post-Golgi compartment
and delivers Cu to the multi-copper oxidase Fet3P, which is
required for high-affinity Fe uptake at the plasma membrane27.
The ccc2 knockout mutant is unable to grow on Fe-deficient
media (Supplementary Fig. 12a). We observed that expression of
OsHMA4 from either TQ or LM in the ccc2 yeast mutant was able
to restore growth of the yeast mutant on Fe-deficient media,
suggesting that OsHMA4 has Cu transport activity in yeast
(Supplementary Fig. 12a). Analysis of the GFP signal in yeast
expressing OsHMA4-GFP from the high copy number 2m origin
pYES2 plasmid revealed that OsHMA4-GFP localizes throughout
the endomembrane system, likely including the late- or
post-Golgi compartment (Supplementary Fig. 12f). Such
mislocalization of OsHMA4-GFP to the late- or post-Golgi
compartment when accumulated to high levels explains how
OsHMA4 can complement the ccc2 growth defect when expressed
from pYES2. Supporting this conclusion that OsHMA4 can
transport Cu in yeast, we also observed that expressing OsHMA4
in either WT yeast or a yeast strain lacking the high-affinity
Cu transporter CTR1 increased their sensitivity to excess Cu
(Supplementary Fig. 13a). Furthermore, expression of OsHMA4
did not alter the sensitivity of yeast to other heavy metals such as
Cd, Co, Ag, Pb, Mn and Zn (Supplementary Fig. 13b), suggesting
that OsHMA4 transports Cu specifically. Significantly, WT yeast

expressing the LM OsHMA4 allele was more sensitive to excess
Cu than WT yeast expressing the TQ OsHMA4 allele
(Supplementary Fig. 12b–e), suggesting stronger Cu transport
activity of OsHMA4 from LM. The increased sensitivity to Cu of
yeast expressing OsHMA4 from pYES2 can again be explained
by the mislocalization of OsHMA4 to internal membrane
compartments that are sensitive to enhanced Cu transport. This
is similar to previous studies in which expression of the normally
tonoplast-localized OsHMA3 or AtHMA3 in yeast using the high
copy number plasmid pYES2 increases the sensitivity to Cd stress
rather than enhancing Cd tolerance28.

Analysis of genetic variation of OsHMA4. To gain insight into
the contribution of genetic variation at OsHMA4 to variation in
grain Cu across the O. sativa species, we analysed the sequence
of OsHMA4 in the genomes of 950 diverse worldwide rice
accessions29. This analysis revealed nine non-synonymous
polymorphisms in the coding sequence of OsHMA4, including
the polymorphic V914A we discovered between TQ and LM
(Supplementary Table 2; Supplementary Fig. 2; Fig. 1e). The allele
frequency of the strong allele of OsHMA4 from LM (A914)
was very low (0.0068), suggesting that it is a rare allele
(Supplementary Table 2). To further associate genetic variation
at OsHMA4 with rice grain Cu, we genotyped OsHMA4 in 1,349
worldwide accessions from the USDA Rice Core Collection for
which we had previously reported the concentration of grain
Cu30. We identified five of the previous nine non-synonymous
polymorphisms and also identified 67 accessions with the LM-like
strong allele (5.1%; Supplementary Table 2). The accessions with
the strong OsHMA4 allele (A914) generally accumulate less grain
Cu and are largely distributed in the USA (26 of 67; Fig. 6a,b).
When taking the kinship between the accessions into account, we
only observed a significant difference in grain Cu between the two

a

0

0.3

0.6

0.9

1.2

Control 3 mM Cu

A
63

0

pYEC2/CT-GFP

pYEC2-OsHMA4(TQ)-GFP

pYEC2-OsHMA4(LM)-GFP

a a a

c

b
a

b

GFP Bright field Merge

pY
E

C
2-

O
sH

M
A

4
(T

Q
)-

G
F

P
pY

E
C

2-
O

sH
M

A
4

(L
M

)-
G

F
P

4 mM CuControl

B
Y

47
41

pYEC2/CT-GFP

pYEC2-OsHMA4
(TQ)-GFP

pYEC2-OsHMA4
(LM)-GFP

c

Figure 5 | Functional analysis of OsHMA4 in yeast. (a) Subcellular localization of OsHMA4 in yeast. OsHMA4 from TeQing (OsHMA4(TQ)) or from

Lemont (OsHMA4(LM)) were expressed in a centromeric plasmid pYEC2/CT–GFP. GFP signals were observed mainly on the tonoplast. Bar, 1 mm.

(b) Expression of OsHMA4 in yeast using a centrimeric plasmid pYEC2/CT–GFP enhances Cu tolerance. Overnight yeast cell suspension of BY4741

transformed with empty vector pYEC2/CT–GFP or OsHMA4 from TQ or LM were serially diluted (1:10) and spotted on the media without (Control) or with

4 mM CuSO4. Pictures were taken after 5 days growth at 30 �C. (c) The absorbance at 630 nm (A630) of cell cultures of BY4741 transformed with the

empty vector pYEC2/CT–GFP or OsHMA4-GFP from TQ or LM. Yeast strains were grown in liquid media containing without (Control) or with 3 mM CuSO4

for 24 h. Data were shown as means±s.d. with three independent colonies. Columns with different italic or non-italic letters indicate significant difference

under control or 3 mM CuSO4, respectively (Pr0.01, Fisher’s LSD test).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12138

8 NATURE COMMUNICATIONS | 7:12138 | DOI: 10.1038/ncomms12138 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


alleles polymorphic at the V914A site, but not at the other three
polymorphic sites that have a minor allele frequency higher than
0.05 (Fig. 6c,d). These polymorphisms explain a significant
amount of the variation in grain Cu of this diverse core collection
when grown in either flooded (8.3%; F4, 1,236¼ 28, Po0.0001,
generalized least squares approach, n¼ 1,182/59) or unflooded
conditions (8.6%; F4, 1,205¼ 28.55, Po0.0001, generalized least
squares approach, n¼ 1,151/59). One likely source of the strong
allele we first identified in LM is its ancestor Fortuna, which was
selected from a landrace from Taiwan, suggesting that the strong
allele may originate from Asia (Supplementary Fig.14a). This
strong allele of OsHMA4 was not found in 446 accessions of
wild rice Oryza rufipogon, the immediate ancestral progenitor of
Asian cultivated rice Oryza sativa, or in African rice Oryza
glaberrima (20 accessions) and its progenitor Oryza barthii
(94 accessions)31,32. Grain Cu is generally lower when plants are
grown in flooded compared with unflooded paddy conditions
(Fig. 6c,d), which is likely due to lower Cu bioavailability
in water-logged soil. The reasons for this reduction in Cu
bioavailability under flooded conditions are complex and involve
a decrease in redox potential33.

Discussion
To cope with the dual nature of Cu being essential for cells and
toxic when present in excess, plants have evolved sophisticated
mechanisms to control the cellular Cu concentration. One
strategy is to sequester excess Cu into vacuoles. This vacuolar
Cu serves as a reservoir for Cu that can be remobilized under Cu
deficiency. However, the molecular mechanism underlying this
process in plants is poorly understood. In this study, we identified

a QTL controlling rice grain Cu and determined the likely causal
gene to be OsHMA4. OsHMA4 belongs to the Cuþ /Agþ

subgroup of HMA and we provide evidence it encodes a
tonoplast-localized transporter specific for Cu. We found that
the genotypic difference in grain Cu was not due to the expression
level or subcellular localization of OsHMA4, but most likely the
transport activity for Cu (Supplementary Fig. 1b; Fig. 3g;
Supplementary Fig. 8e; Supplementary Fig. 12b–e). OsHMA4
from the low Cu cultivar (LM) showed stronger transport activity
for Cu than that from the high Cu cultivar (TQ) when expressed
in both Arabidopsis and yeast (Figs 4a,b and 5c; Supplementary
Fig. 12b–e). Knockout of OsHMA4 resulted in increased Cu
concentration in the shoots and xylem sap, but decreased Cu in
the roots and root cell sap (Fig. 2e–h). We conclude that
OsHMA4 most likely functions to sequester Cu into vacuoles of
pericycle cells to help control the root-to-shoot translocation of
Cu. This likely vacuolar sequestration of Cu by OsHMA4 is also
associated with enhanced Cu tolerance (Fig. 2i,j; Supplementary
Fig. 5i).

Several transporters have been shown to compartmentalize
various heavy metals in root vacuoles. For example, Arabidopsis
AtHMA3 participates in vacuolar sequestration of Cd, Zn, Co and
Pb34,35, and AtMTP3 is involved in sequestration of Zn36.
Recently, two cucumber P1B-type ATPases CsHMA5.1 and
CsHMA5.2 have been shown to transport Cu into vacuoles
in yeast26. However, their in vivo functions in regulating
Cu homoeostasis remains unclear. In Arabidopsis, the protein
mediating the transport of Cu into vacuoles has not been
identified. OsHMA5 from rice and AtHMA5 from Arabidopsis
are involved in loading Cu into the xylem for root-to-shoot
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translocation and/or Cu detoxification in roots12,13,18. Several
other HMA proteins in Arabidopsis have been shown to have
Cu-transporting activity but none of them are involved in the
efflux of Cu into vacuoles. For example, AtHMA6/PAA1 and
AtHMA8/PAA2 are required for Cu transport in chloroplasts
and AtHMA7/RAN1 delivers Cu to ethylene receptors on the
Golgi membrane14–17. Even though the functional counterpart
of OsHMA4 is likely absent in Arabidopsis, several OsHMA4
homologues have been identified in other species such as
sorghum, poplar and grape vine26.

Expression of OsHMA4 was not induced by short-term Cu
treatment in a previous study37. However, here we demonstrated
that OsHMA4 is induced under longer-term exposure to excess
Cu (Fig. 3b,c). This is consistent with the proposed function of
OsHMA4 in compartmentalization of Cu into vacuoles after
exposure to excess Cu. Furthermore, the expression of OsHMA4
is suppressed by Cu deficiency (Fig. 3d). Such downregulation
under Cu deficiency may decrease Cu sequestration in the
vacuolar storage pool.

OsHMA4 is characteristically localized at the pericyle cells of
root mature zones (Fig. 3e). This localization is similar to
OsHMA5, a plasma membrane-localized Cu transporter
responsible for xylem loading of Cu18. This suggests that
OsHMA4 plays a role in fine tuning cellular Cu concentration
before loading to the xylem depending on Cu concentration in
the environment. This localization is also different from other
tonoplast-localized transporter in rice roots such as OsHMA3,
which is localized in all root cells28. Furthermore, OsHMA4 is
also characterized by its transport specificity for Cu
(Supplementary Fig. 6a–e; Supplementary Fig. 13b). Among the
HMA members characterized in rice, OsHMA2 and OsHMA3
transport both Cd and Zn38–41, while OsHMA9 transports Cu,
Zn, Pb and Cd37. The mechanisms underlying the transport
substrate specificity remain to be examined.

The strong allele of OsHMA4 from LM results from a single
amino acid change at position 914 (from V to A; Fig. 1d). This
amino acid is localized in the seventh transmembrane domain
(Fig. 1e,f; Supplementary Fig. 2), which is predicated to be the
Cu-binding site I including the conserved YN and CPC motifs22

(Fig. 1e,f; Supplementary Fig. 2). Thus, the V914A variant might
differ in Cu binding activity and thus have different transporting
activity. The absence of the strong allele of OsHMA4 (A914) in
wild rice O. rufipogon, the immediate ancestral progenitor of
Asian cultivated rice O. sativa, suggested that the weak OsHMA4
allele (V914) is ancestral, and the strong allele might have arisen
during the domestication of O. sativa29. However, the lack of
evidence for a selective sweep of the genome around OsHMA4
suggests that this strong allele of OsHMA4 was not selected
during domestication29. The strong allele of OsHMA4 is rare in
the worldwide rice population perhaps explaining why this
functional polymorphism was not identified in a recent
genome-wide association study42.

In summary, we have identified OsHMA4 as the most likely
causal gene underlying the QTL for Cu accumulation in rice grain
through multiple year field and greenhouse trials. OsHMA4
localizes to the vacuolar membrane and we provide evidence that
it functions to transport Cu into vacuoles in roots. The
identification of natural variation at the OsHMA4 loci associated
with rice grain Cu provides an efficient way to breed rice varieties
with Cu enrichment in the grain, which may be helpful in solving
global Cu micronutrient deficiency. The novel OsHMA4 alleles
identified and the molecular markers developed in this work can
be directly used in breeding to develop rice varieties with grain Cu
concentrations that are tuned to both the concentration of Cu in
the soil and the dietary needs of the population’s consuming
the grain.

Methods
Plant materials and growth conditions. The LT-RILs were derived from a cross
between a US tropical japonica rice cultivar Lemont (LM) and a Chinese indica
cultivar TeQing (TQ) by single-seed descent43,44. The LT-RILs contained 280 lines
and were genotyped using 175 restriction fragment length polymorphism
markers44. The LT-RILs grown in the field in 2002, 2003, 2006, 2007 and 2008 were
in the F15, F16, F17, F18 and F19 generations, respectively. The TILs contain 123 lines
and were originally genotyped using 168 simple sequence repeat (SSR) markers45.
Plants were grown under flooded and unflooded condition in 2007 and 2008 as
described previously20. Due to a storm, the LT-RILs grown under unflooded
condition were destroyed in 2007 and thus were not included in the analysis. In
2010, the TIL population was grown in a greenhouse at Purdue University, West
Lafayette, Indiana, USA. Plants were grown in 10� 10� 12 cm pots with sandy soil
Profile Greens Grade (Profile Products, LLC, Illinois, USA) and the irrigation was
controlled by an automatic system. Plants were irrigated every day with tap water
to maintain the water level to 1/3 of the pot depth, and fertilized once a week with
water-soluble fertilizer (15N–1.3P–13.3K; Greencare Fertilizers, Kankakee, Illinois,
USA) until seeds were collected.

HIFs were generated as previously described23,24. A derived cleaved amplified
polymorphic sequences (dCAPS) marker was developed based on the causal
polymorphism of T4656C on OsHMA4 between TQ and LM. TIL626 was
identified as heterozygous on this dCAPS. The plants fixed with TQ allele
(HIF626-TQ) and plants fixed with LM allele (HIF626-LM) were selected in
self-pollinated progeny plants of TIL626.

The T-DNA insertion mutant for OsHMA4 (PFG_1B-07418) was obtained
from Kyung Hee University, Korea (http://cbi.khu.ac.kr/RISD_DB.html)46. The
progeny plants segregated from 1B-07418 without the T-DNA insertion in the
OsHMA4 gene were used as a WT control. The mutant and WT were genotyped by
PCR and expression level of OsHMA4 in the mutant was determined by reverse
transcriptase–PCR (RT-PCR; Supplementary Fig. 4b,c; see full gel images in
Supplementary Fig. 15a). For analysis of the grains and different tissues of the WT
and the oshma4 mutant, plants were grown in the greenhouse. For the hydroponic
experiment, WT and the oshma4 mutant were grown as previously described47.
Seeds of WT and oshma4 were kept at 42 �C for at least 1 week to break any
possible dormancy, soaked in water at room temperature for 2 days, and then
germinated at 37 �C for 1 day. The most uniformly germinated seeds were sown in
a 96-well plate from which the bottom was removed. The plate was put in a pipette
tip box (12� 8.5� 7.5 cm) and floated in water for 1 days at 37 �C in the dark to
encourage root growth. Plants were propagated in a growth chamber with a 12-h
light (26 �C)/12-h dark (22 �C) photoperiod, 50–60% relative humidity and
700 mmol m� 2 s� 1 light. After 5 days, the seedlings were cultured with half-
strength Kimura B solution18 and the nutrient solution was renewed every 2 days.
The nutrient solution was prepared using deionized water except for the element
deficiency experiment in which Milli-Q water was used. For some experiments, the
WT (cv. Dongjin) and T-DNA mutant were grown hydroponically in a closed
greenhouse of the Institute of Plant Science and Resources, Okayama University as
described previously18.

Tissue elemental analysis. The elemental concentration of the grain and other
organs was determined using an inductively couple plasma mass spectrometer
(ICP-MS; Elan DRCe, PerkinElmer; or NexION 300D, PerkinElmer) as described
previously20. The grains of LT-RILs and TILs were dehulled using a modified
Satake TH035A sheller (Satake Engineering, Co. Ltd., Tokyo, Japan) with the
rubber liner on the rollers replaced with PU40 Polyurethane plastic to prevent the
contamination of Zn20. Grains of WT and the oshma4 mutant were dehulled
manually. For determination of elemental concentrations in the blade, sheath,
rachis, node and internode, tissues were washed with Milli-Q water and dried at
88 �C overnight. For analysis of roots from hydroponically grown plants, roots
were excised from the plants, washed with 0.5 mM CaCl2 solution three times,
rinsed with Milli-Q water once and dried at 88 �C overnight. Samples were digested
with concentrated HNO3 at 118 �C for 4 h before ICP-MS analysis.

QTL analysis and fine mapping of qGCu2. QTL analyses were performed
using Windows QTL cartographer version 2.5 (http://statgen.ncsu.edu/qtlcart/
WQTLCart.htm) using composite interval mapping. The composite interval
mapping analysis was run using Model 6 with forward and backward stepwise
regression, a window size of 10 cM, and a walk speed of 1 cM. The threshold for
detection of a QTL was set at a LOD score of 3.0 following 1,000 permutations at
0.05 significant level. For fine mapping of qGCu2-1, four LT-RILs (LT:390, LT:528,
LT:550, LT:597) with the TQ genotype at the mapping region were crossed with
LM. F2 population was generated by self-pollination F1s. Two markers H24454
and H26652 were used to detect the recombinantion events that occurred
around qGCu2-1 and 12 molecular markers were developed for fine mapping.
Five recombinants were isolated from 1,258 F2 plants and fixed recombinant F3

plants were generated by self-pollination. The Cu concentration in the grain
and leaf of fixed recombinants was determined by ICP-MS. By progeny testing,
qGCu2-1 was fine mapped between the markers RM3294 and RM6378.

Transgenic complementation test. For transgenic complementation experiment,
oshma4 was transformed with OsHMA4 under the control of its own promoter.
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The coding region of OsHMA4 linked with the nopaline synthase (NOS) termi-
nator was amplified using the plasmid GFP-OsHMA4 (described below) as the
template. The fragment was digested with BamHI and BglII and then subcloned
into the binary vector pTF101.1 (ref. 48), which was digested with BamHI and
dephosphorylated with Shrimp Alkaline Phosphatase (Takara). The 3,016 bp
region upstream of the initiation codon of OsHMA4 was amplified by PCR from
the genomic DNA. The fragment was digested with SpeI and BamHI and then
ligated into the XbaI-BamHI site of pTF101.1-OsHMA4. After being sequenced for
confirmation (ABI PRISM 3,130 Genetic Analyzer, Applied Biosciences), the
resulting plasmid pOsHMA4:OsHMA4 was subsequently introduced into
Agrobacterium tumefaciens (strain EHA101). Callus was induced from mature
embryos of the oshma4 mutant for Agrobacterium-mediated transformation49. The
expression level of OsHMA4 in transgenic plants was detected by RT-PCR. For
grain Cu determination, the complementation lines, WT rice and the oshma4
mutant were transplanted into 3.5 l plastic pots filled with paddy soil. The plants
were grown in a closed greenhouse under natural light at 25–30 �C until mature.
Brown rice was collected for digestion and measurement as described above. The
primer sequences used are listed in Supplementary Table 3.

Tissue specificity of OsHMA4 expression. To investigate the tissue and cellular
specificity of OsHMA4 expression, the GFP-OsHMA4 fusion was expressed in the
background of the oshma4 mutant under the control of its own promoter
(3,016 bp). The full-length complementary DNA (cDNA) of OsHMA4 was ligated
to the 30 end of GFP with the coding sequence for seven additional amino acids
(SGGGGGG) digested with BspEI to generate the plasmid GFP-OsHMA4 (ref. 37).
The fused GFP-OsHMA4 fragment was inserted between the promoter fragment
and NOS terminator to produce the pOsHMA4:GFP-OsHMA4 plasmid. This
construct was introduced into the oshma4 T-DNA knockout mutant as described
above.

For further analysis of the tissue expression pattern of OsHMA4, the 2,630-bp
promoter sequence of OsHMA4 was PCR amplified and subcloned into the
PstI-BamHI site of pTF101.1-GUS vector (modified from pTF101.1 (ref. 48) by
insertion of the sequence of GUS into the HindIII–EcoRI site of pTF101.1).
The resulting plasmids were transformed into rice japonica cv. Nipponbare. Rice
transformation was performed in Iowa State University Plant Transformation
Facility. GUS histochemical staining was performed as described previously46.
The primer sequences are listed in Supplementary Table 3.

Subcellular localization and tissue expression pattern of OsHMA4.
To investigate the subcellular location of OsHMA4, the full-length coding sequence
of OsHMA4 was amplified from cDNA synthesized from TQ or LM using the
primers listed in Supplementary Table 3, and ligated into the XbaI–BamHI site
of p1301GFP vector47. The resulting plasmids 35S:GFP-OsHMA4(TQ) and
35S:GFP-OsHMA4(LM) were transformed into A. tumeraciens strain GV3101 and
introduced into the Arabidopsis AtHMA5 mutant (SALK_040252) using the floral
dip method50. The roots of T3 transgenic plants were examined using a confocal
laser scanning microscope (Carl Zeiss LSM700). GFP was excited using an
argon laser at 488 nm and the emission was collected between 505 and 530 nm.
To visualize the nuclei, roots were incubated with 1 mg ml� 1 of 4,6-diamidino-2-
phenylindole (Molecular Probes) for 5 min at room temperature and washed five
times with PBS buffer. 4,6-diamidino-2-phenylindole were excited with a
ultraviolet laser at 395 nm.

Immunostaining and western blot analysis. Immunostaining was carried out on
roots of WT and transgenic rice plants expressing GFP-OsHMA4 driven by
OsHMA4 native promoter in oshma4 using an antibody against GFP (A-11122;
Molecular Probes) as described previously18. For western blot analysis, the WT and
transgenic lines expressed expressing GFP-OsHMA4 driven by OsHMA4 native
promoter in oshma4 were used. Plants were grown hydroponically for 35 days in
the half-strength Kimura B solution, and then treated with 2 mM Cu for 6 h before
harvesting for protein extraction. The microsome isolation and fractionation
were performed according to the method described previously with slight
modifications28. The suspended microsomes were fractionated with discontinuous
sucrose gradients (20–60% sucrose in 10 mM Tris-HCl, pH 7.6, 1 mM EDTA,
and 1 mM DTT) by ultracentrifugation at 100,000g for 18 h. The fractionated
membranes were recovered by ultracentrifugation at 100,000g for 40 min. Each
pellet was resuspended for the concentration measurement and further analysis.
Equal amounts of samples were incubated at 95 �C for 2 min and then loaded into
the SDS-PAGE gels (5–20% gradient polyacrylamide, ATTO, Japan). The transfer
to polyvinylidene difluoride membrane was performed with a semidry blotting
system, and the membrane was treated with the purified primary rabbit anti-GFP
(A-11122; Molecular Probes; 20,000 times dilution) in an Immnunoreaction
Enhancer Solution (Can Get Signal, TOYOBO, Japan), anti-V-ATPase (AS07213,
Agrisera; 10,000 times dilution), anti-Hþ -ATPase polyclonal antibodies (AS07260,
Agrisera; 10,000 times dilution), and Anti-Bip (COP-080017, Cosmo bio; 10,000
times dilution). ECL peroxidase-labelled anti-rabbit antibody (W4011, Promega;
10,000 times dilution) was used as a secondary antibody, and an ECL Plus
western blotting detection system (GE Healthcare) was used for detection via
chemiluminescence (Bio-Rad). The protein amount was 30 mg for microsome,

5 mg for the GFP detection, 1 mg for V-ATPase, Hþ -ATPase and Bip detection.
Full images of western blot were shown in Supplementary Fig. 15b.

Xylem sap and root cell sap analysis. Collection of xylem sap was performed
as previously described with modifications51. WT and oshma4 plants were
hydroponically grown in a growth chamber for 5 weeks in half-strength Kimura B
solution with Cu omitted. The plants were then transferred to a nutrient solution
containing either 0.2 or 2 mM added CuSO4. After 1 week of treatment, the shoots
were cut with a razor at about 2 cm above the root–shoot junction. The xylem
sap was collected for 1 h after cutting. The first drop of xylem sap emerging was
discarded to prevent contamination of the contents from damaged cells. Xylem sap
from 16 plants was combined as one replicate and three replicates were made. The
Cu concentration in the xylem sap was determined by ICP-MS. Root cell sap was
prepared according to Ueno et al.28 with modifications. Briefly, WT and oshma4
mutant plants were grown hydroponically in half-strength Kimura B nutrient
solution for 2 weeks and transferred to nutrient solution containing either 0.2 or
2 mM CuSO4 for 7 days. Root cell sap was prepared from the root tips as follows.
After washing entire root systems three times with 0.5 mM CaCl2, the first 1–2 cm
of root tip segments were cut, rinsed with Milli-Q water and blotted dry with tissue
paper. One root segment from each of 16 plants comprised a single sample, and a
total of 4 samples were run per Cu growth treatment. Each sample of 16 root
segments were put in a 0.22 mm filter unit (Ultrafreer-MC; Millipore) and
centrifuged at 3,000g for 10 min at 4 �C to remove the apoplastic solution.
Root segments were then frozen at � 80 �C overnight. After thawing at room
temperature for a short time, samples were centrifuged at 20,600g for 10 min to
collect the root cell sap solution. Five microliter of each root cell sap sample were
digested with 1 ml concentrated HNO3 at 118 �C for 1 h and the Cu concentration
was determined using ICP-MS.

Cu tolerance evaluation. To compare the Cu tolerance of WT and the oshma4
mutant, seeds of each were soaked in tap water for 2 days at 30 �C and then
transferred to a net floating on a 0.5 mM CaCl2 solution for 3 days. At day 4,
seedlings were exposed to a 0.5 mM CaCl2 solution (pH 5.6) containing either no
added CuSO4 or CuSO4 added at 100, 200, 400, 600 nM for 24 h. The experiment
was performed at 25 �C. The root length of each seedling was measured before and
after the treatments, and relative root elongation (¼ (root elongation with Cu)/
(root elongation without Cu)� 100) was calculated. Twelve seedlings for each
treatment were used. A long-term treatment with excess Cu was also performed
by exposing WT, the oshma4 mutant and two independent transgenic
complementation lines to a nutrient solution with or without 2 mM added CuSO4

for 15 days at 25 �C. Shoot length was recorded and the normalized increased plant
height was calculated as (plant height increase with Cu)/(plant height increase
without Cu)� 100.

Quantitative real-time PCR. To investigate the expression pattern of OsHMA4 at
different growth stages, different tissues from plants (cv Nipponbare) grown in a
paddy field were harvested for RNA extraction and cDNA preparation18. The
tissue-specific expression of OsHMA4 in roots was examined with the help of laser
microdissection according to the described methods18. The relative expression of
OsHMA4 was investigated by quantitative real-time RT-PCR using the HistoneH3
gene as the internal control. To determine the expression of OsHMA4 in response
to different metals in the nutrient solution, total RNA was extracted from shoots
and roots using a TRIzol Plus RNA Purification kit (Invitrogen, Life Technologies),
and then treated with a PureLink DNase Set (Invitrogen, Life Technologies) to
remove potential genomic DNA contamination. The cDNA synthesis was carried
out using a SuperScript VILO cDNA Synthesis Kit (Invitrogen, Life Technologies).
Quantitative real-time PCR was performed on an ABI StepOnePlus Real-Time
PCR System (Applied Biosystems) with Maxima SYBR Green qPCR Master Mixes
(Thermo Scientific). Ct values were normalized to the corresponding endogenous
control gene (LOC_Os03g50885). The DDCt method was used for quantitative
RT-PCR analysis. The primer sequences are listed in Supplementary Table 3.
Total RNA was extracted from yeast cells using a PureLink RNA Mini Kit
(Thermo Fisher Scientific). The cDNA synthesis and quantitative real-time PCR
was performed was performed as above. The yeast housekeeping gene AGL9 was
used as an endogenous control gene.

Expressing OsHMA4 in Arabidopsis AtHMA5 mutant and WT Col-0. The
construction of the 35S:GFP-OsHMA4(TQ) and 35S:GFP-OsHMA4(LM) vectors
was described above. To generate the AtHMA5 promoter driven OsHMA4
expression vectors, the 2,900-bp promoter sequence of AtHMA5 was PCR
amplified from the genomic DNA of Col-0 and ligated into the PstI-SalI site
of the pCambia1301 vector. The fragments containing OsHMA4 coding sequence
fused in-frame to GFP were released from the 35S:GFP-OsHMA4(TQ) or
35S:GFP-OsHMA4(LM) vectors and inserted into the SalI-EcoRI site of above
vector (pCambia1301-AtHMA5pro) to generate the AtHMA5pro:GFP-OsHMA4(TQ)
and AtHMA5pro:GFP-OsHMA4(LM) vectors. The resulting plasmids were
transformed into A. tumeraciens strain GV3101. The 35S:GFP-OsHMA4(TQ) or
35S:GFP-OsHMA4(LM) were introduced into the Arabidopsis athma5 mutant
(SALK_040252) or Col-0 and AtHMA5pro:GFP-OsHMA4(TQ) and
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AtHMA5pro:GFP-OsHMA4(LM) were introduced into the athma5 mutant as
described above. For the Cu tolerance assay, T3 transgenic plants were grown on
MGRL medium containing 50 mg ml� 1 hygromycin for 3 days and the positive
plants were transferred to hygromycin-free MGRL medium containing 1 or 50mM
added CuSO4 for 7 days. To quantify tolerance to Cu in the growth medium root
length was measured by marking the position of root tips on the Petri dish at the
indicated times.

Functional analysis of OsHMA4 in yeast. The yeast (Saccharomyces cerevisiae)
WT strain BY4741 (MATa his3D1 leu2D0 met15D0 ura3D0), BY4741-derived
mutants ccc2 (MATa his3D1 leu2D0 met15D0 ura3D0 YDR270w::kanMX4) and
ctr1 (MATa his3D1 leu2D0 met15D0 ura3D0 YPR124w::kanMX4) were purchased
from Open Biosystems (http://dharmacon.gelifesciences.com/openbiosystems).
To generate the yeast expression vector, the full-length coding sequence of
OsHMA4 was amplified from cDNA synthesized from TQ and LM and the
CDS was ligated into the BamHI–EcoRI site of pYES2 vector. To generate the
pYEC2-OsHMA4(TQ)-GFP and pYEC2-OsHMA4(LM)-GFP vectors, the
OsHMA4 CDS was released from pYES2-OsHMA4(TQ) and pYES2-OsHMA4(LM)
and ligate to the BamHI–EcoRI site of pYEC2/CT–GFP52. To generate the
pYES2-OsHMA4(TQ)-GFP and pYES2-OsHMA4(LM)-GFP vectors, the coding
sequence of GFP was released from pYEC2/CT–GFP and ligated to the XbaI site of
pYES2-OsHMA4(TQ) and pYES2-OsHMA4(LM). The direction of GFP was
confirmed by sequencing. The expression of OsHMA4 is under the control of a
galactose-inducible promoter in these vectors. The resulting plasmids and empty
vectors were transformed into various yeast strains using a Frozen-EZ Yeast
Transformation II Kit (ZYMO Research). For complementation of the ccc2
mutant, BY4741 and ccc2 were transformed with pYES2 empty vector,
pYES2-OsHMA4(TQ) or pYES2-OsHMA4(LM) and cultured at 30 �C overnight in
3 ml of SD-Ura media (6.7 g l� 1 yeast nitrogen base, 1.92 g l� 1 dropout mix
without uracil) containing 2% (w/v) glucose. Cells were washed twice with 10 ml
sterile deionized water and the optical density at 630 nm adjusted to 0.2 with sterile
distilled water. After sequential 10-fold dilutions, 10 ml of cell suspensions of each
genotype were spotted on Fe-limited, Fe-sufficient and Cu-sufficient media,
respectively, and the plates incubated at 30 �C for 3 days. Fe-limited media was
prepared as previously described53, and contained 0.17% (w/v) yeast nitrogen base
without CuSO4 and FeCl3 (BIO 101 Systems), 0.2% (w/v) dropout mix without
uracil, 2% (w/v) galactose, 1% (w/v) raffinose, 50 mM MES (pH 6.1), 1 mM
3-(2-pyridyl)-5, 6-bis (4-sulfophenyl)-1, 2, 4-triazine disodium salt (Ferrozine
disodium salt; Sigma), 50 mM Fe(NH4)2(SO4)2, 1 mM CuSO4 and 2% (w/v) agar.
The Fe-sufficient and Cu-sufficient media were modified from Fe-limited media by
increasing the concentration of added Fe(NH4)2(SO4)2 and CuSO4 to 350 and
500mM, respectively, and the Ferrozine disodium salt was omitted. For the metal
tolerance assays, diluted cell suspensions were prepared as above and spotted on
the SD-Ura media containing 2% (w/v) galactose, 1% (w/v) raffinose and indicated
metals. The growth of the BY4741 strain transformed with various plasmids in
liquid SD-Ura media containing Cu was determined on 2 ml 96-well deep plates.
Overnight yeast cells were prepared as above and the optical density at 630 nm was
adjusted to 0.5 with sterile distilled water. Fifty microliter of cell suspensions was
added to 1 ml SD-Ura media in each well containing 2% (w/v) galactose, 1% (w/v)
raffinose and 0, 2.5 or 3 mM CuSO4. The plates were incubated at 30 �C and shaken
at 400 r.p.m. The optical density at 630 nm was determined at indicated time using
a plate reader.

Homology modelling and sequence alignment. Homology modelling was
conducted using the web-based SWISS-MODEL platform (http://swissmodel.
expasy.org)54. The crystal structure of a Legionella pneumophila P-type ATPase
CopA (PDB ID: 3RFU)22 was used as a template. The models of OsHMA4 from
TeQing and Lemont were built separately using the same default parameters.
The model quality was evaluated using the structure assessment tools of the
Swiss-Model workspace, including ANOLEA55, DFire56 and QMEAN57. Structures
were viewed using the DeepView/Swiss-PdbViewer 4.1 (http://www.expasy.org/
spdbv/)58. Multiple sequence alignments of HMA proteins were conducted in
BioEdit software using the ClustalW method.

Genotyping of USDA rice core collection. The seeds of USDA Rice Core
Collection were obtained from the Genetic Stocks Oryza (GSOR) Collection,
USDA-ARS. In total, 1,349 accessions of the USDA Rice Core Collection were
germinated and DNA was extracted for genotyping. Nine dCAPS markers were
developed based on the non-synonymous polymorphisms in the coding sequence
of OsHMA4 identified from 950 different rice genomes29. The primer sequences are
listed in Supplementary Table 3. Five of these polymorphisms were confirmed
to occur in the USDA Rice Core Collection. Among these five polymorphic sites,
four of them had a minor allele frequency greater than 0.05, which was further used
to evaluate the contribution of OsHMA4 in controlling grain Cu in the population.
A linear model was used to assess the proportion of variation in grain Cu in plants
grown in flooded and unflooded conditions explained by the four polymorphic
sites with a minor allele frequency 40.05. The linear model included each
polymorphic site as explanatory variables. To account for potential non-
independence resulting from cryptic kinship between accessions, relative kinship

among accessions was calculated using by SPAGeDi software59 based on 84 SSR
markers60, and the Loiselle coefficient61 was used to create the pair-wise kinship
matrix. All negative values were set to zero62. A principal components analysis of
the kinship matrix was performed and the eigenvectors of the first four principal
components were included as explanatory variables in the linear model63. The first
four principal components explained 87% of the variation in the kinship matrix.
Only the accessions with the genotype available at all four polymorphic sites,
genotyped by 84 SSR markers, and grain Cu concentration were included in the
analysis, resulting in a total of 1,241 accession under flooded condition and 1,210
accessions in unflooded condition.

The map image used in Fig. 6 was generated using R package rworldmap64 with
data derived from Natural Earth v1.4.0 (http://www.naturalearthdata.com/).

Data availability. The authors declare that all data supporting the findings of this
study are available within the article and its Supplementary Information files or are
available on request from the corresponding authors.
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