
van Gijzel, Bas and Nilsson, Henrik (2014) A principled
approach to the implementation of argumentation
models. Frontiers in Artificial Intelligence and
Applications, 266 . pp. 293-300. ISSN 0922-6389

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/37437/1/comma2014.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/76973445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk

A principled approach to the
implementation of argumentation models

Bas VAN GIJZEL 1 and Henrik NILSSON

University of Nottingham

Abstract. Argumentation theory combines philosophical concepts and

computational models to deliver a practical approach to reasoning that

handles uncertain information and possibly conflicting viewpoints. This
paper focuses on the structured approach to argumentation that incor-

porates domain specific knowledge and argumentation schemes. There is

a lack of implementations and implementation methods for most struc-
tured models. This paper shows how taking a principled approach, using

the programming language Haskell, helps addressing this problem. We
construct a framework for developing structured argumentation mod-

els and translations between models (given intertranslatability of mod-

els). We furthermore provide a methodology to quickly test and for-
mally prove desirable properties of such implementations using a theo-

rem prover. We demonstrate our approach on the Carneades argumenta-

tion model and Dung’s abstract argumentation frameworks, implement-
ing both the models and a translation from Carneades into AFs. We

then provide implementations of correspondence properties and an ini-

tial formalisation of Dung’s AFs into a theorem prover. The final result
is a verified pipeline from the structured model Carneades into existing

efficient SAT-based implementations of Dung’s AFs.

1. Introduction

Dung’s argumentation frameworks [6] have an established relationship to logic
programming. It is therefore not surprising that Dung’s AFs have seen signifi-
cant developments in the area of efficient implementation and elegant implemen-
tation methods, particularly through implementations written in logic program-
ming and answer set programming [7] or through implementations based on SAT-
solvers [3,7]. Several other abstract models, are either direct extensions of Dung’s
AFs or are closely related. These models can thus also be implemented with rel-
ative ease through encoding into answer set programming clauses [4], translation
through other mathematical formalisms [1], or by direct implementation into a
logic programming language such as Prolog.

Specifications of structured models of argumentation are more varied, due to
their possible phrasing in a specific domain, or a specific logic. This has caused
implementation methodology of most structured models to lag behind. Notable

1Corresponding author: Bas van Gijzel, bmv@cs.nott.ac.uk.

exceptions are the implementation of Carneades2 and assumption-based argu-
mentation [8], the latter which, due to its strong connections with Dung’s AFs
and therefore logic programming, has multiple mature implementations [8,14].
However, several other models have only been implemented partially, if at all,
and any implementations are typically expressed in a programming paradigm or
language that is very different from the mathematical specification. The situation
is similar for translations from structured models into other abstract/structured
models.

The difference in mathematical structure between structured models means
that a significant effort is required to establish formal relationships between them.
This is also true for the relationships between structured and abstract models [13,
11,2]. Implementing the resulting translations consequently becomes difficult, and
verifying their correctness is even harder.

We attempt to address the problem of implementing structured models and
their translations by providing a framework that allows implementation close to
the mathematical specification and facilitates checking and formal proof of prop-
erties, the latter being key to verification of correctness. Our choice of program-
ming language is Haskell. This is motivated by our previous work [9,10], where
we implemented the Carneades argumentation model in a way that is easily un-
derstandable to argumentation theorists with no prior Haskell knowledge.

More specifically, the contributions of this paper are the following:

• We argue that Haskell enables us to intuitively capture existing abstract
and structured argumentation models, providing implementations that
practically serve as a mathematical specification.

• We provide, to our knowledge, the first implementation of a translation
from a structured into an abstract argumentation model. In addition, we
provide techniques to check the correctness of implementations by showing
how to implement desirable properties, such as correspondence properties.

• We discuss and provide a formalisation of Dung’s AFs into a theorem
prover, obtaining the first fully machine-checkable formalisation of an ar-
gumentation model.

• We combine all this, to provide a verified pipeline, starting from an input
file reading a Carneades argument structure, resulting in a file containing
a Dung AF, readable by one of the fastest current implementations [7].

• All work is open source, publicly available and immediately installable3.

The paper is structured as follows. Section 2 introduces Haskell as a suitable
implementation language for both structured and abstract models. Section 3 dis-
cusses a direct algorithmic translation from Carneades into Dung and shows how
Haskell can also be used to implement translation in a satisfactory manner. In
Section 4 we consider quick testing and complete formalisation of argumentation
models and correctness properties. We conclude in Section 5, tying all strands of
work together into one verified pipeline, and discuss future work.

2See https://carneades.github.com.
3The implementations and formalisations are fully documented and can be found online to-

gether with a collection of additional examples: http://www.cs.nott.ac.uk/~bmv/COMMA/.

https://carneades.github.com
http://www.cs.nott.ac.uk/~bmv/COMMA/

2. Haskell as an implementation language for structured and abstract models

Dung’s AFs and most other abstract approaches to argumentation are closely
aligned with logic and/or answer set programming. Consequently, implementing
an argumentation model in Haskell amounts to little more than transliteration,
meaning the implementation of an argumentation model can serve as a specifica-
tion in its own right. Furthermore, verification of correctness is facilitated, be it
informally (by inspection) or formally (through a theorem prover like Agda).

In contrast, structured argumentation not based on logic programming still
lacks a completely satisfying programming methodology. For example, VISPAR-
TIX [4], based on answer set programming, supports a knowledge base and ar-
gument construction, but it is not yet clear if more complicated external data
types such as audiences or proof standards can be handled. In the following, we
argue that Haskell is a suitable language for abstract as well as structured models
by implementing Dung’s abstract argumentation frameworks and a structured
argumentation model, Carneades.

2.1. Dung’s abstract argumentation frameworks

We give some of the standard definitions of Dung’s AFs [6]. For the full im-
plementation including the semi-stable labelling algorithm, we refer to the fully
documented Haskell package online4 .

Definition 2.1 (Abstract argumentation framework). An abstract argumentation
framework is a tuple 〈Args,Atk〉, where Args is a set of arguments and Atk ⊆
Args ×Args is a relation on Args representing attack.

The Haskell counterpart of this definition takes the form of an algebraic data type:

data DungAF arg = AF [arg] [(arg , arg)]

This is a transliteration of the mathematical definition, with lists used in place
of sets. Note that the definition is parametrised on the type of argument, arg .
Abstract arguments can be represented by strings, but we can also represent
propositions or complete proof trees from a different (structured) model such as
Carneades.

2.2. Carneades

Carneades is a structured argumentation model designed to capture standards
and burdens of proof [12]. In previous work [9], we fully implemented the version
of Carneades as given in [2] along with a small domain specific language. We
review a few technical definitions that are required for Section 3.

Definition 2.2 (Carneades’ arguments). Let L be a propositional language. An
argument is a tuple 〈P,E, c〉 where P ⊂ L are its premises, E ⊂ L with P ∩E = ∅
are its exceptions and c ∈ L is its conclusion. Elements of L are literals; i.e., either
an atomic proposition or a negated atomic proposition. An argument is said to
be pro its conclusion c (which may be negative) and con the negation of c.

4http://www.cs.nott.ac.uk/~bmv/Dung/

http://www.cs.nott.ac.uk/~bmv/Dung/

A set of arguments determines how propositions depend on each other.
Carneades requires that there are no cycles among these dependencies. Following
Brewka and Gordon [2], we use a dependency graph to determine acyclicity of a
set of arguments.

Definition 2.3 (Acyclic set of arguments). A set of arguments is acyclic iff its
corresponding dependency graph is acyclic. The corresponding dependency graph
has a node for every literal and its contrary, appearing in the set of arguments.
A node p has a link to node q whenever p depends on q in the sense that there is
an argument pro or con p that has q or q in its set of premises or exceptions.

There are two concepts of evaluation in the Carneades model, applicability of
arguments, which arguments should be taken into account, and acceptability of
propositions, which conclusions can be reached under the relevant proof standards,
given the beliefs of a specific audience. The reader is referred to the original
articles [12,2] and our previous work [9] for details.

3. An algorithm and implementation for the translation of Carneades into Dung

Many of the structured approaches in argumentation can be translated into ab-
stract models like Dung’s AFs [13,1,2]. In particular, it is known that Carneades
can be translated into ASPIC+ [11], which in turn can be translated into AFs [15].
However, such translations, especially for models that are further removed from
Dung’s AFs, have rarely been implemented. We have taken two steps towards
remedying this situation. Firstly, we give an algorithm for translating a struc-
tured model, Carneades, directly into an abstract model, Dung’s AFs. Secondly,
we have implemented this translation and discuss a part of it in this section. Part
of this section is based on previous work in [10].

3.1. A practical algorithm for the translation of Carneades into Dung

Evaluating a Carneades model yields two results: a set of applicable arguments
and a set of acceptable conclusions (Section 2.2). The target AF thus needs to
include arguments representing both. Our algorithm gradually builds up Dung
arguments and an attack relation, by gradually translating the applicability and
acceptability part of each Carneades argument.

Algorithm 3.1. Algorithm for translation from Carneades into Dung’s AFs

1. generatedAF = 〈{defeater} ∪ assumptions, ∅〉.
2. sortedArgs = Topological sort of arguments on its dependency graph.
3. while sortedArgs 6= ∅:

(a) Pick the first argument in sortedArgs. Remove all arguments from
sortedArgs that have the same conclusion, c, and put them in argSet .

(b) Translate applicability part of arguments in argSet , building on pre-
vious generatedAF ; put generated arguments/attacks in tempAF .

(c) argSet = ∅.
(d) Repeat (a) through (c) for the arguments for opposite conclusion c.

(e) Translate the acceptability part of c and c based on arguments in
tempAF . Add the results and tempAF to generatedAF .

(f) tempAF = ∅.

Using this algorithm we can get a one-one mapping from the union of argu-
ments and conclusions to arguments in an AF, with the exception of one admin-
istrative node, defeater , that easily can be filtered out.

3.2. Step by step translation of an example

Figure 1 defines three arguments (leaving out weights and proof standards). The
set of propositions {kill ,witness,witness2 , unreliable2} are assumed.

Referring back to Definition 2.3, we can see that every proposition, including
its negation, is present in the dependency graph for the set of three arguments
defined above: see Figure 2. For reasons of presentation, we have left out the nega-
tions: all links and nodes are exactly the same for the contrary of each literal. The
dependency graph makes it clear that it is necessary to translate the propositions
unreliable, unreliable2, witness and witness2 before intent and its two arguments
(one pro and one con) can be translated. Figure 3 shows the resulting translation
(all proposition names, including defeater, shortened to first letter).

3.3. Our implementation of the algorithm

To encode Carneades’ arguments and propositions into the translated argumen-
tation framework we could generate String labels from the arguments and propo-
sitions. However, we opt to instantiate the Dung AF by instead using a union of
the Carneades’ arguments and propositions as the framework argument.

type ConcreteArg = Either PropLiteral Argument
type ConcreteAF = DungAF ConcreteArg

Here, Either is a Haskell data type representing union of two data types.
For further details on the implementation, see our literate Haskell article [10]

or the fully documented and open source implementation online.

4. Verification of formal properties of implementations

This section discusses two approaches to verifying the correctness of an imple-
mentation. The first is property-based testing. Given implementations of key cor-
rectness properties, tools like QuickCheck [5] can usually quickly identify any
problems by picking simple counter-examples from thousands of randomly gener-
ated test cases. The second approach takes this further by formally verifying the
correctness of an implementation by means of a theorem prover.

4.1. Quick testing of properties

For the translation discussed in Section 3, we can refer to existing definitions of
the correspondence of applicability of arguments and acceptability of propositions
(1. of Theorem 4.10 of [11]).

intent

murder

kill

a1

unreliable

intent

a2

witness unreliable2witness2

¬intent

a3

Figure 1. Three arguments in Carneades (circles denote exceptions)

IK

M

U2U W2W

Figure 2. The dependency graph corresponding to the three arguments.

D

¬W2¬W

U2

¬K a3¬I U ¬U2¬M

I KM ¬U a1 a2W2W U2

Figure 3. The corresponding Dung AF.

Theorem 4.1. Let C be a carneades argument evaluation structure, 〈arguments,
audience, standard〉, LCAES the propositional language used and let the argu-
mentation framework corresponding to C be AF . Then the following holds: An
argument a ∈ arguments is applicable in C iff there is an argument contained in
the complete extension of AF with the corresponding conclusion arga in an AF.

We will now sketch the implementation of the first correspondence property
in Haskell. The function corApp takes a Carneades model and given that the
translation function is a correct implementation, the Haskell implementation of
correspondence of applicability should always return True.

corApp :: CAES → Bool

corApp caes@(CAES (argSet , ,)) =
let transCAES = translate caes

appArgs = filter (‘applicable‘caes)
(getAllArgs argSet)

transArgs = stripRight (groundedExt transCAES)
in fromList appArgs ≡ fromList transArgs

Here transCAES is the Carneades model after translation. appArgs are the ap-
plicable arguments in caes using the original definitions of applicability in the
Carneades model. We then evaluate transCAES according to the grounded la-
belling (this is fine since the resulting AF is proven to be cycle-free [11]) and filter
out the translated arguments using stripRight (discarding arguments representing
propositions). The final line checks equality of the two (by making the lists into
sets using fromList). A tool like QuickCheck can then be used to generate lots
of random CAESs, and should corApp return False for any of them, a counter-
example has been found. QuickCheck includes sophisticated infrastructure for
tailoring the test case generation to work well also for complicated domains.

4.2. Complete formalisation in a theorem prover

While tools like QuickCheck can help finding problems automatically, firm cor-
rectness guarantees can only be obtained through formal proofs. Given that we are
working in a pure, functional, strongly typed setting, theorem provers based on
the Curry-Howard correspondence offer a particularly attractive approach. The
idea is that types correspond to propositions and programs correspond to proofs:
to prove a theorem is to implement a program having the corresponding type. We
demonstrate this approach by formalising Dung’s argumentation frameworks, up
to grounded labelling, into Agda. Agda’s syntax is very close to that of Haskell,
making the step from implementation to complete formalisation relatively small.
Agda checks that all functions are terminating. Thus, because we successfully
implemented the grounded semantics in Agda, we immediately know that our
algorithm is terminating on all (finite) inputs. Further, as a labelling is part of
the output, we have actually proven that the grounded extension always exists,
verifying one of Dung’s original results [6].

5. Conclusions and future work

In this paper we have shown that functional programming, specifically Haskell, is
very suitable for the implementation of structured and abstract models of argu-
mentation. We gave one of the first algorithmic translations between a structured
and an abstract model, implemented this, and showed how to quickly test key
properties. We then took this further, taking our implementation of Dung’s AFs
into a theorem prover, proving termination and one of Dung’s original results. Fi-
nally, we combine all this into a verified pipeline, starting from a Carneades input
file, running it through our implementation of the translation, and outputting to

a file that is readable by the existing efficient implementation ASPARTIX [7]. A
demonstration can be found online5.

Future work includes extending the work on the correctness of the pipeline
to complete, automatically verified proofs through a theorem prover. This would
require formalising Carneades and the translation from Carneades into Dung, and
then formalising correspondence properties and rationality postulates.

References

[1] Gerhard Brewka, Paul E. Dunne, and Stefan Woltran. Relating the semantics of abstract

dialectical frameworks and standard AFs. In Proceedings of the 22nd International Joint

Conference on Artificial Intelligence (IJCAI-11), pages 780–785, 2011.
[2] Gerhard Brewka and Thomas F. Gordon. Carneades and abstract dialectical frameworks:

A reconstruction. In Massimiliano Giacomin and Guillermo R. Simari, editors, Computa-

tional Models of Argument. Proceedings of COMMA 2010, pages 3–12, Amsterdam etc,
2010. IOS Press 2010.

[3] Federico Cerutti, Paul Dunne, Massimiliano Giacomin, and Mauro Vallati. A SAT-based
approach for computing extensions in abstract argumentation. In 2nd International Work-

shop on Theory and Applications of Formal Argumentation (TAFA-13). Springer, 2013.

[4] Günther Charwat, Johannes Peter Wallner, and Stefan Woltran. Utilizing ASP for gen-
erating and visualizing argumentation frameworks. CoRR, abs/1301.1388, 2013.

[5] Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random testing of

haskell programs. Acm sigplan notices, 46(4):53–64, 2011.
[6] Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmono-

tonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–

357, 1995.
[7] Wolfgang Dvořák, Matti Järvisalo, Johannes Peter Wallner, and Stefan Woltran.

Complexity-sensitive decision procedures for abstract argumentation. Artificial Intelli-

gence, 206:53–78, 2014.
[8] Dorian Gaertner and Francesca Toni. Computing arguments and attacks in assumption-

based argumentation. IEEE Intelligent Systems, 22(6):24–33, November 2007.
[9] Bas van Gijzel and Henrik Nilsson. Haskell gets argumentative. In Proceedings of the

Symposium on Trends in Functional Programming (TFP 2012), LNCS 7829, pages 215–
230, St Andrews, UK, 2013. LNCS.

[10] Bas van Gijzel and Henrik Nilsson. Towards a framework for the implementation and ver-

ification of translations between argumentation models. In Accepted for Post Proceedings

of the 25th symposium on Implementation and Application of Functional Languages (IFL
2013), 2014.

[11] Bas van Gijzel and Henry Prakken. Relating Carneades with abstract argumentation

via the ASPIC+ framework for structured argumentation. Argument & Computation,
3(1):21–47, 2012.

[12] Thomas F. Gordon and Douglas Walton. Proof burdens and standards. In Guillermo
Simari and Iyad Rahwan, editors, Argumentation in Artificial Intelligence, pages 239–258.
Springer US, 2009.

[13] Sanjay Modgil and Henry Prakken. A general account of argumentation with preferences.

Artificial Intelligence, 195:361–397, 2013.
[14] Victor Noël and Antonis Kakas. Gorgias-c: Extending argumentation with constraint

solving. In Esra Erdem, Fangzhen Lin, and Torsten Schaub, editors, Logic Programming
and Nonmonotonic Reasoning, volume 5753 of Lecture Notes in Computer Science, pages

535–541. Springer Berlin Heidelberg, 2009.

[15] Henry Prakken. An abstract framework for argumentation with structured arguments.
Argument & Computation, 1:93–124, 2010.

5See: www.cs.nott.ac.uk/~bmv/CarneadesIntoDung/Demo/.

www.cs.nott.ac.uk/~bmv/CarneadesIntoDung/Demo/

