
Bawden, Stephen and Stephenson, M.C. and Ciampi, 
Elisabetta and Hunter, K. and Marciani, Luca and 
MacDonald, Ian A. and Aithal, Guruprasad P. and Morris, 
P.G. and Gowland, Penny A. (2015) Investigating the 
effects of an oral fructose challenge on hepatic ATP 
reserves in healthy volunteers: a 31P MRS study. 
Clinical Nutrition, 35 (3). pp. 645-649. ISSN 1532-1983 

Access from the University of Nottingham repository: 
http://eprints.nottingham.ac.uk/37369/2/clinnut_revised200215.pdf

Copyright and reuse: 

The Nottingham ePrints service makes this work by researchers of the University of 
Nottingham available open access under the following conditions.

This article is made available under the Creative Commons Attribution Non-commercial No 
Derivatives licence and may be reused according to the conditions of the licence.  For more 
details see: http://creativecommons.org/licenses/by-nc-nd/2.5/

A note on versions: 

The version presented here may differ from the published version or from the version of 
record. If you wish to cite this item you are advised to consult the publisher’s version. Please 
see the repository url above for details on accessing the published version and note that 
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/76973369?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk


1 
 

TITLE 1 

Investigating the effects of an Oral Fructose Challenge on Hepatic ATP Reserves in 2 

Healthy Volunteers: A 31P MRS Study 3 

AUTHORS 4 

S. J. Bawden1,a, M. C. Stephenson1,a, E. Ciampib, K. Hunterb, L. Marcianic, I. A. 5 

Macdonaldd,  G. P. Aithalc, P. G. Morrisa, P. A. Gowlanda 6 

1 Joint first authors 7 

a Sir Peter Manfield Imaging Centre, University of Nottingham, Nottingham, UK 8 

bUnilever Discover, Unilever, Colworth, UK 9 

cNIHR Nottingham Digestive Diseases Biomedical Research Unit, Nottingham University  10 

Hospitals NHS Trust and University of Nottingham, Nottingham, UK 11 

dSchool of Life Sciences, University of Nottingham, Nottingham, UK 12 

 13 

DEPARTMENT AND INSTITUTION OF STUDY 14 

All work was conducted at the Sir Peter Mansfield Imaging Centre in the University of 15 

Nottingham, UK 16 

 17 

CORROSPONDING AUTHOR 18 

Dr. Stephen Bawden 19 

SPMIC, University Park, University of Nottingham, NG7 2RD 20 

Tel: +44 (0) 115 951 4747; Fax: +44 (0) 0115 951 5166  21 

stephen.bawden@nottingham.ac.uk 22 

 23 

Field Code Changed

mailto:stephen.bawden@nottingham.ac.uk


2 
 

ARTICLE ELECTRONIC WORD COUNT 24 

3,047 (without references) 25 

 26 

FIGURE AND TABLES 27 

Number of Figures: 4 28 

Number of Tables: 0 29 

 30 

LIST OF ABBREVIATIONS  31 

NAFLD – Non-Alcoholic Fatty Liver Disease 32 

NASH – Non-Alcoholic Steatohepatitis 33 

ATP – Adenosine Triphosphate 34 

MRS – Magnetic Resonance Spectroscopy 35 

Pi – Inorganic Phosphate 36 

PDE – Phosphodiesters 37 

PME – Phosphomonoesters 38 

IV – Intravenous 39 

ISIS – Image Selective In vivo Spectroscopy 40 

NOE – Nuclear Overhouser Effect 41 

SD – Standard Deviation 42 

ADP – Adenosine Diphosphate 43 

AMP – Adenosine Monophosphate 44 

AMPK – AMP-activated protein kinase 45 

UTP – Uridine Triphosphate 46 

 47 

KEYWORDS 48 



3 
 

ATP; hepatic ATP; fructose; fructose infusion; oral challenge; NAFLD; 31P; MRS 49 

 50 

CONFLICT OF INTEREST 51 

The first author is part of an industrial collaborative award in science and engineering 52 

(CASE) studentship funded jointly by the Biotechnology and Biological Sciences Research 53 

Council (BBRSC) and Unilever.  54 

 55 

FINANCIAL SUPPORT 56 

This work has been funded jointly by the BBRSC and Unilever 57 

 58 

AUTHORS CONTRIBUTIONS 59 

Study conception and design: SB; MS; LM; GA; PM; PG;  60 

Acquisition of data: SB; MS 61 

Analysis and interpretation of data: SB; MS; GA; IM; LM; PG 62 

Drafting of manuscript: SB 63 

Critical revision: SB; MS; EC; KH; LM; IM; GA; PM; PG 64 

 65 

 66 

  67 



4 
 

ABSTRACT 68 

Background: Impaired homeostasis of hepatic ATP has been associated with NAFLD. An 69 

intravenous fructose infusion has been shown to be an effective challenge to monitor the 70 

depletion and subsequent recovery of hepatic ATP reserves using 31P MRS. 71 

Aims: The purpose of this study was to evaluate the effects of an oral rather than intravenous 72 

fructose challenge on hepatic ATP reserves in healthy subjects. 73 

Methods: Self-reported healthy males were recruited. Following an overnight fast, baseline 74 

liver glycogen and lipid levels were measured using Magnetic Resonance Spectroscopy 75 

(MRS). Immediately after consuming a 500ml 75g fructose drink (1275 kJ) subjects were 76 

scanned continuously for 90 minutes to acquire dynamic 31P MRS measurements of liver 77 

ATP reserves.  78 

Results: A significant effect on ATP reserves was observed across the time course (P < 79 

0.05). Mean ATP levels reached a minimum at 50 minutes which was markedly lower than 80 

baseline (80 ± 17% baseline, P < 0.05). Subsequently, mean values tended to rise but did not 81 

reach statistical significance above minimum. The time to minimum ATP levels across 82 

subjects was negatively correlated with BMI (R2=0.74, P < 0.005). Rates of ATP recovery 83 

were not significantly correlated with BMI or liver fat levels, but were negatively correlated 84 

with baseline glycogen levels (R2=0.7, P<0.05).  85 

Conclusions:  Depletion of ATP reserves can be measured non-invasively following an oral 86 

fructose challenge using 31P MRS. BMI is the best predictor of postprandial ATP homeostasis 87 

following fructose consumption. 88 

 89 

  90 
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INTRODUCTION 91 

Both NAFLD and non-alcoholic steatohepatitis (NASH) have been associated with impaired 92 

homeostasis of hepatic adenosine triphosphate (ATP) levels [1] and baseline hepatic ATP 93 

reserves have been shown to be more depleted in obese subjects [2, 3]. It is widely accepted 94 

that the inhibition of AMP-activate protein kinase (AMPK) which stimulates ATP synthesis 95 

is an important part of liver lipid accumulation [4, 5] and it has also been suggested that an 96 

inability to maintain ATP levels may prime hepatocytes to become vulnerable to injury by 97 

reactive oxygen species. 98 

Hepatic ATP reserves can be monitored noninvasively using 31P magnetic resonance 99 

spectroscopy (MRS) [6]. Early animal studies used this method to monitor ATP following 100 

fructose injections and suggested its potential use as a diagnostic method for studying liver 101 

disease [7]. A number of more recent studies have used these techniques to measure ATP 102 

homeostasis following an intravenous (IV) fructose load [2, 8, 9]. Fructose infusion causes 103 

the  depletion of hepatic ATP levels due to a lack of phosphorylation feedback which results 104 

in continued phosphorylation activating AMP deaminase and uric acid production 105 

(supplementary material) [10]. During these studies, subjects undergo continuous 31P MRS 106 

immediately following a fructose bolus injection to measure minimum ATP levels and 107 

subsequent rates of replenishment.  108 

The effects of fructose consumption on liver lipids [11] and NASH [12] have been considered 109 

in the literature, but little research has investigated the immediate ATP response to an oral 110 

fructose challenge. The present study investigated postprandial changes to hepatic ATP 111 

reserves following an oral fructose intake. 112 
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MATERIAL AND METHODS 114 

Subjects 115 

All subjects were self-reported healthy non-obese males with sedentary lifestyles and no 116 

known metabolic disorders. All subjects consumed the oral challenge in the time required (5 117 

minutes) and complied well with the lifestyle restrictions and scanning requirements. The 118 

mean age for all subjects was 24 ± 4 years and BMI was 25 ± 3 kg/m2. 119 

Study Design 120 

Ethical Permission 121 

Ethical permission was obtained from the local Medical School Research Ethics Committee 122 

and subjects provided written informed consent before participation.  123 

Subjects 124 

At the time of this investigation there were no published data on 31P MRS ATP following an 125 

oral fructose challenge which could be used to estimate the power of the study. We therefore 126 

chose a sample size for this first exploratory study based on data reported in infusion studies 127 

[13, n=8]. 128 

Prior to study days subjects were asked to refrain from alcohol for 24hr. On the morning of 129 

the study subjects arrived at the test centre between 7:30am and 8:00am having fasted 130 

overnight. 131 

On arrival, natural abundance 13C MR spectra were acquired from the liver to determine 132 

baseline hepatic glycogen levels, and localized 1H MR spectra were acquired to determine 133 

baseline hepatic lipid levels. Subjects were then asked to consume a 500ml drink of 75g 134 

fructose solution (1275 kJ) within 5 minutes. Immediately following consumption, subjects 135 
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were placed in the scanner and 31P MR spectra were acquired continuously for 90 minutes to 136 

assess dynamic changes in ATP and related phosphate metabolites. During the 90 minutes of 137 

scanning, subjects were asked to breathe regularly and remain as still as possible and were 138 

allowed to listen to the radio or music. 139 

Data Acquisition 140 

All measurements were performed on a Philips Achieva 3T system (Philips, Best, The 141 

Netherlands) using the built-in 1H transmit / receive body coil for scout images and voxel 142 

placement.  143 

ATP  144 

Dynamic changes in phosphate metabolites were measured using localized 31P MRS. A 31P 145 

surface coil (Philips, Best, The Netherlands) was placed on the abdomen over the liver. Scout 146 

1H images were obtained and used for voxel placement in the right lobe of the liver (60 x 60 147 

x 60 mm3 voxel size). 31P spectra were obtained continuously for 90 minutes using a 148 

respiratory triggered ISIS sequence with Nuclear Overhouser Effect (NOE) enhancement and 149 

proton decoupling (3 kHz bandwidth, 2048 samples, 5000 ms repetition time) as described 150 

previously [14, 15]. The voxel for β-ATP was positioned against the abdominal wall with the 151 

chemical shift of all other metabolites directed away from the wall to minimize signal leakage 152 

from the abdominal muscle (confirmed by a lack of spectral PCr peak) and maximise signal 153 

for β-ATP.  154 

Hepatic Lipids 155 

Baseline lipid levels were measured using the integrated 1H body coil. Scout images were 156 

obtained and used for voxel placement (30 x 30 x 30 mm3 voxel size). 1H spectra were 157 

obtained using a respiratory triggered, water suppressed STEAM sequence (2 kHz 158 
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bandwidth, 1024 samples, 13 ms echo time, 5000 ms repetition time, 40 averages). Two 159 

spectra were collected without water suppression for correction to absolute lipid fat fractions 160 

as described previously [15]. 161 

Glycogen 162 

Baseline glycogen levels were measured using unlocalized 13C MRS. A surface coil with 163 

integrated quadrature proton decoupling (PulseTeq, Surrey, UK) was placed on the abdomen 164 

over the liver. Scout 1H images were used to determine correct placement. 13C spectra were 165 

obtained using a π/2 pulse-acquire sequence with an adiabatic half passage pulse shape to 166 

minimise the effects of B1 field inhomogeneity within the volume of interest, along with 167 

narrow band proton decoupling (7 kHz bandwidth, 512 samples, 2150 ms repetition time, 576 168 

averages, ~20 minutes total acquisition time) as previously described [16]. 169 

MRS analysis 170 

ATP  171 

31P spectra were line broadening by 30 Hz and data were averaged over 15 minute windows 172 

at 5 minutes intervals across the time-course. The β-ATP peak position was defined in the 173 

spectra and peak area calculated across the time course (Figure1). The β-ATP peak provides a 174 

way of measuring total ATP because the phosphate signal from ADP overlaps with the α-175 

ATP and γ-ATP peaks. The first time point was taken as a reference to measure changes in 176 

ATP and recorded as % of baseline value.  177 

Time to reach minimum ATP levels was calculated, and the rate of recovery of absolute ATP 178 

was determined using the gradient across the first 4 time points of recovery using linear 179 

fitting. For recovery rates, ratios of β-ATP to total phosphorous levels were taken as used in 180 

previous studies [3]. 181 
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Hepatic Lipids 182 

1H spectra were zero filled to 1024 datapoints and phase corrected before peak areas were 183 

calculated using the AMARES algorithm in jMRUI (Universiteit Leuven, Belgium) [17] 184 

(Lorentzian curve fitting of water peak at ~4.8ppm and -[CH2]n- at ~1.3 ppm). Water 185 

suppression was applied during spectral acquisition for better resolution of the fat peak, 186 

followed by unsuppressed spectra with identical parameters to determine the water peak area. 187 

Peak areas were corrected for T2 relaxation as determined from previous studies and 188 

lipid/water ratios used to determine absolute fat fractions as described by Stephenson et al 189 

[23].  190 

Glycogen 191 

13C spectra were zero filled to 4096 datapoints and 100 Hz line broadening was applied 192 

before Lorentzian curve fitting using in house software. Integrals of the C1-glycogen peak 193 

(100.4 ppm) and of an external reference peak were measured and ratios used to account for 194 

varying loading factors. Quantification was achieved by comparing glycogen/reference ratios 195 

with a phantom [18].  196 

Statistical Analysis 197 

All results are expressed as means (±SD). A repeated measures ANOVA F-test was used to 198 

determine a significant effect across the timecourse, and a means difference T-tests were 199 

subsequently used on individual time points to determine significant changes. Significances 200 

in correlations were determined using linear regression analysis with Pearson correlation 201 

coefficients quoted. In all cases significance was attributed to P < 0.05. The statistical 202 

package used for analysis was SPSS version 21 for Windows (SPSS, Inc., Chicago, IL). 203 
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RESULTS 205 

Baseline Hepatic Lipid and Glycogen 206 

The mean baseline liver lipid fat fraction was 4 ± 3 % and correlated significantly with BMI 207 

(R2 = 0.48, P ≤ 0.05) as expected.  208 

The mean baseline hepatic glycogen concentration was 219 ± 81 mmol/l and there were no 209 

correlations between individual values and age, BMI or baseline liver lipid levels. 210 

ATP Reserves following Oral Fructose Challenge 211 

Mean postprandial hepatic ATP levels began to decline from 15 minutes after the oral 212 

fructose challenge (Figure 2). A statistically significant variation from baseline was found 213 

across the time course (One way ANOVA F-test, P < 0.05). Mean values continued to decline 214 

and were significantly below the first two points at t = 30 minutes (86 ± 14%, P < 0.05), t = 215 

40 minutes (85 ± 16 %. P < 0.05) and t = 45 minutes (84 ± 14%, P < 0.005) until reaching 216 

minimum at = 50 minutes (80 ± 17%, P < 0.05). There was a trend for values to recover after 217 

50 minutes, but the increase was not statistical significance compared to nadir and levels 218 

remained lower than baseline at the end of the study. 219 

No subject showed any recovery of ATP levels during the first 6 time points (until t = 40 220 

mins). The mean AUC across this period (t=0 to t=40 mins) was 232 ± 19 % h and showed a 221 

strong negative correlation with BMI (R2 = 0.65, P < 0.01).  222 

Time to minimum ATP 223 

For two subjects the minimum ATP time point was at the end of the scanning period, and as 224 

such the final time point was taken as their time to minimum ATP (which may in fact have 225 

been after the scan period). A significant negative correlation was found between time to 226 
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minimum ATP and BMI (R2 = 0.74, P < 0.005) as shown in Figure 3. No such correlation 227 

was observed with age (R2 = 0.01, P = 0.78) or baseline glycogen (R2 = 0.003, P = 0.88) but 228 

the correlation approached significance with baseline liver fat (R2 = 0.39, P = 0.07).  229 

Rate of recovery 230 

Figure 4 shows the relationship between rate of recovery and baseline glycogen reserves, 231 

which had a strong negative correlation that was statistically significant (R2 = 0.71, P < 0.05). 232 

This correlation was not observed with BMI, liver fat, or any other baseline measures.  233 

  234 
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DISCUSSION 235 

The underlying physiological hypothesis of this study is that ATP homeostasis, which 236 

provides a measure of AMPK activity, acts as a biomarker for NAFLD and NASH. Rather 237 

than fructose infusion, this study explored using 31P MRS following an oral fructose 238 

challenge, which is more physiological, more patient-acceptable and much simpler to 239 

administer. The results showed that after oral consumption there is a measurable decline in 240 

ATP reserves (β-ATP) followed by a partial recovery. This observation is characteristic of 241 

fructose metabolism and can be explained as a result of the immediate rapid phosphorylation 242 

of the monosaccharide. Under normal physiological conditions an increased cellular level of 243 

adenosine monophosphate (AMP) activates AMPK resulting in the regeneration of ATP, 244 

whereas under conditions where AMPK activity is lower (e.g. following fructose 245 

consumption) the production of uric acid is favoured over ATP (supplementary material). In 246 

addition to this, fructose has been shown to up-regulate Glut5 and Fructokinase [19], and 247 

subjects with NAFLD and a higher intake of fructose have been shown to have a greater 248 

hepatic mRNA expression of fructokinase [20].  249 

In a small study of 4 subjects Buemann et al. tested the effects of an oral dose of 30g D-250 

Fructose and D-Tagatose on hepatic ATP reserves at 1.5T [21] and reported no drop in ATP 251 

following D-fructose consumption (however, they did find a drop following D-Tagatose 252 

which reached a maximum at 51 minutes). The data from the present study suggests that a 253 

greater concentration of fructose and high resolution spectra (3T scanner) may be required to 254 

observe significant reductions.  255 

In the present study ATP levels took longer to recover compared to previous infusion studies. 256 

This is probably due to the extra stages necessary to transfer fructose to the hepatic tissue, 257 

namely gastric emptying and intestinal absorption. Gastric emptying has been shown to be 258 
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dependent on meal energy and volume [22], which becomes relevant to the techniques used 259 

here when considering the optimum energy content and volume of the fructose challenge to 260 

induce sufficient depletion of hepatic ATP. Another confounding factor is the variation in 261 

fructose intestinal absorption rates reported in the literature. A previous study showed a high 262 

variability in intestinal absorption of fructose in healthy subjects following an oral fructose 263 

drink [23]. The amount of fructose used in the present study was sufficient for intestinal 264 

absorption and delivery to the liver in all subjects, but this factor should be considered in 265 

future experiments, and it may be that lower doses and volumes of fructose will not have the 266 

same effect.  267 

This study showed a negative correlation between BMI and time to minimum ATP levels. 268 

Given that the hepatic ATP response is a combination of depletion and recovery and fructose 269 

is known to deplete ATP reserves, these findings suggest that individuals with lower BMI 270 

have a more effective hepatic ATP recovery in response to a high fructose challenge. This 271 

result may be confounded by changes in gastrointestinal function, but also confirms previous 272 

studies that have shown that obese subjects have an impaired efficiency of ATP 273 

replenishment [2]. Surprisingly this correlation was not observed with liver fat levels as 274 

might be expected. Previous studies have shown that there is an impaired hepatic ATP 275 

homeostasis in Type2 diabetes [24] and it has been suggested that this may precede the 276 

development of steatosis in these patients [3]. Whether or not there is a causal link between 277 

rates of ATP synthesis and metabolic disorders remains to be established. Related to this, it 278 

has been suggested that regular consumption of fructose upregulates fructokinase and that 279 

this may be a factor in NAFLD development and the high incident rates observed currently 280 

[20]. In the present study we did not acquire a full dietary history, but future studies in this 281 

area should explore the effects of prior exposure and its relevance to ATP depletion and 282 

recovery rates and steatosis. 283 

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight



14 
 

This experiment required 2 hours of scanning on a high field MRI scanner , which may be 284 

impractical and costly in a clinical setting. However, it is possible that other related measures 285 

may provide a more convenient marker. For example, there was a significant negative 286 

correlation between the AUC over the first 6 time points and BMI. These measures can be 287 

made over a shorter scan duration. Future studies should consider a wider range of liver fat, 288 

as well as NAFLD and NASH patients. In particular, studies that separate BMI from liver fat 289 

to determine which of these is a better predictor of ATP homeostasis, although admittedly it 290 

would be difficult to recruit for this given the correlation between BMI and liver fat. 291 

Baseline glycogen measurements gave a wide range of values, which suggests variability in 292 

the timing and content of the previous evening meal across subjects [16]. Whilst this may 293 

reveal a potential limitation in the study design, the results showed for the first time a 294 

significant negative correlation between rates of ATP synthesis and baseline glycogen levels 295 

which may be relevant to patients with glycogen storage disease and other metabolic 296 

disorders. Previous studies have shown that a fructose load activates glycogen synthase 297 

resulting in increased glycogenesis, and also that fructose-1-phosphate produced during 298 

fructose metabolism is a competitive inhibitor of phosphorylase a [25] resulting in a slowed 299 

glycogenolysis. These factors result in an increase in glycogen synthesis following fructose 300 

consumption. The relationship between glycogen levels and ATP reserves has been explored 301 

in a number of publications and correlations between glycogen synthesis and ATP turnover in 302 

muscle [26] and between absolute hepatic glycogen levels and total hepatic ATP content 303 

during glycogen repletion [27] have been reported. This has been explained as the need for 304 

increased uridine triphosphate (UTP) during periods when unidirectional flux of glycogen 305 

synthesis is greater than glycogenolysis, which results in greater ATP synthesis. A possible 306 

explanation for the negative correlations between rates of ATP synthesis and baseline 307 

glycogen levels observed in the present study is that there is a greater demand from hepatic 308 
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glycogen in subjects with lower baseline glycogen levels, resulting in an increased rate of 309 

glycogen synthesis and indirectly ATP synthesis. Whilst it is beyond the scope of this study 310 

to determine this causal link, this study shows that baseline hepatic glycogen levels are an 311 

important factor in the ATP response to fructose.  312 

The present study has some limitations. Firstly, breath samples were not obtained to estimate 313 

levels of intestinal fructose malabsorption [28]. Measuring changes in serum uric acid  would 314 

also be ideal as hyperuricemia has been associated with an impaired hepatic ATP 315 

homeostasis in response to high fructose intake [3]. Future experiments should obtain blood 316 

samples to measure this also. Secondly, histological comparisons were not made due to the 317 

ethical considerations of liver biopsies in healthy subjects. As such, although all subjects in 318 

this study had no known liver health problems this was not confirmed through histological 319 

analysis. Other studies should investigate the postprandial ATP effects in patients with 320 

NASH in comparison with healthy weight and obese people, as well as individuals with Type 321 

2 diabetes. Similarly, all subjects in this study were healthy non-obese male volunteers and it 322 

should be acknowledged that the response may be different in women or an obese cohort. 323 

Subjects also found 500 ml fluid difficult to consume and the scan time was long and 324 

potentially uncomfortable. Future studies should optimize the experimental protocol, in 325 

particular the time duration, time resolution and volume or concentration of fructose 326 

challenge used.  327 

In summary, this study has shown that depletion in hepatic ATP reserves following an oral 328 

fructose challenge is observable using 31P MRS in healthy subjects, allowing for a completely 329 

non-invasive assessment of ATP synthesis. BMI was negatively correlated with the time to 330 

minimum ATP levels and with ATP levels immediately post consumption   indicating an 331 

impaired hepatic energy homeostasis in subjects with higher BMI.  332 
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