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Abstract 

This study evaluates the influence of solidification rate on the generation and control of 

pore connectivity of closed-cell aluminium foams. Additionally, it gives the experimental 

support to evaluate and model the effect of this pore connectivity on the mechanical 

properties. A collection of AlSi10 foams produced via powder metallurgy route, with 

porosities between 0.65 and 0.85, were examined. During production, applied heating 

conditions were the same in all cases but the cooling conditions were varied in order to 

promote different solidification rates in a wide range (from -1 to -15 K/s). Structural 

characterization was performed by gas pycnometry and X-ray microtomography while the 

mechanical properties were evaluated by microhardness measurements and uniaxial 

compression tests. Results showed a clear reduction of pore connectivity when increasing the 

solidification rate. The consequence is a prominent improvement of the foam strength over 

the one expected from just the matrix refinement. Further analysis on this relationship 

between the pore connectivity and the mechanical properties, has allowed to propose a 

correction to the theoretical model for collapse strength in closed cell foams to consider such 

contribution and predict more accurate results. 
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1. Introduction 

Despite the apparent closed cell structure of aluminium foams [1], it is well known that 

their mechanical response is below those values predicted by models for closed cell cellular 

materials [2-4]. In addition, these materials exhibit a high scattering in mechanical properties 

in comparison with other cellular materials [5-7], something that limits their potential use  in 

structural and load-bearing applications, even when they are used as cores in sandwich 

structures [8-11]. The scattering in properties is typically explained in terms of irregularities 

in pore morphology (size, shape, anisotropy, cell wall corrugations and curvatures, etc. [12]) 

or density inhomogeneities [13], derived from a non-optimum control of the initial nucleation 

and later evolution of the material.  

Besides the variability, the poor mechanical performance of aluminium foams also 

depends on other structural defects such as missing and/or partially broken cell walls, which 

have already been reported in previous studies as initiation points for mechanical failure [5, 

14-16]. These defects are also call interconnections (absence of a cell wall between two 

adjacent pores) and denoted as pore connectivity or open cell content when referring to the 

global structure. 

However, it is surprising how the effect of this characteristic is not taken into account in 

the model of strength for closed-cell materials [2, 3] when, in fact, its presence could explain 

itself why the strength of aluminium foams tends to fit better to the predictions for open cell 

cellular solids. Actually, the model considers the foam as a regular entity with flat cell walls 

and even typical corrugations and curvatures have to be considered separately to achieve a 

more realistic prediction [12], as  will be discuss later on the paper.  

Furthermore, the importance of interconnections is not limited to the mechanical 

properties. They also play a key role in other physical properties and related functional 

applications dealing with fluidsas buoyancy (ship building [17]), permeability (fluids 
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penetration and filtration), acoustic control [18-20], efficacy of heat treatments [21]) and 

thermal transport (isolation, heat exchange [22] and fire resistance [23], among others.  

Therefore, there is a clear necessity to understand cell wall cracking mechanisms and 

their effect on properties in order to be able to improve and/or control the cellular structure of 

these materials. In the same way, it is necessary to develop better models to take into account 

this type of defect and so predict the properties with more accuracy. 

Despite the aforementioned expected relevance of pore connectivity, there is scarce 

information in the literature about this type of defect. Regarding structural characterization, 

McCullough et al. [24] succinctly mentioned that approximately a third of the cell faces in 

foams produced by the powder metallurgy (PM) route present hairline cracks. 

Elmouataouakkil et al. [25] found, by X-ray tomography analysis, a pore connectivity in PM 

foams near to 50% in 2D slices and 100% in 3D analysis, while no connectivity was reported 

on foams produced by direct melt foaming. A later study by Solórzano et. al. in 2008 [26] 

employed air pycnometry to provided further characterization of this defect over a collection 

of foams of dissimilar density and manufactured by different routes. Results were in 

agreement with previous findings and highlighted the particularly high pore connectivity of 

PM foams in comparison with the other types obtained by melt route.  

Causes of rupture and crack generation have also been studied. Most of these studies 

have been based on the PM route, mainly because of the easy to produce samples under 

different conditions and the possibility to control the production parameters and analyse them 

individually [27]. It is assumed that the final observable cracks (interconnections) are 

generated during the solidification step and thus, studies involving in-situ characterization 

were first proposed. Stanzick et al. [28] validated the effectiveness of X-ray radioscopy for 

estimating the number, the rate and the distribution of cell wall ruptures, in particular during 

the solidification step. Further investigation of the solidification step by radioscopy was 
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performed by Mukherjee et al. [29]. They found that, under certain conditions, the solidifying 

foam exhibits an unexpected small expansion and simultaneously the alloy suffers intrinsic 

solidification shrinkage [30]. Recent studies of this phenomenon (denoted by Mukherjee et al. 

as solidification expansion or SE [31]) have shown that it is directly correlated to the amount 

of cell wall ruptures during solidification [32] and therefore, it is thought to be one of the 

reasons for the presence of cracks in the final solid structure. Further investigations revealed 

that the extent of solidification ruptures depends significantly on the alloy composition (via 

different H2 precipitation and solidification shrinkage) [33], on the total foaming time (via 

remaining blowing agent) [31] and, more particularly, on the cooling rate [34, 35].  

Nonetheless, complete control of pore connectivity during foam production and a good 

understanding of the structure-properties relationship are still lacking. Accordingly, one of 

main objectives of the present study has been to analyse both aspects. To this end, the effect 

of cooling conditions on pore connectivity generation has been evaluated for aluminium 

foams with different densities. The characterization of the cellular structure has been 

performed in parallel by both gas pycnometry and X-ray tomography analysis. Furthermore, 

the effect of pore connectivity on the mechanical response has also been analysed, modelled 

and discussed, contributing an advanced model which includes the cell connectivity to predict 

more accurately the values of collapse strength in metal foams. 

 

2. Experimental 

2.1. Materials 

The foams studied in this work were fabricated, via a PM route [27], by using a 

precursor material supplied by Alulight Company (Ranshofen, Austria). It consisted of a 

group of Extruded-Strips (E-S) with a cross-section of5 mm x 20 mm, which had been 

produced via the direct powder extrusion (Conform) method [36]. The composition of this 
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precursor material was based on a mixture of Al (90 wt.%) and Si (10 wt.%) elemental 

powders and contained 0.8 wt.% of untreated TiH2 powder as a foaming agent. 

 

2.2. Foam preparation 

The foaming process was conducted using machined stainless steel moulds (2.5 mm in 

thickness) with a cylindrical geometry. This mould shape was selected to ensure 

homogeneous foaming conditions (heating and cooling) and reproducible cellular structures. 

Moulds used had a height of 36 mm and an internal diameter of 17 mm. Therefore, all foams 

produced had an external volume of 8.17 cm3. 

To produce the foam specimens, cut pieces of precursor strips, with a mass according to 

the desired density, were placed in the mould and then the mould was closed and introduced 

inside a pre-heated furnace at 650ºC. This heating ensured the complete melting of the solid 

precursor pieces and their later expansion (foaming) due to the hydrogen gas release during 

the thermal decomposition of the TiH2 (TiH2 (s) + heat  Ti (s) + H2 (gas) [1] ). The mould 

was taken out from the furnace after the expanded liquid-gas structure (foam) had completely 

filled the mould, a period which typically varies between 13 and 20 minutes [37]. The 

stabilization of the liquid foam (solidification) was affected using three different cooling 

conditions: (i) blowing homogeneously the mould with compressed air at low pressure (1bar); 

(ii) blowing homogeneously the mould with compressed air at higher pressure (6bar); (iii) 

introducing the entire mould into water at room temperature (25ºC). 

In order to ensure the reproducibility of the results and reduce the statistical variations at 

least three samples were fabricated for each density range considered and for each type of 

cooling applied. In total, more than 60 foams with porosities ranging between 0.65 and 0.85 

(thus relative densities between 0.35 and 0.15) were produced. 
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In addition, complementary foaming tests were performed with the objective of 

measuring the temperature evolution inside the foam during the cooling process and to 

determine the solidification rate corresponding to the different cooling conditions. To this 

end, a hole was drilled on the upper mould lid and Swagelok™ fittings (refs. ss-102-1, ss-

103-1, ss-104-1) were screwed onto it, similarly to the method used in previous work [21]. 

This special sealing system avoids water penetration, something that could distort the 

temperature measurement and/or damage the foam structure. Additional high temperature 

seals were placed in between the lids and the mould, in order to prevent water penetration 

during quenching, and the lids were tightened with screws. A K-type thermocouple (1.5 mm 

diameter) was introduced through the Swagelok™ connector, placing the thermocouple’s tip 

at the centre of the foam, as shown in figure 1. At least three foaming tests were performed 

for each type of cooling, registering the temperature evolution versus time.  

 

2.3. Structural characterization 

The characterization of the cellular structure has been focused mainly on the cracks or 

interconnections present in the cell walls, a type of defect that is expected to have a notable 

influence on the mechanical behaviour [2]. To this end, two non-destructive techniques were 

employed: the gas pycnometry technique and X-ray computed tomography analysis.  

It is important to mention that the outer skin of the examined foamed parts was not 

removed for this characterization. The main reason for keeping it is because the external, 

intrinsic, skin is one of the best/main characteristics of foams produced by the PM route and it 

is generally present in components based on this material [35]. In regard to the results 

obtained, it can be interpreted that this skin is not completely dense, containing defects [37] 

and open porosity that connects the interior of the foam with the atmosphere. Therefore, it is 

convenient to consider these imperfections in the evaluation of the structural quality and the 
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derived properties of the entire foamed part. Nonetheless, later studies in previously tested 

samples after skin removal did not yield significant differences in the analysed characteristics. 

 

2.3.1. Gas pycnometry  

All foams produced in this work were characterised by the gas pycnometry method. 

This technique is very similar to air pycnometry, which has already been reported as a fast 

and effective tool to evaluate and quantify the pore connectivity in aluminium foams 

[26,33,38]. Gas pycnometry is, actually, more precise than air pycnometry although there is 

no significant difference in the case of the “large” air volumes determined in foamed 

materials. The method itself determines the apparent volume of the sample, i.e. the fraction of 

isolated gas plus the solid fraction in the foam. The fraction of gas inside the sample that is 

connected to the exterior is not considered, but can be calculated by comparison with the 

external geometric volume, thus being an indirect indicator of the open cell content of the 

foam. 

Characterization by using this technique was conducted under the ASTM standard 

D6226-05 [39] using an Accupic 1330 (Micromeritics®) gas pycnometer, working with 

helium as a filling gas. According to this standard, the open cell content (Copen) is calculated 

using expression (1). In this expression, Vsample is the external geometric volume of the foam, 

Vpyc is the volume measured with the pycnometer and p is the porosity, i.e. the total volume 

fraction of air contained in the sample. Note that Vsample has to be calculated from the external 

dimensions of the specimen, so regular shapes (cylindrical and/or prismatic samples) are 

recommended. From the expression, it can be observed that the value of Copen is always 

between 1 (100% open cell content) and 0. 

·

sample pyc

open

sample

V V
C

V p


      (1) 
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2.3.2. X-ray computed microtomography (CT) 

Foams of similar density obtained under different cooling conditions were selected to 

evaluate their 3D cellular structure by CT. The measurements were performed using a 

Skyscan CT system (mod. 1174) [40], with a final voxel size of 20 m3 in all cases. 

Subsequent 3D reconstruction of the data was performed using the commercial software 

Octopus [41]. After 3D reconstruction, Morpho+ software [42] was used to analyse the data 

and obtain numerical information about the cellular structure and its defects. 

 

2.4 Mechanical characterization 

The mechanical response of the foams is a combination of the matrix strength and the 

response of the cellular structure [2]. For that reason, the characterization was focused foam 

matrix by using microhardness measurements (section 2.4.1) and the response of the foam 

(matrix + cellular structure) by uniaxial compression tests (section 2.4.2).  

 

2.4.1. Microhardness measurements 

Selected samples with similar density subjected to each type of cooling were used to 

evaluate the effect of solidification rate on the foam matrix microstructure. Vickers 

Microhardness (HV) was measured along a radial profile at the mid-height of the foam. 

To this end, 3 mm slices were cut at the mid-height of the samples and infiltrated with 

epoxy resin (Specifix 20, Struers®, Ballerup, Denmark) using a vacuum system (Epovac, 

Struers) to ensure complete filling of the cut pores with the resin. The embedded specimens 

were ground and polished. Concentric circles were drawn on the polished surfaces with the 

objective of defining radial regions in which the indentations were to be made. This 

methodology was tested with success in a previous study [21]. 
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A Carl Zeiss microhardness tester, mod. MHO IB (West Germany), was used to perform 

the Vickers Microhardness (HV) measurements. All the indentations were made using a load 

of 20g for 15s (HV 0.02/15) following the testing standards [43], ensuring sufficient distance 

(at least three times the indent size) from one indentation to another and a similar distance 

from the edge of the cell wall. To compensate for the typical scatter associated with this kind 

of measurement, at least five indentations were made in each region. 

 

2.4.2. Uniaxial compression tests 

Prior to carrying out the compression testing experiments, samples were cut into two 

pieces. Thus, new samples (17 mm in diameter, 18 mm in height) with dimensions within the 

standard testing procedure guidelines [44] were obtained. The cutting process exposed some 

pores in one of the planar faces to the atmosphere and this change in contribution to the open 

cell content needed to be corrected. Therefore, the density and the open cell content, applying 

the correction method included in the ASTM standard [39], were measured again. However, 

no significant differences were observed in both  and Copen for the specimens when 

comparing the values before and after the cutting process (differences < 5% in all cases). 

Quasi-static uniaxial compression tests were carried out on an Instron (mod. 

5.500R6025) universal materials testing machine, at 23 ºC, at a displacement rate of 1.8 mm 

min-1 (strain rate of 1.67·10-3 s-1) up to a nominal strain of 75%. 

 

3. Results and discussion 

3.1. Temperature evolution during the cooling process 

The determination of the internal temperature of aluminium foams during the foaming 

process has been accomplished by other researchers in expandometry and X-ray radioscopy 

tests as well as inside moulds [45, 46], although these types of measurements have associated 



 10 

methodological complexities. Figure 2 represents temperature evolution at the central position 

in foams with a similar density when both foam and mould are exposed to the three different 

cooling conditions considered. It can be observed that temperature evolution is clearly 

different for the three foams. As expected, the sample cooled using water cools down to room 

temperature very quickly, while complete cooling with pressurized air takes much longer 

times. 

The solidification rate (Vsol) has been calculated in the region between solidus (577 ºC) 

and liquidus (597 ºC) temperatures (marked with horizontal lines in figure 2). Table 1 

(column 2) presents the average values after analysing three temperature records for each type 

of foam of similar density. From the values obtained, it can be appreciated that when using 

compressed air, the solidification rate at the centre ranges between 0.5 to 2 K/s, significantly 

influenced by the pressure of the air. However, when using water as cooling medium, the 

solidification rate increases considerably, approximately by one order of magnitude. Thus 

foams cooled by water quenching can solidify completely in less than 2 s. The results 

presented here, both for air and water quenched samples, are in good concordance with 

previous measurements reported in the literature (Vsol_air  1 to 3 K/s [31] and Vsol_water > 

10K/s [35]. It should be kept in mind that the values obtained in this study correspond only to 

the central part of the foams and much higher rates are expected in other parts of the foam 

close to the mould. In case of necessity in future investigations, additional thermocouples at 

different points inside the foam could be used, or even alternative techniques based on finite 

element simulation could be applied to solve the temperature evolution equation within the 

complete foam volume, as has been already proposed by the authors in previous studies [21, 

47]. 
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3.2. Foam structure 

The evaluation of the cellular structure characteristics has been divided into three parts, 

from the macro to the micro scale and evaluating changes induced by the different cooling 

conditions. Macroscopic pore connectivity, characterized by gas pycnometry, is shown in 

section 3.2.1. The main structural parameters are evaluated in section 3.2.2. Finally, a 

description of the size and distribution of the interconnections inside the foams is provided in 

section 3.2.3. 

 

3.2.1. Effect of solidification rate on open cell content 

The results obtained by gas pycnometry are shown in figure 3. The points displayed in 

the graph represent the average values for the open cell content (Copen), with the 

corresponding standard deviation (error bars), for foams of similar porosity. The trend curves 

(dashed lines) for each type of cooling have also been included to allow for a better 

visualization of the dependence with porosity. 

It can be appreciated that, independently of the cooling method, the open cell content of 

the foams increases with the sample porosity in the analysed range. A similar trend has 

already been reported by the authors in previous works [26, 33] and it is associated with the 

reduction in foam stability with increasing porosity during solidification. If it is assumed that 

that cell wall thickness decreases with sample density [2], then it seems reasonable that the 

probability of wall/film rupture or crack generation during solidification shrinkage will tend 

to increase as the sample porosity increases. In addition, the higher the porosity, the lower the 

thermal conductivity (and diffusivity) of the foam, thus promoting slower cooling and the 

associated defects. 

The slope for the trend of Copen with porosity in the analysed range seems similar for the 

three different types of cooling studied. This makes sense considering that the samples are 
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based on the same alloy and foamed under the same conditions. It has been found by the 

authors that for different powder compaction techniques (e.g. PM foam precursors) or another 

alloy compositions, a different slope in the Copen(p) trend is observed [33]. 

Nevertheless, the most important result is the large difference between foams cooled by 

air (Copen_air > 60%) and those cooled with water (Copen_water < 40%). The average values for 

Copen, within the whole porosity range, are presented in table 1 (column 3). Comparing the 

three types of cooling, it can be observed that the highest values of Copen, all over 80%, 

correspond to the foams solidified with compressed air at 1bar. These specimens are the ones 

with the slowest cooling rate. Connectivity values for foams solidified by fast air blowing 

(6bar) vary principally between 60 to 85 % while, finally, samples solidified with water, at a 

much higher rate, show Copen values in the range 10 to 40 %. Therefore, it is clear that the 

increase in solidification rate when cooling has a marked effect on pore connectivity. The 

mechanisms causing this reduction on connectivity with increasing cooling rate are discussed 

elsewhere [32, 33], which are fundamentally based on the hydrogen precipitation during 

solidification and/or the hydrogen released by the remaining blowing agent. These 

mechanisms are affecting the solidification expansion [31], mentioned in the introduction. In 

this sense, the faster the cooling step is, the lower will be the possible effect of solidification 

expansion on the generation of cell wall ruptures during solidification. 

 

3.2.2. Effect of solidification rate on cellular structure 

Microtomographic images enable further evaluation of the foam structure. Figure 4 

shows the internal aspect, at the mid-height of each sample (h  18 mm from the bottom), of 

three representative foams of similar porosity (p  0.76). The particular open cell content 

(Copen, figure 3) for these samples is 95% for the foam solidified with air at 1 bar (figure 4a), 
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80% for the foam solidified with air at higher pressure (figure 4b) and 14% for the sample 

solidified by water quenching (figure 4c). .  

From the slices in figure 4 it is apparent that the three foams exhibit a similar aspect in 

terms of the material distribution despite the notable differences in their open cell content. 

The specimens present a cylindrical symmetry and the material is distributed with a certain 

gradient in the radial direction from the centre to the lateral skin as already reported elsewhere 

[21, 48]. The three foams exhibit higher density (smaller pores) near the outer region and 

lower density (larger pores) in the central region. The vertical density distribution (shown in 

figure 5) does not show significant differences, which is expected for similar foam evolution 

during foaming (heating) under same conditions. Porosity profiles are nearly constant in the 

inner part and decrease (higher density) near the top and bottom basis of the foam near the 

skin. The constant density denotes the stability of these foams during the liquid stage before 

solidification with no evident drainage. 

Despite the similarities in the material distribution inside the foams, the differences in 

terms of presence of defects are visible. Samples cooled in air exhibit a higher amount of 

missing or broken cell walls (marked with arrows in figure 4) in comparison with the sample 

cooled with water. In addition, the location of this type of defect correlates with the zones of 

lower density, i.e. the centre or near the larger pores. A more complete discussion of this 

difference in the amount and the location of defects is provided in the next section. 

The structure has also been analysed in terms of pore size and pore sphericity in order to 

evaluate the possible influence of the cooling rate on these two structural parameters. To this 

end, the tomographs were filtered (median 3D, 2 pixels) and binarized, trying to fix a 

threshold high enough to avoid missing the existing cell walls in this process. A watershed 

algorithm was then applied in order to identify and separate the interconnected pores. The 

obtained images were revised and manual corrected, so eliminating those possible wrongly-
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identified pore interconnections. The separating walls “artificially” created by the watershed 

algorithm represent the existing interconnections within the specimens and will be analysed in 

the next section. 

More than 6000 pores were identified in each specimen, enough for providing a 

meaningful statistical analysis. The pore size was calculated as the equivalent diameter () of 

a sphere with the same pore volume (Vpore =  3/6), whereas the sphericity was defined as 

the ratio of the external surface of a sphere with the same volume, divided by the ‘real’ pore 

surface computed in the 3D image analysis (Apore). In other words, pore sphericity (Ψpore) has 

been calculated using expression 2. Figure 6 shows the pore size (figure 6a) and pore 

sphericity (figure 6b) histograms. The mean values for each structural parameter (mean, 


mean) were obtained after fitting the histograms shown in figure 6 to normal functions (R2 > 

0.85 in all cases).   

1/3 2/3(6 )pore

pore

pore

V

A


       (2)mean,= 1300  25 m and  mean 

= 0.77  0.08 was obtained for sample solidified by slow air blowing, whereas mean,= 1259  29 

m and  mean = 0.78  0.07 was obtained for sample solidified by fast air blowing and mean,= 

1329  24 m and  mean = 0.76  0.09 for the foam solidified by water quenching. It can be 

therefore appreciated that these three specimens are very similar in terms of pore size and 

pore sphericity. The only difference is observed in the samples cooled with air, which present 

a higher fraction of pores larger than 2500 microns. Therefore it should be noted that 

conventional analysis by tomography does not reveal significant differences, indentifying the 

need for more detailed 3D analysis of the identified interconnections. 
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3.2.3. Effect of solidification rate on pore interconnections 

The pore interconnections were identified by subtracting the original binarized images 

from those including the “artificial” cell walls created by the watershed algorithm. The 

results, in the form of 3D renderings, are shown in figure 7a for the foam cooled with 

compressed air at 1 bar, the specimen with the highest Copen (95%), and in figure 7b for the 

water-quenched foam, with the lowest Copen (14%). Table 1 (columns 4 to 7) includes the 

statistical information about the number of pores identified in each foam, the number of 

interconnections detected, their mean size (average of Feret’s diameters as described later) 

and the total volume they ‘occupy’ inside the structure. 

It can be clearly seen that the air-cooled specimen presents much more interconnections 

in comparison with the one solidified with water (around 3 times), meanwhile the number of 

interconnections is very similar for both samples cooled with air. In addition, it can be 

appreciated that the interconnections are in both case concentrated in the central region, the 

region with the slowest cooling rate. Nevertheless, the air-cooled foam (figure 7a) also shows 

a high fraction of interconnections (40%) in regions close to the outer skin, whereas only a 

few are observable in that region in the sample cooled in water (figure 7b), probably because 

the fast solidification. The size of interconnections located at the central region is higher 

while those located closer to the outer skin are smaller. All these observations can be 

associated with the local pore size and porosity since the central region exhibits larger bubbles 

and higher porosity while the opposite can be found near the outer skin. 

Figure 8 shows the interconnection size distribution for the three analyzed specimens. In 

this particular case the flatness of these entities needed to be taken into account. Therefore, 

the selected parameter to describe the size of the interconnections was the Feret’s diameter 

(in the plane of the ‘reconstructed’ interconnection), since the use of the equivalent diameter 

as shape descriptor would lead to unrealistic size analysis. The mode value of the three 
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distributions is located at approximately 140 m, which means that large fraction of the 

population of the interconnections present in foams are of a small size. This could be also an 

effect of the resolution combined with the binarization threshold. Comparison of the three 

distributions shows that a reduction in the solidification rate tends to increase the size of the 

interconnections (see mean size in table 1, column 5). It is difficult to find interconnections 

larger than 500 μm in the water-quenched sample while a significant number of large 

interconnections (> 500 μm) are observed in the air-cooled samples. This fact, together with 

the corresponding number of interconnections in each foam, makes the total volume the 

interconnections represent or ‘occupy’ inside the foam to be much smaller in the case of the 

foam solidified with water in comparison with the samples solidified with air at high or low 

pressure (4 to 7 times smaller respectively; see table 1, column 6) which is clearly in 

agreement with the distribution of interconnections shown in figure 7. 

 

3.3. Mechanical properties 

Results in this section are divided in three parts. The first two parts correspond to the 

analysis of the matrix strength (section 3.3.1) and the foam strength (section 3.3.2) in terms of 

the different cooling conditions evaluated. The last part (section 3.3.3) is dedicated to analysis 

of the influence of defects (interconnections) on the foam strength, once the matrix 

contribution has been normalized. 

 

3.3.1. Effect of solidification rate on matrix strength 

It is well known that the solidification rate has a large influence on the microstructure of 

metals. Particularly, high cooling rates will reduce the grain size [49] and influence the 

morphology of the secondary phases (Si in this case) [50]. Obviously, these effects have also 

been observed in aluminium foams [31, 35]. Since the grain size and matrix strength (y) are 

related by the Hall-Petch relationship [51], it follows that increases in solidification rate will 
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result an increase in matrix strength. In this study, Vickers microhardness (H) measurements 

have been used to quantify this effect through the relationship in expression 3 [52]. 

/ 0.3y H        (3) 

Figure 9 shows Vickers microhardness profiles (in the radial direction) for three foams 

with similar porosity (p  0.76), each one representative of the different cooling conditions 

analysed. From the data collected and the trends (dashed lines), it seems that the local 

hardness depends on the radial position, with higher values nearer the outer skin. This result is 

very similar for all three cases and probably corresponds with the variation of local 

solidification rate at different radial points, with lower rates in the central zone and thus 

reduced local strength. Nonetheless, the measurement fluctuations are also comparable with 

the experimental measurement error in this type of test (up to 10%) and it can be assumed 

that, in general, the three samples exhibit a reasonably uniform matrix microstructure along 

the radial direction and that the small gradient in hardness will not significantly affect the 

global mechanical response of the foams. 

The comparison of hardness profiles for the three cooling conditions applied shows 

more interesting results. The average hardness values along the radial profile have been 

calculated and the results are shown in table 1 (column 7), together with the calculated yield 

strength of the matrix (y) according to expression 3 (table 1, column 8). Foams solidified 

with compressed air at 1 bar (low cooling rate) exhibit the lowest strength, followed by those 

of foams cooled down with air at 6 bar. Nevertheless, the increment when cooling with air at 

6 bar is relatively small (< 5%), similar to the measurement fluctuations. However, the foams 

cooled down by water quenching exhibit significantly higher values. In particular, the average 

hardness of water-quenched foams increases around 14% when compared with fast air-cooled 

foams (6bar) and around 19% when compared with slow air-cooled specimens (1bar). As 

expected, this hardening is consistent with the increase in the solidification rate (table 1, 
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column 2). Examination of other specimens with different porosity levels showed no 

significant variation in hardness values and trends. Thus, we can consider these values (table 

1, column 7) to be independent of porosity. 

 

3.3.2. Effect of solidification rate on foam strength  

Figure 10 presents the stress-strain curves for the three representative foams shown in 

figure 4. Each one corresponds to the average response of the two parts obtained from each 

foam specimen (see section 2.4.2). It should be mentioned that the difference in the 

mechanical response of these two parts (top and bottom) for each sample was very small, in 

agreement with the high homogeneity in the vertical density profile (see figure 5). 

As can be observed in figure 10, the three foams exhibit ductile deformation, with the 

highest response corresponding to the water-quenched sample, followed by those for the air-

cooled samples, which exhibit quite similar behaviour. The typical stress peak after the elastic 

region (first local max., marked with an arrow in figure 10) has been used to define the 

collapse strength value (c) of the foams. 

The smallest value of c (10.3 MPa) corresponds to the sample solidified by blowing 

with air at low pressure (1 bar). The sample cooled faster by using compressed air at 6 bar 

presents a higher value of c, 11.9 MPa, i.e. an increment of around 15%. A much higher 

collapse strength is registered for the foam quenched in water, c = 17.1 MPa. This value 

represents increments of +43% and +65% when compared with the samples cooled by air at 6 

bar and 1 bar respectively. These differences in foam collapse strength are much higher than 

the equivalent variation in the matrix hardness (table 1, column 7) and the associated matrix 

strength according to expression 3. It is expected, therefore, that an additional contribution to 

the strength comes from the cellular structure, particularly from the dissimilar amounts of 

defects such as pore interconnections (figures 3, 7 and 8), since the main structural 
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parameters, i.e. density distribution, pore size and pore shape, are very similar for these three 

samples (figures 4, 5 and 6).  

 

3.3.3. Effect of open cell content on foam strength 

Figure 11 shows the variation in the normalized collapse strength (c* = c/y, where y 

correspond to values shown in table 1, column 8) as a function of the foam relative density 

(r). Each point (symbol) in the figure represents the average value of c* for tested 

specimens with similar r and also similar Copen. The standard deviation (error bars) is similar 

in all cases (< 5%) and thus it has not been included, allowing a better appreciation of the 

results. Normalization of collapse strength “corrects” the dissimilar matrix strength and 

allows for a clearer comparison between the three types of samples in terms of their different 

cellular structure alone. After this normalization it can be appreciated that the collapse 

strength (c*) of the water-quenched foams is higher than the corresponding value for foams 

cooled with air. In particular, the samples cooled with air at 1bar exhibit the lowest values. It 

can, therefore, be concluded that an increase in the solidification rate after foaming 

significantly increases the mechanical response of the foams, independently of the relative 

density.  

Figure 11 also includes the values of c* predicted by the theoretical models proposed 

by Gibson and Ashby [2] for open cell and closed cell materials up to a relative density 

around 0.3. The analytical functions describing both curves are given in expression 4 and 

expression 5 for open and closed cell materials respectively. In these models, the term with 

the exponent n = 3/2, represents the mechanical resistance of the Plateau borders and the 

edges, while the linear term represents the contribution of the cell walls to the global strength 

and thus, it is only present in expression 5 (closed cell model). K1, K2 and K3 are coefficients 

related to the cellular structure, particularly to the solid distribution within the walls and the 
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edges. The accepted values for these coefficients, obtained from empirical comparison with 

experimental data, or by simulation, are K1 = 0.3 for the open cell model [2] and K2 = 0.33 

and K3 = 0.44 for the closed cell model [13], and therefore these have been the values used in 

this paper for the lines plotted in figure 11.  

* 3/2

1 ( )OC

C rK        (4) 

* 3/2

2 3( ) ( )CC

C r rK K          (5) 

It can be appreciated that the experimental collapse strength is in all cases between the 

two main theoretical predictions, although data tend toward the closed cell model at high 

relative densities and are nearer the open cell model as the density decreases. It should be 

mentioned that the theoretical model for the closed cell materials (expression 5) is based on 

the assumption of unrealistic ‘ideal’ cellular structures with flat cell walls. Figure 4 clearly 

shows that these foams typically exhibit curved cell walls and corrugations that will have a 

detrimental effect on the mechanical response.  

The effect of cell wall curvature and corrugations on the collapse strength of aluminium 

foams has been already studied by Simone and Gibson using a finite element method over a 

varied group of modified ‘ideal’ cellular structures [12]. They found that the contribution of 

both types of defect depends strongly on the foam density (via the cell wall thickness) and 

that the contribution from curvature is in general much higher than the contribution from 

corrugations. The effect of corrugations was only found to be of significance in low density 

foams (r < 0.1), when the wall thickness is of the same scale as the amplitude of the 

corrugations. It was suggested that the effect of curvature on the collapse strength could be 

easily addressed by introducing a correction factor (fcurvature) as it appears in expression 6. The 

factor fcurvature is 1 for an ideal closed cell foam with flat cell walls and decreases with foam 

porosity (density reduction) and, obviously, with the increase of wall curvature [12]. A similar 
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approach could be taken to take into account corrugation effects in low density foams (r < 

0.1). 

* * curvature CC

C C curvaturef       (6) 

Further characterization by Andrews et. al [53] and Sanders [54], of diverse, 

commercially available, metal foams, showed that Alulight-type foams generally exhibit a 

significant cell wall curvature (defined as the ratio of cell chord length to diameter, L/2R, for 

an equivalent spherical cap), between 0.1 and 0.7, with an average value around L/2R ~ 0.4. 

According to their discussions and findings [53], as the collapse strength is mainly controlled 

by the weakest region inside the foam, the 95th percentile within the cell wall curvature 

distribution should be used as the reference value to estimate the reduction in c* CC (fcurvature) 

as proposed by Simone and Gibson [12]. In the case of Alulight type foam, [L/2R]95th ~ 0.6 

[54]. Following this, the theoretically predicted c*
curvature, using expression 6 and considering 

fcurvature for L/2R ~ 0.6 [13], has been also plotted in figure 11 (thick black solid line). The line 

representing the improved model is now between the lines predicted by expressions 4 and 5 

and approaches the experimental c* trends observed, supporting the importance of 

considering the curvature effect when estimating the collapse strength in ‘real’ foams. 

However, the experimental data are still below the theoretical prediction.  

Accounting the observed deviations from model predictions and the differences in 

strength observed, one might think that the different foams analysed could have very different 

cell wall curvatures. However, the high values of curvature required to match the 

experimental data with the model and the evidence of similar pore structures (figure 6) point 

to the consideration of an additional feature, i.e. the different cell connectivity. 

Figure 12a evaluates the effect of pore connectivity on the mechanical properties by 

plotting values of c* versus the corresponding open cell content (Copen, measured by 

pycnometry) in groups of samples of similar relative density, in particular r  0.18, r  0.24 
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and r  0.31. The figure also includes the trend lines for these experimental points (linear 

fits) and the theoretical values of c*
curvature according to expression 6 (hollow symbols), 

which are obviously located at Copen = 0. 

The results indicate that collapse strength decreases linearly with the open cell content 

(Copen). When extrapolating to Copen = 0 the strength values match well with those predicted 

by expression 6 (hollow symbols in figure 12a). On the other hand, when extrapolating to 

Copen = 100%, the experimental values of c*do not meet the open cell model predictions 

(expression 4), as it might be expected. This suggests that “closed cell” foams with a regular 

pore size but with high interconnectivity should not necessary behave as an open cell 

structures since cell walls are still present in the structure and may have a certain contribution 

on the global strength of the foam. Obviously, in case or additional defects in the cellular 

structure, such as significant density inhomogeneities, the collapse strength can end closer to, 

or even below, the predictions for open cell foams (expression 4), explaining results shown in 

previous works [2, 3, 4]. 

In order to clarify whether the contribution of pore connectivity to the strength reduction 

is independent of sample relative density, the experimental values shown in figure 12a have 

been normalized by the corresponding strength value at null connectivity (Copen = 0, 

expression 6). The result of this normalization (c* / c*
curvature) is shown in figure 12b. It can 

be observed how the data practically lie on a straight line from 1 to 0.5. This result suggests 

the possibility of modelling the influence of pore connectivity on collapse strength by simply 

introducing an additional, new, factor (fCopen) into expression 6. It is possible to observe that, 

contrary to the known dependence of fcurvature with relative density (increases) [12], we can 

model fCopen as an independent factor.  
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The further improved model can thus be described as shown in expression 7, where the 

reduction factor, fCopen, depends on Copen as fCopen = (1- K’) Copen, and K’ is a coefficient to be 

determined empirically (in our particular case takes a value of approximately 0.5). 

* * 

open

CC

C C curvature Cf f       (7) 

The prediction lines for collapse strength taking into account this  K’ value and the 

average values of Copen for each type of cooling (table 1, column 3), are plotted in figure 11 

together with the experimental data and the three models already commented (expressions 4 

to 6). As it can be appreciated, the consideration of this new factor (fCopen), which depends on 

the experimentally determined open cell content value (Copen), allows the proposed model to 

meet the experimental data with good agreement. This result remarks the importance of 

considering the pore interconnections at the same level of other types of defects when trying 

to explain and/or understand the low values and the high scattering in mechanical properties 

for foams with a similar density [5, 6, 7]. 

 

4. Conclusions 

Based on the results shown in this work, some important conclusions can be established:  

 Increasing the solidification rate during the cooling step can be used as a strategy to 

control and reduce the size and relative abundance of the pore interconnections inside 

the cellular structure of metal foams.  

 Pycnometry and X-ray tomography have proved their effectiveness when used together 

for pore connectivity evaluation. Pycnometry enables the evaluation of the open cell 

content (Copen) and X-ray tomography allows the determination of the exact location and 

size of the pore interconnections. 

 It has been observed that pore interconnections tend to be located principally at the 

central region of the foam where the cooling rate is slower and/or the regions with a 
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reduced local density. However, if solidification is slow, pore connectivity can also be 

found in higher fractions near the outer skin. 

 It has been found that the enchancement of mechanical properties of the foams when 

increasing the solidification rate can not be only explained based on the expected 

refinement of the matrix. Due to the reduction of pore connectivity, increasing the 

solidification rate also influences the response of the cellular structure, and therefore the 

global response of the foam (matrix + structure) is much higher. 

 The collapse strength values of “real” closed-cell foam samples are located between the 

theoretical predictions by Gibson and Ashby for open cell and closed cell foams, even 

when considering the effect of cell wall curvature.  

 It has been found that the collapse strength of foams decreases linearly with the pore 

connectivity grade. This result has allowed to propose a correction factor -fCopen- 

associated only to the pore connectivity measured by pycnometry (Copen). 

 The proposed modification of the established model permits more accurate predictions 

of the collapse strength for closed-cell aluminium foams, accounting for the variability 

associated with different levels of the pore connectivity induced by different cooling 

methods post-foaming. This approach is expected to be invaluable in future 

investigations relating to processing-structure-mechanical property relationships in 

metal foams. 
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TABLES 
 

Table 1.  Results from the analysis of the foams produced under duferent cooling conditions  

Cooling 

type 

Solidification 

rate (K/s) 

Open cell 

content 

(%) 

Nº pore 

connections 

(ni) 

Mean 

interconnection 

size (m) 

Total 

Volume  

(mm3) 

Average 

Vickers 

Microhardness 

Calculated 

matrix strength 

(MPa) 

Slow air 
blowing  

0.7  0.2 90.6  5.1 1848 312 13.50 44.1  3.4 147  11 

Fast air 

blowing 
1.7  0.5 72.4  6.7 1783 223 7.38 46.3  3.5 154  12 

Water 
quenching 

15.0  3.0 25.5  7. 9 653 173 1.87 52.7  3.8 176  13 
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FIGURE CAPTIONS 
 

Fig. 1. Schematic of the system used to measure the temperature evolution in the foams during the cooling step. 

Fig. 2. Variation of temperature at the centre of three foams (p  0.76 ± 0.01) during the different cooling 

processes. Foaming temperature of 650ºC (furnace/mould temperature). 

Fig. 3. Open cell content versus foam porosity for different cooling methods. 

Fig. 4. X-ray tomography slices at the centre of three representative foams for the different solidification 

conditions evaluated (p  0.76) (a) Slow air blowing (b) Fast air blowing (c) Water quenching. 

Fig. 5. Vertical porosity distribution, from top to bottom, for the three representative foams shown in figure 4. 

pair_1bar = 0.76  0.02; pair_6bar = 0.74  0.02; pwater = 0.75  0.03. 

Fig. 6. (a) 3D pore size distributions and (b) sphericity histograms for the foams shown in figure 4. 

Fig. 7. 3D distribution of interconnections inside two foams. (a) Specimen with high open cell content 

(solidified using air), (b) Specimen with low open cell content (solidified by water quenching). 

Fig. 8. Interconnection size distributions. 

Fig. 9. Microhardness profiles, at the mid-height, for foams produced under different cooling conditions. 

Dashed lines show the average trend. 

Fig. 10. Compressive stress-strain response for three representative foams of similar structural characteristics.  

(p = 0.77  0.01; 1.30  0.02 mm), but produced under different cooling conditions (figure 4). 

Fig. 11. Normalized collapse strength as a function of relative density. Lines correspond to the predictions from 

theoretical models (eq. 4 and 5), including the effect of curvature (eq. 6), and the effect of pore 

connectivity (eq. 7). 

Fig. 12. (a) Variation of c* with Copen. (b) Variation of fCopen with Copen (to be used in expression 7). 
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Fig. 4 
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Fig. 5 
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Fig. 7 
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Fig. 10 
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Fig. 12 

 
 

 

 

 

 

 

 

 

 

 

 


