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Abstract

In this paper, the notion of risk analysis within 3D scenes using vision based

techniques is introduced. In particular the problem of risk estimation of indoor

environments at the scene and object level is considered, with applications in

domestic robots and smart homes. To this end, the proposed Risk Estimation

Framework is described, which provides a quantified risk score for a given scene.

This methodology is extended with the introduction of a novel robust kernel for

3D shape descriptors such as 3D HOG and SIFT3D, which aims to reduce the

effects of outliers in the proposed risk recognition methodology. The Physics

Behaviour Feature (PBF) is presented, which uses an object’s angular velocity

obtained using Newtonian physics simulation as a descriptor. Furthermore, an

extension of boosting techniques for learning is suggested in the form of the

novel Complex and Hyper-Complex Adaboost, which greatly increase the com-

putation efficiency of the original technique. In order to evaluate the proposed

robust descriptors an enriched version of the 3D Risk Scenes (3DRS) dataset

with extra objects, scenes and meta-data was utilised. A comparative study

was conducted demonstrating that the suggested approach outperforms current

state-of-the-art descriptors.

Keywords: 3D Scene analysis, Risk Estimation, Domestic robots, Smart

homes, HOG, 3D VHOG
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1. Introduction

Scene analysis is a research area spanning a large range of topics, both

indoor and outdoor, with applications in navigation systems [42], traffic analysis

[6, 7], domestic robotics [46], smart homes [9] and more recently the concept

of risk detection [18, 57] amongst many others. In this work the problem of5

evaluating risk for indoor applications is considered, more specifically mimicking

a human’s ability to analyse and identify risks. To this end a quantified risk

score for 3D scenes using vision based techniques is provided. The concept of

risk assessment is derived from the ability of humans to identify a potentially

hazardous environment using a range of attributes, evaluating those specific10

characteristics based on experience and determining whether a threat is present

or not [5].

The definition of what can be considered a risk or hazard in an environment

is contextual. What can be considered safe in one environment may not be in

others. For example a container of liquid at the edge of a table is risky in a15

household environment, however in a lab this might pose a far larger danger.

Similarly users of the environment will also effect how risk is perceived, if the

environment contains children or elderly adults the threshold of what is risky

may need to change. However regardless of context, the elements that might

contribute to the concept of risk can be broken down into components from20

which a decision can be made. These components include elements such as

shape, size, material, temperature, position and many others. With this risk

analysis functionality domestic robots could be trained to help avoid potentially

hazardous situations. In the Smart Home example; attention could be drawn

to these situations and accidents avoided.25

The Risk Estimation Framework [17] measures risk as a function of measur-

able elements in a scene, the methodology relies on a combination of 3D shape

descriptors and Newtonian physics based on supervised learning. Firstly, at a

global level, the scene is analysed holistically using the concept of scene sta-

bility. For example, classifying a glass bottle in the corner of a table as more30
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(a) (b) (c)

Figure 1: (a) Example scene with objects demonstrating a variety of intrinsic properties (e.g.

sharp, pointed), (b) scene with a variety of stability levels, and (c) a scene reconstructed using

Kinect Fusion before and after the plane removal.

hazardous than the one placed at the centre (Figure 1b). Secondly, the scene

is analysed at a local level, looking to identify “hazard-related” shape features

of objects within the scene. Here the term feature relates to an actual physical

property of an object (e.g. sharp, pointed). As an example a knife would have

a sharp blade, which would be classified as a “hazard” feature (Figure 1a). We35

emphasize that in this system the problem of object recognition is bypassed and

only local object properties are recognised, allowing the proposed approach to

be more flexible and generic. Additionally this overcomes the problem of similar

object classes containing objects which might have different levels of risk, for

example a steak knife compared to a butter knife. As with all local level features40

a model of “hazard features” from a training set is constructed and used to test

future unknown examples.

This work is an extension of the paper [17] and introduces the following

contributions. A) the novel robust kernel for 3D descriptors in comparison to

the work in [18], B) an advanced boosting mechanism that supports complex45
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data for supervised learning, C) a novel shape descriptor based on Newtonian

Physics and D) an enriched version on the 3DRS data set. In more details;

the robust kernel for 3D descriptors is suggested, which can reduce the effects

that outliers have in the supervised learning mechanisms. Secondly, Complex

and Hyper-Complex variants of Adaboost [21] are presented, which provide an50

increase in computational efficiency. Thirdly, the Physics Behaviour Feature

(PBF) descriptor is introduced utilising the physical properties of an object to

identify hazardous objects. This is achieved through the application of Newto-

nian Physics and the estimation of an object’s angular velocity after the appli-

cation of a force. Our final contribution is the enriched version of the 3D Risk55

Scenes (3DRS) dataset with additional objects, meta-data and risk scenes to

create a more challenging and complete dataset for 3D scene risk analysis.

The paper will continue as follows; in section 2 an analysis of the similar

areas of research will be followed by an overview of related work. The proposed

methodologies and contributions used in this work will be presented in section 3.60

Section 4 will outline our comparative study with other state-of-the-art methods

and analyse the results. Finally, in section 5 conclusions are drawn.

2. Related work

The following section provides an overview of existing work in scene anal-

ysis with respect to risk assessment, followed by a review of existing feature65

descriptors relevant to the methodology.

2.1. Scene analysis and risk assessment

Risk assessment for a given environment finds applications in many areas,

from workplace health and safety to analysis of disaster zones to name a few.

With the advent of consumer available depth acquisition hardware [25] and laser70

scanning systems such as LiDAR, research in scene analysis in the 3D domain

has grown considerably [8, 35, 54].
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In [57, 58], the authors analyse a scene based on the probability of an object

being dislodged using disturbance fields. By modeling human actions and natu-

ral events such as earthquakes or wind effects, the probability of objects falling75

can be calculated. This yields a risk score based on a specific type of input,

which requires modeling per event. Additionally, their approach does not take

into account the possibility that objects may collide with each other, nor is any

weighting given to the risk of the object itself.

Other existing work on risk assessment exists in similar areas such as pa-80

tient monitoring [45, 3], where the focus is on indoor fall assessment for elderly

adults. Though conceptually similar, these papers focus on analysing the risk

associated with the persons and not their environment. Work on robotics for

medical applications [12] defines safety zones around anatomical areas, such as

major nerval and vascular structures. This prevents the robotic system enter-85

ing these zones, providing an efficient way of preventing injury. However, the

system does not apply reasoning to the environment. Additionally although the

system tracks patients movement, it requires pre-programming for each change

in situation.

With advances in the industrial robotic sector and robotic hardware, new90

areas of risk in various workplaces have been identified. In [14, 34], a review

is provided into these hazards and the principles of guarding to ensure human

safety. Hazard analysis, safety precautions, programming procedures and main-

tenance of the robots are also discussed.

Finally, with advances in robotics and unmanned drones, the functionality to95

fully automate these devices using vision based techniques is emerging [42, 55].

Though these proposed systems do not emphatically determine risk, they do

analyse the environment to identify a suitable landing zone based on a set of

parameters.

Another emerging area of research within scene analysis relates to 3D volu-100

metric reasoning. Which provides a better understanding of a scene by analysing

properties such as its overall stability, for example whether objects within the

volume are supporting one another. This draws heavily from the human ability
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to analyse a scene and make fast judgements about the environment. Battaglia

et al. [2] explores this concept and introduces the idea of an “Intuitive Physics105

Engine (IPE)” that attempts to mimic human cognitive simulation process when

analysing a scene. Wu et al. [56] extends this principle by incorporating a

physics engine with representation learning. Their work further supports the

idea that a humans ability to analyse a scene is based upon a realistic physics

engine as part of a generative model to interpret real-world physical scenes. Ad-110

ditionally the system is also capable of outputting physical properties of objects

from video observations such as mass and friction coefficients. Although the

concept of risk in the environment is raised in some of this work, an automated

form of risk evaluation for a given scene is not addressed.

2.2. 3D local descriptors115

Within the proposed work, three dimensional descriptors are proposed and

as such an overview of existing research is given. Arguably, the advent of SIFT

[32] and HOG [11] revolutionized 2D object recognition by creating a local

descriptor that was robust to geometric and photometric changes. With the

advent of cheap 3D depth camera hardware, such as the Microsoft Kinect [43],120

work has been done to transfer HOG [17], SIFT [41, 23], Harris [44] and FAST

[38] into 3D.

Scherer et al. [40] does gradient computation in 3D using a convoluted

distance field. This provides an effective way of calculating the magnitudes of

the gradients, scoring them highly when localised near a surface of a model (local125

maxima), however their method also scores highly those at local minima creating

additional artifacts within the data. As such this particular implementation is

unsuitable for our local feature recognition.

Tang et al. [47] presents the Histogram of Orientated Vectors (HOVN) fea-

ture. Here the normal vectors are used as the features to capture local geometric130

characteristics which is used for object recognition. Another method, which ex-

tends HOG to 3D, is presented in [28, 36]. In particular, HOG is extended

through the use of time as the third dimension. This allows the creation of spa-
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tiotemporal features that can be used for action recognition in video sequences.

This approach is based on 2D image based intensity gradients without taking135

into account concepts related to the density of an area and therefore it is not

an appropriate descriptor for objects with non-uniform density.

Tombari et al. [49] examine local 3D descriptors and define two main cate-

gories in which they fall; signatures and histograms. Signatures are potentially

highly descriptive through the use of spatially localized information. Whereas140

histograms sacrifice descriptive power for robustness through compression of

geometric structure into bins. The Signature of Histograms of Orientations

(SHOT) feature is presented, which encodes histograms of the normals of the

points within a neighbourhood as well as introduces geometric information con-

cerning the location of the points within that neighbourhood.145

Frome et al. [22] utilise 3D shape and Harmonic shape contexts to build

a feature descriptor to find cars in point cloud data. The feature descriptors

are defined for an arbitrary set of basis points within the point cloud and are

compared using distance measures, such as L2, to a predefined reference set.

The methodology is demonstrated on an extensive car database in both the150

presence of clutter and noise.

Cirujeda et al. [10] presents a descriptor based on the covariance of features,

combining shape and color information of 3D surfaces. Multi-scale covariance

descriptor (MCOV) has a number of properties including; invariant to spatial

rigid transformations, robust to noise and resolution changes and is applicable to155

characteristic point detection. Additionally, features are defined using a multi-

scale framework, which helps link the various features not only on a local scale

but additionally at a more global level too. This has the advantage of reducing

repeatability problems and improving detection of points in edges or borders of

scene objects.160

Rusu et al. [39] proposes an extension to their already well known Point Fea-

ture Histograms (PFH) in the form of Fast Point Feature Histograms (FPFH).

FPFH is considerably faster and can be computed online due to a reduction in

computational complexity to O(k) (over O(k2) for PFH) whilst retaining most
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of the descriptive power of the PFH.165

Flint et al. [20] combines the advantages of SIFT descriptor and the SURF

detector to produce the ThriIFT 3D feature detector. ThrIFT utilises 3D Hes-

sians and creates a weighted histogram of the deviation angles between the

normals of points in the neighbourhood of the original feature point.

Finally, the work in [16] uses point pair features to define global model170

descriptors aiming to recognise similar objects within a point cloud scene. The

feature is based on the distance between the point pair, the angles from surface

normal to point pair line, and finally the angle between the two normals. Then

using a voting system, it matches pre-defined features to objects in a scene. This

system presented good results for object recognition, but operates on a global175

scale, making it unsuitable for the concept of specific local feature recognition.

Additionally the work in [33] is also worth mentioning at this point.

3. Proposed methodology

The following section discusses the Risk Estimation Framework, and in de-

tail the proposed robust kernel for 3D descriptors and the complex and hyper-180

complex Adaboost methodologies. In Figure 2 the proposed methodology is

illustrated, outlining the end to end solution and where each of the proposed

techniques fit. Initially the given scene is preprocessed to provide individual

object clusters. Using these object clusters the stability of each object is es-

timated, providing one element of the risk score. The hazard features of each185

object cluster are then analysed, using the 3D Voxel HOG and Physics Be-

haviour Feature, the results of which are used as the second element of the risk

score. More detail for each aspect of the frame work is given below.

3.1. Pre-processing

Before the risk in a scene can be evaluated some pre-processing steps are190

required to change the data into a suitable format. Figure 3 demonstrates this

process.
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OVERVIEW

PREPROCESSING STABILITY 
ESTIMATION

HAZARD FEATURE
ESTIMATION

RISK 
SCORE3D VOXEL HOG

PHYSICS BEHAVIOUR 
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COMPLEX 
ADABOOST
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ADABOOST

ROBUST 
FILTER

ROBUST 
FILTER

Figure 2: The overall methodology for the Risk Estimation Framework, with each of the newly

proposed methodologies highlighted.

PREPROCESSING
SCENE CAPTURING

E.G KINECT FUSION

PLANE REMOVAL VOXELIZATION SEGMENTATION
BOUNDING SHAPES

MATERIAL 
ESTIMATION

Figure 3: Pre-processing steps: Scene capturing with Kinect Fusion, Plane removal, voxeliza-

tion and segmentation.

Scene data and 3D mesh model reconstruction are assumed to be captured

using methods such as Simultaneous Mapping and Localisation (SLAM) tech-

niques e.g Kinect Fusion [25] or multi camera acquisition systems [52]. Addi-195

tionally other sensors such as thermal or acoustic cameras could also be used.

Each method returns a three dimensional representation of the subject scene,

either in an already voxelized form, point cloud format or as a vertex/face based

3D model. In this work scenes have been captured using Kinect Fusion, using

a Kinect camera. This returns a point cloud representation of the scene.200

The surface on which the objects are set requires removal prior to segmen-

tation. In the case of the given scene this represents the table surface on which

the objects in a scene are set. The work by [50] presents a solution to this using

connected component based clustering in point clouds together with a ‘planar

refinement step’. The dimensions of the removed plane are recorded and used205

later to define the surface during simulation.
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The returned 3D model is then requires conversion to a data format that is

suitable for use in the provided methodology. Voxelization is used to produce

an equally spaced grid representation of the scene, where each voxel provides a

binary classification of either object or not. For this process we rely on existing210

techniques based on the work in [24]. Initially a grid is defined in 3D space

around the model. Using the vertices of the model with a defined radius, voxels

who’s centre falls into this area are defined as part of the model. Using the

edge information a cylinder is defined along the length of the edge, voxels who’s

centre falls into the area of the cylinder are also classified as part of the model.215

Finally for a given face of the model, two additional planes are defined above

and below the surface of the given face and all voxels who’s centres lie within

this area are attributed to the voxel representation of the model. At each stage

of this process a rule is applied to the voxel that helps maintain a hole free

voxel surface. The rules define relationships to neighbouring voxels based on220

the model data that is used to define it. Additionally a voxel representation

is also optimised based on principles of accuracy, minimality and separability.

Where accuracy is a defined measure to quantify how well represented the model

is, separability which could be described as the appropriate separation of voxel

space using the defined voxel surface and finally, minimality, which ensures that225

additional voxels are removed subject to accuracy and separability. Voxels which

are enclosed within a mesh, are also classified as part of the object allowing the

consideration of features based on an object’s density. This step may be avoided

if the data capture method returns a voxelized representation of the scene [27].

With this representation of the scene, clustering of the voxel volume can be230

applied. A number of different clustering algorithms were tested, using modified

versions of the work presented in [50, 15]. A bounding box for each object cluster

is defined, the dimensions of which are based on the returned clusters.

To represent the scene objects within a physics simulation, utilised in sec-

tions 3.3 and 3.4.1, a range of bounding shape primitives (e.g. box, cylinder,235

sphere, etc.) can be used. The shape primitive that when fully encasing the

cluster has the least empty voxels is the one that best defines the object cluster.
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Additionally these bounding shapes must not intersect; as such a recursive re-

duction process is applied resizing bounding boxes until no overlap is detected.

The result is a pre-processed scene in which each detected object cluster is240

assigned its own bounding shape.

3.2. Risk Estimation Framework

A cumulative risk score R for a scene is defined as the weighted sum of n

measured risk elements E (1). The weighting specified for each element should

fall into a range of zero to one, with the sum of all weightings being equal to245

one. A risk element is any measure that could highlight potential risk. These

elements could include concepts such as stability, hazard shape features or any

other properties that may present a danger, for example temperature obtained

from a thermal camera or material analysis data. Each of these elements has

an assigned weight; this allows the context of the risk to be considered, ap-250

plying more weighting to elements that are more relevant in a given situation.

For example, in an environment with adults present, stability may not have a

weighting as high as in situations where children are present.

R =

n∑
i=1

(wiEi) (1)

For the purpose of this paper we define the cumulative risk score R as a function

of the weighted elements of stability S and hazard shape features H.255

R = wSS + wHH (2)

3.3. Stability Estimation

The proposed methodology for scene stability estimation is based on the use

of Newtonian physics mechanics applied to the preprocessed scenes. To evaluate

the stability of an object we replicate the application of forces from a variety

of directions. Consequently, statistical analysis on the subjects of a simulation260
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STABILITY ESTIMATION
IMPORT TO PHYSICS 

SIMULATOR

APPLY FORCE 
(FOR EACH FORCE AND 

MAGNITUDE) RISK SCORE
MEASURE ENERGY 

OUTPUT

Figure 4: Stability estimation flow. Scene objects are imported into the physics simulation.

Forces are applied from a sample of directions to each object in the scene, subject to (4). The

energy output from each applied force is recorded. Simulations are repeated with forces of

increased magnitude. For each object the resultant energy from each simulation is used to

build a stability plot. The sum of all resultant energy defines the stability of the object and

by extension its risk score.

Figure 5: Stability evaluation process using Newtonian physics (Left) Initial layout in the

physics simulation; (Middle) Collision occurring during the simulation; and (Right) Stability

plot with the circles around the objects indicating the direction of instability with radius

corresponding to the severity.

can be performed allowing us to compute the energy output from each applied

force. An overview of this is presented in Figure 4.

Using ‘collision shapes’, in this case bounding boxes, the objects are recre-

ated using simplistic primitives, which represent the overall shape. This reduces

the computational costs needed to emulate its behaviour whilst maintaining a265

reasonable level of accuracy. To simulate an object’s behaviour; parameters such

as position, size, mass, friction and angular dampening coefficients are attached

to these shapes. The bounding shape calculated during preprocessing serves as

the guidelines for the collision shape, (position and size).

12



The surface the objects are placed on within the simulation is defined using270

dimensions obtained during the plane removal process in preprocessing. Mass

is defined by calculating the number of voxels within an object cluster and

using the assumption that all objects are made from the same material. How-

ever through the use of material estimation (such as BRDF function estimation

[53, 29] or techniques such as visual vibrometry [13] as well as others [8, 56]),275

more accurate values for mass could be acquired for use in the simulations.

Additionally with a defined material, the friction coefficients can be better esti-

mated and applied to the simulation. These techniques would be applied during

pre-processing (figure 3), however this falls into a separate area of research and

is not the goal of this work, therefore global values are used for these parameters.280

Stability s for a force k on a given object i is defined as the ratio of the

applied force Fk over the summed kinetic energy Kj for all objects m in the

scene. This is scaled by the possibility Pk,i of the force being applied.

sk,i = Pk,i

(
Fk∑m
j=1Kj

∆x

)
(3)

where Kj =
∑T
t=1

1
2MVt

2 represents the accumulated kinetic energy produced

by the object j over time T as a result of the force k being applied during the285

simulation, obtained using numerical integration. Here M represents mass and

V the velocity of the object j at a given time t. ∆x is an object’s displacement,

but since the kinetic energy is calculated numerically over fixed length intervals,

this value is equal to one.

Possibility Pk,i represents the likelihood of a given force Fk being applied290

to object i. This is defined as whether the force could collide with the object

without hitting first another entity within the scene. For example forces from

below an object on a plane would collide with the surface first, therefore would

not be considered.
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Pk,i =

1, if Fk directly collides with object i

0, otherwise

(4)

Forces of different strengths are applied to the center of each collision shape295

(object) during the simulation. The strength of these forces is widely sampled

to ensure that objects of both large mass and small are effected and provide

a measurable energy output. The force direction (angles) is selected uniformly

over a sphere.

The resultant overall kinetic energy K for each object j is calculated. By300

analysing the amount of kinetic energy produced by each object for each force

F , we can ascertain if, during the course of that simulation, an object has been

dislodged from the surface or if other objects within a scene have been affected

due to collision. By varying the strength of force we build up a picture of how

unstable an object is in its environment. The total stability S of a scene is given305

as the sum of the estimated stability s for each force k applied to each object j.

S =

r∑
k=1

m∑
j=1

sk,j (5)

The outcome of this allows the differentiation between the case of an object

(e.g. glass bottle) being placed at the center of a table or at the edge, evaluating

with enough precision the stability of each scene (Figure 5).

3.4. Hazard shape descriptors310

The following sections outline in detail the proposed descriptors used within

the Risk Estimation Framework to evaluate the hazardous properties of an ob-

ject within a scene.

3.4.1. Physics Behaviour Feature (PBF) as a Shape Descriptor

Using the behaviour of an object within a simulation environment as a fea-315

ture descriptor is a novel concept. Based on the values generated from a physics

14



simulation a feature vector can be constructed and a classification made rele-

vant to its risk. The essence of the methodology is to define a feature descriptor

that describes how each individual object acts when a force is applied. In Fig-

ure 6, an overview of how this feature is incorporated into the Risk Estimation320

Framework is presented.

TEST

TRAIN

PHYSICS BEHAVIOUR FEATURE
IMPORT TO PHYSICS 

SIMULATOR

APPLY FORCE

RISK SCORE

TRAIN MODEL USING 
COMPLEX ADABOOST

TEST USING MODEL

CREATE FEATURE

Figure 6: Physics Behaviour Feature flow. Initially an object is imported into the simulation

environment. A single force is applied to the object and the position and rotation information

is recorded. A feature vector is constructed and a model trained using Adaboost. The process

is repeated with a new unknown object and, using the previously defined model, a classification

as either hazardous or safe is returned.

Once pre-processing has been performed, an individual bounding shape for

an object is passed to the physics engine. The goal is to take a single force from

a fixed direction with a fixed magnitude and apply it to each individual object.

The proposed feature descriptor is made up of the resultant simulation output325

data with reduced dimensionality.

For a given object x, force is applied to its bounding shape and it’s angular

velocity ω (in terms of x, y, z) over the duration of the simulation t is recorded.

A feature vector is constructed from this data utilising dimensionality reduction

to reduce three dimensions to two, additionally the data is sampled at a rate330

of one in ten to reduce the length of the final vector. The resultant feature

vector corresponds to the physical and shape characteristics and properties of
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Figure 7: Physics Behaviour Feature, overview of the feature extraction process. (a) Simu-

lation run on object bounding shape, angular velocity captured per frame, (b) The 3D plot

of collected data, (c) Data reduced into 2D space and (d) down-sampled to the final feature

vector (ω) without any significant loss of information.

an object in a scene.

~xω = {ω1, ...,ωt} (6)

These features are used to create a decision model from supervised learning.

A binary classification is returned defining the object as either being hazardous335

(1) or not (0). A confidence score based on the model’s assessment can be used

as a weighting to the binary classification. These values contribute to the hazard

shape risk element as specified in (2).

3.4.2. A novel robust kernel for 3D shape descriptors

Other descriptors that could be used to identify hazardous objects based340

on their intrinsic properties (e.g. sharp, pointed) are 3D local shape features

such as 3DSIFT, 3DHOG, 3D Voxel HOG [18], etc. Supervised learning tech-

niques are utilised to classify the objects as risky or not, but due to noise of

the RGBD acquisition devices and their low resolution the obtained accuracy is

effected significantly. As a result of this, careful attention must be given to the345

outliers ensuring that the classification accuracy is reliable and remains as high

as possible. In the following analysis the robust kernel for 3D local descriptors

is outlined using 3D Voxel HOG [18] as an example, however the process is

applicable to any descriptor without any modifications.
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Traditional HOG applies a gradient vector to each pixel in an image in either350

one or both of the horizontal and vertical directions. The image is then divided

into overlaying blocks, which in turn are made of a number of cells that contain

a set number of pixels. For each cell, a histogram is created with evenly spaced

bins representing gradient angles. Each pixel’s gradient angle votes for a bin,

with the contributed value being weighted in some way, usually utilising the355

gradient magnitude. Finally each block of cell histograms is normalised locally

to reduce the impact of changes in illumination and a concatenation of the

histogram values is used as the final feature vector.

This process is extended to the third dimension though the use of voxels.

The process begins by breaking the voxel volume up into set feature blocks f360

comprised of a number of cubic 3D cells c, which in turn are made up of voxels

v. Both number of blocks in a feature and number of voxels in cell is found

experimentally and depends largely on the resolution of the 3D scans. For each

voxel v within a cell the filter mask [-1,0,1] is applied on its neighbouring voxels

in all three dimensions giving us the gradient vector ~g and its magnitude ‖~g‖.365

Finally a weighting w is computed based on the gradient magnitude ‖~g‖ and

the total number of voxels in the cell c. The resultant 3D HOG histograms can

present a way of identifying different types of features and intrinsic properties

within an object. The same concept is applied to all the other 3D descriptors

following their original implementations but allowing them to handle voxelised370

objects.

Let ~x3D be the p-dimensional vector obtained by applying the 3D Voxel

HOG (3D VHOG) in an area of a given scene. Based on the work in [19]

on robust correlation translation estimation, the L2-norm is replaced with the

dissimilarity measure below:375

d(~x 3DVHOG, ~x 3DVHOG
q ) = ∑

c

{1− cos(aπ(~x 3DVHOG − ~x 3DVHOG
q ))} (7)
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where the values of the corresponding 3D VHOG features ~x 3DVHOG, ~x 3DVHOG
q

are represented in the range [0, 1]. A small value for α results in a function which

resembles the L2-norm. With increasing α, the effect of large distances possibly

caused by outliers is reduced. In general, α represents the frequency of the

cosine and is optimized to suppress the values caused by outliers. This kernel380

can be represented using the Euler form of complex numbers. In more detail,

the angle values of ~x 3DVHOG normalised in [0, 1] are mapped onto the complex

representation ~z 3DVHOG

~z 3DVHOG =
1√
2
eiaπ~x

3DV HOG

(8)

The values of ~z 3DVHOG will be now considered the feature vector used in our

learning mechanism. The proposed robust 3D VHOG is a descriptor feature385

refinement, which aims to reduce the effects of these outliers. The same kernel

can be used without any modification by the other descriptors such as 3D SIFT,

3D HOG and 3D Harris.

The pseudo code for the robust 3D VHOG implementation is outlined below.

1. choose Size of Cell and Feature Block390

2. FOREACH Voxel v DO

3. compute Weight w, GradientVector(~g),

Vector Magnitude ‖~g‖

end

4. FOREACH Cell c in Feature Block f DO395

5. create blockHistogram(θ_bins, φ_bins)

6. FOREACH voxel v in c DO

7. insert w‖~g‖ into blockHistogram(θ, φ)

end

end400

8. L2Normalize(blockHistogram in Feature)

9. RobustKernel(Feature)

end
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3.5. Complex and Hyper-Complex Adaboost

This part of the proposed framework for risk estimation and scene anal-405

ysis concerns the classification process which is based on supervised boosting

techniques. In this section a novel extension of Adaboost is proposed to han-

dle complex or hyper-complex feature vectors such as those produced by the

proposed robust kernel for the 3D VHOG descriptor or any other similar one.

3.5.1. Learning via Boosting410

The motivation for the proposed complex Adaboost comes from the pro-

posed robust descriptor. The descriptor encodes histograms as angular data of

the form z = cos(a) + j sin(a). In this space, to measure similarity a Hermi-

tian inner product between two descriptors z1 and z2 can be defined as zH1 z2.

Although one can replace this with a concatenation of the cosines and sines415

of the form x = [cos(a); sin(a)] and then measure similarity using the familiar

inner product xT1 x2, this implies assuming independence between the elements

of the feature vector. This assumption is not always valid, and although com-

monly accepted, it may lead to a loss of discriminative richness of the vectorial

features [1, 31], which can be exploited further by considering the correlation420

information between the components.

Adaboost is a learning technique that creates a non-linear classifier to sepa-

rate data into two groups. Weak classifiers are defined with a final strong classi-

fier being a combination of these. At each iteration the weak classifiers with the

lowest error margin are used to define the next in a ‘greedy fashion’. Regarding425

the proposed features in both cases given N training examples (~x1, ..., ~xN ), the

corresponding labels (y1, ..., yN ) with yi ∈ {−1, 1}, and an initial distribution of

weights W1(i) a strong classification model H(x) is obtained based on the weak

classifiers h.

The weak classifiers are trained over a number of iterations Q using the430

weights’ distribution Wt aiming to minimize εt, defined as the weighted sum

error for misclassified points εt =
∑
i wi,te

−yihiαt with α to be the minimizer of

the exponential error function. In each iteration the error εt is estimated based
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on the current weights Wt, which are updated before the next iteration.

Wt+1(i) =
Wt(i) exp(−atyiht(xi))

Zt
(9)

where at = − 1
2 log( εt

(1−εt) ) and Zt = 2
√
εt(1− εt) is a normalization factor.435

The strong classifier is defined as H(x) = sign(f(x)), where f(x) = ~a·~h(x)
‖~a‖1 .

Regarding the boosting approach, because of the way weak classifiers are

selected a complicated feature problem can be broken down and classified using a

sparse classification rule, based on only a few features. This makes computation

much faster as only a subset of the features are used. This is essential if the440

methodology is to be implemented in a real time scenario.

Finally, in order to define the second element H of the risk score R in (2)

related to the ‘hazard intrinsic features’ the obtained outcomes from the classi-

fication process above are utilised.

H3D =
1

m

m∑
j=1

(∑M
k=1 wDG(j, k)∑M
k=1G(j, k)

)

Hω =
1

m

m∑
j=1

wD(j) (10)

where wD = f(x) normalised and G = 1
2 (sign(f(x)) + 1). As it is shown in

(10), the confidence score obtained from Adaboost is used to evaluate the risk

level of the scene and the objects.

As in our setting both the objects as well as their locations are known, we445

opted for a discriminative approach based on robust descriptors extracted from

the objects of interest and supervised learning using complex Adaboost instead

of a bagging approach.

3.5.2. Complex and Hyper-Complex Adaboost

In this section we present Complex and Hyper-Complex Adaboost, which450

implement a modification to the traditional Adaboost utilising complex num-

bers for use within weak classifiers suitable for the proposed robust kernel. In
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Adaboost, each weak classifier ht must determine the optimum threshold per

feature dimension that minimises the classification error εj , as described in (11).

ht = arg min
hj∈H

εj =

m∑
i=1

Dt(i)[yi 6= hj(xi)] (11)

with Dt being the importance weight for each sample i, with value xi and label455

yi, at each iteration t. Dt is given by

Dt(i) =
Dt−1(i) · e−αtyiht−1(xi)

Zt−1
(12)

where Zt−1 is a normalization factor chosen so that Dt is a distribution.

There exist many methods in which this decision can be calculated, one such

optimised and fast approach [30] computes cumulative histograms per feature

for each of the classes. The histograms allow for the selection of a thresholding460

bin, chosen to maximise the number of samples of one class whilst minimising

the number of the other. The point of minimum error is obtained and for each

iteration step of the Adaboost algorithm the feature with the lowest minimum

error is selected as the weak classifier.

This concept forms the foundation of the proposed method. Cumulative465

histograms per feature are modelled as bi-dimensional distributions allowing for

the use of complex numbers. The use of complex number theory extends the

interpretation of a linear one dimensional space into two. Within this space, any

given complex number re + im · i is now represented as a point (re, im). This

alters the mathematical meaning and significance of concepts such as minimum470

and maximum, thus altering the actual definition and implementation of the

weak classifiers.

As before a threshold point is obtained, that takes into account that the max

and min operators have a different interpretation in the complex number space.

The threshold is used as a linear decision border by applying the operators475

to the real and imaginary parts, or as a curve border by applying it to the

magnitude and angle (Figure 8). In the same way the complex number space
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(a) (b)

Figure 8: An example of the robust 3D VHOG descriptor is shown with the decision border

calculated by the first weak classifier on the complex space considering (a) a linear border

for the cartesian space or (b) a curved one for the polar space. In our evaluation process the

linear case was selected experimentally.

can also be reinterpreted as polar coordinates rather than cartesian, by using

the real and imaginary coordinates as module and phase prior to the creation

of the bi-dimensional histograms (Figure 9e).480

With either case, it is important to outline the differences that the proposed

methodology has as opposed to using conventional Adaboost with the real and

imaginary parts as independent features. In essence using conventional Ad-

aboost in this way would not respect the complex number nature of the feature

source. The relationship between the imaginary and real numbers is not inde-485

pendent but interrelated as a result of the complex number phenomenon. Thus

by considering them in isolation that link is lost, this leads to a less rich deci-

sion as only half of the information is available when the optimisation search is

applied.

To preserve this link; the optimization search to find the threshold, which490

provides the minimum error in the feature space, is extended from one dimen-

sion into a two dimensional search. This however increases computational time,

to avoid this an efficient use of feature data is integrated into the methodology,

which requires fewer iterations. The cumulative distributions are calculated
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(a) (b) (c)

(d) (e)

Figure 9: Example of weak classifier for a complex feature. a) Samples for two classes repre-

sented in the complex domain (y-axis flipped to fit with the integral images). b) Cumulative

distribution of class 1 samples calculated using integral image and with range of colours moving

from red (minimum) to blue (maximum) corresponding to the summed areas. c) Cumulative

distribution of class 2 samples. d) error distribution and point of minimum error (white spot)

calculated by the complex weight classifier. e) error distribution and point of minimum error

(white spot) understanding the complex space as polar coordinates.

by applying the integral image [51, 4]. Instead of evaluating each possible hy-495

pothesis until finding the optimum, leading to the consequential computational

repetition of overlapping areas, a cumulative distribution function is precalcu-

lated (Figure 9). The application of the integral image technique allows us,

in a single pass over the distribution, to efficiently compute a bi-dimensional

cumulative distribution function using the following equation:500

Q(f, c) = Q(f, c − 1) + Q(f − 1, c) − Q(f − 1, f − 1) + h(f, c) (13)

where h is the original distribution function, modelled as a histogram. Q is

the cumulative integral image and f and c are the column and row indexes,

respectively.
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Figure 10: Some objects of the new 3D Risk Scenes (3DRS) dataset.

In a similar manner that complex numbers extend the feature space to a two

dimensional space, quaternions extend it to a four dimensional space (and to505

three dimensions in case of pure quaternions). As such the proposed method-

ology is extendable to higher numbers of dimensions, importantly without as-

suming independence between the values of these vectors and therefore without

losing any of the relational information.

To allow for this, and in the case of quaternions, the optimisation search510

step must be done in a four dimensional space to find the decision threshold.

By replacing the integral image with a multidimensional extension of the in-

tegral image [48, 26], the required four dimensional cumulative histogram can

be efficiently calculated and the threshold can be extracted. Therefore (13) is

transformed to:515

QDim =
∑

p∈{0,1}d
(−1)d−‖p‖1Q(xp) (14)

where d is the image dimension, Q is the bi-dimensional integral image of the

histogram h, and xp represents the multidimensional rectangle [x0, x1] to be

evaluated at each position.

Finally, multi-Adaboost is applied using the one-against-one approach by

constructing several binary classifiers for each pair of classes and training over520

the instances from both classes. In order to obtain the final classification, the

individual results are combined using a majority vote.
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3.6. Overall risk score estimation

An overall risk score for each scene is finally calculated combining the pre-

vious equations for Stability (5) and Hazard Features (10), based on (2). These525

values are normalised and the weights wS and wH can be selected based on

the expected application. For example in a chemistry lab, the weighting given

to the stability of objects would be higher than to the presence of hazardous

objects. This would add more credence to the presence of containers in unstable

positions rather than hazardous objects within the environment. The proposed530

framework can be extended to support any other forms of measurable risk (e.g.

temperature) through the addition of extra terms in (2) based on (1). There-

fore the risk analysis system can be tailored to each individual environment

(e.g. chemistry lab, smart home, etc.) based on circumstance (e.g adults, at

risk persons) and the available acquisition devices. Importantly the framework535

requires no temporal knowledge to estimate the risk as such they system runs

on a per frame basis. However due to the computation requirements of the

preprocessing and complexity of feature extraction it is currently not a online

implementation.

4. Results540

The following section outline the evaluation process used to assess the vi-

ability of the proposed methodology. Initially an overview of the dataset and

evaluation environment is given, followed by individual sections that relate to

separate aspects of the proposed methodology.

4.1. Evaluation process545

To effectively test the proposed methodologies we make use of the 3D Risk

Scenes (3DRS) dataset. Using the Microsoft’s Kinect and Kinect Fusion [25], 27

real objects (Figure 10) and 42 indoor scenes (Figure 11 and 12) were captured.

Additionally, meta data concerning the objects has also been captured manually,

providing physical properties such as weight. For the following experiments only550
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Figure 11: Some scenes of the new 3D Risk Scenes (3DRS) dataset with the three levels of

stability for each one.

the RGBD data has been used, the meta data for these objects has not been

utilised unless otherwise stated.

Of the 27 objects captured 12 are classified as hazardous with the remaining

15 safe. These include everyday tools and objects commonly found around

the home such as knives, irons, balls, cutlery, mugs, bowls, bottles, computer555

equipment, scissors, vases, etc. Using these objects 42 scenes containing three

objects placed on a surface were captured. All scenes were configured on a

square table consisting of 3 objects per scene. In more detail, these 42 scenes are

split into 14 different scenarios. Each scenario has 3 iterations that represent a

different stability level based on the objects predefined locations, i.e. the objects560
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Figure 12: A scene from the new 3DRS dataset reconstructed using Kinect Fusion for the

three levels of stability.

are moved closer together on the plane within the scene (Figure 13).

In order to obtain the ground truth for each scene and to ensure that the

parameters of the tests are fully controllable, the objects were manually placed

on a surface at predefined locations. Each location as we can see in Figure 13,

is represented by a different colour which corresponds to a specific stability-risk565

level.

Each scene and each of the 27 objects are run though the pre-processing

step. For all cases a voxel volume representation is returned with a resolution of

256×256×256 voxels, representing an approximate volume of 50cm3. Any lower

resolution and shape information about the object would be lost. Additionally,570

the returned 3D reconstruction of a scene from Kinect Fusion has some prelim-

inary smoothing and hole filling techniques applied, and therefore any higher

resolution would not affect significantly the overall performance. The resolution

also has a direct impact on computation time for each stage and as such this

represents a reasonable trade off for processing time against object detail.575

Scene segmentation is part of the pre-processing stage and as such a number

of tests were carried out to ascertain the most effective segmentation algorithm

to use with the dataset. The segmentation algorithms evaluated included; K-

means using a random preliminary clustering phase, Mean Shift with a band-

27



Figure 13: An example scenario with each of its iterations. The level of complexity and

stability is increased from (left) a simple layout with lower complexity but higher instability,

(mid) to an average complexity and instability, (right) to a complex with lower instability.

width parameter found experimentally, and Distance based clustering based on580

predefined centroids. Ground truth was established manually and accuracy is

defined as the percentage of voxels correctly assigned to their respective object

cluster. The results of which are presented in Table 1. As the objects in experi-

ment environment do not touch, the object clusters are defined well enough that

a predefined number of clusters is not required to achieve good segmentation.585

In the instances where voxels are assigned to the wrong object cluster, bounding

shapes are still obtained based on the wrongful classification. However, due to

the recursive reduction phase, the bounding shapes are iteratively reduced to a

point where there is no longer any interaction between them.

The algorithms are evaluated on all scenarios and results are grouped accord-590

ing to stability level, which represents the increasing level of difficulty for the

segmentation in each scenario and the reducing instability (Figure 13). Level 1

represents the objects placed at the maximum distance apart, with level three

representing all three objects in close proximity. The k-means algorithm was

found to be the most efficient at separating the objects across all the complexity-595

instability levels.

4.2. Stability results

To demonstrate the efficiency of the proposed stability concept, initially 3

experiments were conducted in which an example bounding shape is passed to

the physics simulation and the resultant stability was visualised, (Figure 14).600

The simulation software employed is based on the Bullet 3D Real-Time Multi-
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Table 1: Segmentation accuracy for all the levels of stability (see Figure 13 with 1-left, 2-mid

and 3-right). Accuracy defined as the percentage of voxels assigned to the correct object

cluster.

Stability level K-Means Mean Shift Distance

1 98.86% 97.58% 86.45%

2 86.26% 86.88% 83.32%

3 82.87% 81.62% 78.17%

Overall 89.33% 88.69% 82.65%

(a) (b)

(c)

Stability Level
1 2 3

E
ne

rg
y

500

550

600

650
Example Scene Stability Test

(d)

Figure 14: Example scene stability test. Results visualised using circles placed around the

object indicating the direction and the level of instability in case (a) Far Left Corner, (b) Left

Side and (c) Centered and (d) Scene energy per stability level in graph form. The larger the

sphere the more energy output as a result of the force. Additionally emphasized by colouring,

where red is a high energy output and blue a low.
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Figure 15: Visual representation of applied forces, force is only applied if the conditions in (4)

are met. Each sphere represents the angle from which a force is applied, the distance from

the center black sphere represents the magnitude of the applied force.

physics Library [37]. The velocity and angular velocity information for each

object at each time frame is extracted and recorded. To visualise the data

we position spheres to represent the source (direction) of the force and their

magnitude, the further away from an object a sphere is the larger the magnitude605

of force it represents. The colour and size of each sphere represent the resultant

instability, the larger and more red a sphere the higher the energy output as

a result of the force applied from that direction. In these examples force was

applied from 18 points around the object, each with two levels of magnitude.

Forces applied from a direction that would push the object off the table result610

in the largest energy output, thus represent higher instability.

As with the 3DRS dataset, this example scene has three levels of stability.

As the object comes towards the centre of the scene we can see that the energy

output decreases (Figure 14d). This follows the logical assumption that objects

at the centre of a table are less risky than those at the edge or corner.615

To further evaluate this, the stability of 42 real scenes from the 3DRS dataset

(14 scenarios each with 3 stability levels) were also analysed. For these exper-

iments, force was applied from points (directions), uniformly sampled along a

sphere, with various levels of magnitude (Figure 15). As each scene contains

more that one object, and all objects in a scene are represented in a simulation,620

the effect of collisions between the objects is also taken into account. This is
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Figure 16: A selection of four scenes with the stability outputs.

visible on the stability plots, especially those of the small objects such as the

knife or mouse. For the simulation an object’s friction coefficient was globally

set 1, while the angular dampening coefficient was experimentally selected to

be 0.4. As all objects in the dataset were assigned the same values there is little625

difference to the results if changed, as such the values chosen have been done

so to produce realistic movement for all objects in the dataset in the simula-

tion and according to the suggested values of the physics engine. To maintain

an autonomous system a rudimentary measure of mass is given by the number

of voxels that each object cluster contains. The scenes’ overall stability was630

quantified according to (3), (4), and (5).

In Figure 16 example estimated stability results are shown. Regarding the

collision shapes, three basic primitives can be used; cube, sphere, and cylinder.

The most appropriate one can be estimated by simply applying all of them and

selecting the one with the least non-object voxels included. The first column of635
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Figure 16 shows some of the real test scenes, the second contains the outcome of

the preprocessing stage, the third shows the scene segmentation results and the

obtained bounding boxes and in the last, the Stability Plots with spheres around

the objects indicating, with their location, the possible direction of instability

and, with their radius/size, the instability level.640

Furthermore, in order to compare the proposed stability estimation approach

with the current state of the art [57], both methods were tested on the same

scenes and the results indicate that the proposed method, which takes into ac-

count the possibility that objects may collide with each other, results in more

realistic estimates, which are closer to the ground truth. In Table 2 the ob-645

tained average stability values for the evaluated 42 scenes are given both for the

proposed method and the work presented in [57]. Each scenario becomes more

compact and centralised as the stability level changes. Observing the results,

it can be seen that as the objects group closer together and move towards the

centre of the table the risk score is reduced (Figure 17) in comparison with650

the work in [57] that has the opposite or no effect. This follows the logical

assumption that those items in the center of a table are more stable than those

at the edge. It can also be observed, from the stability plots, that additional

stability is gained as objects are placed in close proximity to one another, since

their potential collisions will reduce the overall instability. It can be observed655

that the increase in stability is not always uniform, this is in part down to the

differing objects in each scene. The properties of the objects, such as size, mass,

and shape of the objects will all have an impact on how the stability of a scene

changes. For example, a scene with a one larger object and two smaller, will

have a distinctly different stability plot to one where the objects are of a more660

uniform size and mass. This is in part down to the stabilizing effect the larger

object would have on the smaller.

4.3. Evaluation of the robust kernel for the 3D shape descriptors

To evaluate the proposed Physics Behaviour Feature (PBF), analysis was

conducted on the 27 objects from the 3DRS dataset. Once preprocessed, each665
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Figure 17: Instability values for each scenario per Stability Level (a) Proposed method, (b)

Work presented in [57]. Each line corresponds to one of the 12 scenarios used in our experi-

ments. The vertical axis indicates the stability value obtained using (5), and the horizontal

axis indicates the three different stability levels shown in Figure 13. Each of the lines corre-

sponds to one of the scenes. Higher the instability value the less stable the scene is.

Table 2: Average Instability values over all the scenarios at each stability level for the proposed

method and the work presented in [57].

Method Lv1 Lv2 Lv3

Proposed (Mean) 0.3469 0.3138 0.2199

Proposed (STD) (0.1242) (0.1041) (0.0535)

Zheng [57] (Mean) 0.3837 0.3766 0.3833

Zheng [57] (STD) (0.1329) (0.1238) (0.1339)

object and its resultant bounding shape information was used to perform physics

simulations. In order to improve the accuracy of the simulations customised

bounding shapes that best suit the objects can be used and mass information

is supplied for each object in the 3DRS dataset.

Several features were investigated and evaluations were carried out to estab-670

lish which one is the most suitable. Due to the nature of the data and that

are represented in three dimensions, initially all the available components were

utilized to create a feature vector. A pure quaternion representation was consid-

ered where the use of the x, y and z values make up the imaginary components.

Regarding the x, y and z values represent location in 3D space, velocity or the675
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angular velocity. Experimentation was also carried out by reducing the initial

data down to two dimensions combined in a complex representation. Further-

more PCA was used to identify if other projections could be more suitable. In

all the evaluated cases, the features were tested with and without the proposed

complex (or hyper-complex) representation. Both of these complex forms com-680

pliment the use of the Complex and Hyper complex Adaboost, allowing the

exploitation of the relationships between the dimensions of the data to be taken

into account. In this case it was found that the most suitable form was utilising

just the x and z components of the angular velocity.

A visualisation of this feature selection process can be seen in Figure 18-19 for685

two different objects. Subfigure (a) shows the collision shapes in the simulation,

(b) the 3 components (x,y,z) of the angular velocity plotted over time, (c) the

dimensionality reduction and (d) the final feature vector after down-sampling.
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Figure 18: Physics Feature extraction before and after the dimensionality reduction and the

down-sampling stages.
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Figure 19: Physics Feature extraction before and after the dimensionality reduction and the

down-sampling stages.

About the other 3D shape descriptors, the 3D HOG is based on the work in
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[7], 3D Voxel HOG was based on the work in [18], the 3D SIFT implementation690

based on the papers [41, 23], the 3D Harris implementation considers the work

in [44] and finally the FAST 3D implementation based on the work in [38].

Additionally to test the effectiveness of the proposed robust kernel, the fea-

ture vectors for all of the above descriptors have also the kernel applied, pro-

viding a comprehensive review of its performance. For the ground truth we695

define an object as either dangerous or not. However most of the tested de-

scriptors operate on local areas of the voxel volume, thus ground truth for each

of these blocks or feature spaces is also defined. All descriptors were trained

with the same training set using both Adaboost [21] and the proposed Complex

Adaboost. For testing the ‘leave-one out’ protocol was used and a set number700

of iterations (500) was specified to create the models. This number was found

experimentally to produce the best overall classification models for the dataset.

In some cases convergence would be reached sooner.

Regarding the 3D descriptors (3D Harris, 3D SIFT, FAST 3D, 3D VHOG

and 3D HOG) based on experimental results and where relevant the values for705

block and cell size were set to 2 cubic cells and 16 cubic voxels respectively.

Table 3 outlines the results of each 3D feature descriptor on the 3DRS dataset,

additionally the improvement gained through the use of the novel robust kernel

is also displayed.

It can be seen that many of the well known feature descriptors are applicable710

to this task. However 3D Harris and FAST 3D both performed poorly, this is

in part down to a lack of convergence when training the model, as well as a

tendency to over fit and as such do not provide a consistent enough description

of this local phenomena potentially due to small variations in the voxels or due

to the voxel resolution of the scene. From the average results obtained, the715

overall F1 score was improved by 7.57% indicating the proposed robust kernel

has strong potential for use with most of the well-known 3D descriptors.

When compared with other features, PBF shows promising results in the

detection and classification of objects in this approach. The formation of the

feature vector has a direct influence on the types of objects that are well clas-720
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Table 3: Comparison of proposed methodologies versus existing 3D Feature Methods with

and without the proposed robust kernel.

Feature F1 Sensitivity Precision Accuracy

3D HOG 0.699 0.750 0.600 0.667

Robust 3D HOG 0.686 1.000 0.522 0.593

3D Voxel HOG 0.714 0.833 0.625 0.704

Robust 3D Voxel HOG 0.769 0.833 0.714 0.778

3D SIFT 0.545 0.500 0.600 0.630

Robust 3D SIFT 0.571 0.667 0.500 0.566

3D Harris 0.267 0.167 0.667 0.593

Robust 3D Harris 0.353 0.250 0.600 0.593

FAST 3D 0.000 0.000 1.000 0.556

Robust FAST 3D 0.261 0.250 0.273 0.370

PBF 0.690 0.833 0.588 0.667

Robust PBF 0.727 0.667 0.800 0.778

PBF+3D VHOG 0.750 1.000 0.600 0.704

Robust PBF+3D VHOG 0.828 1.000 0.706 0.815

Average 3D 0.5236 0.5833 0.6686 0.6459

Average Robust 3D 0.5993 0.6667 0.5879 0.6419

sified. This property of the feature could be exploited to classify other aspects

of an object. A combination of the proposed physics (PBF) and the shape (3D

VHOG) was devised. To ensure the safest results the two features were fused

using an ‘OR’ operator on an objects classification as hazardous. If either PBF

or 3D VHOG returns a result of hazardous then that object is deemed unsafe.725

This combination of features allows analysis of an object cluster on both a lo-

cal level (3DVHOG) but also at an overall shape level (PBF). This combined

descriptor results an overall improvement as shown in Table 3 indicating that

their fusion allows to accurately recognise risky and safe objects.

Precision is the fraction of retrieved instances that are relevant, defined as the730
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true positive rate divided by the number of correctly identified classifications.

Sensitivity is the fraction of relevant instances that are retrieved, defined as true

positive rate divided by the number of positive results that should have been

classified. Both precision and recall are therefore based on an understanding

and measure of relevance. Accuracy is a description of systematic errors, or a735

measure of statistical bias. Finally the F1 Score is another measure of accuracy

that uses precision and sensitivity to compute its score.

These results clearly outline that with the use of the proposed robust kernel,

improvements in the F1 score and in most cases the sensitivity can be seen on a

wide range of 3D descriptors providing more accurate and robust classifications.740

4.4. Performance evaluation of Complex and Hyper Complex Adaboost

To evaluate the advantages of the proposed Complex Adaboost the complex

3D feature vectors obtained after using the proposed kernel were compared with

the classic Adaboost in terms of complexity. A comparison is given in terms of

the training time and the number of iterations required. As before the maximum745

number of training iterations was specified to 500. Testing was carried out on

an i7-4870 2.5GHz PC with 16GB RAM running Windows 8.

The results in Table 4 were derived from the average results from 27 gener-

ated models in each descriptor. The iterations were limited to 500, thus results

with this number of iterations did not converge. We can see that computational750

speed gain is considerable with similar numbers of iterations being completed

within a fraction of the time needed with conventional Adaboost.

To outline the advantages of Hyper Complex Adaboost, experiments were

conducted on a 3 dimensional permutation of the PBF. 16 different feature vec-

tor combinations, utilising all three axis of either the angular velocity, rotational755

velocity or Position, were analysed using both Adaboost and the proposed Hy-

per Complex Adaboost. The feature vectors were either concatenated vectors

of all the data or Hyper Complex variants where the three axis made up the

imaginary components of the hyper complex number. The average results for

the 16 experiments is shows in Table 5. As can be expected the results of the760
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Table 4: Complex Adaboost vs standard Adaboost, training times and iterations comparison.

Standard Adaboost Complex Adaboost

Feature Time(s) Avg #Iter. Time(s) Avg #Iter.

3D HOG 348.57 103.96 9.08 46.96

Robust 3D HOG 651.46 40.67 45.15 14.82

3D Sift 855.16 72.92 19.95 72.92

Robust 3D Sift 1603.66 61.74 43.77 78.96

3D Harris 2261.00 500 46.268 500

Robust 3D Harris 4576.38 500 106.71 500

Fast 3D 2351.40 500 52.33 500

Robust Fast 3D 15959.70 500 93.88 500

PBF 162.56 4.41 1.44 9.26

Robust PBF 1781.7 4.15 4.04 6.98

Average 3D 1195.74 236.26 25.81 225.83

Average Robust 3D 4914.58 221.31 58.71 220.15

hyper complex variant of the feature vector with the standard Adaboost has

the lowest average results. Utilising the hyper complex feature vector with the

proposed Hyper Complex Adaboost, the highest rate of accuracy is achieved.

The overall results are comparatively low and as such the use of all three axis

in the final PBF+3DVHOG feature was detrimental to performance. However765

these results illustrate the advantages of the use of hyper complex features and

the proposed Hyper Complex Adaboost.

4.5. Overall Risk Scores

An overall confidence (risk) score for each scene is finally estimated combin-

ing the previous partial results using (1), (5) and (10); with all the results shown770

in table 6. About the ground truth it is available since areas of high, medium

and low instability are defined as we can see in Figure 13. The ground truth for

the unsafe objects is again given from our database where each object is labeled
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Table 5: Hyper Complex (HC) Adaboost vs standard Adaboost accuracy evaluation.

F1 Sensitivity Precision Accuracy

3 Axis Feature w/ Adaboost 0.293 0.276 0.389 0.488

3 Axis Feature w/ HC Adaboost 0.292 0.318 0.292 0.456

HC Feature w/Adaboost 0.108 0.073 0.210 0.472

HC Feature w/HC Adaboost 0.348 0.365 0.438 0.537

Table 6: Overall Hazard (shape properties) and Instability scores for the testing objects

averaged for all the scenarios in each level with higher values indicating higher risk (e.g.

presence of sharp features, close to the corner, etc.).

Risk Score Level 1 Level 2 Level 3 Error

Instability Proposed 0.1487 0.1387 0.1075 0.074

Instability Zheng et al. 0.1643 0.1616 0.1627 0.095

Hazard Features VHOG 0.2500 0.2500 0.2500 0.1944

Hazard Features PBF 0.3056 0.3056 0.3056 0.1389

Hazard Features PBF+VHOG 0.3778 0.3778 0.3778 0.0667

as safe or not and this information is then utilised in each scene. Total risk is

defined as the weighted sum of the Hazard and Instability scores based on (2)775

with wS = wH = 0.5 for all the scenes.

Table 7 outlines the hazard scores of each object of the 3DRS dataset ac-

cording to the PBF+3DVHOG feature descriptor. It can be seen that in most

cases the risk score is high for objects that demonstrate some kind of risk e.g

the four types of knives, the irons, hammer and the two sets of scissors. Equally780

less hazardous items are scored low; the ball, bowl, mug etc. However there are

cases where the descriptor has been over sensitive, the rubix cube and laptop

being examples of this. In the given scenarios it is important for the descriptor

to be over sensitive to risk so as to ensure that no hazards are overlooked.

Additionally a breakdown of the calculated risk score per scene, taking into785

account both the stability of the objects and their respective hazard features is
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Table 7: Risk Score of individual objects calculated using PBF+VHOG feature.

Object Bal Bot Bow Con Fra Ham Hed Ir Ir2

Hazard Score 0.06 0.00 0.03 0.16 0.93 0.78 0.32 0.77 1.00

Object Kn Kn2 Kn3 Kn4 Lp Lp2 Lap Mse Mug

Hazard Score 0.86 0.86 0.82 0.82 0.10 0.22 0.76 0.21 0.25

Object Pnc Pno Pen Rub Slt Sc Sc2 Scr Spt

Hazard Score 0.02 0.78 0.88 1.00 0.93 0.76 0.76 0.92 0.79

(a) (b) (c)

Figure 20: Illustration of instability per iteration of an example scene. As the objects get

closer together and further from the edges of the table the instability score goes down

given in Table 8. As the weighting for each risk element is equal in this case, the

effect is that the risk scores are smoothed out over the different iterations. With

the adjustment of these scores a system can be designed to better illustrated

relevant risk in a given environment.790

5. Conclusions

In this work the concept of risk analysis is presented for 3D scenes and

novel solutions are introduced by combining computer vision and Newtonian

physics. A robust kernel for 3D descriptors and a new approach to evaluate

the overall stability of a scene were introduced and tested. Also, due to the795
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Table 8: Risk score per scene. Using PBF+VHOG feature and Stability estimation

Scene 1 2 3 4 5 6 7 8

Lv1 0.271 0.414 0.395 0.356 0.632 0.923 0.235 0.535

Lv2 0.268 0.409 0.392 0.344 0.623 0.911 0.231 0.533

Lv3 0.253 0.357 0.374 0.317 0.578 0.888 0.214 0.481

Scene 9 10 11 12 13 14 15 16

Lv1 0.250 0.368 0.226 0.504 0.240 0.509 0.650 1.00

Lv2 0.246 0.349 0.224 0.482 0.239 0.432 0.573 0.983

Lv3 0.229 0.328 0.214 0.481 0.229 0.312 0.452 0.704

local nature of the proposed 3D features, issues relating to the normalization

of a mesh are avoided, removing a potentially complex pre-processing step.

Furthermore, features based on the objects’ angular velocity are introduced

allowing classification of objects as safe and unsafe. Additionally, a complex

version of Adaboost was suggested that can exploit the correlation between the800

real and imaginary elements of complex descriptors with lower complexity. An

extended version of the 3DRS dataset was provided for 3D scene risk analysis

and experiments were performed showing that the proposed approach has the

potential to accurately measure risks in scenes providing good estimates.

It is the intension of the authors to further develop the Risk Estimation805

Framework to improve the speed and computational time as well as through

the use of additional risk elements, such as human interaction, to enrich the

initial risk score of a potential hazard.
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