
Greenhalgh, Chris and Benford, Steve and Hazzard,
Adrian (2016) ^muzicode$: composing and performing
musical codes. In: Audio Mostly 2016, 4-6 Oct 2016,
Norrköping, Sweden.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/37081/10/musicodes_ePrintsFormat.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Nottingham ePrints

https://core.ac.uk/display/76972992?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk

^muzicode$: Composing and Performing Musical Codes

Chris Greenhalgh, Steve Benford, Adrian Hazzard
School of Computer Science, The University of Nottingham
Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK

{chris.greenhalgh, steve.benford, adrian.hazzard}@nottingham.ac.uk

ABSTRACT
We present muzicodes, an approach to incorporating machine-
readable ‘codes’ into music that allows the performer and/or
composer to flexibly define what constitutes a code, and to
perform around it. These codes can then act as triggers, for
example to control an accompaniment or visuals during a
performance. The codes can form an integral part of the music
(composition and/or performance), and may be more or less
obviously present. This creates a rich space of playful interaction
with a system that recognises and responds to the codes. Our
proof of concept implementation works with audio or MIDI as
input. Muzicodes are represented textually and regular
expressions are used to flexibly define them. We present two
contrasting demonstration applications and summarise the
findings from two workshops with potential users which highlight
opportunities and challenges, especially in relation to specifying
and matching codes and playing and performing with the system.

Author Keywords
Musical codes, performing, music information retrieval

ACM Classification
H.5.2 [Information Interfaces and Presentation] User Interfaces–
Input devices and strategies, H.5.5 [Information Interfaces and
Presentation] Sound and Music Computing.

INTRODUCTION
There is a rich tradition of embedding ‘codes’ within music, from
J.S. Bach hiding his name within a sequence of notes [1] to more
readily discernable leitmotifs in operas and films [2]. The advent
of computational algorithms that can extract a diverse range of
features from live musical performance with increasing accuracy
raises the possibility of musical codes that can be recognized by
computers as well as (to a greater or lesser extent) by humans.
Such computer-regonisable musical codes could serve various
purposes, for example triggering media, special effects or musical
control during performance.

We introduce muzicodes, an approach to the composition of
computer recognizable musical codes and their subsequent use
during live performance. Instead of recognizing the final rendered
form of a musical fragment (i.e., a waveform), muzicodes focuses
on underlying musical structures embedded within a musical
work. In our first realization, these take the form of sequences of
notes whose pitches and rhythms may be more or less tightly
specified, ranging from a precise sequence that must be played
tightly to more general melodic or rhythmic shapes that can be
flexibly embedded into a performance.
A musician may define any number of muzicodes for a given
performance, associating each with a different action, for
example, employing one to trigger the display of particular
background images, another to change a backing track and yet

another to change effects or instrument settings. The flexible
nature of muzicodes means that musicians can play the same code
in many different ways, allowing them to improvise around codes
and choose whether to hide or reveal them to the audience. Thus,
performers are free to decide exactly when to embed which code
within their playing and also how to perform that code.

We begin by reviewing related work, based on which we then
present a more complete description of the muzicode concept and
approach. We then describe our initial implementation before
presenting and reflecting on our iterative development process,
including two demonstration applications and two workshops
with potential users.

RELATED WORK
Musical codes
Many composers have played with musical cryptography in their
compositions, including J.S. Bach, Shostakovich [1] and also
Elgar who implanted messages to family and friends in his music
[3]. Musical codes have also provided a compositional
framework for large-scale musical works. For example, in Serial
Composition (also known as 12 Tone Composition), the building
block of a composition comprises a defined arrangement (i.e.
row) of the 12 notes of the chromatic scale, which cannot be
played out of sequence [4]. Compositional variation is achieved
via a range of inversions, transpositions, and the distributions of
the row across instruments.

In contrast to these ‘hidden’ codes are examples of musical codes
that are more obvious to the listener. Leitmotifs were first used in
the operas of Richard Wagner and are still liberally employed in
film soundtrack scoring. Leitmotifs typically represent a character
and may appear alongside their narrative representation or
without, in which case they suggest the presence of a character
without the need for them to be seen on stage or screen. An oft-
quoted example can be heard in the film Jaws, where the ominous
alternating semi-tone theme represents the presence of the
approaching shark [2]. Leitmotifs are often re-composed and
presented in many varied forms to represent the changing
emotional states of its character at different points in the
narrative.

In contrast to systems such as Chirp [5] that directly encode data
in audio form our interest lies in codes that are composed and
performed by humans and that can be flexibly embedded into
performances in ways that range from cryptographic-style hiding
to appearing as discernable motifs. Of course, we also require
them to be recognisable by computers as we now consider.

Music recognition by computers
Music recognition is a large and complex endeavor spanning
several fields of research. Music information retrieval (MIR)
concerns the extraction and use of information from music, which

might be drawn from of an audio signal or a symbolic
representation such as a traditional musical score [6]. A range of
software tools are used to conduct MIR tasks such as the MatLab
MIR Toolbox [7] and VAMP plugins [8] which focus on the
extraction of a broad range of audio and musical features from
audio signals, including pitch, rhythm, timbre, tonality, note
onsets, segmentation, chord progressions and loudness. These
form the basic building blocks for many MIR applications.

Automatic music transcription describes a process where an audio
file is converted to another format, for instance a symbolic
representation such as sheet music [9]; this kind of symbolic
representation (and/or other features) derived from a live
performance forms the first stage of our approach.

Audio fingerprinting concerns the recognition of a specific audio
recording (version identification) [10], with the mobile app
Shazam [11] being a prominent commercial example. In contrast,
we are primarily concerned with live performances, each of which
is unique. Query-by-humming relies solely on the melody
features extracted from songs rather a specific recording [10].
Our interest lies in what a performer might do with such enabling
technologies.

Music information retrieval tools are also employed in live
performance settings, as the following examples illustrate.
Automatic score following (audio-to-score) concerns the
automatic synchronisation between a live audio or MIDI input
(performer) and a pre-composed score [12]. This can then be used
to track the nuances of a live soloist so as to align a computer
generated accompaniment or sound manipulations (e.g. digital
signal processing effects) as well as cueing extra-musical events
such as lighting or visual media [13]. Rowe developed Cypher
[14], a ‘real-time interactive music system’ that analyses
incoming MIDI data and extracts key, chord, beat and phrase
group features which are then used to generate musical
accompaniment. Sound Analyser [15], a plugin for DAW
environments, extracts real-time audio features from its input that
can be mapped to Open Sound Control (OSC) messages to control
live visuals. Rather than following an entire score, or generating a
continuous accompaniment or control channel, we focus on
distinct recognizable musical fragments that performers can
embed at different points and in different ways within an overall
performance.

THE CONCEPT OF MUZICODES
We now introduce the concept of muzicodes, describing how they
are tailored to the context of musical performance, drawing out
key requirements that arise from this and specifying a structure
for muzicodes that addresses these.

The performance context
Muzicodes are intended for use in a live setting, such as a
performance, rehearsal or lesson. We begin with the case of a
single performer or instrument, illustrated in figure 1. During set-
up the instrument, mic, direct line or MIDI source would be
connected to the muzicode system’s input. Typically at the same
time, the muzicode system would be configured (perhaps also
incorporating input from the composer) to support a particular
‘experience’, tailoring the operation and behaviour of the system
for the purpose at hand. During setup, the system would also be
linked to external output devices such as display or light
controllers, other performers’ devices or digital audio systems
although it may also have its own output capabilities such as the
screen of the device it is running on. Then while the performer

plays (or sings) the muzicode system continuously monitors its
input, checking for any of the codes associated with this
experience, and triggering outputs accordingly.

In any given setting there might be more than one muzicode
system, for example there might be one for the venue and/or each
musician might have their own. In other cases the input to a single
system may include several instruments, e.g. from a mic or mix.
Where there are multiple muzicode systems these could
communicate and coordinate with each other, perhaps requiring
combinations of codes from different performers to trigger
coordinated outputs.

Figure 1: Muzicode performance setting

Requirements for muzicodes
This performance context fundamentally shapes what a muzicode
should be. An inevitable complexity – and richness – of the
situation is that the system and the performer may never agree
perfectly about what is and is not a code. Consider a performer
intending to trigger a particular action: they play the code, but
every execution is slightly different (e.g. in timing, tone, or
errors); noise is inevitably present (e.g. in the audio signal, timing
or bit errors); and the algorithms used by the system are imperfect
(e.g. mis-classifying or missing notes). There are also many
situations (e.g. teaching) in which we might like the ‘same’ code
to be triggered by different performers, each with their own
idiosyncrasies, using different instruments, perhaps even
completely different types of instrument, and in different settings.
Consequently, codes need to be defined at an appropriate level
of abstraction. For live performance, this could be at the level of
notes and rhythms, but not at the level of specific timbre or
waveform, so that the ‘same’ code can be achieved at different
times and by different performers. Codes might also be defined
more abstractly or semantically, for example “a chord of D-
major”.

A second key consideration is for the composer and/or performer
to be able to choose to what extent to hide or reveal the codes
for the audience. The composer requires the flexibility to
compose more or less obvious codes, for example, the use of
obvious musical motifs versus more subtly hidden features. In
turn, the performer should be able to decide how noticeable or
subtle their playing of the codes might be, enjoying considerable
latitude with regard to how they interpret them, perhaps including
embellishing and improvising around them.

In addition, when defining codes a balance has to be struck
between the rates of false positives and false negatives, i.e.

Performer

ListenerMusic	Code	
system

Music
(codes)

Feedback Non-musical
performance

aspects

Outputs
(direct	&	
indirect)

Configuration

Performance	relationships

non-code music being heard as a code versus codes being missed.
For example one possible approach might be for a performer to
define an unusual musical ‘prefix’ to their codes so that they do
not play a code by accident, and/or defining a set of similar codes
or patterns to trigger the same action, to take account of common
variations in how the system responds.
Finally, the performer should have the facilities to incorporate
the system’s characteristics into the performance as a whole,
including artistic responses to its flaws and limitations. For
example, the performer might develop strategies to cope with
missed triggers, such as repeating riffs. Or the muzicode system
itself might be presented as an explicit agency within the
performance that sometimes needs to be ‘persuaded’ to act. Thus
the idiosyncrasies of the live performance setting add an
additional layer of complexity to the task of embedding codes into
a musical work, when compared to the challenges of serial or
leitmotif composition.

Muzicode structure and format
A muzicode specifies a sequence of notes that might be played at
some point within a piece of music. In its simplest and most
constraining form each note would be specified as a particular
pitch and duration (and perhaps even tone and articulation) and
the sequence played contiguously, with the notes sounding one
after the other without any other intervening music. However,
given the above requirements, we want to provide a richer set of
options for greater flexibility:

• Pitch and/or rhythm: the notes might be specified by pitch
only, so playable with any rhythm or timing, rhythm only,
playable with any melody or on a percussion instrument, or a
combination of the two.

• Absolute or relative: pitch and/or durational values might be
specified absolutely, i.e. the right pitch or duration must be
played, or relatively, for example based on the first note(s) of
the code, so that it can be played in any key or at any speed.

The composer then has to be able to express the muzicode, which
in our case they do concretely as a text string. This is broken
down into two stages.

First the composer chooses how sequences of notes will be
represented as text. Consider for example the following simple
fragment of melody played at a steady 60bpm (see figure 2):

Figure 2: Sample melody

This might be represented textually as a sequence of: note names
irrespective of octave or timing, “E,F#,E,F#,F#”; note names
with timings in seconds (or beats),
“E/0.5,F#/0.5,E/0.5,F#/1,F#/1.5” (where “/0.5”
indicates a duration of 0.5s); notes in defined octaves with
relative timing, “E4/1,F#4/1,E4/1,F#4/2,F#4/3”
(where “/1” indicates a relative duration of 1); intervals relative
to the final note irrespective of time,
“-2,0,-2,0,0”; and so on. This gives the composer an initial
level of control over how precise or flexible that muzicode will
be. The composer could also specify how polyphony should be
handled, for example whether simultaneous notes should all be
included in the text or perhaps only the lowest or highest note.

Second, the composer identifies the particular textual string(s)
that correspond to the muzicode they are defining. In the simplest
case this would be a single string such as those above, which the
system would look for. More generally the composer could
specify a pattern that identified a set of similar or equivalent
textual forms for a single muzicode. In principle there are many
ways that this could be done; we are currently exploring the use
of regular expressions, which correspond to the simplest class of
automata [16], finite state machines. This opens up various
possibilities when specifying muzicodes such as: using wildcards
(‘.’), ranges (‘[1-3]’) or choices (‘…|…’) to allow alternative
notes or durations; forcing the code to be played at the beginning
(‘^…’), end (‘…$’) or entirety (‘^…$’) of a sequence; and
allowing notes or groups of notes (‘(…)’) to be omitted (‘…?’),
repeated (‘…+’) or either (‘…*’).

PROOF OF CONCEPT SYSTEM
We have implemented a proof of concept prototype1 that supports
the muzicodes system described in section 3.3; the prototype’s
functional architecture is shown in Figure 3. It is implemented as
a web-based client-server system, with the majority of the
functionality implemented within the browser client. The system
includes an ‘experience’ editor (Figure 3, top-right), which allows
the composer/performer to configure the system for a particular
performance.

Figure 3: Muzicodes system architecture

Audio and MIDI input use the WebAudio API. Audio input
depends on a note extractor, currently the Silvet note transcription
VAMP plugin [10] in ‘live’ mode, to estimate timed note onsets
(frequency, time and velocity); this plugin is executed on the
server. Alternatively MIDI note events can be injected directly at
this point. Notes are then assigned to one or more distinct note
streams; this provides initial control over which notes are

1 https://github.com/cgreenhalgh/musiccodes

1

Grand Piano

7

& \\ . .Q! E
Matched
codes

Candidate
codes

Note
stream(s)

Audio	routing

Note	
extractor

Midi	input

Note	stream	
classifier

Experience	
Editor

Experience	
(code)	linkbase

Experience	
parameters

Feedback

Code	classifier

Code	matching	
engine

Code/action	
mapper

Action	
executor(s)

Audio

Timed
notes

Actions

E.g.	Midi	messages,	page	loads,	state	changes…

Midi

MusicCode detailed
system	architecture

Other	
clients

Current	
state

considered together as potential codes. The current prototype
divides sequences of notes into configurable pitch ranges and
time intervals.

Note streams are then converted to candidate codes based on the
specific musical features that have been chosen to define the
codes (as described in section 3.3). To accommodate these
different musical feature representations within the candidate
codes four different code formats are currently defined and
supported:

• Code format ‘n’: note name (pitch information) only. The
stated pitch(s) will be recognised in any octave position. An
example code might be ‘A,C,E’.

• Code format ‘no’: note name and octave position. This code
format uses two character positions, the first for the pitch
name and second for a pitch’s octave position, for example
‘A3,C3,E3’.

• Code format ‘mrle0’: midi note relative to last note equal to 0.
This format concerns interval relationships between pitches,
i.e. relative pitch rather than absolute pitch. This is a
numerical format, where positive (descending) or negative
(ascending) values represent the interval distance from the
final note of the stream, which is assigned a value of ‘0’. For
example ‘-2,0,-2,0,0’ would define the melodic fragment in
figure 2.

• Code format ‘crle4’: count relative to last note equal 4. This
fourth format concerns the duration between note onsets. This
format offers options for rhythmic based codes where pitch
information is ignored. As the VAMP plugin is not aware of
tempo or time signature we chose to frame this format around
the time between note onsets, while the note value (i.e. the
duration that a note is sounding) is ignored. The relationship
of durations is set by nominally assigning the value of ‘4’ to
the delay between the last two notes in the sequence. The
example in would be represented in this format as ‘2,2,2,4’;
the musical fragment has five notes but there are only four
time intervals between those notes.

• Combined formats: beyond the four basic code formats, a
combination of these formats can also be applied to further
extend the complexity of a code. For instance the previous
two code formats could be employed together (i.e.
‘mrle0/crle4’) to form a code that uses both interval and count
relationships. Thus our example in would then be defined as:
‘-2/2,0/2,-2/2,0/4,0’. Alternatively, a format of ‘no/crle4’
would integrate pitch name, octave position and relative count
between onsets.

As part of the experience, the composer/performer specifies the
experience ‘linkbase’, a set of mappings from codes to actions,
including the selected code format for each code instance. In the
current prototype codes are specified and matched as textual
regular expressions. When a candidate code is matched, the
resulting action is currently to output a MIDI message or publish
a URL to listening applications (using socket.io); this URL might
correspond to audio-visual media to display alongside the
performance. The applications receiving these URLs can be on
other networked devices, e.g. a laptop controlling a projected
display, another performer’s tablet or an audience member’s
phone.

Each experience also has a current state, a set of internal
variables, which can enable and disable particular actions at
different points in the performance. The current prototype also

provides continuous feedback to the performer through a live
timeline visualisation of recent notes and note streams, and a
representation of which codes are being matched by the current
notes (see Figure 4).

Figure 4: Muzicode feedback interface (annotated)

EXPERIENCE AND REFINEMENT
We are engaged in an ongoing process of iterative refinement and
evaluation of the muzicodes concept and prototype, which has
involved three iterations to date, successively focusing on:
technical validation; demonstration applications; and initial user
workshops. We briefly summarise these iterations, before
presenting our reflections to date.

Iteration 1
The first iteration of muzicodes supported the core functionality
of the muzicode system, and was used by the authors to assess the
feasibility of the concept. This version demonstrated the technical
integration of the client/server system, including the WebAudio
APIs and VAMP plugin. It also supported feedback to the
performer of the notes and note streams being ‘heard’ by the
system (Figure 3, left). In this version there was no experience
editor, and the system had to be configured by editing a textual
(JSON) configuration file. Code formats ‘n’ and ‘no’ were
implemented in this first iteration.

Iteration 2
The key addition for the second iteration was to provide visual
feedback to the performer about muzicodes that were currently
being matched (Figure 4, top right). As each note is received the
system checks to see how much of each code pattern (regular
expression) has been matched so far and whether the whole code
can potentially be matched. This is fed back to the performer by
highlighting (red) successfully matched portions of each code and
by greying out those codes which can no longer be matched by
the current note stream. This allows the performer to check if a
code is being matched, and potentially to adapt their current
playing within a single phrase. Code formats ‘mrle0’, ‘crle4’ and
combination formats were implemented into this second iteration.
Using the second prototype the authors, who are musicians
themselves, developed two contrasting demonstration
applications. We briefly describe each of these applications and
our experiences with them.

Notes
(green)

Note
streams

(red)

Candidate
codes

Code(s)
being

matched

Local
output

Muzicodes for Irish tunes
Working with this second iteration our first demonstration was
based around traditional Irish music [16], exploring how these
musicians might employ muzicodes in order to draw on diverse
digital materials on the Internet when learning and performing.
We designed a suite of muzicodes to embody distinctive
fragments of Irish tunes. In this case we chose to work with pitch
and disregard timing information as Irish tunes tend to have
distinct melodies but are harder to identify rhythmically due to
sharing just a few rhythmic styles; consequently formats ‘n’ and
‘no’ were used exclusively. As a simple example, below is the
first part of Egan’s polka, a well-known beginner’s tune (Figure
5). The following muzicode in format ‘no’ encodes its distinctive
first two bars played in the register of a fiddle:
“F#5A5B5A5F#5A5B5A5”.

Figure 5: Elgan's Polka

Regular expression string matching can then be used to refine this
basic code in various ways, for example we might employ the
wildcard ‘.’ to make the code recognizable when played in any
register: “F#.A.B.A.F#.A.B.A.”	(or	equivalently	we	could	
use	code	format	‘n’:	“F#ABAF#ABA”).

We designed further codes to be playable by accompanying
instruments such as guitars, citterns and bouzoukis. Our approach
here was to specify the code as the notes of the chord played in
sequence, for example a rising chord of D-major played across
any range of octaves: “^D.F#.A.D.$”. In practice, chords can
have many different voicings and a muzicode designed to capture
the high-level musical concept of a ‘broken chord of D’ would
need to accommodate all of them. On the other hand, the system
might respond differently to each voicing, offering accompanists
a range of interactive possibilities even when playing simple
chords.

We employed these codes to create a range of different
experiences. The first was to support learning, where playing a
memorable muzicode would connect to a tuition web page
containing notes on the tune, sheet music (in standard and ABC
formats [18]) and also an accompanying video that could be
played along to when practicing. We created one variant for
melody instruments and another for accompanists. The second
experience was to support live performance on stage in which the
musician could trigger playback of an accompanying video. The
third was to support jamming at Irish sessions in which playing
the code triggers the display of the name of the tune, answering
the common ‘what was that tune?’ question.

Muzicodes for live performance
Our second demonstration prototyped a performance piece, where
a soloist uses muzicodes to trigger prepared musical fragments at
different points throughout the piece to accompany their
instrumental performance. The piece used a MIDI keyboard
controlling a virtual instrument in Apple Logic Pro X, with the
MIDI notes also being fed directly into the muzicodes system,
and twelve pre-composed musical fragments (hosted audio files)
to be triggered by muzicodes. Typically, the codes we composed
were relatively short strings and simple in their melodic and
rhythmic construction. Different code representations were

employed that used all of the code formats in conjunction with
regular expressions. For instance absolute pitches separated with
wildcards (‘.*’) permit for a code to be played in order, or with
any number of additional pitch events placed in-between allowing
it to be embedded into numerous other manifestations (e.g
"C#[0-9].*G#[0-9].*D#[0-9]"). Other codes used
interval matching rather than absolute pitches (i.e. code format
‘mrle0’), enabling the soloist to perform a code in different keys
or registers. The following code example shows a simple
ascending melodic shape: "^-9/[^,]*,-5/[^,]*,-
2/[^,]*,0$" (in this example a regular expression (‘[^,]*’)
is used to match for any duration value against the interval). The
score representation in Figure 6 shows the code with a starting
pitch of ‘B’.

Figure 6: a simple ascending melodic shape

Our initial exploration revealed a growing desire to compose
several different codes to trigger the same musical fragment.
Typically, these sets of related codes used different code formats,
for example, one code composed around a melody without
duration data and another requiring just the duration data that
would work with any pitch combination. In addition to offering
musical variation, this also provided an alternative method of
triggering an action should the performer experience difficulty
performing one or the other codes. These emerging methods of
code design reflect some of the traditional compositional
approaches used in the variation of musical themes (i.e. leitmotifs,
thematic development and serial composition), and when placed
in a ‘live’ setting presented a flexible approach for triggering
media that would not constrain the range of a performers musical
expression.

We found that the composition of codes as triggers for
accompanying musical elements often had their musical
construction related to these elements. Several codes, for
example, drew directly on the melodic motifs contained within
their triggered fragments. Thus, the presentation of these codes
foreshadowed the introduction of the triggered fragments by
hinting at the music to follow. This observation highlights the
underlying ‘musical’ nature of the muzicode approach.

Iteration 3
Based on our experience in developing the demonstrations we
created a third prototype. The main changes in the third iteration
were: the introduction of a browser-based ‘experience’ editor, to
make editing experiences simpler; support for less technical users
to install and update the prototype; support for multiple output
clients with different actions (URLs) being sent to different
clients (e.g. a performer view vs an audience view); and support
for state within an experience, giving more control over when
codes could/couldn’t be triggered. This third prototype was used
as the basis for two workshops with potential users, which are
described in more detail in the next section.

User Workshops
Using the third prototype system we ran two workshops with
potential users. Each participant brought their own instrument and
laptop. Each workshop lasted approximately three hours, and
comprised: informed consent; support with installing the
muzicodes prototype and connecting their instrument to it; an

1

Grand Piano

1

& \\ . .Q .Q .Q

introduction to muzicodes, the system, code formats and regular
expressions; individual time to test out and ideally create their
own muzicodes; a plenary demonstration of what they had done;
and finally a plenary discussion.

The first workshop involved 10 participants (8 male, 2 female)
recruited by email and word of mouth from staff and research
students at the authors’ institution. The second workshop
involved 5 participants (4 male, 1 female) recruited by email and
word of mouth from staff and research students of another
institution with a specialism of computer music. 11 of the
participants (including all of those in the second workshop) had
prior experience of programming and (at least to some extent)
regular expressions whereas four did not. The instruments the
participants played were: electric guitar (4), acoustic guitar (2),
bass guitar (1), mandolin and electronic bagpipes (1), MIDI
keyboard (3), synclavier (1), synth with audio output (1), whistle
(1) and augmented grand piano (1). All participants were amateur
musicians, ranging from relatively novice (learning) to extremely
experienced (regularly performing publicly at gigs or concerts),
and played a wide range of musical styles.

Findings
We begin by summarizing the main successes and challenges in
the workshops. All participants were able to run the muzicode
system and – is some cases with support – control it using their
instrument. The participant who initially attempted to use the
digital bagpipes abandoned them in favour of the mandolin,
because the note transcription appeared to be extremely poor with
the bagpipes (which have quite a distinctive tone and drone). Two
participants also switched from acoustic guitar (using a
microphone) to electric guitar to increase the reliability of note
capture in the shared workshop setting.

All participants successfully created and triggered at least one
muzicode of their own, although some participants found this
very difficult. Some participants found specifying muzicodes
difficult, due to subtle mismatches between the code text and the
type of code they had selected, or due to misunderstanding the
exact syntax of regular expressions. Some participants found
triggering muzicodes difficult, due to difficulties in notes being
consistently recognized due to overtones or shortness of notes
when using audio input, and difficulties in performing rhythms
with the precision required by the system. Most participants
started by creating simple melody-only codes without any regular
expression features and some participants (a minority) extended
or elaborated their initial codes with (e.g.) wildcards or
alternatives or tried other code types.

Potential applications of muzicodes which were prototyped or
discussed by the participants included: triggering a backing track
to play long with; summoning the musical score from stating the
introduction of the piece being played; triggering a synchronized
sound effect at a key point in a performance without ‘leaving’
their instrument; changing effects or patches (being a “musician”
not just a “button pusher”); generating Open Sound Control
(OSC) messages to control external devices; detecting and
rewarding “correct” playing, e.g. in teaching; detecting and
responding to specific gestures which playing, e.g. depending on
precisely how the person presses the piano keys; and as a
“partner” in a live improvisation.

In addition to specific clarifications and usability issues
participants also had a range of suggestions for enhancing and
extending the muzicodes system or concept. A common request

was for alternative means of entering codes, for example by
‘playing in’ an example phrase or by editing a DAW-style piano-
roll view within the system. Alternative ways of filtering note
groups were also discussed, for example using frequency ranges
correspond to a particular instrument or register, or filtering out
very quiet notes as likely overtones. For those using the audio
input there was generally a wish to reduce the latency (which was
up to 1 second between starting a note and seeing it on the
interface) and increase the accuracy of the note detection. It was
suggested that the note matching and regular expression
functionality might be done at the level of notes rather than the
textual representation. There was also discussion of whether the
system could “learn” regular expressions (or equivalent) for codes
if the system were given several examples of the “same” phrase.
Finally, there was significant discussion in both workshops about
ways of adjusting the “looseness” of a code, i.e. being able to
adjust how flexibly performance of a code would be matched.
This included various facets such as variations of tempo, feel,
grace notes and ornamentation, slides, missed or extra notes, and
errors in playing.

Discussion
The workshops included participants with a range of technical
and musical experience, but they were all able to use and create
muzicodes at a basic level, and some participants were able to
develop more complex codes and test the boundaries of the
system. The basic concept made sense to all of the participants,
and a range of possible applications were identified, suggesting
that there is merit in the muzicodes concept. We expand briefly
on two key themes of codes and performing.

Code Matching and Looseness
Our approach of using regular expressions to govern how input
streams of recognised notes are matched to target codes is
potentially powerful, giving a common framework in which codes
can be elaborated with alternatives, ranges and repetition. For
example, the use of alternatives and wildcards allowed codes to
be embedded within extended or more florid melodic and
rhythmic statements, and dealt with variations in playing such as
embellishments. However, we acknowledge that as Computer
Scientists we are comfortable with the approach and notation of
regular expressions whereas many musicians are not. Therefore a
key question for future research is whether and how this approach
of flexible matching can be harnessed by musicians. While there
are some forms of music that express music as text strings
(including the ABC notation used for traditional music [18])
future work needs to explore whether this will be tractable for
musicians and how these can then be embedded into future
compositional and performance interfaces. Immediate technical
steps would be to lift the domain of the regular expressions from
text characters (as in the current prototype) to notes. Syntax-
driven editing and the ability to enter codes by example would
allow anyone to safely enter and experiment with regular
expression enhanced codes.

A related key theme that emerged from the workshops is that of
the “looseness” with which codes are matched. This is a rich and
ambiguous musical concept which needs to be further explored
and unpacked. The current prototype provides fragmented control
over aspects of looseless through the choice of code format (i.e.
pitch and/or rhythm, absolute or relative), and the use of regular
expressions such as wildcards and start/end markers can also

extend the number of matched representations of a code with its
associated action.

The integration of regular expressions and different facets of
looseness might be more musically framed, perhaps as a set of
checkbox options or sliders on the user interface that allow the
performer/composer to more explicitly manipulate these elements
within their codes. For example, these could take the form of
‘make code transposable’ (i.e. system converts to a relative pitch
format) or ‘distribute code across an extended phrase’ (i.e. system
inserts wildcards), or ‘reduce accuracy of count’ slider when
using the ‘crle4’ rhythm format.

Performing and Adapting
Both the workshops and our demonstrations reveal how players
have to learn to perform the codes. The robustness and success of
matching a code in a ‘live’ setting is dependent on a number of
factors. MIDI input is more responsive and delivers a “cleaner”
signal (as the VAMP plugin is by-passed), whereas audio inputs
from an acoustic instrument can introduce undesirable artefacts
such as harmonic overtones or ambient environmental sounds
recognized as note events by the VAMP plugin, which were
particularly prominent on stringed instruments. This results in a
significant increase in false negatives, i.e., codes not triggering
when desired, with performers having to adapt to ‘play down’ to
the system, slowing down their playing, separating out notes and
sometimes damping strings rather than letting notes ring. Codes
based on note durations (i.e. rhythms) were particularly hard to
achieve consistently, as they required the performer to be highly
accurate in their execution of a rhythmic pattern and the note
extraction stage did not detect very short notes. On the other
hand, the pitch-only codes can be played with rhythmic
flexibility, for example introducing a ‘lilt’ to slow playing that
makes them still broadly paletteable.
The real-time visual feedback that is available through muzicodes
user interface has proved essential to being able to play codes
reliably but also as expressively as possible. This visual feedback
shows which notes are being recognized, enabling the musician to
adapt their playing so as to strike a balance between expressivity
and reliability and also to become aware of the effect of
background noise such as voices and other instruments that can
cause problems in busy environments. Further work is required on
how best to present this visual representation of musical events in
a performance setting, which is often a complex environment that
often requires a performer to attend and respond to a number of
different sensory events. Further work is also required to refine
the note recognition as much as possible, and to allow greater
looseness in the matching of rhythmic codes in particular.
However, complementary to this, more research is needed –
through longer engagements by performers with the system – to
explore whether and how players can adapt their playing style and
effectively integrate the muzicodes system within a performance
setting which also includes their choices of communication
protocol integration (e.g. MIDI, OSC, URL, DMX). Future work
should also explore how composers can balance the various
factors that appear to make for a good muzicode – distinct within
a particular musical context, recognizable to both humans and
computers, and being open to embellishment – with the feedback
that will enable musicians to perform them in a reliable but also
suitably expressive manner.

CONCLUSIONS
We have just begun to explore the creative possibilities of
muzicodes, but we believe that they show great potential. Their
embedding within a live performance, rehearsal or learning
setting creates a rich space of interaction between the musician,
the muzicode system and other listeners. As with any instrument,
part of developing a performance that uses muzicodes relies on
the performer learning how to get the best out of the system by
preparing and rehearsing a performance, and considering the
idiosyncrasies of the codes, instrument(s) and signal input. From
the initial workshops we have identified priorities for further
refinement of the prototype in the entering and editing of codes
and their “looseness”, which we hope to test in a further round of
workshops. In addition, we aim to explore the performative
aspects of muzicodes more fully through extended engagements
leading to use in performance.

ACKNOWLEDGEMENTS
This work was supported by the UK Engineering and Physical
Sciences Research Council [grant numbers EP/L019981/1,
EP/M000877/1].

1. REFERENCES
[1] A. Shenton. 2008. Olivier Messiaen’s system of signs: notes

towards understanding his music. Ashgate Publishing, Ltd.

[2] J. Wingstedt, S. Brändström, and J. Berg. 2010. Narrative
music, visuals and meaning in film. Vis. Commun. 9, 2, 193–
210.

[3] E. Sams. 1970. Elgar’s Cipher Letter to Dorabella. Music.
Times, 151–154.

[4] Perle, George. 1972. Serial composition and atonality: an
introduction to the music of Schoenberg, Berg, and Webern.
Univ of California Press.

[5] Chirp. http://www.chirp.io/ verified 2016-01-21.

[6] J. S. Downie. 2003. Music information retrieval. Annu. Rev.
Inf. Sci. Technol. 37, 1, 295–34.

[7] O. Lartillot and P. Toiviainen. 2007. A Matlab toolbox for
musical feature extraction from audio, In International
Conference on Digital Audio Effects, 237–244.

[8] C. Cannam, M. Mauch, M. E. Davies, S. Dixon, C. Landone,
K. Noland, M. Levy, M. Zanoni, D. Stowell, and L. A.
Figueira, 2013. MIREX 2013 entry: Vamp plugins from the
centre for digital music. MIREX.

[9] E. Benetos and S. Dixon. 2012. A Shift-Invariant Latent
Variable Model for Automatic Music Transcription. Comput.
Music J. 36, 4 (Dec.2012), 81–94.

[10] J. Salamon, E. Gomez, D. P. Ellis, and G. Richard. 2014.
Melody extraction from polyphonic music signals:
Approaches, applications, and challenges. Signal Process.
Mag. IEEE 31, 2–134.

[11] A. Wang. 2006. The Shazam music recognition service.
Commun. ACM 49, 8, 44–48.

[12] A. Jordanous and A. Smaill. 2009. Investigating the Role of
Score Following in Automatic Musical Accompaniment. J.
New Music Res. 38, 2 (June 2009), 197–209.

[13] C. Joder, S. Essid, and G. Richard. 2011. A Conditional
Random Field Framework for Robust and Scalable Audio-

to-Score Matching. IEEE Trans. Audio Speech Lang.
Process. 19, 8 (Nov. 2011), 2385–2397.

[14] R. Rowe. 1992. Machine Listening and Composing with
Cypher. Comput. Music J. 16, 1, 43.

[15] A. M. Stark. 2014. Sound Analyser: A Plug-In For Real-
Time Audio Analysis In Live Performances And
Installations. In Proceedings of New Interfaces for Musical
Expression (NIME), London, 2014.

[16] John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman.
2013. Introduction to Automata Theory, Languages, and
Computation (3rd ed.). Pearson. ISBN:1292039051.

[17] Steve Benford, Peter Tolmie, Ahmed Ahmed, Andy
Crabtree, Tom Rodden. 2012. Supporting traditional music-
making: designing for situated discretion. In Proceedings of
the ACM 2012 conference on Computer Supported
Cooperative Work (CSCW '12). ACM, New York, NY,
USA, 127-136.

[18] ABC Notation, http://abcnotation.com verified 2016-05-20

