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ABSTRACT 
We present muzicodes, an approach to incorporating machine-
readable ‘codes’ into music that allows the performer and/or 
composer to flexibly define what constitutes a code, and to 
perform around it. These codes can then act as triggers, for 
example to control an accompaniment or visuals during a 
performance. The codes can form an integral part of the music 
(composition and/or performance), and may be more or less 
obviously present. This creates a rich space of playful interaction 
with a system that recognises and responds to the codes. Our 
proof of concept implementation works with audio or MIDI as 
input. Muzicodes are represented textually and regular 
expressions are used to flexibly define them. We present two 
contrasting demonstration applications and summarise the 
findings from two workshops with potential users which highlight 
opportunities and challenges, especially in relation to specifying 
and matching codes and playing and performing with the system. 
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INTRODUCTION 
There is a rich tradition of embedding ‘codes’ within music, from 
J.S. Bach hiding his name within a sequence of notes [1] to more 
readily discernable leitmotifs in operas and films [2]. The advent 
of computational algorithms that can extract a diverse range of 
features from live musical performance with increasing accuracy 
raises the possibility of musical codes that can be recognized by 
computers as well as (to a greater or lesser extent) by humans. 
Such computer-regonisable musical codes could serve various 
purposes, for example triggering media, special effects or musical 
control during performance.   

We introduce muzicodes, an approach to the composition of 
computer recognizable musical codes and their subsequent use 
during live performance. Instead of recognizing the final rendered 
form of a musical fragment (i.e., a waveform), muzicodes focuses 
on underlying musical structures embedded within a musical 
work. In our first realization, these take the form of sequences of 
notes whose pitches and rhythms may be more or less tightly 
specified, ranging from a precise sequence that must be played 
tightly to more general melodic or rhythmic shapes that can be 
flexibly embedded into a performance. 
A musician may define any number of muzicodes for a given 
performance, associating each with a different action, for 
example, employing one to trigger the display of particular 
background images, another to change a backing track and yet 

another to change effects or instrument settings. The flexible 
nature of muzicodes means that musicians can play the same code 
in many different ways, allowing them to improvise around codes 
and choose whether to hide or reveal them to the audience. Thus, 
performers are free to decide exactly when to embed which code 
within their playing and also how to perform that code.  

We begin by reviewing related work, based on which we then 
present a more complete description of the muzicode concept and 
approach. We then describe our initial implementation before 
presenting and reflecting on our iterative development process, 
including two demonstration applications and two workshops 
with potential users.  

RELATED WORK 
Musical codes 
Many composers have played with musical cryptography in their 
compositions, including J.S. Bach, Shostakovich [1] and also 
Elgar who implanted messages to family and friends in his music 
[3].  Musical codes have also provided a compositional 
framework for large-scale musical works. For example, in Serial 
Composition (also known as 12 Tone Composition), the building 
block of a composition comprises a defined arrangement (i.e. 
row) of the 12 notes of the chromatic scale, which cannot be 
played out of sequence [4]. Compositional variation is achieved 
via a range of inversions, transpositions, and the distributions of 
the row across instruments.   

In contrast to these ‘hidden’ codes are examples of musical codes 
that are more obvious to the listener. Leitmotifs were first used in 
the operas of Richard Wagner and are still liberally employed in 
film soundtrack scoring. Leitmotifs typically represent a character 
and may appear alongside their narrative representation or 
without, in which case they suggest the presence of a character 
without the need for them to be seen on stage or screen. An oft-
quoted example can be heard in the film Jaws, where the ominous 
alternating semi-tone theme represents the presence of the 
approaching shark [2]. Leitmotifs are often re-composed and 
presented in many varied forms to represent the changing 
emotional states of its character at different points in the 
narrative.  

In contrast to systems such as Chirp [5] that directly encode data 
in audio form our interest lies in codes that are composed and 
performed by humans and that can be flexibly embedded into 
performances in ways that range from cryptographic-style hiding 
to appearing as discernable motifs. Of course, we also require 
them to be recognisable by computers as we now consider. 

Music recognition by computers 
Music recognition is a large and complex endeavor spanning 
several fields of research. Music information retrieval (MIR) 
concerns the extraction and use of information from music, which 



might be drawn from of an audio signal or a symbolic 
representation such as a traditional musical score [6]. A range of 
software tools are used to conduct MIR tasks such as the MatLab 
MIR Toolbox [7] and VAMP plugins [8] which focus on the 
extraction of a broad range of audio and musical features from 
audio signals, including pitch, rhythm, timbre, tonality, note 
onsets, segmentation, chord progressions and loudness. These 
form the basic building blocks for many MIR applications.  

Automatic music transcription describes a process where an audio 
file is converted to another format, for instance a symbolic 
representation such as sheet music [9]; this kind of symbolic 
representation (and/or other features) derived from a live 
performance forms the first stage of our approach.  

Audio fingerprinting concerns the recognition of a specific audio 
recording (version identification) [10], with the mobile app 
Shazam [11] being a prominent commercial example. In contrast, 
we are primarily concerned with live performances, each of which 
is unique. Query-by-humming relies solely on the melody 
features extracted from songs rather a specific recording [10].  
Our interest lies in what a performer might do with such enabling 
technologies. 

Music information retrieval tools are also employed in live 
performance settings, as the following examples illustrate. 
Automatic score following (audio-to-score) concerns the 
automatic synchronisation between a live audio or MIDI input 
(performer) and a pre-composed score [12]. This can then be used 
to track the nuances of a live soloist so as to align a computer 
generated accompaniment or sound manipulations (e.g. digital 
signal processing effects) as well as cueing extra-musical events 
such as lighting or visual media [13]. Rowe developed Cypher 
[14], a ‘real-time interactive music system’ that analyses 
incoming MIDI data and extracts key, chord, beat and phrase 
group features which are then used to generate musical 
accompaniment. Sound Analyser [15], a plugin for DAW 
environments, extracts real-time audio features from its input that 
can be mapped to Open Sound Control (OSC) messages to control 
live visuals. Rather than following an entire score, or generating a 
continuous accompaniment or control channel, we focus on 
distinct recognizable musical fragments that performers can 
embed at different points and in different ways within an overall 
performance.  

THE CONCEPT OF MUZICODES 
We now introduce the concept of muzicodes, describing how they 
are tailored to the context of musical performance, drawing out 
key requirements that arise from this and specifying a structure 
for muzicodes that addresses these.  

The performance context 
Muzicodes are intended for use in a live setting, such as a 
performance, rehearsal or lesson. We begin with the case of a 
single performer or instrument, illustrated in figure 1. During set-
up the instrument, mic, direct line or MIDI source would be 
connected to the muzicode system’s input. Typically at the same 
time, the muzicode system would be configured (perhaps also 
incorporating input from the composer) to support a particular 
‘experience’, tailoring the operation and behaviour of the system 
for the purpose at hand. During setup, the system would also be 
linked to external output devices such as display or light 
controllers, other performers’ devices or digital audio systems 
although it may also have its own output capabilities such as the 
screen of the device it is running on. Then while the performer 

plays (or sings) the muzicode system continuously monitors its 
input, checking for any of the codes associated with this 
experience, and triggering outputs accordingly.  

In any given setting there might be more than one muzicode 
system, for example there might be one for the venue and/or each 
musician might have their own. In other cases the input to a single 
system may include several instruments, e.g. from a mic or mix. 
Where there are multiple muzicode systems these could 
communicate and coordinate with each other, perhaps requiring 
combinations of codes from different performers to trigger 
coordinated outputs.  

 
Figure 1: Muzicode performance setting 

Requirements for muzicodes 
This performance context fundamentally shapes what a muzicode 
should be. An inevitable complexity – and richness – of the 
situation is that the system and the performer may never agree 
perfectly about what is and is not a code. Consider a performer 
intending to trigger a particular action: they play the code, but 
every execution is slightly different (e.g. in timing, tone, or 
errors); noise is inevitably present (e.g. in the audio signal, timing 
or bit errors); and the algorithms used by the system are imperfect 
(e.g. mis-classifying or missing notes). There are also many 
situations (e.g. teaching) in which we might like the ‘same’ code 
to be triggered by different performers, each with their own 
idiosyncrasies, using different instruments, perhaps even 
completely different types of instrument, and in different settings.  
Consequently, codes need to be defined at an appropriate level 
of abstraction. For live performance, this could be at the level of 
notes and rhythms, but not at the level of specific timbre or 
waveform, so that the ‘same’ code can be achieved at different 
times and by different performers. Codes might also be defined 
more abstractly or semantically, for example “a chord of D-
major”.  

A second key consideration is for the composer and/or performer 
to be able to choose to what extent to hide or reveal the codes 
for the audience. The composer requires the flexibility to 
compose more or less obvious codes, for example, the use of 
obvious musical motifs versus more subtly hidden features. In 
turn, the performer should be able to decide how noticeable or 
subtle their playing of the codes might be, enjoying considerable 
latitude with regard to how they interpret them, perhaps including 
embellishing and improvising around them.  

In addition, when defining codes a balance has to be struck 
between the rates of false positives and false negatives, i.e. 
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non-code music being heard as a code versus codes being missed. 
For example one possible approach might be for a performer to 
define an unusual musical ‘prefix’ to their codes so that they do 
not play a code by accident, and/or defining a set of similar codes 
or patterns to trigger the same action, to take account of common 
variations in how the system responds.  
Finally, the performer should have the facilities to incorporate 
the system’s characteristics into the performance as a whole, 
including artistic responses to its flaws and limitations. For 
example, the performer might develop strategies to cope with 
missed triggers, such as repeating riffs. Or the muzicode system 
itself might be presented as an explicit agency within the 
performance that sometimes needs to be ‘persuaded’ to act. Thus 
the idiosyncrasies of the live performance setting add an 
additional layer of complexity to the task of embedding codes into 
a musical work, when compared to the challenges of serial or 
leitmotif composition. 

Muzicode structure and format 
A muzicode specifies a sequence of notes that might be played at 
some point within a piece of music. In its simplest and most 
constraining form each note would be specified as a particular 
pitch and duration (and perhaps even tone and articulation) and 
the sequence played contiguously, with the notes sounding one 
after the other without any other intervening music. However, 
given the above requirements, we want to provide a richer set of 
options for greater flexibility: 

• Pitch and/or rhythm: the notes might be specified by pitch 
only, so playable with any rhythm or timing, rhythm only, 
playable with any melody or on a percussion instrument, or a 
combination of the two. 

• Absolute or relative: pitch and/or durational values might be 
specified absolutely, i.e. the right pitch or duration must be 
played, or relatively, for example based on the first note(s) of 
the code, so that it can be played in any key or at any speed. 

The composer then has to be able to express the muzicode, which 
in our case they do concretely as a text string. This is broken 
down into two stages.  

First the composer chooses how sequences of notes will be 
represented as text. Consider for example the following simple 
fragment of melody played at a steady 60bpm (see figure 2): 

 
Figure 2: Sample melody 

This might be represented textually as a sequence of: note names 
irrespective of octave or timing, “E,F#,E,F#,F#”; note names 
with timings in seconds (or beats), 
“E/0.5,F#/0.5,E/0.5,F#/1,F#/1.5” (where “/0.5” 
indicates a duration of 0.5s); notes in defined octaves with 
relative timing,  “E4/1,F#4/1,E4/1,F#4/2,F#4/3” 
(where “/1” indicates a relative duration of 1); intervals relative 
to the final note irrespective of time,  
“-2,0,-2,0,0”; and so on. This gives the composer an initial 
level of control over how precise or flexible that muzicode will 
be. The composer could also specify how polyphony should be 
handled, for example whether simultaneous notes should all be 
included in the text or perhaps only the lowest or highest note.  

Second, the composer identifies the particular textual string(s) 
that correspond to the muzicode they are defining. In the simplest 
case this would be a single string such as those above, which the 
system would look for. More generally the composer could 
specify a pattern that identified a set of similar or equivalent 
textual forms for a single muzicode. In principle there are many 
ways that this could be done; we are currently exploring the use 
of regular expressions, which correspond to the simplest class of 
automata [16], finite state machines. This opens up various 
possibilities when specifying muzicodes such as: using wildcards 
(‘.’), ranges (‘[1-3]’) or choices (‘…|…’) to allow alternative 
notes or durations; forcing the code to be played at the beginning 
(‘^…’), end (‘…$’) or entirety (‘^…$’) of a sequence; and 
allowing notes or groups of notes (‘(…)’) to be omitted (‘…?’), 
repeated (‘…+’) or either (‘…*’).  

PROOF OF CONCEPT SYSTEM 
We have implemented a proof of concept prototype1 that supports 
the muzicodes system described in section 3.3; the prototype’s 
functional architecture is shown in Figure 3. It is implemented as 
a web-based client-server system, with the majority of the 
functionality implemented within the browser client. The system 
includes an ‘experience’ editor (Figure 3, top-right), which allows 
the composer/performer to configure the system for a particular 
performance.  

 
Figure 3: Muzicodes system architecture 

Audio and MIDI input use the WebAudio API. Audio input 
depends on a note extractor, currently the Silvet note transcription 
VAMP plugin [10] in ‘live’ mode, to estimate timed note onsets 
(frequency, time and velocity); this plugin is executed on the 
server. Alternatively MIDI note events can be injected directly at 
this point. Notes are then assigned to one or more distinct note 
streams; this provides initial control over which notes are 

                                                                    
1 https://github.com/cgreenhalgh/musiccodes  
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considered together as potential codes. The current prototype 
divides sequences of notes into configurable pitch ranges and 
time intervals. 

Note streams are then converted to candidate codes based on the 
specific musical features that have been chosen to define the 
codes (as described in section 3.3). To accommodate these 
different musical feature representations within the candidate 
codes four different code formats are currently defined and 
supported: 

• Code format ‘n’: note name (pitch information) only. The 
stated pitch(s) will be recognised in any octave position. An 
example code might be ‘A,C,E’.  

• Code format ‘no’: note name and octave position. This code 
format uses two character positions, the first for the pitch 
name and second for a pitch’s octave position, for example 
‘A3,C3,E3’. 

•    Code format ‘mrle0’: midi note relative to last note equal to 0. 
This format concerns interval relationships between pitches, 
i.e. relative pitch rather than absolute pitch. This is a 
numerical format, where positive (descending) or negative 
(ascending) values represent the interval distance from the 
final note of the stream, which is assigned a value of ‘0’. For 
example ‘-2,0,-2,0,0’ would define the melodic fragment in 
figure 2. 

• Code format ‘crle4’: count relative to last note equal 4. This 
fourth format concerns the duration between note onsets. This 
format offers options for rhythmic based codes where pitch 
information is ignored. As the VAMP plugin is not aware of 
tempo or time signature we chose to frame this format around 
the time between note onsets, while the note value (i.e. the 
duration that a note is sounding) is ignored. The relationship 
of durations is set by nominally assigning the value of ‘4’ to 
the delay between the last two notes in the sequence. The 
example in  would be represented in this format as ‘2,2,2,4’; 
the musical fragment has five notes but there are only four 
time intervals between those notes.  

• Combined formats: beyond the four basic code formats, a 
combination of these formats can also be applied to further 
extend the complexity of a code. For instance the previous 
two code formats could be employed together (i.e. 
‘mrle0/crle4’) to form a code that uses both interval and count 
relationships. Thus our example in  would then be defined as: 
‘-2/2,0/2,-2/2,0/4,0’. Alternatively, a format of ‘no/crle4’ 
would integrate pitch name, octave position and relative count 
between onsets.   

As part of the experience, the composer/performer specifies the 
experience ‘linkbase’, a set of mappings from codes to actions, 
including the selected code format for each code instance. In the 
current prototype codes are specified and matched as textual 
regular expressions. When a candidate code is matched, the 
resulting action is currently to output a MIDI message or publish 
a URL to listening applications (using socket.io); this URL might 
correspond to audio-visual media to display alongside the 
performance. The applications receiving these URLs can be on 
other networked devices, e.g. a laptop controlling a projected 
display, another performer’s tablet or an audience member’s 
phone.  

Each experience also has a current state, a set of internal 
variables, which can enable and disable particular actions at 
different points in the performance. The current prototype also 

provides continuous feedback to the performer through a live 
timeline visualisation of recent notes and note streams, and a 
representation of which codes are being matched by the current 
notes (see Figure 4). 

 
Figure 4: Muzicode feedback interface (annotated) 

EXPERIENCE AND REFINEMENT 
We are engaged in an ongoing process of iterative refinement and 
evaluation of the muzicodes concept and prototype, which has 
involved three iterations to date, successively focusing on: 
technical validation; demonstration applications; and initial user 
workshops. We briefly summarise these iterations, before 
presenting our reflections to date. 

Iteration 1 
The first iteration of muzicodes supported the core functionality 
of the muzicode system, and was used by the authors to assess the 
feasibility of the concept. This version demonstrated the technical 
integration of the client/server system, including the WebAudio 
APIs and VAMP plugin. It also supported feedback to the 
performer of the notes and note streams being ‘heard’ by the 
system (Figure 3, left). In this version there was no experience 
editor, and the system had to be configured by editing a textual 
(JSON) configuration file. Code formats ‘n’ and ‘no’ were 
implemented in this first iteration. 

Iteration 2 
The key addition for the second iteration was to provide visual 
feedback to the performer about muzicodes that were currently 
being matched (Figure 4, top right). As each note is received the 
system checks to see how much of each code pattern (regular 
expression) has been matched so far and whether the whole code 
can potentially be matched. This is fed back to the performer by 
highlighting (red) successfully matched portions of each code and 
by greying out those codes which can no longer be matched by 
the current note stream. This allows the performer to check if a 
code is being matched, and potentially to adapt their current 
playing within a single phrase. Code formats ‘mrle0’, ‘crle4’ and 
combination formats were implemented into this second iteration. 
Using the second prototype the authors, who are musicians 
themselves, developed two contrasting demonstration 
applications. We briefly describe each of these applications and 
our experiences with them. 
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Muzicodes for Irish tunes 
Working with this second iteration our first demonstration was 
based around traditional Irish music [16], exploring how these 
musicians might employ muzicodes in order to draw on diverse 
digital materials on the Internet when learning and performing. 
We designed a suite of muzicodes to embody distinctive 
fragments of Irish tunes. In this case we chose to work with pitch 
and disregard timing information as Irish tunes tend to have 
distinct melodies but are harder to identify rhythmically due to 
sharing just a few rhythmic styles; consequently formats ‘n’ and 
‘no’ were used exclusively. As a simple example, below is the 
first part of Egan’s polka, a well-known beginner’s tune (Figure 
5). The following muzicode in format ‘no’ encodes its distinctive 
first two bars played in the register of a fiddle: 
“F#5A5B5A5F#5A5B5A5”. 

 
Figure 5: Elgan's Polka 

Regular expression string matching can then be used to refine this 
basic code in various ways, for example we might employ the 
wildcard ‘.’ to make the code recognizable when played in any 
register: “F#.A.B.A.F#.A.B.A.”	(or	equivalently	we	could	
use	code	format	‘n’:	“F#ABAF#ABA”). 

We designed further codes to be playable by accompanying 
instruments such as guitars, citterns and bouzoukis. Our approach 
here was to specify the code as the notes of the chord played in 
sequence, for example a rising chord of D-major played across 
any range of octaves: “^D.F#.A.D.$”. In practice, chords can 
have many different voicings and a muzicode designed to capture 
the high-level musical concept of a ‘broken chord of D’ would 
need to accommodate all of them. On the other hand, the system 
might respond differently to each voicing, offering accompanists 
a range of interactive possibilities even when playing simple 
chords. 

We employed these codes to create a range of different 
experiences. The first was to support learning, where playing a 
memorable muzicode would connect to a tuition web page 
containing notes on the tune, sheet music (in standard and ABC 
formats [18]) and also an accompanying video that could be 
played along to when practicing. We created one variant for 
melody instruments and another for accompanists. The second 
experience was to support live performance on stage in which the 
musician could trigger playback of an accompanying video. The 
third was to support jamming at Irish sessions in which playing 
the code triggers the display of the name of the tune, answering 
the common ‘what was that tune?’ question.  

Muzicodes for live performance 
Our second demonstration prototyped a performance piece, where 
a soloist uses muzicodes to trigger prepared musical fragments at 
different points throughout the piece to accompany their 
instrumental performance. The piece used a MIDI keyboard 
controlling a virtual instrument in Apple Logic Pro X, with the 
MIDI notes also being fed directly into the muzicodes system, 
and twelve pre-composed musical fragments (hosted audio files) 
to be triggered by muzicodes. Typically, the codes we composed 
were relatively short strings and simple in their melodic and 
rhythmic construction. Different code representations were 

employed that used all of the code formats in conjunction with 
regular expressions. For instance absolute pitches separated with 
wildcards (‘.*’) permit for a code to be played in order, or with 
any number of additional pitch events placed in-between allowing 
it to be embedded into numerous other manifestations (e.g 
"C#[0-9].*G#[0-9].*D#[0-9]"). Other codes used 
interval matching rather than absolute pitches (i.e. code format 
‘mrle0’), enabling the soloist to perform a code in different keys 
or registers. The following code example shows a simple 
ascending melodic shape: "^-9/[^,]*,-5/[^,]*,-
2/[^,]*,0$" (in this example a regular expression (‘[^,]*’) 
is used to match for any duration value against the interval). The 
score representation in Figure 6 shows the code with a starting 
pitch of ‘B’. 

 
Figure 6: a simple ascending melodic shape 

Our initial exploration revealed a growing desire to compose 
several different codes to trigger the same musical fragment. 
Typically, these sets of related codes used different code formats, 
for example, one code composed around a melody without 
duration data and another requiring just the duration data that 
would work with any pitch combination. In addition to offering 
musical variation, this also provided an alternative method of 
triggering an action should the performer experience difficulty 
performing one or the other codes. These emerging methods of 
code design reflect some of the traditional compositional 
approaches used in the variation of musical themes (i.e. leitmotifs, 
thematic development and serial composition), and when placed 
in a ‘live’ setting presented a flexible approach for triggering 
media that would not constrain the range of a performers musical 
expression. 

We found that the composition of codes as triggers for 
accompanying musical elements often had their musical 
construction related to these elements. Several codes, for 
example, drew directly on the melodic motifs contained within 
their triggered fragments. Thus, the presentation of these codes 
foreshadowed the introduction of the triggered fragments by 
hinting at the music to follow. This observation highlights the 
underlying ‘musical’ nature of the muzicode approach. 

Iteration 3 
Based on our experience in developing the demonstrations we 
created a third prototype. The main changes in the third iteration 
were: the introduction of a browser-based ‘experience’ editor, to 
make editing experiences simpler; support for less technical users 
to install and update the prototype; support for multiple output 
clients with different actions (URLs) being sent to different 
clients (e.g. a performer view vs an audience view); and support 
for state within an experience, giving more control over when 
codes could/couldn’t be triggered. This third prototype was used 
as the basis for two workshops with potential users, which are 
described in more detail in the next section. 

User Workshops 
Using the third prototype system we ran two workshops with 
potential users. Each participant brought their own instrument and 
laptop. Each workshop lasted approximately three hours, and 
comprised: informed consent; support with installing the 
muzicodes prototype and connecting their instrument to it; an 
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introduction to muzicodes, the system, code formats and regular 
expressions; individual time to test out and ideally create their 
own muzicodes; a plenary demonstration of what they had done; 
and finally a plenary discussion. 

The first workshop involved 10 participants (8 male, 2 female) 
recruited by email and word of mouth from staff and research 
students at the authors’ institution. The second workshop 
involved 5 participants (4 male, 1 female) recruited by email and 
word of mouth from staff and research students of another 
institution with a specialism of computer music. 11 of the 
participants (including all of those in the second workshop) had 
prior experience of programming and (at least to some extent) 
regular expressions whereas four did not. The instruments the 
participants played were: electric guitar (4), acoustic guitar (2), 
bass guitar (1), mandolin and electronic bagpipes (1), MIDI 
keyboard (3), synclavier (1), synth with audio output (1), whistle 
(1) and augmented grand piano (1). All participants were amateur 
musicians, ranging from relatively novice (learning) to extremely 
experienced (regularly performing publicly at gigs or concerts), 
and played a wide range of musical styles.  

Findings 
We begin by summarizing the main successes and challenges in 
the workshops. All participants were able to run the muzicode 
system and – is some cases with support – control it using their 
instrument. The participant who initially attempted to use the 
digital bagpipes abandoned them in favour of the mandolin, 
because the note transcription appeared to be extremely poor with 
the bagpipes (which have quite a distinctive tone and drone). Two 
participants also switched from acoustic guitar (using a 
microphone) to electric guitar to increase the reliability of note 
capture in the shared workshop setting. 

All participants successfully created and triggered at least one 
muzicode of their own, although some participants found this 
very difficult. Some participants found specifying muzicodes 
difficult, due to subtle mismatches between the code text and the 
type of code they had selected, or due to misunderstanding the 
exact syntax of regular expressions. Some participants found 
triggering muzicodes difficult, due to difficulties in notes being 
consistently recognized due to overtones or shortness of notes 
when using audio input, and difficulties in performing rhythms 
with the precision required by the system. Most participants 
started by creating simple melody-only codes without any regular 
expression features and some participants (a minority) extended 
or elaborated their initial codes with (e.g.) wildcards or 
alternatives or tried other code types.  

Potential applications of muzicodes which were prototyped or 
discussed by the participants included: triggering a backing track 
to play long with; summoning the musical score from stating the 
introduction of the piece being played; triggering a synchronized 
sound effect at a key point in a performance without ‘leaving’ 
their instrument; changing effects or patches (being a “musician” 
not just a “button pusher”); generating Open Sound Control 
(OSC) messages to control external devices; detecting and 
rewarding “correct” playing, e.g. in teaching; detecting and 
responding to specific gestures which playing, e.g. depending on 
precisely how the person presses the piano keys; and as a 
“partner” in a live improvisation. 

In addition to specific clarifications and usability issues 
participants also had a range of suggestions for enhancing and 
extending the muzicodes system or concept. A common request 

was for alternative means of entering codes, for example by 
‘playing in’ an example phrase or by editing a DAW-style piano-
roll view within the system. Alternative ways of filtering note 
groups were also discussed, for example using frequency ranges 
correspond to a particular instrument or register, or filtering out 
very quiet notes as likely overtones. For those using the audio 
input there was generally a wish to reduce the latency (which was 
up to 1 second between starting a note and seeing it on the 
interface) and increase the accuracy of the note detection. It was 
suggested that the note matching and regular expression 
functionality might be done at the level of notes rather than the 
textual representation. There was also discussion of whether the 
system could “learn” regular expressions (or equivalent) for codes 
if the system were given several examples of the “same” phrase. 
Finally, there was significant discussion in both workshops about 
ways of adjusting the “looseness” of a code, i.e. being able to 
adjust how flexibly performance of a code would be matched. 
This included various facets such as variations of tempo, feel, 
grace notes and ornamentation, slides, missed or extra notes, and 
errors in playing. 

Discussion 
The workshops included participants with a range of technical 
and musical experience, but they were all able to use and create 
muzicodes at a basic level, and some participants were able to 
develop more complex codes and test the boundaries of the 
system. The basic concept made sense to all of the participants, 
and a range of possible applications were identified, suggesting 
that there is merit in the muzicodes concept. We expand briefly 
on two key themes of codes and performing.  

Code Matching and Looseness  
Our approach of using regular expressions to govern how input 
streams of recognised notes are matched to target codes is 
potentially powerful, giving a common framework in which codes 
can be elaborated with alternatives, ranges and repetition. For 
example, the use of alternatives and wildcards allowed codes to 
be embedded within extended or more florid melodic and 
rhythmic statements, and dealt with variations in playing such as 
embellishments. However, we acknowledge that as Computer 
Scientists we are comfortable with the approach and notation of 
regular expressions whereas many musicians are not. Therefore a 
key question for future research is whether and how this approach 
of flexible matching can be harnessed by musicians. While there 
are some forms of music that express music as text strings 
(including the ABC notation used for traditional music [18]) 
future work needs to explore whether this will be tractable for 
musicians and how these can then be embedded into future 
compositional and performance interfaces. Immediate technical 
steps would be to lift the domain of the regular expressions from 
text characters (as in the current prototype) to notes. Syntax-
driven editing and the ability to enter codes by example would 
allow anyone to safely enter and experiment with regular 
expression enhanced codes. 

A related key theme that emerged from the workshops is that of 
the “looseness” with which codes are matched. This is a rich and 
ambiguous musical concept which needs to be further explored 
and unpacked. The current prototype provides fragmented control 
over aspects of looseless through the choice of code format (i.e. 
pitch and/or rhythm, absolute or relative), and the use of regular 
expressions such as wildcards and start/end markers can also 



extend the number of matched representations of a code with its 
associated action.  

The integration of regular expressions and different facets of 
looseness might be more musically framed, perhaps as a set of 
checkbox options or sliders on the user interface that allow the 
performer/composer to more explicitly manipulate these elements 
within their codes. For example, these could take the form of 
‘make code transposable’ (i.e. system converts to a relative pitch 
format) or ‘distribute code across an extended phrase’ (i.e. system 
inserts wildcards), or ‘reduce accuracy of count’ slider when 
using the ‘crle4’ rhythm format. 

Performing and Adapting 
Both the workshops and our demonstrations reveal how players 
have to learn to perform the codes. The robustness and success of 
matching a code in a ‘live’ setting is dependent on a number of 
factors. MIDI input is more responsive and delivers a “cleaner” 
signal (as the VAMP plugin is by-passed), whereas audio inputs 
from an acoustic instrument can introduce undesirable artefacts 
such as harmonic overtones or ambient environmental sounds 
recognized as note events by the VAMP plugin, which were 
particularly prominent on stringed instruments. This results in a 
significant increase in false negatives, i.e., codes not triggering 
when desired, with performers having to adapt to ‘play down’ to 
the system, slowing down their playing, separating out notes and 
sometimes damping strings rather than letting notes ring. Codes 
based on note durations (i.e. rhythms) were particularly hard to 
achieve consistently, as they required the performer to be highly 
accurate in their execution of a rhythmic pattern and the note 
extraction stage did not detect very short notes. On the other 
hand, the pitch-only codes can be played with rhythmic 
flexibility, for example introducing a ‘lilt’ to slow playing that 
makes them still broadly paletteable.  
The real-time visual feedback that is available through muzicodes 
user interface has proved essential to being able to play codes 
reliably but also as expressively as possible. This visual feedback 
shows which notes are being recognized, enabling the musician to 
adapt their playing so as to strike a balance between expressivity 
and reliability and also to become aware of the effect of 
background noise such as voices and other instruments that can 
cause problems in busy environments. Further work is required on 
how best to present this visual representation of musical events in 
a performance setting, which is often a complex environment that 
often requires a performer to attend and respond to a number of 
different sensory events. Further work is also required to refine 
the note recognition as much as possible, and to allow greater 
looseness in the matching of rhythmic codes in particular. 
However, complementary to this, more research is needed – 
through longer engagements by performers with the system – to 
explore whether and how players can adapt their playing style and 
effectively integrate the muzicodes system within a performance 
setting which also includes their choices of communication 
protocol integration (e.g. MIDI, OSC, URL, DMX). Future work 
should also explore how composers can balance the various 
factors that appear to make for a good muzicode – distinct within 
a particular musical context, recognizable to both humans and 
computers, and being open to embellishment – with the feedback 
that will enable musicians to perform them in a reliable but also 
suitably expressive manner.    

CONCLUSIONS 
We have just begun to explore the creative possibilities of 
muzicodes, but we believe that they show great potential. Their 
embedding within a live performance, rehearsal or learning 
setting creates a rich space of interaction between the musician, 
the muzicode system and other listeners. As with any instrument, 
part of developing a performance that uses muzicodes relies on 
the performer learning how to get the best out of the system by 
preparing and rehearsing a performance, and considering the 
idiosyncrasies of the codes, instrument(s) and signal input. From 
the initial workshops we have identified priorities for further 
refinement of the prototype in the entering and editing of codes 
and their “looseness”, which we hope to test in a further round of 
workshops. In addition, we aim to explore the performative 
aspects of muzicodes more fully through extended engagements 
leading to use in performance.  
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