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Abstract  

How temperate forests will respond to climate change is uncertain; projections range from 

severe decline to increased growth. We conducted field tests of sessile oak (Quercus 

petraea), a widespread keystone European forest tree species, including more than 150,000 

trees sourced from 116 geographically diverse populations. The tests were planted on 23 

field sites in six European countries, in order to expose them to a wide range of climates, 

including sites reflecting future warmer and drier climates. By assessing tree height and 

survival, our objectives were twofold: (1) to identify the source of differential population 

responses to climate (genetic differentiation due to past divergent climatic selection versus 

plastic responses to ongoing climate change), (2) to explore which climatic variables 

(temperature or precipitation) trigger the population responses. Tree growth and survival 

were modeled for contemporary climate and then projected using data from four regional 

climate models for years 2071-2100, using two greenhouse gas concentration trajectory 

scenarios each. Overall results indicated a moderate response of tree height and survival to 

climate variation, with changes in dryness (either annual or during the growing season) 
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explaining the major part of the response. Whilst, on average, populations exhibited local 

adaptation, there was significant clinal population differentiation for height growth with 

winter temperature at the site of origin. The most moderate climate model (HIRHAM5-EC; 

rcp4.5) predicted minor decreases in height and survival, whilst the most extreme model 

(CCLM4-GEM2-ES; rcp8.5) predicted large decreases in survival and growth for southern and 

southeastern edge populations (Hungary and Turkey). Other non-marginal populations with 

continental climates were predicted to be severely and negatively affected (Bercé, France), 

while populations at the contemporary northern limit (colder and humid maritime regions; 

Denmark and Norway) will probably not show large changes in growth and survival in 

response to climate change. 

 

Main body of the Text: (7684 words / limit 8000 words; including Introduction, Materials 

and Methods, Results, Discussion and Acknowledgements)  

 

Introduction 

Uncertainty about future CO2 emissions and the unknown capacity of forest ecosystems to 

adapt to warmer and drier climates make it difficult to anticipate their response to climatic 

change. Projections of possible responses include reduction in resilience (Huntingford et al., 

2013; Tielbörger et al., 2014), shifts in species distributions (Delzon et al., 2013), forest 

diebacks (Allen et al., 2010; Choat et al., 2012) and serious biodiversity losses (Thuiller et al., 

2011). The uncertainty of response is particularly acute for long lived tree species like oaks, 

because longevity may constrain adaptive evolutionary changes. Sessile oak (Quercus 

petraea [Matt.] Liebl.) is widely distributed across Europe, providing habitat for a diverse 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

array of plants, animals, insects and fungi. Its human usage ranges from Early Neolithic 

acorn food consumption (Primavera & Fiorentino, 2013) and construction of wooden 

shelters and water wells (Tegel et al., 2012), to contemporary barrels for wine (Logan, 

2005). Hence oaks are widely recognized as being of significant ecological, economic and 

cultural value (Hanewinkel et al., 2013).  

 

Concerns about the vulnerability of oaks are due to a predicted adaptational lag in response 

to climatic change. In general terms the climate to which populations have adapted over 

long periods of time is shifting rapidly (Loarie et al., 2009). Populations are becoming 

dissociated from the local climatic conditions to which they have adapted (Davis & Shaw, 

2001; Cheaib et al., 2012), and are likely to experience reductions in fitness. Due to the long 

lifespan of an oak tree, shifts in the genetic composition of populations are slow and 

opportunities for adaptation are limited. However, although their longevity may be a 

constraint, oaks exhibit a number of life history traits, such as prolific seed production and 

masting, high levels of genetic diversity, and extensive gene flow between populations 

(Kremer et al., 2012; Kremer, 2016) that can facilitate adaptation. As a result, predictions 

about future oak response to climate change are challenged by contrasting expectations. 

Current predictions are largely based on retrospective tree ring analyses over long time 

series (Tegel et al., 2012; Mérian et al., 2011; Lebourgeois et al., 2010) or on niche modeling 

and process-based models (Cheaib et al., 2012). Tree ring analyses have shortcomings, as 

they are limited to the very restricted set of traits that can be retrieved from tree ring 

signatures and ignore past mortality or competition effects. Niche or process-based models 

provide contrasting outcomes tightly linked to the assumptions of the model used, and 
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usually ignore evolutionary processes that may enhance responsiveness to environmental 

change (Cheaib et al., 2012). In addition, niche models usually treat species as entities, 

neglecting the effect of divergent local adaptation among populations (but see Serra-Varela 

et al., 2015 for an approach that considers genetically-defined populations). However, oak 

populations have responded to climatic selection during historical global warming after the 

last glaciation (Petit et al., 2002a; Petit et al., 2002b), as evidenced by the high level of 

genetic differentiation for adaptive traits that is observed in common garden experiments 

(Kremer et al., 2002; Kremer et al., 2014). Quercus petraea shows clinal genetic variation 

along temperature gradients linked to altitude or latitude (Alberto et al.  2011; Vitasse et al., 

2009). Therefore population-level variation must be taken into account when trying to 

predict the response of oaks to climate change.  

In this study we explored, at a large geographic scale, the response of Quercus petraea 

populations to existing and predicted variations of climate. Our study was based on a 

continent-wide common garden experiment (provenance test), where geographic transfers 

of populations mimicked predicted temporal climatic change. Such transplantations of oak 

trees to planting sites different from their geographic origin offer the means to assess the 

potential of populations to adapt to climatic change. Our objectives were twofold, namely: 

(1) to identify the source of differential population responses to climate (genetic 

differentiation due to past divergent climatic selection versus plastic responses to ongoing 

climate change), and (2) to explore which climatic variables trigger these population 

responses. 
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Materials and Methods 

We assessed the response of Quercus petraea populations to climate change by 

transplanting seedlings that originated from seeds collected in 116 stands across Europe 

(Table S1) into 23 field test sites (planting sites) (Table S2, Fig. 1). In this experiment, long-

distance population transfers resulted in exposure to new climatic conditions (Figure S1), 

some of them similar to those predicted by climate change scenarios. Climatic data were 

obtained for both the test sites and the sites from which the populations originated, making 

it possible to estimate the “climate transfer distance”, defined as the difference between 

the “home” climate and the “destination” climate, as suggested by Mátyás (1994), and 

explained in detail by Leites et al. (2012a, 2012b). We recorded and analyzed two key 

adaptive traits, survival and growth, measured in the 23 test sites over the 20 years since 

establishment.   

 

Populations sampled and seed collection 

Of the 116 natural Q. petraea populations sampled (Table S1), one subset, the Madsen 

collection (Madsen, 1990), comprised 14 populations that were planted at all testing sites. 

Subsequently, we refer to the set of mother trees from which the seeds were collected and 

represented by their seedlings in the experiments as the “population”, whereas the location 

of the population (the site at which the seeds were collected) is referred to as its 

“provenance”. 
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Field Tests 

Seed lots were shared and transported to laboratories prior to sowing in different nurseries 

(one per institution hosting test sites). Seeds were sown in the spring after the harvesting of 

the acorns. After two years (exceptionally three) in the nursery, the seedlings were planted 

out at 23 sites (Table S2), distributed throughout the natural distribution of Q. petraea (Fig. 

1).  

Some test sites had climates similar to the site of origin for the planted seedlings, 

whereas other test sites differed in climate from the origin of the planted seedlings by as 

much as predicted by the end of the century. The design made it possible to estimate the 

contribution of climatic variation to the species response as a whole, but also to the 

population-specific response in terms of growth and survival.  

The populations planted at each test site were laid out in standard experimental 

designs. Randomized complete block designs were used for each field site, with blocks and 

replicated plots to account for within-site variation. The field tests were managed 

independently by the various partners, according to their own management guidelines and 

the standard silvicultural practices of the country concerned. Differences in planting year 

were accounted for in the analysis, as described below. 

 

Data collection and data input 

Total height and survival were assessed repeatedly, at different ages, at each test site, 

with the frequency of measurement depending on local resources. We focused on these 

two major components of tree fitness and derived individual estimates for each tree and 
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population at the reference age of 10 years after seed collection (about 7 to 8 years after 

planting in the field; see Appendix S1 for more details). The whole data set comprises 

measurements from 155 490 trees. 

 

Contemporary climate data.  

Climate data for each provenance (seed origin), test site, and for more than 3800 

regularly spaced points covering the current distribution of Q. petraea, were extracted from 

the WORLDCLIM dataset (Hijmans et al., 2005) downscaled to 1 km spatial resolution prior 

to point overlay as described in Zimmermann et al. (2009) and Dullinger et al. (2012), for the 

period defined as contemporary (1950-2000). Physiologically meaningful variables were 

constructed to represent the annual or seasonal balance between the thermal energy 

available for growth [DD5 = annual degree days > 5° C; GSDD5 = growing season (April to 

September) degree days > 5° C] and the annual or seasonal available moisture (MAP = mean 

annual precipitation; GSP = growing season precipitation, April to September). We then 

calculated an annual dryness index = 5/  and a growing season dryness 

index = √ 5/ , as suggested by Rehfeldt et al.(2014), and additional 

variables derived from monthly temperature and precipitation. The full list of climatic 

variables used, including their definition and units, are provided in Table S3. 
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Climate change projection data    

We extracted projected climatic variables for the decades 2071- 2100, from the European 

COrdinated Regional climate Downscaling EXperiment (EURO--CORDEX), a set of 

Regional Climate Models (RCMs) run consistently at 0.44° and 0.11° spatial resolution over 

Europe and summarized in Jacob et al. (2014). All RCMs were based on the Coupled Model 

Intercomparison Project Phase 5 (CMIP5) global simulations, developed for the 

Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report 

(https://www.ipcc.ch/report/ar5/), the most recent version of climate data. For each RCM, we 

used two Representative Concentration Pathways (RCP) of greenhouse gas concentration 

trajectories: 4.5 watts/m2 and 8.5 watts/m2, a “moderate” and a “pessimistic” scenario, which 

we subsequently refer to as rcp4.5 and rcp8.5 respectively.  

From the EURO-CORDEX-11 (0.11° spatial resolution) data archive, we used three different 

RCMs, that were fed with data from global runs of two General Circulation Models (GCM), 

resulting in the following four RCM/GCM combinations: (a) CCLM4 (Rockel et al., 2008) 

run by the CLMcom community and fed with Hadley GEM2-ES global data from the Hadley 

Centre of the United Kingdom Meteorological Office, abbreviated as “CCLM4-GEM2-ES”;  

(b) CCLM4 run by the same community and fed with CM5 global data from CNRM, the 

Centre National de Recherches Météorologiques – France, abbreviated as “CCLM4-CM5-

CNRM”; (c) HIRHAM5 (Christensen et al., 2007) run by the Danish Meteorological Institute 

(DMI) and fed by EC-EARTH global data from the EC-Earth community, abbreviated as 

“HIRHAM5-EC”; (d) RACMO22E (Meijgaard et al., 2012) run by the Royal Netherlands 

Meteorological Institute (KNMI) and fed by EC-EARTH global data provided by the EC-

Earth community, abbreviated as “RACMO22E-EC”. All data were statistically downscaled 

to the same 1 km spatial resolution as the current climate data (see above) using the change 

factor method (Diaz-Nieto & Wilby, 2005; Tabor &  Williams, 2010) as described in 
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Dullinger et al. (2012). The 1 km data were then sampled at all provenance and test sites, and 

at the 3800 points covering the distribution of Q. petraea.  

As recommended by Knutti et al. (2010), we combined the projections by first calculating all 

predictions individually, and then averaging the predictions for each point in the dataset to 

an ensemble response by each RCP, in order to produce the maps for predictions of future 

growth and survival. 

 

Statistical analysis: Climatic transfer distance response functions, according to a mixed 

model 

For both traits (survival and tree height 10 years after seed collection) we used the 

approach described by Leites et al. (2012a, 2012b) to model plant response to climate at the 

species level. This was done by considering genetic differences between populations in a 

mixed effects model (SAS, 2004) which separated fixed and random effects.  

The fixed effects express differences in population genetics due to climate, 

subdivided into three major components (Leites et al., 2012a, 2012b; Rehfeldt et al., 2003):  

(i) The effect of climate at the site of provenance. This term (called C) accounts for 

population genetic differentiation due to climate at the provenance site. The observed 

differences result from past climatic selection pressures that induced differential adaptation at 

the provenance site. Such differences are expressed as a growth potential and can be 

illustrated by the maximum value of the response function for the given population.  

(ii) The climatic transfer distance term [D = (climate at test site) – (climate at provenance); 

linear and quadratic], accounting for population differences (in height growth and survival)  

due to differences in climate between the provenance and the test sites. These differences are 
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due to short-term plastic responses to climate change which can be viewed as a genotype by 

environment interaction, or plastic response of the population, which may comprise a genetic 

and environmental component.  It can be illustrated by the shape of the response function 

curve.  

(iii)  The D x C term accounting for interaction between climate transfer distances and the 

climate of the provenance site. Populations with similar transfer distances may respond 

differently, depending on the climate of the provenance. Such differences may also be due to 

the variation of plastic responses and genotype by environment interaction. The interaction 

term determines the placement of the curve along the x axis of the response function curve.  

The full model is as follows: 

 

Yijkl = µ+ β0 + β1Dij + β2D2
ij + β3Cj + β4 (Dij*Cj) +  β 5Si + β6Pj + β7Bk(Si) + eijkl              [1] 

 

where Y ijkl = 10-yr-old tree survival rate per plot or individual tree height, corresponding to 

the  lth tree for the jth population at the kth block nested in the ith test site.  

β0  is the intercept.  

Dij is the climatic transfer distance for the jth population at the the ith field test (= the 

difference between a climatic variable at the field test minus that at the provenance)   

Cj is the value of a climate variable at the provenance of the jth population.   

Dij*Cj is the interaction between the climatic transfer distance (for the jth population at the 

the ith field test), and the climate variable at the provenance (of the jth population). 
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Si = Site effect at the ith field test. 

Pj = Population effect of the jth population due to factors other than climate.  

Bk(Si) = Block effect at the kth block nested in the ith field test. 

 eikjl = error term. 

 Dij, Cj and Dij*Cj are fixed effects. Si, Pj and Bk(Si) are random effects (Leites et al., 

2012a, 2012b). 

 

With the random effects, we accounted for potential sources of variation not 

explained by the fixed effects and captured by the experimental design (test sites, 

populations, and blocks). Pj accounts for population variation generated by evolutionary 

drivers that were not captured by the C terms, such as selection due to other factors than 

climate, genetic drift, gene flow inbreeding. Thus, differences between populations were 

accounted for by the joint effects of population as a random effect and climate, through its 

three components as fixed effects.  Planting site effects  (Si ) accounted for all 

environmental effects contributing to site quality: soil fertility, texture, drainage, climate 

effects other than those accounted for by the climatic transfer distance fixed term (extreme 

events), and differences in silvicultural maintenance regimes (timing of weed control, etc.). 

Block nested in site accounted for within planting site variation (Leites et al., 2012a, 2012b).  

We adopted this model because it accounts explicitly for climatic variation at the 

population level, producing a response function for each population driven mainly by the D 

and C terms. For the D terms, we used a quadratic function similar to that used for other 

species (Wang et al., 2010; Kapeller et al., 2012; Leites et al., 2012a, 2012b; Yang et al., 
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2015). In these earlier studies, when a population was planted over a wide range of climatic 

conditions, its response usually followed a “bell-shaped” curve. Thus, the D2 term places 

emphasis on the interaction between the population and the climate of the test sites. From 

a biological perspective, this interaction is shown by the response function of the population 

and is the expression of its plasticity - its ability to adjust to the new environment 

encountered at the test site. For the C terms, we used a linear response of provenance to 

climate. A large body of experimental results from common gardens with forest trees shows 

linear clinal variation of population responses to climatic or geographic gradients (Alberto et 

al., 2013 for a review; Morgenstern, 1996).  

We used a screening procedure for selecting the climate variables for the linear and 

quadratic functions (Appendix S2). We found a single climate variable representing the seed 

source appropriate for expressing the clinal variation among populations. Inclusion of 

additional variables reduced the statistical quality of the models. In theory, while 

multivariate climate-transfer effects are intuitively appealing, they raise statistical 

complexity and become insurmountable constraints.  

 

Exploration of transformed data  

Overall variation in survival and height was broken down into different sources of 

variation across the whole dataset according to the mixed model. Due to the heterogeneous 

origins of the data, the analysis was conducted on raw data and then separately on 

transformed data (logarithmic for height, and arcsin (square root) for survival) to account 

for potential heteroscedasticity. Due to the unbalanced distribution of populations at test 
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sites, the mixed model was also used on separate subsamples of populations, including the 

subsample comprising only populations present at all test sites (the Madsen collection). 

These different analyses (transformed vs. untransformed data, and different subsamples of 

populations) yielded similar results regarding the overall effects of the different terms of the 

mixed model, and the selection of climatic variables. Hence we only present here the results 

obtained from using the raw data and the complete sample of populations.  

 

Response function for contrasting populations 

The estimated parameters for the fixed terms of the model were used to predict height 

growth and survival for a wide hypothetical array of climate transfer distance values, for a 

sub-group of populations originating from contrasting provenances. Populations were 

chosen on the basis of contrasting values for the climate of provenance, their climate 

transfer distance, and their occurrence at a large number of testing sites (Appendix S3).  

 

Predicted impact of climate change 

The impact of climate change on a given population was predicted by estimating 

population growth and survival at the given provenance, using the response function 

derived from the mixed model. The independent variables accounting for climate transfer 

distance were the difference between the climate at the provenance in the future (average 

among regional models for either scenario rcp4.5 or rcp8.5), minus the contemporary 

climate. Thus, the model constructed from contemporary geographic climate differences 

was transposed, locally, according to projected changes in climate over time. Future 
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responses were therefore estimated by taking as independent climatic variables those 

providing the best fit to the overall model of contemporary responses to geographic 

transfer. 

Future height growth and survival responses were predicted for each of the selected 

contrasting populations for which individual transfer responses were constructed, as 

follows:  Taking the local change in climate over time as the dependent variable (transfer 

distance), we used our model to predict the future response of contrasting populations, and 

for simplicity we illustrated the projected impacts with the two extreme model scenarios. 

These were HIRHAM5-EC with the rcp4.5 scenario (most moderate) and CCLM4-GEM2-ES 

with the rcp8.5 scenario (most extreme).    

Finally, predictions of future response were systematically extended to the 3800 

regularly spaced points covering the current distribution of Q. petraea, and to any point 

located on a 1 square km grid across Europe, restricted to the limits of the contemporary 

natural and naturalized species distribution (based on EUFORGEN 2009).  

 

Results  

Climatic sources of variation of survival and tree height 

Survival 

The climatic transfer distance of annual dryness index (ADI) was, by far, the most 

relevant variable as the fixed term (D term of the mixed model) for survival rate. The chosen 

model had a negative, significant ADI transfer distance quadratic term (D2), P = 0.0108 and 
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the smallest Akaike Information Criterion (AIC) value (Table 1). Such a quadratic trend could 

be visualized by plotting mean survival per population per test site against annual dryness 

index (ADI) climatic transfer distance (Fig. 2a; notice that symbols indicate the country of 

the test site, not that of the seed source). Although the linear term corresponding to genetic 

differentiation due to climate (ADI) at the provenance level (C term of mixed model) was not 

significant for survival (P = 0.2922), when included in the model it yielded the best AIC value 

(for comparison with other models, see Table S4).  

Survival rate decreased when populations were transferred to warmer and drier sites 

(large positive climatic transfer values on x axis of Fig. 2a), or to colder and more moist sites 

(negative values on Fig. 2a). Meanwhile, survival rates were highest at sites with climates 

similar to those at the site from which the population originated (transfer distances close to 

0; Fig. 2a). The shape of the response function indicating a decrease of survival towards 

warmer and drier sites was mostly driven by results at the test sites in Turkey (warmer and 

drier climates, see Fig. S1), and in Poland, where a severe summer drought occurred after 

the planting season. 

All random terms (site, population and block nested in site) were highly significant (P ≤ 

0.0030). It was remarkable that site, as a random term, contributed strongly to the total 

variance explained, accounting for 56.6 % of the total variance (of all random terms). 

Meanwhile, population (as a genetic effect other than the result of climate selection) only 

added a small contribution to the total variance explained (1.5 %). Block and residual terms 

accounted for 14.2 and 27.7 % of the total variance explained, respectively (Table 1). 

 

Tree height 
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The growing season dryness index (GSDI) was, by far, the most relevant fixed term 

representing the climatic transfer distance (Table 1; for comparing with other climatic 

variables on the model selection process, see Table S5). Its transfer distance quadratic term 

was highly significant (P <0.0001, Table 1). Mean temperature of the coldest month (MTCM) 

was the best climate term explaining the climate of the seed source (C term of the mixed 

model), and was also highly significant (P = 0.0006; Table 1). The quadratic trend could be 

visualized by plotting mean tree height per population per test site against GSDI climatic 

transfer distance (Fig. 2b; notice that symbols indicate the country of the test site, not that 

of the seed source). 

As for survival, tree heights were smaller when a population was transferred to 

warmer and drier sites (large positive climatic transfer values on x axis of Fig. 2b), or to 

colder and more moist sites (negative values on Fig. 2b). Height growth was again highest at 

sites with climates similar to those at the site from which the population originated (transfer 

distances close to 0; Fig. 2b). 

Correlations between tree height growth population means across sites against MTCM 

as seed source climate (analysis conducted for selection of candidate climatic variables for 

the C term of model 1) were significant and negative (Spearman’s coefficient r = -0.38, P < 

0.0001), where tree height growth values were generally lower for populations originating 

from sites with a warmer mean temperature of the coldest month (Fig. 3; notice that colors 

indicate the country of the seed source, not the country of the test site). Such significant 

relationships were also found for the maximum temperatures in November, December, 

January and the mean temperature in November (Table S5).  
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In the chosen model (and almost all the competing models), all random terms (site, 

population and block nested in site) were highly significant (P ≤ 0.0007). As with survival, the 

site random term contributed strongly to the total variance explained for tree height (as 

proportion of the sum of variances of all random terms): 59.4 % of the total variance (Table 

1).  This large contribution of site as a random term to the total variance explained was 

consistent with the considerable variability of tree height across sites and populations with a 

transfer distance close to zero (Fig. 2b). The population as a random term contributed only 

1.4 % of the variation explained (similar to that for survival; Table 1). The contributions of 

block and residual to the total variance explained were 9.3 % and 29.9 %, respectively. 

 

Predicted response curves to climatic transfer distances and climatic change impacts 

We selected a subset of six populations originating from contrasting home climates to 

illustrate the variation in population response (Appendix S3). The estimated population 

response functions of survival (based solely on fixed effects), suggest that populations 

originating from sites with moderate maritime climates (Silkeborg, Denmark), or with humid 

and colder sites (Sogne, Norway), are located in habitats with near-optimal climatic 

conditions (maximum value of the predicted survival response curve close to the zero value 

for climatic transfer distance; in other words, the population occupies a site with a climate 

that allows the full expression of the population growth potential; Fig. 4a). For Sogne, the 

maximum growth value was at a positive annual dryness index transfer distance value, 

indicating that it might have its optimum on a slightly warmer and drier site than the current 

sites (slightly to the right of the zero value for transfer distance; Fig. 4a). Meanwhile, 

populations originating from drier, continental sites, with warmer, drier summers (Bercé, 
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France; Bolu, Turkey;  Sycóv, Poland or the most extreme continental Nagybatony, 

Hungary), inhabit suboptimal climates (the optimum sites for these populations would be 

colder and more humid sites than the site they currently occupy, to the left of the zero value 

for climatic transfer distance; Fig. 4a).  

We found less differentiation between populations for tree height than for survival, as 

indicated by the close or overlapping predicted response function curves for contrasting 

populations (Fig. 4b). Almost all populations seemed to be growing in conditions close to 

their optimum at the site of origin, and there was little differentiation between them. Only 

the population from Bercé, France, was identified as having an optimum at colder, wetter 

sites (left of the zero value for climatic transfer distance) than the site of origin. This finding 

was consistent with the survival response transfer function. 

 

Response functions to future climates 

The temperature/moisture balance represented by the ADI or GSDI values will change 

with projected changes in climate, shifting the present locations of Q. petraea populations 

to drier conditions in the future (higher positive values of ADI on Fig. 4a and of GSDI on Fig. 

4b).  

Climatic change would have a very moderate, nearly negligible effect under the 

moderate rcp4.5 scenario with HIRHAM5-EC (triangles on Fig. 4). However, there would be 

large and differential effects on the populations studied under the extreme rcp8.5 scenario 

with CCLM4-GEM2-ES (circles on Fig. 4). Generally, survival decreased more strongly for 

populations already growing in drier, suboptimal environments, like Bolu, Turkey and Bercé, 
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France. The reduction in survival (compared to the predicted rate for local populations, 

estimated as the intersection of dashed line –zero transfer distance- to response curve 

functions; Fig. 4a), would be -16.5 % and -17.1 % for Bolu and Bercé, respectively. However, 

reduction in survival would be even more severe for Sycóv, Poland (-21.1 %) and for the 

most continental site, i.e. Nagybatony, Hungary (-27.7 %; Fig. 4a).  

By contrast, populations from sites with highly maritime climates, such as Sogne, 

Norway, or Silkeborg, Denmark, would be affected only marginally by either model scenario. 

For example, survival would not be reduced in Sogne (change of 0.0 %) under the moderate 

rcp4.5 scenario with HIRHAM5-EC, and negligibly (-0.06 %) under the rcp8.5 scenario with 

CCLM4-GEM2-ES. Similarly, Silkeborg would suffer only -1.1 % and -5.4 % reduction in 

survival under these scenarios, when compared to contemporary predicted survival (Fig. 

4a). 

A similar impact was predicted for tree height (Fig. 4b).  A very moderate reduction in 

tree height was foreseen under the rcp4.5 scenario with HIRHAM5-EC (about – 2 %; 

triangles on Fig. 4b). In contrast, under the rcp8.5 scenario with CCLM4-GEM2-ES (circles on 

Fig. 4b), large and differential effects on the populations would be expected. Growth 

reduction would be up to -13.9 % for Sycóv, -22.5 % for Nagybatony, and the largest growth 

reduction would be for Bolu (-40.3 %) and Bercé (-46.5 %; Fig. 4b). 

Again in sharp contrast, tree height of Sogne or Silkeborg, from maritime climates, 

would be reduced by only 3.0 % and 4.7 %, respectively, under the extreme rcp8.5 scenario 

with CCLM4-GEM2-ES (Fig. 4b). 
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Mapping population response functions to future climates  

The regional divergence in the likely impact of climatic change across Europe became 

more evident when mapping predicted growth across the European continent for the years 

2071-2100 (based on the fixed terms of the mixed model; Fig. 5 is the future change in 

growth relative to the contemporary growth, the latter is displayed in Figure S5). Quercus 

petraea populations occurring close to the southern margin of the species’ distribution will 

likely decrease in growth, and some populations will probably become extinct as a result. 

This is likely for populations in Northern Spain, Central and Southern France, South-Eastern 

Serbia, Western Hungary, Eastern Georgia and Northwestern Turkey. By contrast, 

populations growing close to the northern limit of the distribution and currently exhibiting 

marginal growth, such as those in Northeastern Poland, Scotland, Southern Norway and 

Sweden, will likely grow faster. These effects would be much larger under the more 

pessimistic rcp8.5 scenarios (Fig. 5b) than under the moderate rcp4.5 scenarios (Fig. 5a). 

The same trend is projected for survival: a significant decrease is expected at the 

southern and southeastern limits of the distribution, and an improvement in survival is 

expected at the northern and northwestern limits (Fig. 6) compared to contemporary 

survival (Figure S6).  
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Discussion 

Moderate response of oak populations to climate variation  

Overall the response of Quercus petraea populations to climatic variation, represented 

in our mixed model by climate at seed source, climatic transfer distance and their 

interaction, was significant but moderate, as illustrated by the rather flat curve of the 

overall response of survival and height to climate transfer distance (Fig.2 and Fig.3). 

Interestingly these results are consistent with longitudinal data from Quercus tree rings, 

where stem annual increments were examined against monthly temperatures and 

precipitation. In a recent study (Härdtle et al., 2013), 21 to 24% of tree ring variation in 

central Europe was explained by climate. Dendroclimatological monitoring highlighted the 

rather low climatic signature in the variation of oak tree rings in comparison to other species 

(Mérian et al 2011; Lebourgeois, 2010; Barsoum, 2015). Some authors even coined these 

trends as “the loss of sensitivity” (D’Arrigo et al.,2007; Wilson et al., 2012). Finally tree ring 

analyses also revealed a rather unstable climate-growth relationship in Quercus in 

comparison to other species. When detected, these relationships tended to be variable 

across years or within years, contributing to a dilution of the overall climatic signal (Merian 

et al., 2011; Barsoum et al., 2015).  

 In sharp contrast, the effect of test site (as a random effect) explained 57 % and 59 % 

of the total variance explained due to random terms, for survival and height respectively (P 

≤ 0.003; Table 1), indicating that both are largely independent of the climatic factors tested 

as fixed terms. In our model, site effect includes very diverse sources of variation, including 

local site conditions (soil and competition with other plants), silvicultural practices or 

management procedures etc. These diverse contributions are not individually captured by 
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our model since we focused on climatic sources of variation, so they are subsumed into the 

single component “site”. However these sources of variation correspond to the “real world” 

as each country and forest management has its own management practices, and local 

ecological conditions are specific to the sites. Again these figures are in line with the results 

obtained from studies of annual rings. As mentioned by Barsoum et al. (2015) “local factors 

may have a greater influence on all growth than the wider regional climate, with stand 

management being a likely cause of observed variation.” An illustration of the combined 

moderate response to climate and large site variation is summarized in Fig. 2b for growth. 

The overall response curve is nearly flat, while large deviations due to site variation are 

present for a given ecological transfer distance. These two results are markedly different 

from those reported in previous studies using similar approaches although with different 

species (mostly conifers). In particular, the variability of tree height at sites with a climate 

similar to that at the site of provenance  (when climatic transfer distance close to zero) was 

found to be considerable.  Population means per site were between 46 and 515 cm for a 

narrow range of GSDI transfer distance values (-0.02 to 0.02; Fig. 2b), while at GSDI transfer 

distances of 0.06, height growth decreased only slightly. 

Overall our results indicate a moderate response to climate variation of growth rate 

and, to a lesser extent, survival, and considerable plasticity in response to planting site 

effects, including extreme climatic events not accounted explicitly by the model. Moderate 

phenotypic responses would undoubtedly be a major advantage in long-lived tree species 

remaining in place for several centuries, during which time they must be able to cope with 

the variability of the climate (Kremer et al., 2010), while plasticity regarding local conditions 

may allow newly produced seedlings to colonize environmentally diverse sites. Quercus 
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petraea is probably efficient at exploiting the full benefit of favorable soil conditions, and 

simply survives and grows less well under unfavorable soil conditions. 

 

Genetic population divergence along winter temperatures  

Our results reveal that the overall response of height growth and survival includes a 

population specific component with three elements. The first reflects past climatic selection 

pressures that drove genetic differentiation among populations. The second corresponds to 

the quadratic response of the population to the climatic transfer distance. The third 

combines the remaining sources of variation including divergent selection due to soil 

characteristics, genetic drift etc. Of these three elements, the first and second were highly 

significant. For example the effect of MTCM at site of origin on tree growth suggests that 

cold winter temperatures have acted as a selective force, promoting genetic differentiation 

between populations. Continuous clinal variation in height growth in response to winter 

temperatures has not been reported previously in oak provenance tests, whilst there are 

scarce indications of higher growth of northern populations of Q. petraea exposed to higher 

winter temperatures (Jensen, 2000). This lack of evidence is mainly due to the lack of trials 

with rangewide sampling of oak populations. While the establishment of provenance tests 

has been common practice in forest genetics, including for oaks (Kleinschmit, 1993; 

Kleinschmit & Svolba, 1994), most have only sampled at a regional scale (Jensen, 2000; 

Jensen & Hansen, 2008; Baliuckas & Pliura, 2003; Deans & Harvey, 1996; Liesebach & 

Stephan, 2000; Burianek et al., 2011; Sinclair et al., 2016)  or were assessed only during  the 

juvenile stage (Liepe, 1993; Maurer et al., 2000; Alberto et al., 2011), thus limiting the 

potential to identify rangewide climatic clines. Partly due to their incomplete sampling of 
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the natural distribution such trials failed to detect a genetic gradient in variation in growth. 

Our results are therefore the first to show a negative, genetically-determined relationship 

between height growth and winter temperatures. The negative correlation between MTCM 

of seed source and height  suggests that high temperatures are more limiting for tree 

growth than lower temperatures. At first sight, this appears counterintuitive, but it may in 

fact represent an adaptation to warmer sites, at which a lower growth rate may be seen as a 

means to avoid drought stress during warm, dry summers. One hypothesis is that warm 

winters delay leaf unfolding due to a lack of chilling (delay bud dormancy release, see 

Dantec et al., 2014), reduce the growing season length and  therefore impact on annual 

growth. However, warm winters are likely to be correlated with warm, dry summers and so 

the relationship with MTCM probably reflects the overall yearly temperatures rather than a 

warm winter effect per se. 

 

Differential population response to climate 

Population growth and survival decreased in response to change towards drier 

conditions. Height and survival rates were greatest at sites with climates similar to that at 

the site of population origin. Dryness index (ratio of temperatures above 5°C -corresponding 

to heat above the no-growth threshold- to the availability of moisture), either throughout 

the year for survival or during the growing season for tree growth, were responsible for 

shaping the shift in population characteristics due to the climatic transfer distance. As 

mentioned above, for survival and growth the model fit was probably limited by a lack of 

test sites that were substantially colder and more humid than any of the sites of origin. The 

general pattern of the fitted population response curve supported the hypothesis of local 
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adaptation for most populations, assuming that growth and survival were tightly correlated 

with fitness. This pattern corresponded to trends generally observed in other case studies, 

where performance in adaptive traits decreased with increasing distance (both for 

temperature and humidity) from the climate of the site of the origin (Rehfeldt et al., 1999; 

Rehfeldt et al., 2002; Rehfeldt et al., 2003; Tchebakova et al., 2005). Our finding that growth 

and survival were affected by differences in drought levels was consistent with results of 

dendrochronological studies, in which spring precipitation and summer temperature were 

shown to be correlated with Q. petraea tree ring growth over the last 2500 years (Büntgen  

et al., 2011).  Similarly, high temperatures in March and water stress in May to July appear 

to be the main factors limiting radial growth (Mérian et al., 2011).   

Our results show also population genetic differentiation in the shape of the response 

function along the climatic transfer distance (Fig. 4), and these differed between survival 

and growth. For example, populations originating from the Northern part of the distribution 

(Silkeborg, Denmark or Sogne, Norway) were located in habitats with near-optimal climates, 

whereas other populations were currently located in climates warmer than their optimum. 

For height, population differentiation was less pronounced. This finding contrasts with those 

for conifer species, where northern populations are thought to occupy suboptimal 

conditions (usually colder than their optimum). For instance, this has been shown for Picea 

glauca in Quebec (Li et al.,1997; Beaulieu & Rainville 2005) or Larix spp. and Pinus sylvestris 

in Siberia (Tchebakova et al., 2005). 
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Predicted response curves to climatic transfer distances and climate change impacts 

For all populations, survival and height were projected to decrease following transfer 

to much warmer and drier sites (toward positive values of ADI or GSDI transfer distances).  

When the climatic transfer distances were viewed as contemporary populations 

experiencing future climates, it was evident that adaptation to climate change would be 

possible for populations currently living in habitats slightly colder than their optimum 

(Beaulieu & Rainville 2005). In our case, these populations were situated in Denmark and 

Norway. Unfortunately, populations already growing under warmer and drier climates than 

their optimum, will suffer the most from climatic change impacts, for instance those from 

Bercé (France), Bolu (Turkey) and Nagybatony (Hungary). A similar decoupling has being 

reported for southeastern Larix spp. populations (Tchebakova et al.,2005).  

Climate change impacts are projected to be only moderate under the ensemble of 

models using the rcp4.5 scenario. However, under the rcp8.5 scenario, the impacts are 

much more severe (Fig. 5 and 6). At present, it seems that the rcp8.5 is the more likely 

scenario, given that emissions continue to grow according to “business as usual” (Hansen et 

al., 2012). If this trend continues, then the climate transfer distances would increase and will 

be even higher than those tested in our experiment. This would result in an even more 

severe decrease in survival and growth in many regions, particularly if the transfer distances 

exceed the adaptation threshold of 0.06 units of growing season dryness index (Fig. 2b). 

There is already evidence suggesting that Q. petraea populations are declining at the xeric 

limit of its distribution in the White Carpathian wooded grasslands (Czech Republic). This is 

specifically observed at sites with high levels of insolation, at which severe droughts have 

occurred during the summers over the past 30 years (Dolezal et al., 2010). Similar 
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observations were recently made for beech (Horváth & Mátyás, 2016). 

Quercus petraea forest decline at the southern and southeastern limits could be 

moderated if trees were able to respond to elevated CO2 levels with mitigating mechanisms 

such as enhanced water use efficiency (Picon et al., 1996; Battipaglia et al., 2013; Keenan et 

al. 2013; AbdElgawad et al. 2016). However, much more analysis of oak responses to 

elevated CO2 is required before conclusions can be drawn. 

 

Limitations of this study and management implications  

While international multisite provenance tests are invaluable for analyzing population 

responses to climate variation, we caution against overinterpretation of our results 

concerning Q. petraea. There are a number of limitations to be considered before making 

general conclusions about the adaptation of oak to ongoing climate change, as follows:.  

(a) First of all, this study is based on evaluation of juvenile growth and survival. In most 

European countries rotation age in Quercus petraea is more than 150 years, and there is no 

current information on the juvenile-mature correlation for growth in oaks. Furthermore, early 

evaluation may be more impacted by stochastic or deterministic variation caused by 

transplantation, maternal effects and competition with weeds. Assembling later stage 

assessments is necessary but will be a challenging task dependent on the resources available 

in the different countries and institutions hosting the experiments.  

(b)  Secondly, there may be ascertainment bias due to the sampling of populations and the 

selection of test sites (Figure S1). Most of the test sites were established in the “optimal” 

region of the climatic envelope of the species and contain a limited number of provenances 

from the ecological margins of the species. To what extent this sampling scheme may have 
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shaped the transfer functions is  unknown but we would anticipate that the central part of 

transfer function would be less affected, while the predominant effects of plasticity would 

also remain.   

(c) The third limitation is the unbalanced design of the experiment. Although populations 

of the Madsen core collection were planted in all sites, the overall experimental design was 

unbalanced in population representation. The mixed model accommodated this to some 

extent as shown by the congruent results obtained with the separate analysis conducted on the 

subset of common populations. The congruence of the two analyses is most likely due to the 

representative sampling of the core population across the ecological range of the species.  

However inferences about response functions of provenances tested in a limited number of 

sites should be treated with caution.  

(d) Finally the choice of years for recording climate data may also be a source of bias. 

We did not use the climatic record over the period when the trees were growing (1989-1999), 

but rather the climate data for an extended reference period (1950-1990). We wanted to 

capture the full extent of climatic variation that populations have experienced and adapted to; 

data from an extended period will better account for this. However, whilst more appropriate 

for assessing population differentiation, this choice might underestimate the climate transfer 

distance, especially if extreme climate events occurred between 1989 and 1999. Given that 

the growing period considered (1989 to 1999) was included in the reference period, the 

underestimation should be minimal. 

Despite these limitations, data from replicated provenance tests are essential to guide 

adaptive management strategies. Our results clearly show that the climate effects that have 

shaped population differentiation in the past, and the climate change simulated by the 

spatial transfer of populations, account for a statistically significant yet moderate part of  

the variation of survival and height in Q. petraea. Given the experimental constraints and 
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limitations, we suspect that these sources of variation have been underestimated in this 

study. This is why strong population and regional site effects were observed when 

projecting the survival and height growth under future climatic change scenarios. Climate 

change under the more extreme rcp8.5 scenario is expected to severely reduce height 

growth and survival at the southern and southeastern margins of the contemporary 

distribution, particularly in Turkey and Hungary. In contrast, the projected changes are 

minimal for the northern margins of oak distribution in Europe. Our results therefore 

capture the variation in risk exposure of Q. petraea across Europe.   

This experiment can also be seen as a test of the concept of assisted migration, which 

proposes deliberate displacement of populations and in some cases species, based on 

climate change predictions. Assisted migration consists of transplanting populations to new 

locations with climates to which they are best adapted. In general, these locations differ 

(northern and at higher elevations) from those in which they currently grow (Aitken et al., 

2008; Mátyás et al., 2010; Gray & Hamann, 2011; Fettig et al., 2013; Castellanos-Acuña  et 

al., 2015).  

Finally, this study highlighted the importance of local site factors and the plastic 

response of oak to site variation. Changes in local silvicultural practice, which have yet to be 

developed and explored, should also receive major attention for adaptive management to 

face climatic change.   
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Table S3. Climatic variables. 
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FIGURE CAPTIONS 

 

Fig. 1 Location of source populations and test sites. Red symbols indicate the locations of the 

116  Q. petraea populations from which seed were collected for field tests. Black symbols 

indicate the 23 field test sites. The contemporary distribution of natural and naturalized stands 

is shown in dark green (EUFORGEN, 2009). 

Fig. 2 Observed response of survival (a) and tree height (b) to climatic transfer distance. 

Scatter plots, at 10-years-old, of population values by test site for: (a) survival rates against 

annual dryness index (ADI) transfer distance, and (b) tree height against growing season 

dryness index (GSDI) transfer distance. Symbols indicate the country of the test site, not that 

of the seed source. Larger positive values on the x axis indicate transfer to drier sites; 

negative values indicate transfer to wetter sites; a value of zero (vertical dashed line) 

indicates transfer to a test site with a climate similar to that of the site of provenance. 

Predicted values were estimated from the fixed terms of the best full model selected (as in 

Table 1; for survival, model uses ADI as a climatic variable for both transfer distance and for 

seed source (C term); for tree height, model uses mean temperature of the coldest month 

(MTCM) as a climatic variable for seed source). Note that model fit was made either with the 

rate of survival per plot or with individual tree height, not with the means per population per 

test site as this figure shows for clarity (see Material and Methods and Appendix S1 and S2). 
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Fig. 3 Observed tree height (10-year-old trees) averaged by population, across test sites, and 

plotted against the mean temperature of the coldest months for the seed source (MTCM; r 

= - 0.38; P < 0.0001). Colors indicate the country of the seed source, not the country of the 

test site (for Eastern Europe: Cze = Czech Republic, Geo = Georgia, Hun = Hungary, Svk = 

Slovakia). 

Fig. 4 Climatic transfer distance predicted response functions of (a) survival and (b) tree 

height for six contrasting populations. Predicted response functions for 10-year-old trees of: 

(a) survival plotted against annual dryness index transfer distance and (b) tree height 

plotted against growing season dryness index transfer distance. Point symbols (on the 

predicted response curves) indicate the predicted survival or tree height for the population 

at its site of origin, following a climatic transfer distance due to climatic change predicted 

for the years 2071-2100, as follows: triangles (Δ) under the HIRHAM5-EC with rcp4.5 (a 

moderate model-scenario); circles (○) under the CCLM4-GEM2-ES with the rcp8.5 (the most 

extreme model-scenario). Populations originated from contrasting environments: Sogne, 

Norway (extreme maritime climate); Silkeborg, Denmark (maritime); Bolu, Turkey 

(continental, but high elevation); Bercé, France, (continental climate), and Nagybatony, 

Hungary, Sycóv, Poland (extreme continental climate). The vertical dashed line indicates the 

climate of the population when growing as local (climate transfer distance = 0; in other 

words, under contemporary climate). Predictions were made using the parameters 

estimated for the fixed effect terms of the full mixed model chosen (as in Table 1). 
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Fig. 5. Projected growth anomaly for years 2071-2100 in comparison to contemporary, 

averaging across four models by RCP scenarios: (a) moderate, rcp4.5, and (b) pessimistic, 

rcp8.5. Predicted Q. petraea height growth anomaly expressed as change in comparison to 

contemporary. Predictions are based on fixed-term parameters from the fitted mixed model 

(growing season dryness index as climate transfer distance and mean temperature of the 

warmest month as seed source climate). 

 

Fig. 6 Projected survival anomaly for years 2071-2100 in comparison to contemporary, 

averaging across four models by RCP scenarios: (a) moderate, rcp4.5, and (b) pessimistic, 

rcp8.5.  Predicted Q. petraea survival (%) anomaly, expressed as change in comparison to 

contemporary. Predictions are based on fixed-term parameters from the fitted mixed model 

(annual dryness index as climatic variable for transfer distance and for seed source). 
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