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PERIODIC DOMAINS OF QUASIREGULAR MAPS

DANIEL A. NICKS, DAVID J. SIXSMITH

Abstract. We consider the iteration of quasiregular maps of transcendental

type from Rd to Rd. We give a bound on the rate at which the iterates of

such a map can escape to infinity in a periodic component of the quasi-Fatou
set. We give examples which show that this result is best possible. Under an

additional hypothesis, which is satisfied by all uniformly quasiregular maps,

this bound can be improved to be the same as those in a Baker domain of a
transcendental entire function.

We construct a quasiregular map of transcendental type from R3 to R3

with a periodic domain in which all iterates tend locally uniformly to infinity.
This is the first example of such behaviour in a dimension greater than two.

Our construction uses a general result regarding the extension of biLipschitz
maps. In addition, we show that there is a quasiregular map of transcendental

type from R3 to R3 which is equal to the identity map in a half-space.

1. Introduction

The Fatou set F (f) of an entire function f is the set of points z ∈ C such that
{fk}k∈N is a normal family in some neighbourhood of z. The Julia set J(f) is the
complement in C of F (f), and the escaping set is defined by

(1) I(f) := {z ∈ C : fk(z)→∞ as k →∞}.
We refer to [4] for further information on the properties of these sets.

If U is a component of F (f), and there exists a least integer p such that
fp(U) ⊂ U , then U is called p–periodic. If, in addition, U ∩ I(f) 6= ∅, then
U is called a Baker domain, and, by normality, the iterates of f tend locally uni-
formly to infinity in U . Baker domains have been a subject of much study; see, for
example, [2, 3, 5, 24, 29] and the survey article [30].

The first example of a transcendental entire function with a Baker domain is

(2) h(z) := z + e−z + 1,

given by Fatou [16, Exemple I]. It can be seen that h has a Baker domain containing
a right half-plane. The rate at which points in the Baker domain tend to infinity is
slow; h eventually behaves “like” z 7→ z+1. This observation may be quantified for
a Baker domain of any transcendental entire function as follows [29, Theorem 1].
The first proof of this result, in the case p = 1, was given by Baker [2].

Theorem A. Suppose that f is a transcendental entire function and that U is a
p-periodic Baker domain of f . Then, for x ∈ U ,

(3) log |fkp(x)| = O(k) as k →∞.
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2 DANIEL A. NICKS, DAVID J. SIXSMITH

Also, if X ⊂ U is compact, then there exist C > 1 and k0 ∈ N such that

(4) |fkp(x′)| ≤ C|fkp(x)|, for x, x′ ∈ X, k ≥ k0.
Finally, if ξ0 ∈ U and Γ0 ⊂ U is a curve joining ξ0 to fp(ξ0) such that 0 /∈

⋃∞
k=0 f

kp(Γ0),
then there is a constant C > 1 such that

(5)
1

C
|x| ≤ |fp(x)| ≤ C|x|, for x ∈

∞⋃
k=0

fkp(Γ0).

In this paper we use some techniques from our earlier paper [27] to extend
this study to more than two (real) dimensions. Suppose that d ≥ 2, and that
f : Rd → Rd is a quasiregular map; we define a quasiregular map in Section 2. Here
we are mainly interested in the case that f is of transcendental type; in other words,
f has an essential singularity at infinity.

In the context of quasiregular maps, a definition of the Julia set different to that
used in complex dynamics is required. We follow [8, 13], and define the Julia set
J(f) to be the set of points x ∈ Rd such that

(6) cap

(
Rd \

∞⋃
k=1

fk(U)

)
= 0, for every neighbourhood U of x.

Recall that if S ⊂ Rd, then cap S = 0 means that S is, in a sense that can be made
precise, a “small” set; we refer to [28, 35] for a full definition. If f is a quasiregular
map of transcendental type, then J(f) is infinite [13, Theorem 1.1].

Following [27], we define the quasi-Fatou set QF (f) as the complement in Rd of
the Julia set; note that it follows from [13, Theorem 1.2] that if f is a transcendental
entire function, then QF (f) = F (f). If U is a component of QF (f), and there exists
a least integer p such that fp(U) ⊂ U , then U is called a p–periodic domain. If U
is not periodic, but there is an integer k such that fk(U) is contained in a periodic
domain, then U is called pre-periodic. In the remaining case, U is called wandering.
The escaping set I(f) is defined by the obvious modification to (1).

Since it follows from [1, Theorem 3.1] that a Baker domain of a transcendental
entire function is full, our first main result is a generalisation of (3) to quasiregular
maps. Here KI(f) is the inner dilatation of f ; we refer to Section 2 for a definition.
We say that a domain is full if it has no bounded complementary components;
otherwise we say that it is hollow. Also, log+ is the function defined by

log+(x) := log(max{1, x}), for x ∈ R.

Theorem 1. Suppose that f : Rd → Rd is a quasiregular map of transcendental
type, and that U is a full p-periodic domain. Then

(7) lim sup
k→∞

1

k
log+ log |fkp(x)| ≤ logKI(f

p), for x ∈ U.

In the other direction, in Section 8 we give examples which show that the conclu-
sion of Theorem 1 is best possible; in particular, the bound (7) cannot be improved
to (3) in the quasiregular case.

Remarks. (1) We cannot assume that if a component, U , of the quasi-Fatou
set meets the escaping set, then the iterates tend to infinity locally uni-
formly in U . In Example 3 below we give a quasiregular map of R3 with a
periodic domain that meets, but is not contained in, the escaping set.
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(2) If f is a quasiregular map that is not of transcendental type, and the degree
of f is greater than KI(f), then the Julia set of f is non-empty [8, Theorem
1.1], and it follows from, for example, [18, Theorem 1.4], that there exists a
unique unbounded component of QF (f), which is hollow and periodic. The
rate at which the iterates tend to infinity in this component is described in
[18].

A quasiregular map f : Rd → Rd is called uniformly K-quasiregular if all the
iterates of f are K-quasiregular; this definition was introduced in [20]. It is possible
to give a result stronger than Theorem 1 for maps with this property. However, for
d ≥ 3, there are currently no known examples of uniformly quasiregular maps of
transcendental type.

We introduce the following definition. Suppose that f : Rd → Rd is a quasireg-
ular map, and that U ⊂ Rd is a domain. We say that f is locally uniformly
quasiregular in U if, for each x ∈ U , there is a neighbourhood V of x such that all
the iterates of f restricted to V are K-quasiregular for some K, which may depend
on x. Clearly, if f : Rd → Rd is uniformly quasiregular, then f is locally uniformly
quasiregular in Rd. We note also that the function f : R3 → R3 constructed in the
proof of Theorem 4 below is locally uniformly quasiregular in the unique component
U = QF (f).

We have the following stronger result for maps with this property.

Theorem 2. Suppose that f : Rd → Rd is a quasiregular map of transcendental
type, that U is a full p-periodic domain that meets I(f), and that f is locally uni-
formly quasiregular in U . Then the iterates of f tend locally uniformly to infinity
in U , and the conclusions of Theorem A all hold.

Remark. If f is a transcendental entire function, then f is uniformly quasiregular,
and so the proof of Theorem 2 gives a new technique to prove Theorem A.

It was shown in [12] that a Baker domain of a transcendental entire function
cannot meet the fast escaping set A(f); we defer a definition of this set to Section 2.
Since, as mentioned earlier, a Baker domain of a transcendental entire function is
full, one direction of the following result can be seen as a generalisation of this fact
to quasiregular maps of transcendental type. The other direction, when combined
with Lemma 5 below, shows that the hypothesis in the statement of Theorem 1
that U is full seems to be required. We observe, however, that there is no known
example of a quasiregular map of transcendental type with a hollow domain that
is periodic or pre-periodic.

Theorem 3. Suppose that f : Rd → Rd is a quasiregular map of transcendental
type, and that U is a component of QF (f) that is periodic or pre-periodic. Then U
meets A(f) if and only if U is hollow.

In Section 3 we state a corollary to Theorem 3 for functions that do not grow
too slowly.

Fatou showed that the Baker domain of the function h defined in (2) is equal to
the whole Fatou set F (h). Our second main result is that there is a quasiregular
map of R3 with analogous properties.

Theorem 4. There exists a quasiregular map of transcendental type f : R3 → R3

such that QF (f) consists of a single full domain, U , in which all iterates of f tend
locally uniformly to infinity. Moreover, f is locally uniformly quasiregular in U .
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In the proof of Theorem 4 we define a function with the following property, which
may be of independent interest; in fact the functions constructed in the proofs of
Theorem 4 and Theorem 5 differ only by a translation.

Theorem 5. There exists a quasiregular map of transcendental type g : R3 → R3

that is equal to the identity map in a half-space.

The structure of this paper is as follows. First, in Section 2 we recall the def-
initions of quasiregularity, a useful metric, and the fast escaping set, and we give
some known results required in the rest of the paper. In Section 3 we prove Theo-
rem 1, Theorem 2, Theorem 3 and Corollary 1. In Section 4 we prove Theorem 6,
which concerns the extension of biLipschitz maps, and is used later in the proofs of
Theorem 4 and Theorem 5. In Section 5 we define a Zorich map, in Section 6 we
prove Theorem 5, and then in Section 7 we prove Theorem 4. Finally, in Section 8
we give the examples mentioned above.

Notation. In much of this paper we work in R3. If x ∈ R3, then we adopt the
notation x = (x1, x2, x3) without comment; for example, {x3 > 0} denotes the
half-space {x = (x1, x2, x3) ∈ R3 : x3 > 0}.

If x, y are distinct points of Rd, then we write L(x, y) for the straight line con-
taining x and y extended to infinity in both directions, and l(x, y) for the straight
line segment from x to y.

We denote the Euclidean distance from a point x to a set U ⊂ Rd by

dist(x, U) := inf
y∈U
|x− y|.

We denote by B(a, r) the open ball of Euclidean radius r, centred at a point
a ∈ Rd.

2. Definitions and background results

We refer to [28, 35] for a detailed treatment of quasiregular maps, and recall here
the definition, and some properties used in this paper.

Suppose that d ≥ 2, that G ⊂ Rd is a domain, and that 1 ≤ p <∞. The Sobolev
space W 1

p,loc(G) consists of those functions f : G → Rd for which all first order
weak partial derivatives exist and are locally in Lp. We say that f is quasiregular
if f ∈W 1

d,loc(G) is continuous, and there exists KO ≥ 1 such that

(8) |Df(x)|d ≤ KOJf (x) a.e.

Here Df(x) denotes the derivative,

|Df(x)| := sup
|h|=1

|Df(x)(h)|

is the norm of the derivative, and Jf (x) denotes the Jacobian determinant. We also
define

`(Df(x)) := inf
|h|=1

|Df(x)(h)|.

If f is quasiregular, then there also exists KI ≥ 1 such that

(9) KI`(Df(x))d ≥ Jf (x) a.e.

The smallest constants KO and KI for which (8) and (9) hold are called the outer
and inner dilatation of f and denoted by KO(f) and KI(f). We say that f is
K-quasiregular if max{KI(f),KO(f)} ≤ K, for some K ≥ 1.
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A homeomorphism that satisfies (8) and (9) with |Jf (x)| in place of Jf (x) is
called quasiconformal. Note that, by this definition, a quasiconformal map may be
orientation-reversing.

If f and g are quasiregular maps, and f is defined in the range of g, then f ◦ g
is quasiregular and [28, Theorem II.6.8]

(10) KI(f ◦ g) ≤ KI(f)KI(g).

Many properties of holomorphic functions extend to quasiregular maps; in par-
ticular, non-constant quasiregular maps are open and discrete.

We use a result on the growth of the maximum modulus of a quasiregular map of
transcendental type; see [6, Lemma 3.4], [22, Corollary 4.3]. Here M(R, f) denotes
the maximum modulus function

M(R, f) := max
|x|=R

|f(x)|, for R > 0.

Lemma 1. Suppose that f : Rd → Rd is a quasiregular map of transcendental type.
Then

lim
r→∞

logM(r, f)

log r
=∞.

As in [27], we use a certain conformal invariant that is useful when working with
quasiregular maps. The definition of this invariant is complicated, so we simply
state the properties we use, and refer to [35] for full details.

Let G ⊂ Rd be a domain. Vuorinen [35, p.103] defines a function

µG : G×G→ R
with the properties that µG is a conformal invariant, and is a metric if cap ∂G > 0.
It is noted that if D ⊂ G is a domain, then

(11) µD(x, y) ≥ µG(x, y), for x, y ∈ D.
We use the following [35, Theorem 10.18].

Lemma 2. Suppose that f : G→ Rd is a non-constant quasiregular map. Then

µf(G)(f(a), f(b)) ≤ KI(f)µG(a, b), for a, b ∈ G.

We also use the following estimate for µG [35, Theorem 8.31]. Here, the boundary

of G taken in Rd is denoted by ∂∞G.

Lemma 3. Suppose that G is a proper subdomain of Rd and that ∂∞G is connected.
Then there exists a constant cd, which depends only on d, such that

µG(a, b) ≥ cd log

(
1 +

|a− b|
min{dist(a, ∂G),dist(b, ∂G)}

)
, for a, b ∈ G.

We use the fact, which is straightforward to prove, that if G is a full subdomain
of Rd, then ∂∞G is connected.

Suppose that f : Rd → Rd is quasiregular. The fast escaping set is a subset of
the escaping set, and is defined by

(12) A(f) := {x : there exists ` ∈ N such that |fk+`(x)| ≥Mk(R, f), for k ∈ N}.
Here Mk(R, f) denotes the kth iterate of M(R, f) with respect to the first variable,
and R > 0 can be taken to be any value such that Mk(R, f)→∞ as k →∞. For
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a quasiregular map f of transcendental type, this definition was first used in [9],
where it was shown that A(f) is independent of the choice of R.

We need the following properties of the fast escaping set, which combine [9,
Theorem 1.2] and [11, Theorem 1.1 and Theorem 1.2].

Lemma 4. Suppose that f : Rd → Rd is a quasiregular map of transcendental type.
Then A(f) is non-empty and has no bounded components, and J(f) ⊂ ∂A(f). If,
in addition,

(13) lim inf
R→∞

log logM(R, f)

log logR
=∞,

then J(f) = ∂A(f).

3. Results concerning rate of escape

Proof of Theorem 1. Suppose that f : Rd → Rd is a quasiregular map of transcen-
dental type, and that U is a full p-periodic domain. Choose x0 ∈ ∂U .

We note first the following. Suppose that V ⊂ U is a domain. Let cd be the
constant in Lemma 3. It follows, by (11) and Lemma 3, that

µV (a, b) ≥ µU (a, b)

≥ cd log

(
1 +

|a− b|
|b− x0|

)
≥ cd log

|a− x0|
|b− x0|

, for a, b ∈ V.

Hence

(14) |a− x0| ≤ |b− x0| exp

(
µV (a, b)

cd

)
, for a, b ∈ V.

Clearly, fkp(U) ⊂ f (k−1)p(U) ⊂ U , for k ∈ N. Suppose that x ∈ U . We deduce
by (10), (14) and Lemma 2 that

|fkp(x)− x0| ≤ |f (k−1)p(x)− x0| exp

(
µf(k−1)p(U)(f

kp(x), f (k−1)p(x))

cd

)

≤ |f (k−1)p(x)− x0| exp

(
KI(f

(k−1)p)µU (fp(x), x)

cd

)
≤ |f (k−1)p(x)− x0| exp

(
KI(f

p)k−1µU (fp(x), x)

cd

)
, for k ∈ N.

Hence

(15) |fkp(x)− x0| ≤ |x− x0| exp

µU (fp(x), x)

cd

k−1∑
j=0

KI(f
p)j

 , for k ∈ N,

and (7) follows. �

Proof of Theorem 2. Suppose that f : Rd → Rd is a quasiregular map of transcen-
dental type, that U is a full p-periodic domain that meets I(f), and that f is locally
uniformly quasiregular in U . Choose x0 ∈ ∂U .
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Suppose that x ∈ U . Let D be a bounded domain, compactly contained in U ,
such that x ∈ D and fp(x) ∈ D. It follows, by a compactness argument, that f is
uniformly quasiregular in D. This, in turn, implies that f is uniformly quasiregular
in the domain

(16) V :=
⋃
k≥0

fkp(D) ⊂ U.

We deduce by (14) and Lemma 2 that there exists K ≥ 1 such that

|fkp(x)− x0| ≤ |f (k−1)p(x)− x0| exp

(
KµV (fp(x), x)

cd

)
, for k ∈ N,

in which case

|fkp(x)− x0| ≤ |x− x0| exp

(
kKµV (fp(x), x)

cd

)
, for k ∈ N.

Equation (3) follows.

To prove (4), suppose that X ⊂ U is compact. Let D be a bounded domain,
compactly contained in U , such that X ∪ fp(X) ⊂ D, and let V be as in (16). Set

L := sup
x,x′∈X

µV (x, x′).

Note that it follows from the compactness of X, together with [26, Theorem 1] (and
see also [25, Theorem 2]), that L <∞. We deduce by (14) and Lemma 2 that there
exists K ≥ 1 such that

|fkp(x′)− x0| ≤ |fkp(x)− x0| exp

(
KL

cd

)
, for x, x′ ∈ X, k ∈ N.

Equation (4) follows. The fact that the iterates of f tend locally uniformly to in-
finity in U also follows.

Finally, let ξ0 ∈ U and let Γ0 ⊂ U be a curve joining ξ0 to fp(ξ0) such that
0 /∈

⋃∞
k=0 f

kp(Γ0). If x ∈
⋃∞
k=0 f

kp(Γ0), then we can write x = fkp(ξ), for some
ξ ∈ Γ0 and k ≥ 0. We then obtain (5) by setting X = Γ0 ∪ fp(Γ0) and applying
(4) to the points ξ and fp(ξ). �

To prove Theorem 3 we require the following, which is a generalisation of [32,
Theorem 2.2 (c)] to quasiregular maps of transcendental type.

Lemma 5. Suppose that f : Rd → Rd is a quasiregular map of transcendental type,
and that x ∈ A(f). Then

(17) lim
k→∞

1

k
log log |fk(x)| =∞.

Proof. Let R > 0 be sufficiently large that Mk(R, f) → ∞ as k → ∞. It follows
by Lemma 1 that

(18) lim
k→∞

1

k
log logMk(R, f) =∞.

Suppose that x ∈ A(f). Then, by (12), there exists ` ∈ N such that, for all
sufficiently large k ∈ N,

1

k
log log |fk(x)| ≥ 1

k
log logMk−`(R, f).
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The result follows by (18). �

Remark. When f is a transcendental entire function, points that satisfy (17) are
said to zip to infinity. The set of points with this property was studied in [31].

Proof of Theorem 3. Suppose that f : Rd → Rd is a quasiregular map of transcen-
dental type, and that U is a component of QF (f) that is periodic or pre-periodic.

Suppose first that U ∩A(f) 6= ∅. By way of contradiction, we suppose that U is
full. There exists k ∈ N such that the component of QF (f) that contains fk(U),
V say, is p-periodic. By [27, Corollary 5.2] V is full, and it is easy to see that V
meets A(f). Take x ∈ V ∩ A(f), in which case, by Lemma 5, equation (17) holds.
This is in contradiction to (7).

In the other direction, suppose that U is hollow. We deduce by [27, Theorem
1.3] that U is unbounded. It then follows by [27, Theorem 1.4] that U has no
unbounded complementary components. Since, by Lemma 4, A(f) has at least one
unbounded component, it follows that U meets A(f). �

As mentioned in the introduction, Theorem 3 has the following corollary.

Corollary 1. Suppose that f : Rd → Rd is a quasiregular map of transcendental
type such that (13) is satisfied. Suppose also that U is a hollow component of
QF (f). Then U ⊂ A(f).

Proof of Corollary 1. If U is bounded, then it follows by [27, Theorem 1.3] that
U ⊂ A(f). Hence we can assume that U is unbounded, in which case, by [27,
Theorem 1.4], U is periodic. It follows by Theorem 3 that U meets A(f). It then
follows by the final part of Lemma 4 that U ⊂ A(f), as required. �

4. Radial extension of biLipschitz maps

The goal of this section is to prove a result, Theorem 6 below, that is used to
construct the functions described in Theorem 4 and Theorem 5. Although there
are related results in the literature – see, for example, [14, 23, 34] – the authors are
not aware of a reference for this result.

We require some preliminary results and notation. For generality, we give these
results in Rd.

Definition 1. A domain A ⊂ Rd is called a star domain if there exists a ∈ A such
that, for all x ∈ A \ {a}, the line segment l(a, x) lies in A. Such a point is called a
star centre of A.

We need to be able to choose a star centre with a certain property, and so we
introduce the following definition.

Definition 2. Suppose that A ⊂ Rd is a bounded star domain with star centre a.
We say that a is a non-tangential star centre if there exist θ ∈ (0, π/4) and ε > 0
with the following property. For all points w, v ∈ ∂A such that 0 < |w− v| < ε, the
acute angle between the lines L(a,w) and L(w, v) is greater than θ.

Note that an equivalent definition is that for each point w ∈ ∂A, the boundary
of A only meets the double-cone with vertex w, axis through a, and aperture 2θ,
either at the point w or outside the ball B(w, ε).
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Figure 1. The construction from Lemma 6

It follows from the definitions that if A is a bounded star domain, a is a non-
tangential star centre of A, and x ∈ A \ {a}, then L(a, x) meets ∂A at exactly two
points. One of these points, which we denote by x̂, is such that x ∈ l(a, x̂). We
define a surjection ψA : A \ {a} → ∂A by

ψA(x) :=

{
x̂, for x ∈ A \ {a},
x, for x ∈ ∂A.

Clearly ψA depends on the choice of star centre, but we suppress this for clarity;
the choice of star centre will always be clear from the context. We require the
following property of ψA.

Lemma 6. Suppose that A ⊂ Rd is a bounded star domain with a non-tangential
star centre a. Then ψA is locally Lipschitz. Indeed, there exist η ∈ (0, 1) and T > 0
such that for all ξ ∈ A \ {a},

(19) |ψA(x)− ψA(y)| ≤ T

|ξ − a|
|x− y|, for x, y ∈ B(ξ, η|ξ − a|) ∩A.

Proof. For simplicity of notation, we can assume that a = 0. Let θ and ε be the
constants from Definition 2. Let η > 0 be sufficiently small that

η < min

{
1

2
,

1

4
sin (θ/2) ,

ε sin (θ/2)

4 maxw∈∂A |w|

}
.
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Fix ξ ∈ A \ {0}. Suppose that x, y ∈ B(ξ, η|ξ|) ∩ A. We can assume that
ψA(x) 6= ψA(y), as otherwise there is nothing to prove. Let p and q be the points
where L(0, y) meets the double cone with vertex ψA(x), axis through 0, and aperture
2θ, and let α be the acute angle between L(0, x) and L(0, y); see Figure 1.

We note that the first two constraints on η imply first that

(20) sinα ≤ |x− y|
|x|

≤ 2η|ξ|
(1− η)|ξ|

≤ 4η,

and then that 2α < θ.
It follows, by a geometric construction and by (20), that the constraints on η

ensure that p and q both lie within the ball B(ψA(x), ε). Hence, by Definition 2,
L(0, y) meets ∂A in B(ψA(x), ε), and therefore ψA(y) ∈ `(p, q).

It follows, by a similar geometric calculation, that

|ψA(x)− ψA(y)| ≤ max{|ψA(x)− p|, |ψA(x)− q|}

=
|ψA(x)| sinα

min{sin(θ − α), sin(π − θ − α)}

≤ |x− y|2 maxw∈∂A |w|
|ξ| sin(θ/2)

.

The result follows, with T = 2 csc(θ/2) maxw∈∂A |w|. �

We now give the main result of this section.

Theorem 6. Suppose that A,B ⊂ Rd are bounded star domains with non-tangential
star centres a, b respectively. Suppose also that f : ∂A → ∂B is a biLipschitz
surjection. Radially extend f to a function from A to B, which we continue to
denote by f , by defining

(21) f(x) :=

{
b+ |x−a|

|ψA(x)−a| (f(ψA(x))− b), for x ∈ A \ {a}
b, for x = a.

Then f is a biLipschitz surjection.

Proof. Note that the definition of f is symmetric, in the following sense. Since f
is biLipschitz on ∂A, it has a biLipschitz inverse φ on ∂B = f(∂A). It follows from
(21) that φ radially extends to an inverse of f on B with

(22) φ(x) :=

{
a+ |x−b|

|ψB(x)−b| (φ(ψB(x))− a), for x ∈ B \ {b}
a, for x = b.

We prove that f is Lipschitz on A. Applying the same argument to φ shows that
φ is Lipschitz on B. The fact that f is biLipschitz then follows.

For simplicity of notation, we can assume that a = b = 0. Let

M := sup
w∈A∪B

|w| <∞ and δ := inf
w∈∂A∪∂B

|w| > 0,

and let L be the Lipschitz constant of f on ∂A.
Since

|f(x)− f(0)| = |x|
|ψA(x)|

|f(ψA(x))| ≤ M

δ
|x|,

we see that f is Lipschitz at the origin.
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Now take x, y ∈ A. We can assume, without loss of generality, that |x| ≥ |y| > 0.

Let w := f(ψA(x))
|f(ψA(x))| and note that |w| = 1. Then

|f(x)− f(y)| =
∣∣∣∣ |x|
|ψA(x)|

f(ψA(x))− |y|
|ψA(y)|

f(ψA(y))

∣∣∣∣
=
|f(ψA(x))|
|ψA(x)|

∣∣∣∣|x|w − |y||ψA(x)|
|ψA(y)|

f(ψA(y))

|f(ψA(x))|

∣∣∣∣ .(23)

We consider two cases. First, suppose that |x− y| ≥ η|x|, where η ∈ (0, 1) is the
constant from Lemma 6. Using (23) then gives that

|f(x)− f(y)|
|x− y|

≤ |f(x)− f(y)|
η|x|

≤ |f(ψA(x))|
η|ψA(x)|

(
1 +
|y||ψA(x)||f(ψA(y))|
|x||ψA(y)||f(ψA(x))|

)
≤ M

ηδ

(
1 +

M2

δ2

)
.

On the other hand, suppose instead that |x − y| < η|x|, in other words that
y ∈ B(x, η|x|). By (23)

|f(x)− f(y)|

=
|f(ψA(x))|
|ψA(x)|

∣∣∣∣(|x| − |y|)w +
|y|(|ψA(y)| − |ψA(x)|)

|ψA(y)|
w +

|y||ψA(x)|
|ψA(y)||f(ψA(x))|

(f(ψA(x))− f(ψA(y)))

∣∣∣∣
≤ M

δ

(
|x− y|+ |y|

δ
|ψA(y)− ψA(x)|+ |y|M

δ2
|f(ψA(x))− f(ψA(y))|

)
≤ M

δ

(
|x− y|+ |y|

δ

(
1 +

ML

δ

)
|ψA(y)− ψA(x)|

)
.

Now an application of Lemma 6, with ξ = x, yields that

|f(x)− f(y)| ≤ M

δ

(
|x− y|+

(
1 +

ML

δ

)
|y|T
|x|δ
|x− y|

)
≤ M

δ

(
1 +

(
1 +

ML

δ

)
T

δ

)
|x− y|,

completing the proof that f is Lipschitz on A. �

5. A modified Zorich map, Z, and the function Id+ Z

Zorich [36] introduced a family of quasiregular maps of transcendental type from
R3 to R3 \ {0}, now known as Zorich maps, which can be seen as analogues of the
exponential function; see, for example, [21, Section 6.5.4] for a detailed description
of these maps. First we give the definition of a modified Zorich map; this map is
slightly easier to work with in our setting than any of the standard Zorich maps.

The standard definition of a Zorich map in R3 starts with a map from a square
to a hemisphere. Instead, we use a map from a square to the upper faces of a square
based pyramid. To this end, set

M(x1, x2) := max{|x1|, |x2|},



12 DANIEL A. NICKS, DAVID J. SIXSMITH

and define a biLipschitz map h from the square [−1, 1]
2

to the upper faces of the
square based pyramid with vertex (0, 0, 1) and base [−1, 1]2 × {0} by setting

h(x1, x2) := (x1, x2, 1−M(x1, x2)) .

The rest of the definition of a Zorich map proceeds in the usual way. In an
infinite square cylinder we define

Z : [−1, 1]
2 × R→ {x3 ≥ 0}

by setting
Z(x1, x2, x3) := ex3h(x1, x2).

This is then extended to a map Z : R3 → R3 \ {0} by reflections in the usual
way; in particular, when the domain (a square cylinder) is reflected in a face, the
image is reflected in the plane {x3 = 0}. It can be shown that Z is quasiregular,
and periodic in the x1 and x2 directions with period 4.

We observe that although Z is such that Z([1, 3]2 × R) = Z([−1, 1]2 × R), the
function Z operates slightly differently on these two domains. This is because the
two reflections used to define Z in [1, 3]2 × R induce a rotation.

Next, we define a function F : R3 → R3 by

(24) F (x) := x+ Z(x).

We consider the properties of F in a fundamental half-beam. This is defined as
a domain of the form

(25) Bn,m = {|x1 − 2n| < 1, |x2 − 2m| < 1, x3 > L}, for n,m ∈ Z,
where L > 0 is a constant that is fixed in the following proposition.

Proposition 1. There exist L > 1 and K > 1 such that if B is a fundamental
half-beam, then the following both hold:

(a) F is K-quasiregular in B;
(b) |F (x)− F (y)| ≥ 32|x− y|, for x, y ∈ B.

Proof. First, we consider the fundamental half-beam B0,0. Then,

DF (x) =



 ex3 + 1 0 x1e
x3

0 ex3 + 1 x2e
x3

− x1

|x1|e
x3 0 (1− |x1|)ex3 + 1

 , for 0 < |x2| < |x1| < 1,

 ex3 + 1 0 x1e
x3

0 ex3 + 1 x2e
x3

0 − x2

|x2|e
x3 (1− |x2|)ex3 + 1

 , for 0 < |x1| < |x2| < 1.

Hence there exists L > 1 such that

(26) JF (x) ≥ 1

2
e3x3 and |DF (x)| ≤ 7ex3 , a.e. for x ∈ B0,0.

By a similar calculation, it can be seen that the inequality (26) holds in all other
fundamental half-beams. The first part of the proposition follows.

Increasing L if necessary, we can deduce by a similar, but slightly simpler, cal-
culation of the derivative of Z that

`(DZ(x)) > 33, a.e. for x ∈ {x3 > L}.
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Suppose that B is a fundamental half-beam. We note that Z is injective in B; this
is an immediate consequence of the definition of Z. As in the proof of [10, (2.3)],
it follows by considering the inverse function of Z|B, that

|F (x)− F (y)| ≥ |Z(x)− Z(y)| − |x− y| ≥ 32|x− y|, for x, y ∈ B,
as required. �

It is straightforward to show that F is not quasiregular in R3; there are domains
in which F is orientation-reversing. However, we have the following immediate
corollary of Proposition 1.

Corollary 2. The function F is K-quasiregular in {x3 > L}.

Finally in this section, we record some elementary properties of the function F .
First,

(27) F (x+ c) = F (x) + c, for x ∈ R3, c ∈ {(4, 0, 0), (0, 4, 0)}.
Second, let R1 denote reflection in the plane {x1 = 2}, and let R2 denote re-

flection in the plane {x2 = 2}. Then F commutes with these functions; in other
words

(28) F ◦Ri = Ri ◦ F, for i ∈ {1, 2}.
It is immediate that the identity map Id also enjoys these properties.

6. Proof of Theorem 5

In this section we prove Theorem 5 by constructing a quasiregular map on R3

which is equal to F = Id+Z in a half-space, equal to Id in another half-space, and
given by an interpolation between these half-spaces. We start the interpolation by
defining a quasiregular map on a certain cuboid.

Let L > 1 be the constant from Proposition 1, and let A be the cuboid

A := {0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2, 0 ≤ x3 ≤ L}.
We will define a quasiregular map g : A → R3 with the following properties. If

x = (x1, x2, x3) ∈ A and g(x) = (g1(x), g2(x), g3(x)), then:

(A) g(x) = Id(x), for x3 = 0;
(B) g(x) = F (x), for x3 = L;
(C) g1(x) = 0, for x1 = 0;
(D) g1(x) = 2, for x1 = 2;
(E) g2(x) = 0, for x2 = 0;
(F) g2(x) = 2, for x2 = 2.

Before giving the details of the construction of g on A, we show how to extend
g to a quasiregular map on R3, of transcendental type, and equal to the identity
map in a half-space.

So, for the moment, assume that we can define a quasiregular map g : A → R3

with properties (A)–(F). We first extend the definition of g in A to three similar
cuboids. First we set

g(x) = (R1 ◦ g ◦R1)(x), for x ∈ {2 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 2, 0 ≤ x3 ≤ L}.
This extension is continuous because of property (D). Second we set

g(x) = (R2 ◦ g ◦R2)(x), for x ∈ {0 ≤ x1 ≤ 2, 2 ≤ x2 ≤ 4, 0 ≤ x3 ≤ L}.
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This extension is continuous because of property (F). Finally, we set

g(x) = (R2 ◦R1 ◦ g ◦R1 ◦R2)(x), for x ∈ {2 ≤ x1 ≤ 4, 2 ≤ x2 ≤ 4, 0 ≤ x3 ≤ L}.
This extension is continuous because of properties (D) and (F). This defines a
quasiregular map in

B := {0 ≤ x1 ≤ 4, 0 ≤ x2 ≤ 4, 0 ≤ x3 ≤ L}.
Moreover, we have the following. Suppose that x = (x1, x2, x3) ∈ B. Then:

(i) g(x) = Id(x), for x3 = 0. This holds by property (A) above, and by construc-
tion.

(ii) g(x) = F (x), for x3 = L. This holds by property (B) above, and then by
construction and by (28).

(iii) g(4, x2, x3) = g(0, x2, x3) + (4, 0, 0). This holds by construction and by prop-
erty (C) above.

(iv) g(x1, 4, x3) = g(x1, 0, x3) + (0, 4, 0). This holds by construction and by prop-
erty (E) above.

We next extend the definition of g to {0 ≤ x3 ≤ L}. For a ∈ R, we write
ã := amod 4; in other words, ã ∈ [0, 4) is such that a − ã is a multiple of 4. We
then set

g(x1, x2, x3) = g(x̃1, x̃2, x3) + (x1 − x̃1, x2 − x̃2, 0), for 0 ≤ x3 ≤ L.
This construction gives a quasiregular map on {0 ≤ x3 ≤ L} because of proper-

ties (iii) and (iv) above. Moreover, it follows from (27) that properties (i) and (ii)
above are still satisfied.

Finally we extend g to the whole of R3 by setting g(x1, x2, x3) = Id(x1, x2, x3),
for x3 < 0 and g(x1, x2, x3) = F (x1, x2, x3), for x3 > L. It follows from properties
(i) and (ii) above that g is a continuous map of R3.

Clearly g is equal to the identity map in {x3 < 0}, and quasiregular there. More-
over g is quasiregular in {0 ≤ x3 ≤ L}, by construction. Finally, g is quasiregular
in {x3 > L} by Corollary 2. It remains, therefore, to construct the function g in A.

In fact, we achieve this in two stages. We partition A into two cuboids

A′ := {0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2, 0 ≤ x3 ≤ 1},
and

A′′ := {0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2, 1 ≤ x3 ≤ L},
and we define g separately in each.

We ensure that the definition of g in A′ satisfies property (A) and properties (C)–
(F). The definition of g in A′ includes a “folding” which is needed to accommodate
the property of Z in the domain [1, 3]2 × R, mentioned in Section 5.

We ensure that the definition of g in A′′ satisfies property (B), properties (C)–
(F), and agrees with the previous definition in A′ ∩A′′.

6.1. The construction in A′. In this subsection we show how to define the map
g in A′. First we define a set of points of A′, and fix their images under g. These
are specified in Table 1. We use the convention that, for example, P1 (resp. PL)
is a translation of the point P0 by one (resp. L) units in the direction of the third
coordinate.

We note that not all points in Table 1 are vertices of A′. However, for simplicity,
we call points such as T1 and X1 vertices, the 20 line segments, such as l(T1, X1),
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shown in Figure 2 edges, and the four small squares such as that with vertices
T1, X1,W1, P1 faces.

Point Coordinate Image under g Point Coordinate Image under g

P0 (0, 0, 0) (0, 0, 0) P1 (0, 0, 1) (0, 0, 4)

Q0 (0, 2, 0) (0, 2, 0) Q1 (0, 2, 1) (0, 2, 3.5)

R0 (2, 2, 0) (2, 2, 0) R1 (2, 2, 1) (2, 2, 0.5)

S0 (2, 0, 0) (2, 0, 0) S1 (2, 0, 1) (2, 0,−0.4)

T1 (0, 1, 1) (0, 4, 4)

U1 (1, 2, 1) (4.5, 2, 2)

V1 (2, 1, 1) (2, 4,−0.4)

W1 (1, 0, 1) (6, 0, 2)

X1 (1, 1, 1) (6, 4, 2)

Table 1. Points of A′, and their images

Figure 2. The cuboid A′ and points from Table 1. Note that
these points divide the top face of A′ into four squares.

The images of the points in Table 1 have been chosen in such a way that they
define a polyhedron, which we denote by B′, which has nine faces:
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• A square in the plane {x3 = 0}, defined by the vertices P0, Q0, R0, S0, which
is also a face of A′;
• Four quadrilaterals:

– One in the plane {x1+3x3 = 12}, defined by the images of the vertices
P1, T1, X1,W1;

– One in the plane {4x1 − 3x2 + 12x3 = 36}, defined by the images of
the vertices T1, Q1, U1, X1;

– One in the plane {−12x1 + 9x2 + 20x3 = 4}, defined by the images of
the vertices U1, R1, V1, X1;

– One in the plane {3x1−5x3 = 8}, defined by the images of the vertices
V1, S1,W1, X1;

• Four pentagons:
– One in the plane {x1 = 0}, defined by the images of the vertices
P0, P1, T1, Q1, Q0;

– One in the plane {x2 = 0}, defined by the images of the vertices
P0, P1,W1, S1, S0;

– One in the plane {x1 = 2}, defined by the images of the vertices
R0, R1, V1, S1, S0;

– One in the plane {x2 = 2}, defined by the images of the vertices
Q0, Q1, U1, R1, R0.

We aim to construct the function g so that it maps the cuboid A′ onto the
polyhedron B′; see Figure 3. Using the images of the vertices specified in Table 1,
we first define g from each edge of A′ to the corresponding edge of B′ simply as an
affine map.

Since the four points P0, Q0, R0, S0 map to themselves, we can set g = Id on the
square defined by these four points. Hence property (A) is satisfied.

We map the remaining eight faces of A′ to the corresponding eight faces of B′ in
the following way. Let, for example, α be the interior of the face of A′ with vertices
T1, X1,W1, P1 and let β be the interior of the face of B′ with vertices the images of
these points. It is easy to see that α and β are star domains with non-tangential star
centres. By considering α and β as each lying in a copy of R2, we apply Theorem 6
to extend the definition of g to a biLipschitz surjection from α to β. We apply this
process to each pair of corresponding faces of A′ and B′. The resulting function, g,
from the boundary of A′ to the boundary of B′ is a biLipschitz surjection.

Now, it can been seen from Figure 3 – and confirmed by an elementary calculation
– that the interior of B′ is a star domain, with a non-tangential star centre at, for
example, (5, 1, 2). Also, the interior of A′ is clearly a star domain with a non-
tangential star centre at, for example, (1, 1, 0.5). Hence we apply Theorem 6 once
again to extend the definition of g to a biLipschitz surjection from A′ to B′.

Since g is biLipschitz, it follows (see, for example, [35, p. XI]) that g is quasi-
conformal, and is either orientation-preserving or orientation-reversing. It can be
seen that g is orientation-preserving. Hence g is quasiregular.

The points P0, P1, T1, Q1, Q0 and the images of these points all lie in the plane
{x1 = 0}. Hence property (C) is satisfied. Similarly the points R0, R1, V1, S1, S0

and the images of these points all lie in the plane {x1 = 2}. Hence property (D)
is satisfied. It is easy to see that properties (E) and (F) are satisfied, for similar
reasons.
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Figure 3. A view of the polyhedron B′ = g(A′), using points
from Table 1. Note that, for example, P ′0 denotes g(P0). We have
shaded the images of faces which correspond to the four squares in
the upper face of A′.

6.2. The construction in A′′. In this subsection we define the map g in A′′. The
construction is complicated. First, it is necessary to subdivide A′′ into four smaller
cuboids;

• A′′1 := {0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1, 1 ≤ x3 ≤ L},
• A′′2 := {1 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 1, 1 ≤ x3 ≤ L},
• A′′3 := {0 ≤ x1 ≤ 1, 1 ≤ x2 ≤ 2, 1 ≤ x3 ≤ L},
• A′′4 := {1 ≤ x1 ≤ 2, 1 ≤ x2 ≤ 2, 1 ≤ x3 ≤ L}.

For each i ∈ {1, 2, 3, 4}, we define a biLipschitz map g from A′′i to a compact set
B′′i which is the closure of a star domain. To achieve this, we adopt the approach
used in the previous section, by defining a biLipschitz map from ∂A′′i to ∂B′′i , and

then extending the map to A′′i using Theorem 6.
Each cuboid A′′i has a face which lies in the plane {x3 = 1} and a face which lies

in the plane {x3 = L}; we call these two faces the end faces. Each cuboid A′′i has
a face which lies in the plane {x1 = 1} and a face which lies in the plane {x2 = 1};
we call these faces the interior faces. The remaining two faces we call the exterior
faces. We give the definition of g on these three types of face as follows.

6.2.1. The end faces. Suppose that i ∈ {1, 2, 3, 4}. We have already fixed the
definition of g on ∂A′′i ∩ {x3 = 1} in Subsection 6.1. In order to satisfy property
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(B), we set

g(y) = F (y), for y ∈ ∂A′′i ∩ {x3 = L}.
Note that the image of each of the squares ∂A′′i ∩ {x3 = L} consists of two

triangles. For example, ∂A′′1 ∩ {x3 = L} maps to the triangles with vertices
g(PL), g(WL), g(XL) and g(PL), g(XL), g(TL).

6.2.2. The exterior faces. In order to satisfy properties (C)–(F) above, we map the
exterior faces of the A′′i to faces lying in the appropriate planes. We also ensure
consistency with the definition of g on the end faces given in Subsection 6.2.1.

Consider, for example, the exterior face

L1 := ∂A′′1 ∩ {x1 = 0}.

The boundary of L1 consists of four line segments. Two of these line segments also
lie in end faces. The definition of g in Subsection 6.2.1 maps these line segments
to line segments. We use an affine map to take the other two edges of L1 to line
segments.

All four images of the edges of L1 lie in the plane {x1 = 0}, and so we let L′1
be the quadrilateral lying in {x1 = 0} bounded by these line segments; L′1 is the
quadrilateral P ′1P

′
LT
′
LT
′
1 in Figure 4. It is easy to see that both L1 and L′1 are

compact sets, and that the interiors of each are star domains with non-tangential
star centres. Hence we can extend g to a biLipschitz subjection from L1 to L′1 by
an application of Theorem 6.

It is straightforward to see that the same technique can be used to define g on the
other exterior faces, and that properties (C)–(F) are satisfied by this construction.

Remark. Here it is important to note that the four edges of each exterior face are
mapped onto genuine quadrilaterals, and not figure-of-eight shapes. It is for this
reason that we previously mapped the upper face of A′ to the particular “folded”
arrangement shown shaded in Figure 3.

6.2.3. The interior faces. We define g on the interior faces of the A′′i so that the
interior of each B′′i is a star domain with a non-tangential star centre. We also
ensure consistency with the definition of g on the end faces given in Subsection 6.2.1,
and on the exterior faces give in Subsection 6.2.2.

Consider, for example, the interior face

L2 := ∂A′′1 ∩ {x2 = 1}.

Divide L2 into two triangles by adding a line segment from X1 to TL. The bound-
aries of these two triangles consist, in total, of five line segments. Two of these
line segments also lie in end faces. The definition of g in Subsection 6.2.1 maps
these line segments to line segments. The line segment L2 ∩ {x1 = 0} also lies in
an exterior face. The definition of g in Subsection 6.2.2 maps this line segment to
a line segment. Finally, we use an affine map to take the other two edges to line
segments.

Thus we have described how g maps the boundaries of the two triangles T1X1TL
and TLX1XL onto the boundaries of two image triangles. We can now apply The-
orem 6 to extend g from the boundary of each to the whole triangle, and therefore
to the whole of L2.

It is straightforward to see that the same technique can be used to define g on
the other interior faces.
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Figure 4. The image of A′′1 . As before, P ′1 denotes g(P1), for example.

6.2.4. Defining the function g inside the A′′i . Suppose that i ∈ {1, 2, 3, 4}. Let B′′i
be the compact set bounded by the images of the boundary faces of A′′i . It can be
seen that the interior of B′′i is a star domain with a non-tangential star centre; see
Figure 4, and we note that the images of A′′2 , A′′3 and A′′4 are similar to this. The
non-tangential star centres can be taken to be close to the vertices with large third
coordinate; in other words near the images of PL, SL, QL and RL. It follows that,
by an application of Theorem 6, we can extend g to a biLipschitz surjection from
A′′i to B′′i .

Since g is biLipschitz, it follows – as earlier – that g is quasiconformal and is
either orientation-preserving or orientation-reversing. It is easy to see that g is, in
fact, orientation-preserving in each case and is therefore quasiregular.

This completes the definition of g in A′′, and so completes the proof of Theorem 5.

7. Proof of Theorem 4

In this section we use the function g constructed in Section 6 to prove Theorem 4.
The function f is defined as follows. By construction, the third component of g(x)
is bounded above when x ∈ {x3 ≤ L}, where L is the constant from Proposition 1.
Hence we can choose L′ > 0 sufficiently large that the quasiregular map

(29) f(x) := g(x)− (0, 0, L′),
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satisfies

(30) f({x3 ≤ L}) ⊂ {x3 < 0}.
Recall the definition (25) of a fundamental half-beam. We require the following.

Let L be the union of all lines of the form

(31) {x1 = 4n+ c, x2 = 4m+ (2− c)}, for n,m ∈ Z, c ∈ {0, 2}.

Proposition 2. Suppose that ξ ∈ {x3 > L} is such that f(ξ) ∈ {x3 > L}. Sup-
pose that δ > 0, that B(ξ, δ) is contained in a fundamental half-beam, and that
f(B(ξ, δ)) ∩ L = ∅. Then, there exists ξ′ ∈ B(ξ, δ) such that B(f(ξ′), 2δ) is con-
tained in the intersection of f(B(ξ, δ)) with a fundamental half-beam.

Proof. First we note that B(f(ξ), 32δ) ⊂ f(B(ξ, δ)). This claim follows from the
fact that, in {x3 > L}, f and F differ only by a translation, where F is the
function defined in (24), and from the second part of Proposition 1. The details
are essentially the same as the proof of [17, Lemma 3.3], and are omitted.

The fact that f(ξ) ∈ {x3 > L} implies that there is a hemisphere of B(f(ξ), 32δ)
that lies in {x3 > L}. The result then follows from the fact that this hemisphere
does not meet L. �

We also require the following result, which is a generalisation to discrete open
maps of [19, Corollary 2]. Here if φ : Rd → Rd is a continuous map, then we say
that ξ ∈ Rd is a finite asymptotic value of φ if there is a curve Γ : (0, 1)→ Rd such
that limt→1 Γ(t) =∞ and limt→1 φ(Γ(t)) = ξ.

Lemma 7. Suppose that φ : Rd → Rd is continuous, discrete and open, and has
no finite asymptotic value. Let D ⊂ Rd be a domain, and suppose that E is a
component of φ−1(D). Then φ(E) = D.

Proof. We prove the contrapositive; if D \φ(E) 6= ∅, then φ has a finite asymptotic
value. Accordingly, suppose that y ∈ D \ φ(E). Let Bφ be the branch set of φ; in
other words

Bφ = {x ∈ Rd : φ is not a local homeomorphism at x}.
Choose x0 ∈ E \Bφ. Let γ : [0, 1]→ D be a non-self-intersecting curve, compactly
contained in D, such that

• γ(0) = φ(x0) and γ(1) = y;
• γ([0, 1)) ∩ φ(Bφ) = ∅.

This is possible because [35, Lemma 9.8] the topological dimension of φ(Bφ) is at
most d− 2. (In fact, we can take γ to be a polygonal curve with a finite number of
pieces.)

Since x0 /∈ Bφ, the function φ is injective in a neighbourhood of x0. It follows
that, for all sufficiently small t > 0, there exists a curve Γt : [0, t] → Rd such that
Γt(0) = x0 and φ(Γt(s)) = γ(s), for 0 ≤ s ≤ t. Let t′ be the supremum of these
values of t.

Suppose that t ∈ (0, t′). Since Γt ∩ Bφ = ∅, the function φ is locally injective
on Γt. Hence, if s ∈ (0, t], then Γt|[0,s] = Γs. It follows that we can define a curve

Γ : [0, t′)→ Rd by Γ(t) = Γt(t).
Let T denote the set of strictly increasing sequences of real numbers in [0, t′) with

the following property. If (τn)n∈N ∈ T , then τn → t′ as n→∞, and Γ(τn)→ w as
n→∞, where w ∈ E ∪ {∞}.
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Suppose that (τn)n∈N and (τ ′n)n∈N are elements of T . Suppose in addition that
Γ(τn)→ w1 and Γ(τ ′n)→ w2 as n→∞, and that w1 6= w2. We can assume that w1

is finite. Since φ is discrete, this implies that there exist (τ ′′n )n∈N ∈ T and w3 ∈ E
such that Γ(τ ′′n ) → w3 as n → ∞ and φ(w3) 6= φ(w1). However, by continuity,
φ(w1) = γ(t′) = φ(w3). This is a contradiction.

It follows that either limt→t′ Γ(t) =∞, or limt→t′ Γ(t) exists and is finite. In the
first case φ has a finite asymptotic value equal to γ(t′). It remains to show that
the second case leads to a contradiction.

Suppose that w = limt→t′ Γ(t) is finite. If w ∈ ∂E, then γ accumulates on ∂D,
which is a contradiction. Hence w ∈ E, and so γ(t′) = φ(w) 6= y. It follows that
0 < t′ < 1, and that φ is a homeomorphism from a sufficiently small neighbourhood,
U , of w, onto a neighbourhood, V , of φ(w). Hence, there exists ε > 0 such that
γ([t′ − ε, t′ + ε]) ⊂ V . Thus the concatenation of Γt′−ε with φ−1 ◦ γ|[t′−ε,t′+ε] gives
a curve Γt′+ε, in contradiction to our choice of t′. �

Proof of Theorem 4. Define H0 := {x3 < 0}, and let

Hn := f−n(H0), for n ∈ N.

Then {Hn}n≥0 is an increasing sequence of sets. Set U :=
⋃
n≥0Hn.

First we claim that U ⊂ QF (f) and that fk → ∞ as k → ∞ locally uniformly
in U . Suppose that x ∈ U . Then there exists k ∈ N such that fk(x) ∈ H0, and
so there is a neighbourhood ∆ of x sufficiently small that fk(∆) ⊂ H0. The claim
follows from this fact, recalling the definition of the quasi-Fatou set QF (f) and the
facts that f(H0) ⊂ H0 and f acts as a translation on H0. The fact that f is locally
uniformly quasiregular in U follows in the same way.

We show next that U is connected. We claim that Hn is connected, for n ∈ N.
Since H0 ⊂ Hn, for n ∈ N, the fact that U is connected follows from this claim.

We prove the claim by induction. First we show that H1 = H0∪H1 is connected.
Recall the definition of the collection of lines L from (31). These lines lie in H1.
Moreover, by a calculation, there exists ε > 0 such that

L′ := {x : dist(x,L) < ε} ⊂ H1.

Since each component of L′ meets H0, it follows that H1 has a component V which
contains L′.

Let V ′ ⊂ H1 be a component of f−1(H0). It can be shown that if V ′ contains a
point v = (v1, v2, v3) that is not in any fundamental half-beam, then

{x1 = v1, x2 = v2, x3 ≤ v3} ⊂ V ′.

In this case V ′ = V . It follows that we can assume that V ′ is contained in some
fundamental half-beam B.

It can be seen that f has no finite asymptotic values. Hence, by Lemma 7, V ′

contains a set, X say, such that

f(X) = {x1 = 0, x2 = 0, x3 < 0}.

It can be shown by a calculation that X meets L′; this can be seen, for example,
by considering, in the fundamental half-beam B, the solution to the equation

f(x) = (0, 0, c),
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where c is taken to be large and negative. It follows that V ′ = V , and so H1 is
connected, as required.

Now, suppose that k ∈ N and that Hk is connected. It remains to show that
Hk+1 is connected. Suppose that W is a component of Hk+1. It follows by Lemma 7
that there is a point x ∈ W such that f(x) ∈ Hk−1, in which case x ∈ Hk. Thus
W meets Hk, and so Hk+1 is connected, as required.

Next we show that U = QF (f). Suppose, by way of contradiction, that there
exists ξ0 ∈ QF (f) \ U . It follows that there exists δ > 0 sufficiently small that
fk(B(ξ0, δ)) ∩ U = ∅, for k ≥ 0. We deduce that

fk(B(ξ0, δ)) ⊂ {x3 > L} \ L, for k ≥ 0.

We can assume, by adjusting ξ0 and δ if necessary, that B(ξ0, δ) is contained in
a fundamental half-beam.

Since both ξ0 and f(ξ0) lie in {x3 > L}, it follows by Proposition 2 that there
exists ξ1 ∈ QF (f) \ U such that fk(B(ξ1, 2δ)) ∩ U = ∅, for k ≥ 0, and B(ξ1, 2δ) is
contained in the intersection of f(B(ξ0, δ)) with a fundamental half-beam.

By repeated application of Proposition 2, we obtain a sequence of points (ξk)k≥0
such that B(ξk, 2

kδ) ∩ U = ∅ and B(ξk, 2
kδ) is contained in a fundamental half-

beam, for k ≥ 0. This is a contradiction, since these balls cannot be contained in a
fundamental half-beam for 2kδ > 1.

Finally we show that U is full. Suppose, by way of contradiction, that U is
hollow. Since U is periodic, it follows by Theorem 3 that there exists x ∈ U ∩A(f).
Hence, by Lemma 5, equation (17) holds. This is a contradiction, since fk(x) ∈ H0,
for all sufficiently large k, and f acts as a translation in H0. �

Remarks. (1) If L′′ > 0 is sufficiently large, then J(f) contains all lines of the
form

{x1 = 4n+ c, x2 = 4m+ c, x3 ≥ L′′}, for n,m ∈ Z, c ∈ {0, 2}.

It seems possible that the techniques of [7] could be used to prove that
J(f) is, in fact, a “Cantor bouquet” consisting of an uncountable number
of curves, but we have not tried to do this.

(2) Evdoridou [15] studied the function h defined in (2), and showed that I(h),
but not A(h), has a structure known as a spider’s web; for a definition of a
spider’s web see [9]. This gives a positive answer to a question of Rippon
and Stallard [32, Question 3], which was previously answered using a more
complicated construction in [33]. In three dimensions, it is straightforward
to see that A(f) is not a spider’s web, where f is the the quasiregular map
defined in (29). It seems natural to ask if it is the case that I(f) is a spider’s
web.

8. Additional examples

Our first example shows that, in R2, the inequality (7) is best possible.

Example 1. Let φ : R2 → R2 be the orientation-preserving quasiconformal map
φ(x) := |x|x. With a very slight abuse of notation, let f : R2 → R2 be the
quasiregular map defined by f := h ◦ φ, where h is the map defined in (2).
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It is straightforward to show first that KI(φ) = 2, and that it follows from this
that KI(f) = 2. It can be seen that there is a periodic component U of QF (f),
containing a right half-plane H, such that

log log |fk(x)| ∼ k log 2 = k logKI(f) as k →∞, for x ∈ H.

We show that U is full as follows. Clearly U meets A(f)c. If U is hollow, then
it follows from Theorem 3 that U also meets A(f). This is a contradiction since,
by the final part of Lemma 4, we have that J(f) = ∂A(f). Hence U is full.

Our second example shows that, in R3, the inequality (7) is best possible up to
a constant.

Example 2. Let φ : R3 → R3 be the orientation-preserving quasiconformal map
φ(x) := |x|x, let f be the quasiregular map defined in (29), and let G : R3 → R3

be the quasiregular map G := f ◦ φ.
It can be seen that G has a periodic domain U , containing a half-space H, in

which

log log |Gk(x)| ∼ k log 2 as k →∞, for x ∈ H.
The fact that U is full follows in exactly the same way as in Example 1.

Our final example shows that there is a quasiregular map of R3 with a periodic
domain that meets, but is not contained in, the escaping set.

Example 3. Let f be the quasiregular map defined in (29). Let C be an open ball
in {x3 < 0} sufficiently large that C∩f(C) 6= ∅. Choose a point x0 ∈ C∩f(C). Let
φ : R3 → R3 be an orientation-preserving quasiconformal map such that φ(x) = x,
for x /∈ f(C), and φ(f(x0)) = x0. It is straightforward to see that such a φ exists;
for example, by an application of Theorem 6.

Let g = φ ◦ f . It can be seen that QF (g) = QF (f), and so QF (g) consists of a
full domain U . It can also be seen that U ∩ I(g) 6= ∅, and that x0 ∈ U \ I(g).
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