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A Hybrid Boundary Element Unstructured

Transmission-line (BEUT) Method for

Accurate 2D Electromagnetic Simulation
Daniel Simmons, Kristof Cools, and Phillip Sewell

Abstract—Time domain electromagnetic simulation tools

have the ability to model transient, wide-band applications,

and non-linear problems. The Boundary Element Method

(BEM) and the Transmission Line Modeling (TLM) method

are both well established numerical techniques for simulat-

ing time-varying electromagnetic fields. The former surface

based method can accurately describe outwardly radiating

fields from piecewise uniform objects and efficiently deals

with large domains filled with homogeneous media. The

latter volume based method can describe inhomogeneous

and non-linear media and has been proven to be un-

conditionally stable. Furthermore, the Unstructured TLM

(UTLM) enables modeling of geometrically complex objects

by using triangular meshes which removes staircasing

and unnecessary extensions of the simulation domain. The

hybridization of BEM and UTLM which is described in

this paper is named the Boundary Element Unstructured

Transmission-line (BEUT) method. It incorporates the

advantages of both methods. The theory and derivation

of the 2D BEUT method is described in this paper, along

with any relevant implementation details. The method is

corroborated by studying its correctness and efficiency

compared to the traditional UTLM method when applied

to complex problems such as the transmission through a
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system of Luneburg lenses and the modelling of antenna

radomes for use in wireless communications.

Index Terms—2D; UTLM; BEM; MoM; coupling; scat-

tering.

I. INTRODUCTION

The simulation of transient electromagnetic (EM)

transmission problems is important for all aspects of

design and testing of sensitive electronics and antennas.

Time domain numerical solvers have evolved rapidly, on

the one hand due to the rapid increase in computational

power over the last few decades and on the other hand

due to a number of breakthroughs in the efficient solution

of linear systems that lie at the heart of the algorithms.

Many advances are constantly being applied to integral

equation (surface) techniques and differential equation

(volume) techniques. By creating a hybrid solver which

can be seamlessly integrated, we can enjoy the advan-

tages of each technique, without modifying the underly-

ing core methods. Specifically, a volume technique can

be used to model the fields inside the scatterers and a

surface technique can be used to model the external field

interactions and radiation conditions.

The Time Domain (TD) Boundary Element Method

(BEM) can be solved by a marching-on-in-time tech-

nique which gives an accurate description of outwardly
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radiating fields because it uses the explicit expression

for the Green function to represent these radiating fields.

The method decreases the dimensionality of the problem

by 1 dimension which, when combined with modern

matrix-vector product acceleration techniques, leads to

a method whose computational efficiency is second to

none. For details of the state-of-the-art discretization

and implementation of marching-on-in-time space-time

Galerkin methods, the reader is referred to, for example,

[1]–[5].

The Unstructured Transmission-Line Modeling

(UTLM) method is a time domain volume technique

which is unconditionally stable for all time (subject

to a maximum timestep constraint) and can model

complex, non-linear materials with complex geometries.

Curved surfaces can be represented in the mesh

with much higher accuracy than is possible with the

Cartesian meshing required of structured TLM, thus

avoiding staircasing errors. Unfortunately just like the

structured TLM, the UTLM method requires the use of

Approximate Boundary Conditions (ABCs) to model

the radiating behaviour of the fields at the boundary of

the simulation domain. Moreover, for these ABCs to be

accurate, the simulation domain needs to be extended

beyond the domain occupied by the device under study,

leading to an increase in the size of the problem and

thus an increase in solution time [6,7]. Finally, the

ability to model plane wave excitations and compute

radar cross sections, though possible, is not immediately

available using TLM [8].

UTLM can be compared to other time domain volume

techniques such as the Finite-Difference Time-Domain

(FDTD) and the Finite Element Method (FEM) which

are both well-established numerical modelling methods.

These methods also have the ability to model inhomo-

geneous and complex media [9]–[11], but only FEM

is naturally constructed for unstructured grids (though

FDTD has been extended to non-orthogonal and un-

structured meshes previously [12,13]). FDTD has the

advantage of being exceptionally simple to implement

and FDTD meshes can be terminated with very good

absorbing boundary conditions. However, the exact lo-

cation of boundaries can be problematic due to the offset

nature of the electric and magnetic field grids, and the

appealing simplicity is lost when attempting to apply

FDTD to unstructured meshes. FEM can naturally handle

complex geometries and dispersive materials, and has

the ability to model multi-physics applications, however

it is more difficult to implement compared to FDTD,

and its meshes can become very complex [14]. Unlike

UTLM and FDTD, FEM is an implicit time-marching

scheme i.e. the solution of a linear system via a matrix

inversion is computed at each time step, which if directly

solved is computationally expensive. Iterative solvers

can be used, which have roughly linear memory and

compute requirements, but rely on the appropriate use

of dedicated preconditioners. Alternatively, the sparse

matrix seen in FEM can be approximated to a diagonal

matrix via “mass lumping”, but this technique can give

an unstable algorithm which depends heavily on the

problem [15].

As with UTLM, FDTD and FEM do not include radi-

ation conditions for open regions. This is overcome by

hybridizing with an efficient integral equation technique,

as suggested in [16,17] for FDTD-BEM solvers, and

[18,19] for FEM-BEM solvers. Also, the transmission

line description of the low frequency response of the

domain automatically guarantees stability during run-

time, i.e. the output energy equals the input energy,

which is especially useful for large simulations. In FEM

stability is regulated by bounds that contain hard to es-

timate constants and that depend on the spatial meshing

and temporal oversampling. Given the sensitivity of the

stability of TD-BEM solvers, coupling to the trivially
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stable UTLM is considered to be a more conservative

choice. Finally, UTLM lends itself to the relatively easy

inclusion of more exotic media such as meta-materials,

cells containing wires, and active media [20]–[23].

It must be noted that there are methods to obtain

good absorbing boundary conditions through the use

of a Perfectly matched Layer (PML) in TLM [24]–

[26], however these methods are still inferior to PMLs

previously implemented in FDTD [27,28]. The use of

BEM to truncate the UTLM mesh gives more accurate

boundary conditions that can be applied directly to the

surface of the scatterers and also allows spatially distinct

scatterers to interact without modelling the space be-

tween. However, in order for the UTLM-BEM coupling

to become competitive in complexity with a pure UTLM

scheme, the convolution central to the BEM part of

the algorithm needs to be sped up by time domain

matrix-vector accelerators such as the Plane Wave Time-

Domain (PWTD) algorithm [29,30] or the Time Domain

Adaptive Integral Method (TD-AIM) [31,32].

Fig. 1 shows a typical example of a device com-

prising complex materials inside spatially distinct and

well separated regions. Scattering by and transmission

through such a device is most efficiently modelled by a

method hybridizing the UTLM and the BEM methods.

The advantages of this hybridized scheme are:

• Modeling of complex, non-linear media [33] with

geometrically complex features

• Perfect radiating boundary conditions

• Straightforward excitation by plane waves

• Free space region does not need to be meshed,

enabling more efficient computation of scattering

problems where free space dominates

Previous hybridizations between TLM and BEM have

been attempted [34]–[40]. However these solvers either

contain complicated connection processes that require

BEM

UTLM

Fig. 1. Arbitrary objects modelled using UTLM, separated by

free space modelled by BEM.

a large number of discrete Green’s functions, contain

discretisation errors on subdomain boundaries (therefore

requiring padding between the object and the TLM/BEM

interface), or require the use of the inaccurate TLM

ABCs. They do not take advantage of unstructured

meshes or take into account recent advancements that

make BEM and TLM more robust, stable and accurate.

The novel hybrid method described in this pa-

per is called the Boundary Element Unstructured

Transmission-line (BEUT) method. It is conceptually

very simple and can be easily applied to existing solvers

of the two underlying methods. In fact its derivation is

directly linked to the construction of the Poggio-Miller-

Chan-Harrington-Wu-Tsai (PMCHWT) integral equation

for the modelling of transmission problems through

piecewise homogeneous devices [41]. The key ingredient

is the construction of a representation formula valid on

the (inner) boundary of the TLM governed regions.

This paper is organised as follows: in sections II

and III, we give an overview of BEM and UTLM,

respectively, and section IV derives the novel BEUT

method. Finally, section V demonstrates the technique

by simulating the scattering by two spatially distinct

Luneburg lenses, and the scattering between a dipole

antenna and a radome, along with comparisons of speed

and accuracy with purely UTLM simulations.
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II. INTRODUCTION TO BEM

To construct the BEM formulas in 2D, we start from

the time domain representation formulas. Consider a

domain bounded by the contour, Γ. The exterior unit

normal to Γ is denoted by n̂ and the counter-clockwise

directed unit tangential is denoted by t̂. For the 2D

Transverse Magnetic (TM) case, the representation for-

mulas can be written asez
ht

 =

1

2
+D −η

c
S

− c
η
N

1

2
−D′


ez
ht

+

eiz
hit

 (1)

where η =
√
µ/ε is the characteristic impedance of

the background medium and c =
√
µε is the wave

propagation speed within the background medium. The

tangential components of the electric and magnetic fields

are represented as ez and ht
(
= t̂ · hxy

)
respectively, and

the superscript i denotes the incident field.

The operators appearing in eq. (1) are defined as

Dϕ (r′, t) =

∫
Γ

∂g

∂n′
(R, t) ∗ϕ(r′, t) dr′

D′ϕ (r′, t) =

∫
Γ

∂g

∂n
(R, t) ∗ϕ(r′, t) dr′

Sϕ (r′, t) =

∫
Γ

g(R, t)∗∂ϕ
∂t

(r′, t) dr′

Nϕ (r′, t) = −
∫
t

∫
Γ

∂2g

∂n∂n′
(R, t) ∗ϕ (r′, t) dr′ dt

where ϕ is an arbitrary vector, t is time, ∗ indicates a

temporal convolution, and R = |r − r′|.

The 2D time domain Green function is expressed as

the field radiated by a Dirac source, represented here as

g (R, t) =
H (t−R/c)

2π

√
t2 − (R/c)

2

where H denotes the Heaviside function.

To reduce the order of the singularity contained by

the hypersingular integrals in N , we apply the usual

integration by parts manipulation [42] to produce the

combination of a singular contribution, Ns, and a hyper-

singular contribution, Nh, which are defined respectively

as

Nsϕ (r′, t) =
1

c2
t̂ ·
∫

Γ

t̂′ · g (R, t) ∗∂ϕ
∂t

(r′, t) dr′

Nhϕ (r′, t) = − t̂ ·
∫

Γ

∇g (R, t) ∗
∫
t

[
∇

′
ϕ (r′, t)

]
dt dr′

where the divergence and the gradient reduce to simple

derivatives along the boundary in the counter-clockwise

direction.

In this contribution, we use a straightforward im-

plementation of BEM and UTLM which have com-

putational complexities of O(N2
SN

2
t ) and O(NVNt)

respectively, where NV and NS denote the number of

spatial field sampling points within the volume and on

the surface of the scatterer respectively, and Nt is the

number of timesteps. However, the BEM implementation

could be further accelerated using techniques such as

the Time Domain Adaptive Integral Method (TD-AIM)

[31,32] which uses a spatial and temporal Fast Fourier

Transform (FFT) for computing convolutions, and the

Plane Wave Time-Domain (PWTD) algorithm [29,30]

which aggregates far-fields from source sub-scatterers

into plane waves which are then superimposed onto the

observer.

To discretize the formulations defined in (1), the

unknown fields must be expanded as a linear com-

bination of spatial and temporal basis functions. The

temporal basis functions must be at least piecewise linear

because of the presence of the derivatives in the operators

S and Ns, hence continuous, piecewise linear, nodal

time basis functions are used [4]. For the spatial basis

functions, piecewise constant functions (or pulses) f ,

and continuous, piecewise linear functions (or hats) h

are used. The hats are constructed on the dual mesh

of the contour (as shown in fig. 2b) [43]. For testing,

the same basis functions are chosen, but pulses and hats

are now normalised w.r.t. one over the length of the

corresponding boundary edge (instead of one). This iden-
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tification of the testing and sample values will facilitate

the coupling with UTLM later on. The equations are

evaluated at equidistant times (a.k.a collocation-in-time),

and a Galerkin-in-space scheme is used, which stipulates

that the spatial testing functions should be the same as

the basis functions.

The discretized form of (1) becomesez

ht

 =

 G

2
+ D −η

c
S

− c
η

(Ns + Nh)
Gᵀ

2
−D′


ez

ht

+

eiz

hit


(2)

where superscript ᵀ denotes the transpose, the matrix

vector product here in fact implies a discrete convolution,

e.g.

(Dez)
j =

j∑
k=0

Dkez
j−k

and where the operators are now defined as

Dk
m,n =

∫
Γ

∫
Γ

fm
lm

(r) hn(r′)[
∂g

∂n′
(R, t) ∗T (k∆t− t)

]
dr′ dr

D′k
m,n =

∫
Γ

∫
Γ

hm
lm

(r) fn(r′)[
∂g

∂n
(R, t) ∗T (k∆t− t)

]
dr′ dr

Skm,n =

∫
Γ

∫
Γ

fm
lm

(r) fn(r′)[
g(R, t)∗ ∂

∂t
T (k∆t− t)

]
dr′ dr

Nskm,n =
1

c2
(
t̂ · t̂′

) ∫
Γ

∫
Γ

hm
lm

(r) hn(r′)[
g(R, t)∗ ∂

∂t
T (k∆t− t)

]
dr′ dr

Nhkm,n =

∫
Γ

∫
Γ

∇ · hm
lm

(r) ∇ · hn(r′)[
g(R, t)∗

∫
t

T (k∆t− t)dt
]
dr′ dr

Gkm,n =δ0
k

∫
Γ

fm
lm

(r) hm(r) dr

where f and h denote the square and hat basis functions

respectively, l is the edge length, T is the temporal basis

function, m and n denote the current testing and basis

a) b)
11

Fig. 2. The boundary section of a scatterer showing a) UTLM

basis functions, and b) BEM dual hat basis functions.

functions respectively, k is the current timestep, and the

Kronecker delta is defined as

δij =

0 (i 6= j)

1 (i = j)

.

III. INTRODUCTION TO UTLM

The TLM method is an established time-domain nu-

merical simulation tool which until 2005 [7] was formu-

lated solely for structured Cartesian meshes. The general

TLM algorithm is derived from the established analogy

between the local behaviour of EM fields in 3D space

and propagation of signals in a suitably interconnected

network of 1D transmission lines. The algorithm pro-

ceeds by implementing the simple scattering behaviour

of signals in a network which models a distinct incre-

mental region of space.

In TLM it is assumed that the electric and magnetic

fields are constant over intervals of time ∆t. For each

cell, a transmission line circuit is constructed such that:

i) the travel time on each of the constituent transmis-

sion lines equals ∆t,

ii) the low frequency response equals that of an

equally shaped region of free space,

iii) in the lossless case, only passive or energy con-

serving elements are present.

In [7], such a circuit is designed for unstructured

triangular domains where the Dirichlet-to-Neumann map

for a small triangular region can be approximated to first
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order accuracy by a network of transmission lines with

the signal transit time along all transmission lines syn-

chronized to the discretization timestep; i.e. a commen-

surate network is created. It is conventional to describe

the circuit in terms of voltages and currents which are

related to the electric and magnetic fields at the centers

of the mesh edges by

ez ↔ V htl↔ I (3)

where l is the length of the edge.

A typical UTLM triangle is shown in fig. 3b. The

transmission line circuit comprises two types of line

for each port of each triangle: the link line is defined

by the perpendicular distance from the port (edge) to

the center of the triangle, the stub line is attached to

the link line and runs parallel to the edge near the

port. To increase the minimum link length and thus

increase the minimum timestep (as explained later), the

link lengths that cross non-boundary edges are defined as

half the distance between connecting triangle centroids,

as depicted in Fig. 3c. The link and stub lines are

characterised by an impedance Zlink, and admittance

Ystub, respectively. These parameters depend on the

permittivity and permeability of the medium inside the

triangle.

In order to match the inductive and capacitive response

of the circuit to that of the medium, link and stub

admittances need to be chosen as derived in [7],

Ylinkα =
lα∆t

2µ∆α

Ystubα =
εlα∆α

∆t
− lα∆t

2µ∆α

(4)

where the link length associated with port α is given by

∆α. The permeability and permittivity of the medium

associated with the triangle are denoted by µ and ε

respectively. To minimize dispersion error and guarantee

stability, the stub admittances must all be positive, which

a) b)

port	1

po
rt
	2

port	3

l3

Δ3

l2
l1Δ2

Δ1

c)

link	lines

stub	lines

Fig. 3. An example UTLM mesh showing a) the corresponding

Voronoi mesh, b) a magnified triangle with link lines and stub

lines labelled, and c) with edge lengths, lα, and link lengths,

∆α, labelled for each port, α.

means the timestep is constrained by

∆t < ∆min

√
2µε (5)

where ∆min is the shortest link line length in the mesh.

To ensure that a stable algorithm is created and

a physically reasonable timestep is chosen, Delaunay

triangular meshes must be used, as explained in [7],

where the link line lengths will never be negative. An

example mesh with the corresponding link lines is shown

in fig. 3a.

Once the transmission line network has been con-

structed, the response of the cell to a piecewise constant

voltage signal (w.r.t. the division of time in time steps

of length ∆t) can be computed. After this initial set-

up, the resulting system conserves energy perfectly and

its solution is known analytically i.e. the simulation

during run-time can be guaranteed to have unconditional

stability.

The computation is traditionally split into two parts:

the scatter process where the reflection of voltages
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m n
o

a

c
b

Zlink3(n) Ystub3(n)

2Vlink1(o,k) 2Vlink2(o,k) 2Vlink3(o,k)

Zlink1(o) Zlink2(o) Zlink3(o)

2Vlink1(n,k) 2Vstub1(n,k)
Vt(n,k)

Zlink1(n) Zstub1(n)
Zb(n)

2Vlink1(m,k) 2Vstub1(m,k) 2Vstub2(n,k)

Zlink1(m) Zstub1(m) Zstub2(n)

2Vlink2(n,k)

Zlink2(n)

a)

c)

b)

Vt(n,k)

V0(n,k)

b

3

2

1

1
1

2

3

Fig. 4. The transmission lines inside UTLM triangles and the

Thévenin equivalent circuit diagrams at timestep, k, from a)

the scatter process, b) connection between triangles, and c)

connection at a boundary edge.

impinging on the triangle center is computed, and the

connect process where the reflection of voltages imping-

ing on the ports is computed. Both computations are

based on the construction of a Thévenin equivalent, and

on the splitting of the total voltage anywhere on a line

into its subsequent incident and reflected voltages,

V t = V i + V r (6)

where superscript t, i, and r denote the total, incident,

and reflected values. The topology of the TLM circuits

relevant to the scatter and connect steps is indicated in

fig. 4.

A. Scatter process

The scatter process computes the voltages reflected

from the triangle center using the voltages incident from

the triangle edges and from the open end of the stub

lines. The voltages incident on the end of the stub lines

are simply reflected, whereas the voltages reflected by

the triangle center can be found using the network in

fig. 4a, which makes use of eq. (6).

V rstubα(n, k) = V istubα(n, k) (7)

V rlinkα(n, k) = V0(n, k)− V ilinkα(n, k) (8)

for α = 1, 2, 3, where superscript i and r denote

the incoming and reflected voltages respectively, and

V0(n, k) is the total voltage in the centre of triangle n

at timestep k.

Investigation of the Thévenin equivalent circuit as

shown in fig. 4a gives the total voltage at the centre

of a triangle,

V0(n, k) =
2
∑3
α=1 V

i
linkα

(n, k)Ylinkα(n)∑3
α=1 Ylinkα(n)

. (9)

B. Connect process

In the connect process, the voltages reflected at the

inter-triangle ports are computed.

From the Thévenin equivalent in fig. 4b, the total

voltage at the port between the triangles m and n is

V t(m, k) = V t(n, k) =

2

V rlink1(m, k)Ylink1(m) + V rstub1(m, k)Ystub1(m)

+V rlink2(n, k)Ylink2(n) + V rstub2(n, k)Ystub2(n)


Ylink1(m) + Ystub1(m) + Ylink2(n) + Ystub2(n)

.

The incident link and stub voltages for the next

timestep are

V ilinkα(n, k + 1) = V t(n, k)− V rlinkα(n, k) (10)

V istubα(n, k + 1) = V t(n, k)− V rstubα(n, k) (11)

for α = 1, 2, 3. These values are then used in the scatter

process at the next timestep.
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C. Connection at the boundaries

To model the radiating behaviour of the fields at

the TLM boundary of the problem space, the sim-

plest approach is to terminate the mesh with a lumped

impedance, the so called matched impedance, with value

equal to the wave impedance of free space. This is

indicated in the circuit of fig. 4c. In this situation the

total voltage and current at the exterior edge becomes

V tb (n, k) =
Itb(n, k)

Ylink1(n) + Ystub1(n)+Yb

Itb(n, k) = 2V rlink1(n, k)Ylink1(n)

+ 2Vstub1(n, k)Ystub1(n)

(12)

where Yb is the boundary admittance.

Unfortunately, this is a crude approximation to a

perfect radiating boundary condition that is inaccurate at

non-smooth boundaries and for obliquely incident fields.

There are other methods to improve the boundary

conditions, such as using Perfectly Matched Layers

(PMLs) as described in [24], but these methods are more

difficult to implement and currently cannot reach the

level of performance that would make them compara-

ble with Finite-Difference Time-Domain (FDTD) PML

algorithms [25].

The following section describes a method for achiev-

ing a much more accurate ABC.

IV. BEUT: COUPLING BEM AND UTLM

The hybridization of BEM and UTLM is achieved

by enforcing continuity of fields across the boundary

interface.

As mentioned in the previous section, traditional

matched boundaries for TLM consist of applying an

impedance to terminate the transmission line as shown

in fig. 5a. This does not take into account the interac-

tions from all the other boundary edges. The Boundary

Element/ Unstructured TLM or BEUT method here

Vb(n,k)
Ib(n,k) Zb(n,k)

Zb(n)

+(k-1)
		+(k-2)
			+	...

+

+

+

+

+

b)

a)

Fig. 5. The circuit representations of the boundary conditions

used in a) classic TLM, and b) BEUT.

introduces the local boundary impedance with a non-

local interaction matrix resulting from the representation

theorem for the external domain. This operator takes

into account contributions from voltages at all boundary

edges, including those from multiple surfaces, and all

previous timesteps. This can be thought of as replacing

the exterior region with a multi-port TLM cell connect-

ing all boundary edges at the current timestep and all

boundary edges from all previous timesteps, as illustrated

in fig. 5b.

Each link line and stub circuit model at the boundary

can be reduced to a Thévenin and Norton equivalent

circuit. The corresponding open port voltage and closed

port current can be found as

Vopen =
Iclosed
YTL

Iclosed = 2V rlinkYlink + 2V rstubYstub

(13)

where the total transmission line admittance, YTL =

Ylink +Ystub. This, in turn, is also the Thévenin-Norton

equivalent of a single transmission line with admittance
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YTL (and impedance ZTL = 1/YTL) for which the

following one-dimensional representation theorem holds:Vb
Ib

 =

 1
2

ZTL
2

YTL
2

1
2


Vb
Ib

+

 Vopen
2

−Iclosed
2


(14)

where subscript b denotes the boundary values, and the

matrices YTL and ZTL are diagonal. There is such a

representation theorem for each edge on the boundary

between the TLM and BEM governed domains. Arrang-

ing these in a large block diagonal system yields an

interior representation theorem valid for the current time

step.

Equations (14) and (1) provide the inner and outer

representation theorems for the electric and magnetic

traces. They can be combined into a single system for

(ez, ht), or their aliases (Vb, Ib), that has a unique solu-

tion. Subtracting (2) from (14) yields the UTLM/BEM

counterpart of the PMCHWT and boundary integral

equation: eiz

hitlb

+
1

2

−Vopen
Iclosed

 =

 −D ZTL
2

+
η

c
Slb
−1

YTL
2

+
c

η
Nlb D′


Vb
Ib

 (15)

The first term represents an exterior excitation and the

second term represents the transmission line signals

incident on the boundary.

The BEUT method requires the following steps to be

taken for every timestep:

1) Perform the UTLM scatter process, then find Vopen

and Iclosed using eq. (13).

2) Solve the coupling eq. (15) to obtain the boundary

values.

3) Run the UTLM connect process using the updated

boundary values.

2192
4140

7888
12560

248

Fig. 6. Delaunay meshes demonstrating the different sized

UTLM domains.

The voltages and currents that are the unknowns in the

TLM description correspond to samples of the electric

and magnetic field in the centers of interface edges (as

shown in fig. 2a). This means that the choice of spatial

testing functions and their normalisation for the BEM

terms (as described in section II) allows for a natural

mapping between TLM and BEM degrees of freedom.

An implementation using Matlab of the 2D UTLM,

BEM, and BEUT methods, as described in this paper,

can be found at https://github.com/dan-phd/BEUT. Ker-

nels for matrix assembly that rely upon an optimised

C++/openMP implementation can be found at https:

//github.com/dan-phd/2DTDBEM.

V. RESULTS

Previous publications [44,45] have proved the accu-

racy of the 2D BEUT method. Here we will demon-

strate the suitability for problems that contain multiple

smooth geometries containing inhomogeneous materials

separated by significant quantities of free space. This

ability is clearly an additional advantage of the BEUT

method over traditional absorbing boundary conditions.

A. Two Spatially Distinct Dielectric Cylinders

Firstly, the interaction between two spatially distinct

cylinders was investigated using BEUT, and the accuracy
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Time (s) ×10-7
0.5 1 1.5 2

E
z

UTLM with 2192 triangles
UTLM with 4140 triangles
UTLM with 7888 triangles
UTLM with 12560 triangles
BEUT with 248 triangles

Reflection

Reflection

Reflection

Reflection

No reflections

Fig. 7. Plots of time domain results when comparing BEUT

with pure UTLM.

Fig. 8. Graph showing the speed and accuracy gains of BEUT

over UTLM.

and speed was compared with a purely UTLM simula-

tion. The diameter of the UTLM simulation domain was

increased to reduce the effects of the artificial absorbing

boundaries (as shown in Fig. 6), and re-compared with

the results using BEUT to monitor the convergence.

Because BEUT only requires the objects to be meshed,

there were just 248 triangles to model, making it much

faster than using UTLM which requires the whole do-

main to be meshed. As predicted, the purely UTLM

results showed evidence of non-physical reflections from

the matched boundaries, which is illustrated in Fig. 7.

The results from the BEUT method, however, contained

no reflections and the perfectly radiating fields were

Source location

Fig. 9. Diagram showing the relative permittivity values across

two Luneburg lenses, along with the point source location used

in the test case.

observed. The graph in fig. 8 show that the UTLM results

converge to the BEUT result as the mesh size increases.

Fig. 8 also reveals the run-times that occurred during the

test, which were much faster than UTLM.

B. Two Spatially Distinct Luneburg Lens Antennas

To demonstrate the practical application of the BEUT

method, a point source signal transmitted over-the-air

using two Luneburg lens antennas was modelled. A

Luneburg lens is a non-uniform lens that transforms

a spherical wave into a plane wave (and vice versa)

[46,47].

An ideal Luneburg lens is a radially symmetric sphere

with a continuously varying relative permittivity ranging

from 1 at the surface to 2 at the center,

εr(r) = 2−
( r
a

)2

(16)

where a is the radius, and r is the distance from the

center. Fig. 9 shows the relative permittivity variation

and the location of the point source used in the test case.

To compute this problem using UTLM alone would be

inefficient and inaccurate, as interference would occur

from artificial reflections from the boundary of the

simulation domain. On the other hand, BEM cannot

be used to model transmission through the non-uniform

Luneburg lens. Using BEUT enables accurate modelling

of the lens, and accurate modelling of the transmitted
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Fig. 10. 2D plot showing the total normalised electric field

emanating between two Luneburg Lenses at a point in time.

waves through free space. Furthermore, only the lenses

need to be meshed, so computational resources are

conserved when compared to a fully meshed solver.

Fig. 10 displays the total electric field due to a point

source positioned at the left lens. As can be seen, the

incident wave produced by the point source is converted

to a plane wave during transmission over the free space

region, and then concentrated back to a point source at

the right lens.

The fields inside the Luneburg lens antennas are

modelled using UTLM, and the mesh shown in fig. 10 is

the Delaunay triangulation used in this domain. All fields

outside these regions, i.e. in free space, are modelled by

BEM; the mesh shown in fig. 10 is an auxiliary mesh

used for visualisation of the fields only.

C. Dipole Antenna and Radome Interaction

As a more applied example involving an irregular ge-

ometry, the effect of a radome positioned over a radiating

antenna for aerospace communication is analysed here.

A radome is a structural enclosure which protects an

antenna from damage by the surrounding environment

without effecting performance. A typical example would

be the nose of an aircraft which protects the antenna

beneath from aerodynamic stresses.

Fig. 11. 2D plot showing the total normalised electric field

emanating between the 2.5GHz dipole antenna and radome at

a point in time.

The radome design is tailored to the frequency range

of the protected antenna, and depends on the materials

used for its construction, the number of layers, and its

shape. For this analysis, we will monitor a wireless

LAN dipole antenna operating at 2.5GHz, protected by

a spherically blunted cone with a base inner radius of

1.2λ and an inner height of 1λ. The radome is built

with a 35mm thick outer layer made of plastic polymer

(εr = 4.8), and a 68.7mm thick inner layer made of

foam polyethylene (εr = 1.25).

The dipole antenna consists of two identical, perfectly

conducting elements either side of a free space gap

where the point source is located. The antenna length is

λ/2 and the structure is meshed very finely at roughly

80 edges per wavelength. The radome has a much more

coarse mesh. It is common in the design of radomes to

first compute the incident field radiated by the antenna,

and then to model the radome using this incident field in

a separate simulation, neglecting any mutual coupling.

Using the BEUT method, the dome and the source
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geometry are modelled by a mesh with mesh size only

dependent on the local geometry. This is in stark contrast

to the structured TLM where the finest geometric detail

determines the global mesh size. In addition, the empty

space region in between dome and source is governed

by the BEM, resulting in a technique that uses the bare

minimum of degrees of freedom without jeopardising the

solution’s accuracy.

As can be seen in fig. 11, the fields inside the objects

are modelled using UTLM with a triangular mesh. All

fields outside these regions are modelled by BEM. In

this case, the scattered field is found at points defined in

a structured mesh with a 10mm edge length.

To confirm the effectiveness of this particular radome,

we can compare the far-field of the antenna with and

without the radome at the design frequency of 2.5GHz.

The far-field array pattern can be obtained by measuring

the electric field at a distance sufficiently far away

from the source. It is directly available from the BEM

boundary data and, because it is computed using the

exact Green function of the propagation environment,

its accuracy is not affected by dispersion error. This

comparison can be seen in fig. 12, where the results are

normalised w.r.t. the peak antenna response.

The results show that the forward signal is amplified

when the radome is used at the design frequency. This

is expected because each layer of the radome has a half

wavelength thickness, which introduces a 360◦ phase

shift. Because of this phase shift, the reflections at each

interface are superimposed causing an increase in the net

transmission of waves.

Computing the far field using a purely UTLM based

technique would require enlarging the simulation domain

and even then the far field would be compromised by

spurious reflections from the simulation domain bound-

ary and accumulated dispersion errors.

0.5 1 1.5

30

210

60

240

90

270

120

300

150

330

180 0

Normalised antenna far-field response
Response with Radome

Fig. 12. Plot showing the total normalised electric far-field

response from the dipole antenna at 2.5GHz with and without

the radome.

VI. CONCLUSION

This paper has presented the 2D BEUT method, a

novel EM simulation technique which hybridizes the

BEM and UTLM methods. The individual techniques

were derived, and implementation guidelines were de-

scribed.

The novel technique combines the power of UTLM

(unconditional stability, ability to model inhomogeneous

materials and smooth geometries) with the accuracy of

BEM (perfectly radiating boundaries, resolvable fields

anywhere in free space). To extend the technique to 3D,

the biggest challenge is the generalization of the map

linking TLM and BEM degrees of freedoms, which may

result in a discontinuous Galerkin scheme being used.

Simple test cases showed significant accuracy and

speed gains compared to using pure UTLM. Scattering

between two spatially distinct, non-uniform Luneburg
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lenses was shown using BEUT, and also the scattering

between an antenna and a radome. Results obtained

from the demonstrations matched that of expected and

previously published results.
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