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Abstract
Functional Reactive Programming (FRP) has come to mean many
things. Yet, scratch the surface of the multitude of realisations, and
there is great commonality between them. This paper investigates
this commonality, turning it into a mathematically coherent and
practical FRP realisation that allows us to express the functionality
of many existing FRP systems and beyond by providing a minimal
FRP core parameterised on a monad. We give proofs for our the-
oretical claims and we have verified the practical side by bench-
marking a set of existing, non-trivial Yampa applications running
on top of our new system with very good results.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features – Control Structures

Keywords functional reactive programming, reactive program-
ming, stream programming, monadic streams, Haskell

1. Introduction
Functional Reactive Programming (FRP) [9, 10, 18] is a declara-
tive approach to implementing reactive applications centred around
programming with time-varying values (as opposed to operational
descriptions of how to react to individual events). There are a
very large number of different implementations of FRP frameworks
catering for different settings in terms of platforms and languages,
specific application needs, and ideas about how to structure such
frameworks in the most appropriate way [5]. Particular differences
include whether a discrete or hybrid (mixed discrete and continu-
ous) notion of time is adopted, and how to handle I/O and other
effects in a way that is both notationally convenient and scalable.

While this diversity makes for a rich and varied FRP landscape,
it does raise practical obstacles and concerns for the FRP user in
terms of which system to pick, especially if the needs are diverse or
can be anticipated to change. Given the underlying conceptual sim-
ilarity between the various implementations, this raises the question
of whether, through appropriate generalisations, it might be possi-
ble to provide a single framework that covers a significantly broader
set of applications and needs than what any one FRP implementa-
tion up until now has done, and that is easily extensible.

This paper proposes such a unifying framework by adopting
stream functions parametrised over monads as the central reactive
abstraction. We demonstrate that such a minimalistic framework
subsumes and exceeds existing FRP frameworks such as Yampa [8,

18] and Reactive Values [21]. Through composition of standard
monads like reader, exception, and state, any desirable combination
of time domain, dynamic system structure, flexible handling of I/O
and more can be obtained in an open-ended manner.

Specifically, the contributions of this paper are:

• We define a minimal Domain-Specific Language of causal
Monadic Stream Functions (MSFs), give them precise mean-
ing and analyse the properties they fulfil.
• We systematically explore how MSFs with different standard

monads give rise to known reactive notions like termination,
switching and sinks, how to compose effects at a stream level
using monad transformers, and how this addresses shortcom-
ings of existing FRP frameworks.
• We implement three different FRP variants on top of our frame-

work: 1) Arrowized FRP, 2) Classic FRP and 3) Signal/Sink-
based reactivity.
• We demonstrate the practical feasibility of our approach by

applying it to real-world games and applications.

2. Background
In the interest of making this paper sufficiently self-contained,
we summarize the basics of FRP and Yampa in the following.
For further details, see earlier papers on FRP and Arrowized FRP
(AFRP) as embodied by Yampa [9, 10, 18]. This presentation draws
heavily from the summary in [9].

2.1 Functional Reactive Programming
FRP is a programming paradigm to describe hybrid systems that
operate on time-varying data. FRP is structured around the concept
of signal, which conceptually can be seen as a function from time
to values of some type:

Signal α ≈ Time → α

Time is (notionally) continuous, and is represented as a non-
negative real number. The type parameter α specifies the type of
values carried by the signal. For example, the type of an anima-
tion would be Signal Picture for some type Picture representing
static pictures. Signals can also represent input data, like the posi-
tion of the mouse on the screen.

Additional constraints are required to make this abstraction
executable. First, it is necessary to limit how much of the history
of a signal can be examined, to avoid memory leaks. Second, if we
are interested in running signals in real time, we require them to be
causal: they cannot depend on other signals at future times. FRP
implementations address these concerns by limiting the ability to
sample signals at arbitrary points in time.

The space of FRP frameworks can be subdivided into two main
branches, namely Classic FRP [10] and Arrowized FRP [18]. Clas-
sic FRP programs are structured around signals or a similar notion
representing internal and external time-varying data. In contrast,
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Figure 1. Basic signal function combinators.

Arrowized FRP programs are defined using causal functions be-
tween signals, or signal functions, connected to the outside world
only at the top level.

Arrowized FRP renders modular, declarative and efficient code.
Pure Arrowized FRP separates IO from the FRP code itself, mak-
ing the latter referentially transparent across executions. This is a
crucial debugging aid, since we can run programs multiple times
providing the same inputs and they will deliver the exact same out-
puts. In the following, we turn our attention to Arrowized FRP as
embodied by Yampa, and later explain current limitations that our
framework addresses.

2.2 Fundamental Concepts
Yampa is based on two concepts: signals and signal functions. A
signal, as we have seen, is a function from time to values of some
type, while a signal function is a function from Signal to Signal :

Signal α ≈ Time → α
SF α β ≈ Signal α→ Signal β

When a value of type SF α β is applied to an input signal of type
Signal α, it produces an output signal of type Signal β. Signal
functions are first class entities in Yampa. Signals, however, are
not: they only exist indirectly through the notion of signal function.

In order to ensure that signal functions are executable, we re-
quire them to be causal: The output of a signal function at time t is
uniquely determined by the input signal on the interval [0, t].

2.3 Composing Signal Functions
Programming in Yampa consists of defining signal functions com-
positionally using Yampa’s library of primitive signal functions and
a set of combinators. Yampa’s signal functions are an instance of
the arrow framework proposed by Hughes [12]. Some central arrow
combinators are arr that lifts an ordinary function to a stateless sig-
nal function, composition ≫, parallel composition &&&, and the
fixed point combinator loop. In Yampa, they have the following
types:

arr :: (a → b)→ SF a b
(≫) :: SF a b → SF b c → SF a c
(&&&) :: SF a b → SF a c → SF a (b, c)
loop :: SF (a, c) (b, c)→ SF a b

We can think of signals and signal functions using a simple flow
chart analogy. Line segments (or “wires”) represent signals, with
arrowheads indicating the direction of flow. Boxes represent sig-
nal functions, with one signal flowing into the box’s input port and
another signal flowing out of the box’s output port. Figure 1 illus-
trates the aforementioned combinators using this analogy. Through
the use of these and related combinators, arbitrary signal function
networks can be expressed.

2.4 Time-variant Signal Functions: Integrals and Derivatives
Signal Functions must remain causal and leak-free, and so Yampa
introduces limited ways of depending on past values of other
signals. Integrals and derivatives are important for application
domains like games, multimedia and physical simulations, and
they have well-defined continuous-time semantics. Their types in
Yampa are as follows:

integral :: VectorSpace v s ⇒ SF v v
derivative :: VectorSpace v s ⇒ SF v v

Time-aware primitives like the above make Yampa specifica-
tions highly declarative. For example, the position of a falling mass
starting from a position p0 with initial velocity v0 is calculated as:

fallingMass :: Double → Double → SF () Double
fallingMass p0 v0 = arr (const (−9.8))

≫ integral ≫ arr (+v0 )
≫ integral ≫ arr (+p0 )

which resembles well-known physics equations (i.e. “the position
is the integral of the velocity with respect to time”) even more when
expressed using Paterson’s Arrow notation [20]:

fallingMass :: Double → Double → SF () Double
fallingMass p0 v0 = proc ()→ do

v ← arr (+v0 ) ≪ integral −≺ (−9.8)
p ← arr (+p0 ) ≪ integral −≺ v
returnA−≺ p

2.5 Events and Event Sources
To model occurrences at discrete points in time, Yampa introduces
the Event type [18]:

data Event a = NoEvent | Event a

A signal function whose output signal is of type Event T for
some type T is called an event source. The value carried by an
event occurrence may be used to convey information about the
occurrence. The operator tag is often used to associate such a value
with an occurrence:

tag :: Event a → b → Event b

2.6 Switching
The structure of a Yampa system may evolve over time. These
structural changes are known as mode switches. This is accom-
plished through a family of switching primitives that use events to
trigger changes in the connectivity of a system. The simplest such
primitive is switch:

switch :: SF a (b,Event c)→ (c → SF a b)→ SF a b

The switch combinator switches from one subordinate signal func-
tion into another when a switching event occurs. Its first argument
is the signal function that is active initially. It outputs a pair of
signals. The first defines the overall output while the initial sig-
nal function is active. The second signal carries the event that will
cause the switch to take place. Once the switching event occurs,
switch applies its second argument to the value tagged to the event
and switches into the resulting signal function.

Yampa also includes parallel switching constructs that maintain
dynamic collections of signal functions connected in parallel [18].
Signal functions can be added to or removed from such a collection
at runtime in response to events, while preserving any internal state
of all other signal functions in the collection (see Fig. 2). The first
class status of signal functions in combination with switching over
dynamic collections of signal functions makes Yampa an unusually
flexible language for describing hybrid systems.



Figure 2. System of interconnected signal functions with varying
structure

2.7 Limitations of Current AFRP Systems
Yampa has a number of limitations, described in the following.
Most of these also apply to other current AFRP systems.

Fixed Time Domain and Clock Yampa has a global clock that
progresses as driven by an external time-sensing monadic (IO) ac-
tion. This is a serious limitation, as some games require the use
of nested clocks (game clock versus application clock), and oth-
ers require that time progresses at different speeds or with different
precisions for different parts of the game. As a consequence, Con-
tinuous Collision Detection in Yampa is very complex.

The time domain in Yampa is fixed to Double, which is not
always the most appropriate. Many games run on a discrete clock,
while others require a rational clock with arbitrary precision or
no clock at all. In such cases, keeping and passing an additional
continuous clock becomes an unnecessary nuisance.

I/O Bottleneck Yampa’s input and output is connected to the
external world once at the top level, in the invocation of the function
that runs a signal function. This helps keep Signal Functions pure
and referentially transparent across executions, but at the expense
of having to poll all input data every time and handling more
complex data structures in the output.

Explicit Wiring Pure implementations of AFRP do not allow
communication between signal functions except through explicit
input/output signals. All data that a signal function needs must be
manually routed down, and outputs manually routed up. In practice
we often want to make part of that wiring implicit.

A manifestation of this problem is that it is not possible to de-
bug from within signal functions except by adding explicit output
signals carrying debugging information or by using functions like
Debug .Trace.trace , which output to standard output directly (us-
ing unsafePerformIO under the hood). Code that uses trace is
not portable, for instance, to platforms like Android, as debug mes-
sages must be printed to a special debug log facility.

In the following section we introduce a more fundamental ab-
straction to specify reactive programs that addresses these con-
cerns, while remaining able to express all the definitions of Yampa.

3. Monadic Stream Functions
Monadic Stream Functions (MSFs) are a minimal abstraction to
represent synchronous, effectful, causal functions between streams.
MSFs are a generalisation of Yampa’s Signal Functions (SFs), with
additional combinators to control and stack side effects. While
the fundamentals of the abstraction are standard (continuations,
parametrisation on a monad [13, 18]), the support for systematic
effect extensions and how this subsumes existing FRP frameworks,
and addresses common shortcomings of them, is novel.

In this section we introduce the definitions of MSFs and the
basic combinators of our library. In the next sections we will extend
our language with combinators to integrate effects using monad
stacks, demonstrating with specific monads.

Notation The definitions that follow are simplified for clarity;
performance and memory footprint of our implementation are dis-
cussed in Section 10. We use the shorter name MSF , instead of
MStreamF , used in the implementation. The first argument of an
MSF is always a monad, and consequently also a functor and an
applicative. We usually omit the corresponding monad constraint
from type signatures in the following to reduce clutter.

3.1 Definitions
Monadic Stream Functions are defined by a polymorphic type
MSF and an evaluation function that applies an MSF to an input
and returns, in a monadic context, an output and a continuation:

newtype MSF m a b

step :: Monad m ⇒ MSF m a b → a → m (b,MSF m a b)

The type MSF and the step function alone do not represent
causal functions on streams. It is only when we successively apply
the function to a stream of inputs and consume the side effects that
we get the unrolled, streamed version of the function. Causality is
given by this progressive application, sample by sample.

For the purposes of exposition we provide functions to express
the meaning of applying an MSF to an input and looking only at
the output or only at the continuation:

headM :: Monad m ⇒ MSF m a b → a → m b
headM msf a = fst <$> step msf a

tailM :: Monad m ⇒ MSF m a b → a → m (MSF m a b)
tailM msf a = snd <$> step msf a

We also provide a function to apply an MSF to a finite list of
inputs, with effects and continuations chained sequentially. This is
merely a debugging aid, not how MSFs are actually executed:

embed :: Monad m ⇒ MSF m a b → [a ]→ m [b ]

3.2 Lifting
The simplest kind of transformation we can apply to a stream
is point-wise to every sample. We provide two functions for this
purpose: arr , which produces an output and no side effects, and
liftS , which applies an effectful function to every input sample.

arr :: (a → b) → MSF m a b
liftS :: (a → m b)→ MSF m a b

We describe their meaning by showing that they act point-wise
on the head, and that the continuation is the same MSF unchanged:

headM (arr f ) a ≡ return (f a)
headM (liftS f ) a ≡ f a

tailM (arr f ) a ≡ return (arr f )
tailM (liftS f ) a ≡ f a >> return (liftS f )

Example One trivial way of using these combinators is the stream
function that adds a constant number to the input:

add :: (Num n,Monad m)⇒ n → MSF m n n
add n0 = arr (λn → n + n0 )

which we test in a session (in GHC, monad-parametric computa-
tions are run in the IO monad and the results printed, if possible):

> embed (add 7) [1, 2, 3]
[8, 9, 10]

3.3 Widening
We can define new MSFs that only affect the first or second compo-
nents of pairs, passing the other component completely unmodified:

first :: MSF m a b → MSF m (a, c) (b, c)
second :: MSF m b c → MSF m (a, b) (a, c)



headM (first msf ) (a, c) ≡ (λb → (b, c))<$> headM msf a
tailM (first msf ) (a, c) ≡ first (tailM msf a)

Examples Extending the previous example, we can write:

> embed (second (add 7)) [(1, 1), (2, 2), (3, 3)]
[(1, 8), (2, 9), (3, 10)]

3.4 Serial and Parallel Composition
MSF s can be composed serially using the combinator (≫). Com-
posing f ≫ g first applies f to the input producing an output, and
applies g to that output, producing a final result. Side effects are
sequenced in the same order, which we detail using step:

(≫) :: MSF m a b → MSF m b c → MSF m a c

step (f ≫ g) a ≡ do (b, f ′)← (step f ) a
(c, g ′)← (step g) b
return (c, f ′ ≫ g ′)

MSFs can be composed in parallel with the Arrow functions
(∗∗∗), which applies one MSF to each component of a pair, and
(&&&), which broadcasts an input to two MSFs applied parallely:

(∗∗∗) :: MSF m a b → MSF m c d → MSF m (a, c) (b, d)
(&&&) :: MSF m a b → MSF m a c → MSF m a (b, c)

These combinators are not primitive; their standard definitions
are based on combinators defined previously:

f ∗∗∗ g = first f ≫ second g
f &&& g = arr (λx → (x , x)) ≫ (f ∗∗∗ g)

When composed in parallel like above, the effects of the f are
produced before those g. This is of prime importance for non-
commutative monads. For a discussion, see Section 9.

Example The following example of palindromes demonstrates
monadic and composition combinators:

testSerial :: MSF IO () ()
testSerial = liftS (λ()→ getLine)

≫ (arr id &&& arr reverse) ≫ liftS print

> embed testSerial (repeat 1 ())
Text
("Text", "txeT")

3.5 Depending on the Past
We provide a way of keeping state by producing an extra value or
accumulator accessible in future iterations:

feedback :: c → MSF m (a, c) (b, c)→ MSF m a b

This combinator takes an initial value for the accumulator, runs
the MSF, and feeds the new accumulator back for future iterations:

step (feedback c msf ) a ≡ do
((b, c′),msf ′)← step msf (a, c)
return (b, feedback c′ msf ′)

Unlike in the definition of loop from the ArrowLoop type class,
the input and the output accumulator are not the same during a
simulation step. Conceptually, there is a one step delay in the wire
that feeds the output c back as input for the next run.

Example The following calculates the cumulative sum of its in-
puts, initializing an accumulator and using a feedback loop:

sumFrom :: (Num n,Monad m)⇒ n → MSF m n n
sumFrom n0 = feedback n0 (arr add2 )

where add2 (n, acc) = let n ′ = n + acc in (n ′,n ′)

A counter can now be defined as follows:

count :: (Num n,Monad m)⇒ MSF m () n
count = arr (const 1) ≫ sumFrom 0

3.6 Example: One-dimensional Pong
Before moving on to control structures and monadic MSFs, let us
present part of an example of a game of pong in one dimension.

The game state is just the position of the ball at each point. We
assume the players sit at fixed positions:

type Game = Ball
type Ball = Int

rightPlayerPos = 5
leftPlayerPos = 0

The ball will move in either direction, one step at a time:

ballToRight :: Monad m ⇒ MSF m () Ball
ballToRight = count ≫ arr (λn → leftPlayerPos + n)

ballToLeft :: Monad m ⇒ MSF m () Ball
ballToLeft = count ≫ arr (λn → rightPlayerPos − n)

We can detect when the ball should switch direction with:

hitRight :: Monad m ⇒ MSF m Ball Bool
hitRight = arr (> rightPlayerPos)

hitLeft :: Monad m ⇒ MSF m Ball Bool
hitLeft = arr (6 leftPlayerPos)

Switching itself will be introduced in Section 4.3, when we talk
about Control Flow and Exceptions.

3.7 Mathematical Properties of MSFs
Monadic Stream Functions are Arrows when applied to any monad.
A proof of one of the arrow laws, as well as links to proofs of other
laws and additional properties, are included in Appendix A.

By constraining the monad we can obtain additional guaran-
tees about MSFs. We have proved that MSFs are Commutative
Arrows when applied to commutative monads, a result we can
exploit for optimisation purposes [16]. For monads that are in-
stances of MonadFix we provide a well-behaved MSF instance of
ArrowLoop. Our library also defines instances that facilitate writ-
ing declarative code, like ArrowChoice and ArrowPlus . MSFs
partially applied to inputs are functors and applicative functors.

There are several isomorphisms between Monadic Stream
Functions and Monadic Streams defined as Stream m a =
m (a,Stream m a). Some properties are easier to prove or to
express when MSFs are seen as streams, something we elaborate
on in Section 5. In turn, abstractions defined in terms of streams
can be expressed using MSFs, an idea we use in Sections 6 and 7
to obtain implementations of reactive frameworks for free.

4. Monads, Modularity and Control in MSFs
This section motivates and explores the use of different monads
with Monadic Stream Functions. Monads like Reader and State
help modularise and increase the expressiveness of programs. Oth-
ers like Maybe , Exception and the list monad give rise to control
combinators for termination, higher order and parallelism.

Temporal Execution Functions Monads and monad transfomers
[15] have associated execution functions to run computations and
extract results, consuming or trapping effects in less structured
environments. For instance, in the monad stack ReaderT e m
we can eliminate the layer ReaderT e with runReaderT :: e →
ReaderT e m a → m a , obtaining a value in the monad m .

Analogously, MSFs applied to monads have associated tempo-
ral execution functions, which limit effects to part of a reactive net-
work. In this section we introduce MSF lifting/running combina-
tors for concrete monads, exploring how they augment expressiv-
ity, help modularise code and give rise to known structural reactive
combinators. In Section 5 we present a general way of combining



effects in MSFs. In Section 7 we use these combinators to express
FRP abstractions like Arrowized FRP.

4.1 Reader
We now want to make our example MSFs parametric on the player
positions. One option is to pass the player position as an argument,
as in ballToRight :: Monad m ⇒ Int → MSF m () Ball .
However, this complicates the implementation of every MSF that
uses ballToRight , which needs to manually pass those settings
down the reactive network. We can define such a parametrisation
in a modular way using a Reader monad with the game preferences
in an environment (we use ReaderT for forward compatibility):

type GameEnv = ReaderT GameSettings

data GameSettings = GameSettings
{ leftPlayerPos :: Int
, rightPlayerPos :: Int
}

We rewrite the game to pass this environment in the context:

ballToRight :: Monad m ⇒ MSF (GameEnv m) () Ball
ballToRight =

count ≫ liftS (λn → (n+)<$> asks leftPlayerPos)

hitRight :: Monad m ⇒ MSF (GameEnv m) Ball Bool
hitRight = liftS (λi → (i >)<$> asks rightPlayerPos)

To run a game with a fixed environment we could use
runReaderT :: ReaderT r m a → r → m a as before. We
test the expression testMSF = ballToRight ≫ (arr id &&&
hitRight) with different settings as follows:

> runReaderT (embed testMSF (repeat 5 ()))
(GameSettings 0 3)

[(1,False), (2,False), (3,True), (4,True), (5,True)]

> runReaderT (embed testMSF (repeat 5 ()))
(GameSettings 0 2)

[(1,False), (2,True), (3,True), (4,True), (5,True)]

This execution method, however, is outside the invocation of
embed , so we cannot make the game settings vary during runtime.
To keep the ReaderT layer local to an MSF, we define a temporal
execution function analogous to runReaderT (implemented using
an unwrapping mechanism presented in Section 5):

runReaderS :: MSF (ReaderT r m) a b
→ r
→ MSF m a b

Now we can run two games in parallel with different settings:

> embed ( runReaderS testMSF (GameSettings 0 3)
&&& runReaderS testMSF (GameSettings 0 2))
(repeat 5 ()))

[((1,False), (1,False)), ((2,False), (2,False))
, ((3,False), (3,True)), ((4,True), (4,True))
, ((5,True), (5,True))]

We could run the MSF obtaining a new Reader environment
from the input signal at every iteration, giving us runReaderS ::
MSF (ReaderT r m) a b → MSF m (r , a) b. In Section 5
we will see that both definitions follow from the type of the run
function of the Reader monad, and there is a systematic way of
defining various temporal monadic execution functions.

4.2 Writer
We can use a similar approach to introduce monads like Writer or
State , for instance, to log debug messages from MSFs.

We first extend our environment with a WriterT wrapper:

type GameEnv m =
WriterT [String ] (ReaderT GameSettings m)

We now modify ballToRight to print a message when the
position is past the right player (indicating a goal):

ballToRight :: Monad m ⇒ MSF (GameEnv m) () Ball
ballToRight =

count ≫ liftS addLeftPlayerPos ≫ liftS checkHitR

where checkHitR :: n → GameEnv m Int
checkHitR n = do

rp ← asks rightPlayerPos
when (rp > n) $ tell ["Ball at "++ show n ]

Notice that we have changed the monad and ballToRight , but
the rest of the game remains unchanged. Having used the trans-
former ReaderT instead of Reader in the previous step now pays
off in the form of added modularity.

Like with the reader monad, we may be interested in consuming
the context (for instance, to print accumulated messages and empty
the log). We provide the temporal execution function:

runWriterS :: Monad m
⇒ MSF (WriterT r m) a b
→ MSF m a (b, r)

We can test this combinator as follows:

> embed (runWriterS
(runReaderS testMSF (GameSettings 0 3)))

(repeat 5 ()))

[((1,False), [ ]), ((2,False), [ ]), ((3,True), [ ])
, ((4,True), ["Ball at 4" ]), ((5,True), ["Ball at 5" ])]

Similarly we could have used a State monad to define config-
urable game settings (for instance, settings that can be adjusted us-
ing an options menu, but remain immutable during a game run).

4.3 Exceptions and Control Flow
MSFs can use different monads to define control structures. One
common construct is switching, that is, applying a transformation
until a certain time, and then applying a different transformation.

We can implement an equivalent construct using monads like
Either or Maybe . We could define a potentially-terminating MSF
as an MSF in a MaybeT m monad. Following the same pattern as
before, the associated execution function would have type:

runMaybeS :: Monad m
⇒ MSF (MaybeT m) a b
→ MSF m a (Maybe b)

Our evaluation function step, for this monad, would have type
MSF Maybe a b → a → Maybe (b,MSF Maybe a b) in-
dicating that it may produce no continuation. runMaybeS outputs
Nothing continuously once the internal MSF produces no result.
“Recovering” from failure requires an additional continuation:

catchM :: Monad m
⇒ MSF (MaybeT m) a b
→ MSF m a b
→ MSF m a b

We can now make the ball bounce when it hits the right player:

ballBounceOnce :: MSF (GameEnv m) () Ball
ballBounceOnce = ballUntilHitRight ‘catchM ‘ ballLeft

ballUntilRight :: MSF (MaybeT (GameEnv m)) () Ball
ballUntilRight = liftST (ballToRight

≫ (arr id &&& hitRight))
≫ liftS filterHit

where
filterHit (b, c) = MaybeT $ return $

if c then Nothing else Just b

The utility function liftST is defined in Section 5.
We define ballUntilLeft analogously and complete the game:



game :: Monad m ⇒ MSF m () Ball
game = ballUntilRight ‘catchM ‘ ballUntilLeft ‘catchM ‘ game

Let us interpret the game by inserting a list as input stream. The
output shows the ball position going up and bouncing back between
10 (the right player’s position) and 0 (the left player’s position).

> embed game $ replicate 23 ()
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3]

The implementation of switching in our libary is based on a
more general monad ExceptT c m , but the key idea is the same.

4.4 Creating and Destroying Objects with ListT

In games it is often necessary to create and destroy “objects”. For
example, a gun may fire a bullet or a target vanish when hit. Such
dynamicity requires specific combinators in other reactive frame-
works. In ours, the list monad provides the sought-after behaviour.

A stream function over the list monad can produce zero, one or
several output values and continuations. How we continue depends
on our interpretation of that list. If we explore all continuations
simultaneously, we will be implementing parallel broadcasting.

To produce multiple outputs we provide zeroA, which produces
no outputs or continuations, and <+>, which concatenates lists
produced by two MSFs in a list monad. (In our library these are
available for any instance of Alternative and MonadPlus .)

zeroA :: Monad m ⇒ MSF (ListT m) a b
(<+>) :: Monad m ⇒ MSF (ListT m) a b

→ MSF (ListT m) a b
→ MSF (ListT m) a b

We now change the game logic such that, each time the ball
starts moving left, it splits into two balls (note the use of (<+>)):

type GameEnv m = ReaderT GameSettings (ListT m)

ballLeft :: Monad m ⇒ MSF (GameEnv m) () Ball
ballLeft = singleBallLeft <+> singleBallLeft

where
singleBallLeft =

count ≫
liftS (λn → (λp → p − n)<$> asks rightPlayerPos)

We can escape the list monad or the ListT transformer by
collecting the outputs from all continuations into a list:

runListS :: Monad m ⇒ MSF (ListT m) a b
→ MSF m a [b ]

Our approach proves to be very modular, and we only need to
modify our top function slightly to extract the list effect:

mainMSF :: MSF IO () ()
mainMSF =

runListS ( runReaderS game (GameSettings 20 17)
&&& runReaderS game (GameSettings 10 4))

≫ liftS print

Note that the ReaderT layer is inside the ListT layer, and there-
fore both games are duplicated when either ball starts moving left.
Running the above MSF prints the following output (presented in
two columns for reasons of space):

[(18, 5)]
[(19, 6)]

[(20, 7)]
[(19, 8), (19, 8)]

[(18, 9), (18, 9)]
[(17, 10), (17, 10)]

[(18, 9), (18, 9), (18, 9), (18, 9)]
...

The standard implementation of ListT is only valid for com-
mutative monads. Alternative implementations exist, but the dis-
cussion is beyond the scope of this article.

4.5 State
Keeping type signatures parametric, like in the stream function
ballLeft :: Monad m ⇒ MSF (GameEnv m) () Ball , renders
more reusable definitions, since we can stack more monads on top.
For example, it is easy to introduce a global state using the State
monad, with a counter of the number of rounds played. The counter
can be increased with:

incOneRound :: Monad m ⇒ StateT Integer m ()
incOneRound = modify (+1)

which we use in the game, accounting for the side effect in the type:

game :: Monad m
⇒ MSF (GameEnv (StateT Integer m)) () Ball

game = ballToRight ‘untilM ‘ hitRight
‘catchM ‘ ballToLeft ‘untilM ‘ hitLeft
‘catchM ‘ (lift incOneRound ‘andThen‘ game)

The function andThen :: Monad m ⇒ m ()→ MSF m a b
→ MSF m a b performs the monadic action in the first argument
once and immediately carries on processing the MSF in the second
argument. The function lift :: (MonadTrans t ,Monad m) ⇒
m a → t m a from the transformers package lifts the state
modification into the GameEnv monad.

To run this reactive program we have to pass the initial state, in
a similar way to runStateT :: StateT s m a → s → m (a, s),
which passes an initial state to a monadic state transformation and
extracts the computed value and the final state. The corresponding
function for streams has type:

runStateS :: Monad m ⇒ MSF (StateT s m) a b
→ s → MSF m a (s, b)

Using this function in the main loop is a simple change:

mainMSF :: MSF IO () ()
mainMSF = runStateS parallelGame 0 ≫ liftS print
where

parallelGame = runReaderS game (GameSettings 20 17)
&&& runReaderS game (GameSettings 10 4)

The output of running this MSF (presented in two columns) is:
(0, (18, 5))
(0, (19, 6))

(0, (20, 7))

(0, (19, 8))
(0, (18, 9))

(0, (17, 10))

(1, (18, 9))

(1, (19, 8))
(1, (20, 7))

(1, (19, 6))

(1, (18, 5))
(1, (17, 4))

(3, (18, 5))

...

The first value is the counter of total rounds, the other two values
are the positions of the ball in the two games, respectively.

We have introduced this change without altering any code that
did not use the state variable. In standard Arrowized FRP, we would
have had to alter all signal functions and pass the state manually.

5. Monadic Lifting/Running Combinators
In the last section we saw functions to combine MSFs on different
monads, all of which conform to one of the following patterns:

• Lifting a purer MSF into an MSF in an impurer monad
(e.g. MSF Identity a b → MSF IO a b).
• Running a more structured computation inside a less structured

monad (e.g. MSF (t m) a b → MSF m (I a) (F b)).

This section explores these transformations and presents a way
of thinking about MSFs over different monads and monad stacks.



5.1 Lifting MSFs
Whenever we use monad transformers or other effect stacking
mechanism, we may be interested in embedding an MSF m a b
into a larger MSF (t m) a b (where t m denotes a monad that
encloses the effects of m , such as a transformer t applied to m).

We can lift between any two arbitrary monads, provided we
have a monad morphism (Monad m,Monad n)⇒ m a → n a .

liftLM :: (Monad m,Monad n)
⇒ (∀ a . m a → n a)
→ MSF m a b → MSF n a b

Users are responsible for providing an actual monad morphism
that retains any information in m inside the context in n . For
Monad Transformers, with a monad morphism lift ::m a → t m a ,
we define the convenience lifting function liftST = liftLM lift .

5.2 Temporal Execution Functions
Monad stacks are a common design pattern. If one introduces a
transformer on the stack, one frequently wants to remove it after
performing some effects in it, by executing it. An example is the
“running function” runReaderT ::ReaderT r m a → r → m a .

In Section 4, we introduced temporal execution functions that
remove a transformer from the monad stack inside the MSF, such as
runReaderS :: MSF (ReaderT r m) a b → r → MSF m a b.
Similar examples were given for WriterT , MaybeT , ListT and
StateT . Essentially, they are implemented by commuting the
transformer past MSF and then applying the running function of
the transformer. This will be explained in the following.

Monadic Streams and MSFs To simplify the implementation of
the temporal running functions, we are going to exploit an isomor-
phism between Monadic Stream Functions and certain Monadic
Streams. MSFs are defined as follows:

newtype MSF m a b = MSF
{step :: a → m (b,MSF m a b)}

Depending on the monad m , we may have one, none or several
outputs and continuations. Moving from a monad like Maybe or
Either c to another monad requires retaining the possibility of
providing no output, or recovering from a termination or exception.

In turn, Monadic Streams can be defined as:

Stream m a ∼= m (a,Stream m a)

It is easy to see that our abstraction MSF is isomorphic to a
Monadic Stream in a Reader context:

MSF m a b ∼= Stream (ReaderT a m) b

Note that Stream is a transformer, with lift :: m a →
Stream m a given by the infinite repetition of the same effect.
Because MSF m a ∼= Stream (ReaderT a m), this makes
MSF with the second argument a preapplied also a transformer.

Streams are functors and applicatives, but not necessarily mon-
ads. As transformers they can still be applied and, with some con-
straints, commuted, so the lack of a general monad instance does
not invalidate our argument.

Implementing Temporal Execution Functions Commuting a
transformer t past MSF means commuting t past ReaderT and
subsequently past Stream . We can capture all this in a type class:

class MonadTrans t ⇒ Commutation t where
commuteReader :: Monad m
⇒ ReaderT r (t m) a → t (ReaderT r m) a

commuteStream :: Monad m
⇒ Stream (t m) a → t (Stream m) a

preserveMH :: (Monad m1 ,Monad m2 )
⇒ (∀ a . m1 a → m2 a)→ t m1 b → t m2 b

As a technicality, we also have to assume that t preserves the
isomorphism MSF m a ∼= Stream (ReaderT a m), but
most transformers preserve monad homomorphisms. There is no
requirement that the commutations be isomorphisms, and in cases
like ListT and MaybeT a change of effects is actually desired.

The above typeclass gives rise to a commutation function:

commute :: Commutation t
⇒ MSF (t m) a b → t (MSF m a) b

Defining a temporal execution function is now as simple as defin-
ing an instance of the Commutation type class and composing
commute with any running function. To give a few examples:

runReaderS ≡ runReaderT ◦ commute
runWriterS ≡ runWriterT ◦ commute
runStateS ≡ runStateT ◦ commute
catchM msf handler ≡

fromMaybe <$> handler <∗> runMaybeT (commute msf )

Transformers commuting with ReaderT are abundant, and our
library defines Commutation instances for common transformers.

Running with a Changing Input Other execution functions are
also useful in practice. For example, we may be interested in ob-
taining an Reader context at every input sample, requiring:

runReaderS :: MSF (ReaderT r m) a b → MSF m (r , a) b

This kind of definition is trivial once we observe that Reader
commutes with itself, and that the following are isomorphic:

ReaderT r1 (ReaderT r2 m) a ≡ ReaderT (r1 , r2 ) m a

and therefore:

MSF (ReaderT r m) a b
≡ { MSFs as Streams }

Stream (ReaderT a (ReaderT r m)) b
≡ { Commutativity of reader }

Stream (ReaderT r (ReaderT a m)) b
≡ { Reader r1 (Reader r2 a) == Reader (r1,r2) a }

Stream (ReaderT (r , a) m) b
≡ { Streams as MSFs }

MSF m (r , a) b

6. Reactive Programming and Monadic Streams
Reactive Programming is a programming paradigm organised
around information producers and consumers, or streams and sinks.
In this section we present definitions of Streams and Sinks based on
Monadic Stream Functions. Some properties of monadic streams
also apply to stream functions or are easier to prove in that set-
ting. The existing research on streams and causal stream functions
makes establishing this relation useful in its own right.

We present definitions of Streams and Sinks based on Monadic
Stream Functions, and demonstrate how to do Reactive Program-
ming using the ideas introduced in the previous section. We also
present an extension suitable for event-driven settings like GUIs.
In Section 7.2 we use similar concepts to implement Classic FRP.

6.1 Streams and Sinks
Monadic Stream Functions that do not depend on their input model
Monadic Streams. We can capture that idea with:

type Stream m b = MSF m () b

Disregarding bottoms and applying unit as the only possible ar-
gument, the above expands to Stream m b ∼= m (b,Stream m b),
and Stream Identity is isomorphic to standard infinite streams.

If streams can be seen as MSF that do not depend on their inputs,
sinks can be seen as MSF do not produce any output:



type Sink m b = MSF m b ()

These represent dead-ends of information flow, useful when we
are only interested in the side effects.

Monadic Streams, as defined above, are Functors and
Applicatives . Sinks, in turn, are contravariant functors:

instance Contravariant (Sink m) where
contramap :: (a → b)→ Sink m b → Sink m a
contramap f msf = arr f ≫ msf

Examples These abstractions allow us to write more declarative
code. For instance, given mouseX :: Stream IO Int , represeting
the changing X coordinate of the mouse position, we can write:

mirroredMouseX :: Stream IO Int
mirroredMouseX = (−)<$> 1024<∗>mouseX

We can sometimes simplify code further. For example, we can
give a Num instance for Num-carrying Streams, and overload the
standard numeric operators:

mirroredMouseX :: Stream IO Int
mirroredMouseX = 1024−mouseX

Note that, in this new definition, 1024 has type Stream IO Int .
Streams and sinks are MSFs, so we can use MSF combinators to

transform them and connect them. The following reactive program
chains a stream and a sink to print the mouse position:

reactiveProgram = mouseX ≫ arr show ≫ printSink

printSink :: Sink IO String
printSink = liftS putStrLn

6.2 Reactive Values
External mutable entitities can be regarded as both sources and
sinks. For instance, in programs with Graphical User Interfaces,
text boxes can be seen as String-carrying streams and sinks.

Formulations like Reactive Values [21] and Wormholes [26] are
built around external mutable entitites. Introducing this abstraction
as a first-class concept minimizes duplication in the presence of
multiple circular dependencies, omnipresent in GUI programs.

We could represent reactive entities as pairs of a Stream and a
Sink on the same monad and type. However, connecting reactive
entities in a circular way can render incorrect results. For example,
imagine that we try to synchronize two text boxes, each seen as a
pair of a Stream and a Sink, connected to the actual GUI element:

( (txtField1Stream ≫ txtField2Sink)
&&& (txtField2Stream ≫ txtField1Sink))

Because expressions are evaluated in order, the second text field
would always be updated with the text from the first text box,
regardless of which one originally changed.

To address this problem, we need push-based evaluation, for
which we can follow the original design of the Reactive Values
and tuple a stream, a sink, and a change event handler installer that
executes an arbitrary monadic action whenever the value changes:

type ReactiveValueRO m a = (Stream m a,m ()→ m ())
type ReactiveValueWO m a = Sink m a
type ReactiveValueRW m a =

(Stream m a,Sink m a,m ()→ m ())

The only other requirement is to modify reactimate , to run only
one step of the MSF each time a source stream changes:

pushReactimate :: MSF IO () ()→ IO (IO ())
pushReactimate msf = do

msfRef ← newIORef msf
return $ do msf ′ ← readIORef msfRef

msf ′′ ← tailM msf ′ ()
writeIORef msfRef msf ′′

With this interface, push-based connections need to be specified
at monadic level. Both directional and bi-directional connections
can be expressed declaratively using rule-binding combinators:

(=:=) :: ReactiveValueRW IO a
→ ReactiveValueRW IO a → IO ()

(sg1 , sk1 , h1 ) =:= (sg2 , sk2 , h2 ) = do
(sg1 , h1 ) =:> sk2
(sg2 , h2 ) =:> sk1

(=:>) :: ReactiveValueRO IO a
→ ReactiveValueWO IO a → IO ()

(sg, h) =:> sk = h =<< pushReactimate (sg ≫ sk)

Note that, unlike the (≫) combinator, (=:>) does not actually
update the right hand side if the left hand side has not changed. We
can now express the example above as:

do txtField1Stream =:> txtField2Sink
txtField2Stream =:> txtField1Sink

Defining RVs in terms of MSFs simplifies the implementation,
as we can use MSF combinators to implement RV transformations.
At a conceptual level, this also shows that MSFs are a suitable ab-
straction to reason about bidirectional connections between reac-
tive entities, and can aid in the design of combinators for composi-
tional bidirectional reactive rules with well-defined semantics.

7. Extensible Functional Reactive Programming
Functional Reactive Programming (FRP) [9, 10, 18] is a paradigm
to describe systems that change over time. Time in FRP is explicit
and conceptually continuous. FRP is structured around a concept
of signals, which represent time-varying values:

type Signal a ' Time → a
type Time ' R+

While this conceptual definition enables giving FRP denota-
tional semantics, execution is still carried out by sampling sig-
nals progressively. The ideal semantics are approximated more pre-
cisely as the sampling frequency increases [25].

Using Monadic Stream Functions we can add time information
to the monadic context. In this section we use this approach to im-
plement Arrowized FRP [9, 18] and Classic FRP [10]. We show
that our alternatives remain flexible enough to address the concerns
expressed in the introduction. We limit our discourse to the pro-
gramming abstractions; performance and comparisons to other FRP
variants are discussed in Sections 8 and 9.

7.1 Extensible Arrowized FRP
Arrowized FRP (AFRP) is an FRP formulation structured around
the concept of signal functions. Signals, in AFRP, are not first class
citizens. Conceptually:

type SF a b ' Signal a → Signal b

Multiple AFRP implementations exist. In the following we im-
plement Yampa [8, 18], used to program multimedia and games.
We demonstrate that our implementation can easily adress some of
the limitations of Yampa by implementing systems with multiple
clocks and a form of Continuous Colision Detection.

7.1.1 Core Definitions
Signal Functions (SFs) are executed by successively feeding in a
stream of input samples, tagged with their time of occurrence. The
time always moves forward, and is expressed as the strictly positive
time passed since the occurrence of the previous sample.

Leaving optimisations aside, Yampa’s running SFs are defined
as type SF ′ a b = DTime → a → (b,SF ′ a b), which we can
realise by passing time deltas in a Reader monad environment:



type SF a b = MSF ClockInfo a b
type ClockInfo = Reader DTime
type DTime = Double

Most of Yampa’s core primitives [23], like arr , (≫) or
switch , are time-invariant, and the definitions in previous sections
implement the same behaviour as Yampa’s. We only need to add:

integral :: VectorSpace a s ⇒ SF a a
integral = eulerSteps ≫ sumFrom zeroVector

where eulerSteps = liftS $ λx → asks (xˆ∗)

7.1.2 Reactimating Signal Functions
The second part of our Yampa replacement is a reactimation or
simulation function. The signature of Yampa’s top-level simulation
function demonstrates the bottleneck effect mentioned earlier1:

reactimate :: IO (DTime, a)→ (b → IO ())→ SF a b
→ IO ()

The first argument gathers inputs and delta times, the second
consumes outputs, producing side effects. Our MSF reactimate
function has a simpler type signature, MSF m () () → m (),
meaning that all I/O is done inside and all we care about, in the end,
are the effects. We implement Yampa’s reactimate as follows:

reactimate sense actuate sf =
MSF .reactimate $ senseSF ≫ sfIO ≫ actuateSF

where
sfIO :: MSF IO a b
sfIO = liftLM (return ◦ runIdentity) (runReaderS sf )

senseSF :: MSF IO () (DTime, a)
senseSF = liftS (λ()→ sense)

actuateSF :: MSF IO b ()
actuateSF = liftS actuate

There are two notable aspects in sfIO . First, runReaderS ::
MSF (ReaderT s m) (s, a) b → MSF m a b provides the time
deltas in a reader environment for the Yampa monad. Second, after
extracting the ReaderT layer, we use liftLM to lift a computation
in the Identity monad into the IO monad. At the top level, IO
effects are consumed and presented to the user progressively.

We have verified our implementation with multiple Yampa
games. This will be discussed in Section 8.

7.1.3 Time, Clocks and Continuous Collision Detection
A limitation of pure Arrowized FRP is that the clock is controlled
externally and globally for the whole simulation. In the following
we show that our new implementation can accommodate multiple
clocks and enable some forms of Continuous Collision Detection.

Using lifting MSF combinators we can embed SFs running
on one clock inside others running on different clocks or time
domains. For instance, the following runs MSFs at different speeds:

game = twiceAsFast fallingBall &&& fallingBall

twiceAsFast :: MSF (ReaderT DTime m) a b
→ MSF (ReaderT DTime m) a b

twiceAsFast = liftLM (withReaderT (∗2))
fallingBall = fallingMass 100 10 -- defined in section 2

-- From ReaderT transformer class
withReaderT :: (r ′ → r)→ ReaderT r ′ a → ReaderT r a

A useful variation would be to sample an MSF with a fixed
sampling period, regardless of the external clock.

The function twiceAsFast above runs both clocks with the
same precision: both “tick” in synchrony, even if one advances

1 Yampa’s reactimate has a more complex signature for reasons beyond
the scope of this paper that do not invalidate our claims. Our library follows
Yampa’s specification.

twice as much. Using the low-level API of our library, we can make
one clock actually tick twice as many times per sampling period:

twiceAsFast msf = MSF $ λa → do
dt ← ask
( ,msf1 )← runReaderT (step msf a) (dt / 2)
(b,msf2 )← runReaderT (step msf1 a) (dt / 2)
return (b, twiceAsFast msf2 )

The introduction of subsampling mechanisms like the latter
needs to be addressed with care. Arbitrarily fine subsampling can
lead to inherent memory leaks.

Continuous Collision Detection Physics simulations in Yampa
are implemented by looking at overlaps between objects, at the
sampling time. This leads tunnelling or bullet-through-paper ef-
fects, in which moving objects can pass through other objects if the
simulation is not executed at a time when they actually overlap.

With MSFs we can implement some forms of Continuous Col-
lision Detection (CCD), by letting signal functions tell the top level
simulation when the next sampling should occur. The top-level
reactimate can then decide whether the real application time delta
should be used for the simulation, or whether several steps and
higher precision are needed for a particular step, as seen before.

We implement a form of CCD with a Writer monad. We use the
monoid of time deltas with the minimum and infinity as identity:

data FutureTime = AtTime DTime | Infinity
deriving (Eq,Ord)

instance Monoid FutureTime where
mempty = Infinity
mappend = min

Signal Functions that try to change the Writer state with a
requested sampling time will only do so when such time is smaller
than one currently in the writer state. At the end of each simulation
iteration, the log will contain the closest suggested sampling time.

Using this approach, we can define a bouncing ball that never
goes below the floor. We do so by calculating the expected time
of impact (nextT ) and by recording that time in the Writer context
(liftS◦lift◦tell ). For clarity, we use Paterson’s arrow notation [20]:

type CCDGameMonad m =
ReaderT DTime (WriterT FutureTime m)

bouncingBall :: Double → Double
→ MSF CCDGameMonad () Double

bouncingBall p0 v0 = switch
(proc ()→ do

(p, v) ← fallingBall p0 v0 −≺ ()
bounce ← edge −≺ (p 6 0 ∧ v < 0)

let nextT = if v < 0 then sqrt (2 ∗ p / gravity) -- Down
else 2 ∗ v0 / gravity -- Up

liftS (lift (tell nextT ))−≺ () -- Put ”next” time

returnA−≺ ((p, v), bounce ‘tag‘ (p, v)))
(λ(p, v)→ bouncingBall p (−v))

7.2 Classic FRP
Classic FRP lets users define time-varying values, or signals, using
combinators and applying functions to other signals. Signals may
represent external information sources (e.g. mouse position).

With a Reader monad with time deltas in the environment, like
in Arrowized FRP, Streams can model FRP Signals. To allow for
external sources, we nest IO with the monad, obtaining:

type Signal a = Stream (ReaderT DTime IO) a

A simple simulation of a ball moving around the mouse position
could be written in Classic FRP style as follows:



ballInCirclesAroundMouse :: Signal (Int , Int)
ballInCirclesAroundMouse =

addPair <$>mousePos <∗> ballInCircles

ballInCircles :: Signal (Double,Double)
ballInCircles = (λx → (rad ∗ cos x , rad ∗ sin x))<$> time

where rad = 45 -- radius in pixels

mousePos :: Signal (Int , Int)
mousePos = liftS (λ()→ lift getMousePos)

-- Predefined
addPair :: Num a ⇒ (a, a)→ (a, a)→ (a, a)
getMousePos :: IO (Double,Double)
time :: Signal Time

With non-commutative monads like IO, additional measures
must be taken to ensure referential transparency at the same con-
ceptual time. If several signals depend on, for example, mousePos ,
the mouse position might be sampled twice, with different results
at the same conceptual time. This can be addressed with a monad
that caches results and enables garbage collection [19].

7.3 Limiting the Impact of IO
MSFs over the IO monad limit out ability to apply equational rea-
soning and to debug programs. In contrast, the separation between
IO and Signal Functions in pure Arrowized FRP makes it possible
to record all inputs and replicate program behaviour precisely.

Monads are “contagious”, and MSFs that do IO, directly or
indirectly, must say so in their signature. We consider this a strength
of our framework, as it allows, but discourages, impurity.

Additionally, we can limit side effects with a monad without
support to lift arbitrary IO actions and a safer API. Monadic re-
quirements can be abstracted into a type class, as follows:

class Monad m ⇒ GameMonad m where
getMousePos :: m (Int , Int)

Signatures require additional type constraints, but implementa-
tions remain unchanged. We can now use a pure instance for debug-
ging and the IO monad during normal execution. This makes our
framework more flexible than pure Arrowized FRP, while main-
taining its benefits in terms of testing and referential transparency.

8. Evaluation
We have implemented the ideas presented in this paper in two li-
braries: Dunai 2, a core implementation of Monadic Stream Func-
tions, and Bear River 3, a Yampa replacement built on top of Dunai
by using the ideas described in Section 7. Bear River defines Signal
Functions parameterised over a monad, making this implementa-
tion more versatile than Yampa. In order to remain backwards com-
patible, we provide an FRP .Yampa module that reexports Bear-
River and declares SF a b = BearRiver .SF Identity a b.

We have tested our library by compiling and executing existing
games implemented in Yampa. We discuss two games: the com-
mercial game Magic Cookies! and the open-source Haskanoid.

Magic Cookies! [3] is an FRP board game in which the user
needs to turn off all the lights on a board, following a rule: touching
any position toggles surrounding positions in a cross-like shape.
The game uses SDL2 for multimedia, and is compiled via the
unofficial GHC Android backend. This game is available from the
official store, Google Play for Android.

Haskanoid [2] is a clone of the game Arkanoid written in
Haskell using Yampa, SDL multimedia, and supporting input de-
vices like Kinect and Wii remotes. This game implements a simple
collision system with convex shapes like rectangles and circles.

2 http://hackage.haskell.org/package/dunai
3 http://hackage.haskell.org/package/bearriver

Figure 3. Screenshot of Magic Cookies! running on Android,
compiled with BearRiver.

Figure 4. Screenshot of the open-source Yampa game Haskanoid.

Our Yampa replacement Bear River can execute both of these
programs in constant memory (Figure 5). In Haskanoid, memory
consumption decreases as the blocks are removed during gameplay.
Enabling compiler optimisations, Magic Cookies runs in 325KB of
constant memory with BearRiver, while with Yampa it consumes
300KB. Haskanoid consumes a maximum of 2.2MB of memory
with BearRiver, while with Yampa it requires approximately 2MB.

Figure 5. Heap profile of Magic Cookies! running with our library.



9. Related Work
Our abstraction is a generalisation of Yampa’s signal functions.
One central difference is that Yampa has a fixed, notionally contin-
uous time domain, with (broadly) all active signal functions sensing
the same time flow. This is implemented by passing the time delta
since the previous step to each signal function. In our framework,
we can do the same using the Reader monad, but the time domain
is no longer fixed, and it is easy to arrange for nested subsystems
with different time domains and other variations as needed. Our
proposal also eliminates some of the bottlenecks of Yampa thanks
to the flexibility offered by the monadic parametrisation.

We have tested several Yampa games with our library, through a
mediating layer as outlined above, including games like Haskanoid
[2] and the commercial game Magic Cookies! for Android [3].
Our tests show that our replacement library runs these games in
constant memory, consuming about ten per cent more memory than
Yampa. Yampa is optimised exploiting algebraic identities like the
arrow laws [12, 17], suggesting that we could deliver comparative
performance with similar optimisations.

Netwire, inspired by Yampa, is an FRP framework parametric
over the time domain and a monad, in which signals can be in-
hibited (producing no output) and with a switch that maintains the
global clock (unlike Yampa’s switch, which resets time). We can
implement equivalent behaviour using EitherT to inhibit signals,
and adding the total global time to the context in a ReaderT layer.

Causal Commutative Arrows (CCA) [16] defines an abstrac-
tion of causal stream transformer, isomorphic to MSF s over the
Identity monad. Programs written in terms of causal stream trans-
formers, or any CCA, can be optimised by orders of magnitude in
speed. MSFs are valid CCAs for commutative monads [6], making
it possible in principle to apply similar optimisations.

Multiple FRP libraries implement push or push/pull evaluation,
such as Elerea, Sodium and reactive banana, all structured in terms
of signals and/or event streams. These libraries are optimised to run
efficiently with minimal data propagation, often using weak refer-
ences and an IO monad behind the scenes. Additional measures
must be taken to guarantee referential transparency and efficient
garbage collection in the presence of non-commutative monads like
IO. These frameworks also include combinators to connect signals
or event streams to external sources and sinks. This is a pragmatic
choice, but the drawback is that the IO connection is not shown
explicitly in the type. We consider the manifest reflection of all ef-
fects in the types a strength of our framework. For example, for
pure MSFs (no general IO), we can perform reproducible tests and
obtain more guarantees than in IO-based FRP implementations by
connecting with automated testing tools like QuickCheck [7].

Monadic FRP [24] is, despite its name, most similar to Yampa’s
Tasks (which we can model using MSFs using EitherT trans-
former). Monadic FRP is not parametric over the monad, which
makes our framework more general in that respect.

UniTi [22] is a hybrid-system simulation framework with local
clocks in which signal functions can output debugging information.
Our work can accommodate local clocks using a reader monad, as
well as debugging facilities. Additionally, our framework enforces
causality and can enforce temporal consistency, whereas UniTi can
provide inconsistent results for past values of signals.

There are also stream-based programming libraries that share
notions with our framework. Iteratees [14] are stream transformers
parametrised over a monad and oriented towards memory-efficient
processing of data streams gathered from network and file sources.
The application domain is thus rather different from ours, and this
is reflected in an asynchronous API with a somewhat imperative
feel, centred around reading and writing individual stream ele-
ments. Pipes [4] describe interconnected data processors and their
coordination in an asynchronous setting. At a higher-level, pipes

are expressed in terms of constructs like Producer and Pipe , con-
ceptually similar to MSFs with an EitherT monad transformer.
Internally, pipes are based on a Proxy type which is parametrised
dually on the input and the output, making pipes bi-directional. Our
framework can be used to describe bi-directional connections with
an adapted reactimation function (Section 6).

Our approach can be used to implement discrete reactive pro-
gramming like Reactive Values [21]. Reactive Values minimises
forward propagation with push-based evaluation and change detec-
tion. This can be implemented in MSFs with an adapted push-based
reactimate function. Expressing Reactive Values in terms of MSFs
is also a way to define and study the semantics of the former.

Similarly, Wormholes [26] pairs whiteholes (monadic streams)
with blackholes (sinks) to represent external resources. Reads and
writes are sorted to guarantee referential transparency and commu-
tativity. This could be achieved with custom monads in our setting.
While they use a Monadic Stream Function representation to in-
troduce IO, their types carry resource information, imposing addi-
tional constraints that require a customized Arrow type-class.

Hughes uses the same representation as our MSFs in a circuit
simulator [13]. The approach is stream based, centred around data
processors that actively wait for input events. Hughes does not ex-
plore the use of different pure monads or how they impact modu-
larity. However, the work shows how to leverage active waits on the
monad, something which is also applicable in our setting.

Finally, a representation similar to our MSFs was mentioned
in [1], where the author briefly suggests using different monads to
achieve different effects. To the best of our knowledge, that blog
post did not spawn further work exploring such a possibility.

10. Conclusions and Future Work
We started this paper by observing how fractured the FRP land-
scape has become for a number of reasons, including domain-
specific aspects, the inflexibility of current FRP frameworks, and
different opinions on how to best structure FRP systems. Indeed, it
is not easy to pinpoint what FRP is. While diversity brings many
benefits, there are also significant costs in terms of duplication of
effort and end-user uncertainty about what specific FRP system or
approach to use, potentially hampering the use of FRP as such.

To address these concerns, this paper proposed to refactor FRP
into a minimal core, capturing what arguably is the essence of FRP,
but parametrised over a monad to make it open ended. Realisa-
tion of domain- and application specific features is then just a mat-
ter of picking an appropriate monad. We evaluated our approach
both from a practical and theoretical perspective. For the practi-
cal evaluation, we reimplemented an existing FRP system, Yampa,
using our minimal core, demonstrating good time and space perfor-
mance over a selection of medium-sized open-source and commer-
cial games, including Haskanoid and Magic Cookies!, on both stan-
dard mobile and desktop platforms. Additionally, we showed how a
range of other features from other systems and proposed extensions
from the FRP literature can be expressed. For the theoretical side,
we showed that our framework has an appropriate mathematical
structure, such as satisfying the expected laws, preserving commu-
tativity of the monad, and interoperating with monad morphisms.

So far, our implementation is unoptimised. We expect optimiza-
tion techniques like those used in Yampa [8, 18] to carry over,
bringing similar performance gains. We are further working on sup-
port for change propagation to avoid redundant computation when
signals are unchanging. We anticipate that this will result in perfor-
mance on par with push-based FRP implementations.

An advantage of making effects manifest, as when structur-
ing code using arrows or monads, is that it becomes easier to re-
execute code. This in turn enables sophisticated approaches to auto-
mated testing. At present, we are exploiting this to test commercial



Yampa games and debug traces gathered from users’ devices us-
ing QuickCheck [7] in combination with a DSL of temporal pred-
icates. We are planning to provide similar capabilities for MSFs.
Even when IO is needed, one can provide the needed IO capabilities
through a wrapper that is responsible for carrying out the necessary
logging and bookkeeping to also make such code re-executable.

Finally, we are currently exploring the addition of clock infor-
mation to MSFs to express the speed at which asynchronous MSFs
produce and consume data, and how to coordinate them precisely.

A. MSFs, Arrows and Arrow laws
The arrow laws and other properties hold for Monad Stream Func-
tions [6]. To prove them, we model Haskell types as complete par-
tial orders (CPOs), functions as continuous maps, and use fixpoint
induction [11]. Each fundamental category and arrow combinator
like id , ≫, arr and first is a fixpoint of a corresponding recursion
function. Below we include a shortened proof of one arrow law.

Definitions
For conciseness, we will leave out the value constructors, so the
type of MSF is simply MSF m a b = a → m (b,MSF m a b).

arr = fix arrRec
arrRec rec f a = return (f a, rec f )

(≫) = fix compRec
compRec rec f g a = do (b, f ′)← f a

(c, g ′)← g b
return (c, rec f ′ g ′)

Proof: arr (f ≫ g) ≡ arr f ≫ arr g

The application of fixpoint induction means that if P is a predicate
on values of some type a , and f : a → a , and P holds for ⊥, and
for every value x we can infer P x ⇒ P (f x ), then P holds for
fix f =def f (fix f ). We define the predicate P as:

P (x , y) =def ∀ f g . (x f ) ‘y‘ (x g) ≡ x (g ◦ f )

We proceed as follows:

P (⊥,⊥)
⇐⇒ { Definition of P }

∀ f g . (⊥ f ) ‘⊥‘ (⊥ g) ≡ ⊥ (g ◦ f )

⇐⇒ { Application to ⊥ }
⊥ ≡ ⊥

⇐⇒ true

P (arrRec x , compRec y)

⇐⇒ { Definition of P }
∀ f g . (arrRec x f ) ‘compRec y‘ (arrRec x g)

≡ arrRec x (g ◦ f )

⇐⇒ { Definition of compRec and arrRec and β-Reduction }
∀ f g . lhs ≡ λa → return ((g ◦ f ) a, x (g ◦ f )) where

lhs = λa → do
(b,msf1 ′)← return (f a, x f )
(c,msf2 ′)← return (g b, x g)
return (c,msf1 ′ ‘y‘ msf2 ′)

⇐⇒ { Monad laws, function composition }
∀ f g . λa → return (g (f a), x f ‘y‘ x g)

≡ λa → return (g (f a), x (g ◦ f ))
⇐ ∀ f g . x f ‘y‘ x g ≡ x (g ◦ f )
⇐⇒ P (x , y)
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