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ABSTARCT 

This paper presents a systematic study on turn-turn short circuit fault and ways to manage them to provide 

a basis for comparison of the various options available. The possible methods to reduce the likelihood of 

the winding SC fault and the fault mitigation techniques related to such faults are discussed. A Finite Element 

(FE) analysis of a surface-mount Permanent Magnet (PM) machine under application of different mitigation 

techniques during a turn-turn fault is presented. Both machine and drive structural adaptations for different 

fault mitigation techniques are addressed. Amongst the investigated fault mitigation techniques, the most 

promising solution is identified and validated experimentally. It is shown that the shorting terminal method 

adopting vertical winding arrangement is an effective method in terms of the implementation, reliability and 

weight.   

 

Key words — Inter-turn, short circuit, fault tolerance, fault mitigation, PM machine, safety, reliability.  

INTRODUCTION 

Permanent magnet (PM) machines are increasingly being used in safety critical systems such as fuel 

pumps, actuator, landing gear and starter generators in aerospace, and power steering, alternator and motor 

in automotive (Electric Vehicles) applications [1-4]. This is mainly due to their high power density and high 
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efficiency. The key issue of the PM machines is that the permanent magnet field cannot be de-excited in the 

event of a fault. It influences the overall drive system safety, reliability and availability [5]. The safety of the 

system can be ensured by adopting fail-safe arrangement [6, 7]. By decreasing the failure rate of the 

components, the reliability of the system can be improved. To achieve high availability it is desirable for a 

system to continue to operate during a fault condition, this can be done using the concept of Fault Tolerance 

(FT) within the system [8, 9]. Such concept includes fast and accurate fault detection and isolation, as well 

as efficient remedial control strategies, in order to cope with any fault associated to the machine. 

 

Electrical faults associated with the PM machines are winding Open Circuit (OC) faults and winding Short 

Circuit (SC) faults. Winding SC faults include turn to turn faults, phase to phase faults and phase to ground 

faults [10-14]. The likelihood of these faults’ occurring can be reduced and also the faults can be managed 

by employing fault tolerant design practices. However, a winding turn-turn SC fault remains problematic 

since the fault is located within a slot and cannot be isolated from adjacent turns [15-17].  If remedial action 

is not taken during a turn-turn SC fault, the resulting fault current is likely to become excessively high due 

to the low impedance of the winding. The condition of high current can lead to catastrophic damage or fire 

which cannot be tolerated in safety-critical system, for instance, an aircraft fuel pump [4].  

 

The main cause leading to a winding SC fault is deterioration of the insulation materials. In normal operation 

turns’ insulation experiences mechanical, electrical and thermal stresses [18]. These stresses can be 

amplified by the following:  

 voltage surges 

 voltage rise rate (dv/dt) due to pulse width modulated switching [19]  

 electrostatic partial discharge within the machine 

 insufficient cooling 

 poor maintenance 



The level of deterioration depends on the insulation thickness and the operating environment. So the varying 

operating environment and manufacturing tolerances have a major impact on the likelihood of fault 

occurrence.  

 
 
Insulation failure and thus, the SC fault can however be prevented by adopting better design, improved 

manufacturing processes, regular maintenance, adequate cooling, thicker insulation, operation under low 

temperature and lower switching frequencies. Although these prevention measures would be effective they 

also have disadvantages. Increased insulation thickness reduces the fill factor which results in increased 

winding losses. Operation at both DC and high frequencies introduces additional time harmonic losses. This 

inevitably results in further winding degradation. However, the insulation life can be extended further by 

condition monitoring of the insulation. This enables the machine to be controlled in accordance with 

operating conditions which decrease insulation degradation [20-22].  

 
There are several techniques which have been proposed in the literature for monitoring the influence of the 

partial discharge [20, 23, 24] and the voltage surges [25, 26] on the winding insulation. Recently in [22] an 

effective methodology that employs a conductive coating coaxially embedded in between two insulation 

layers, has been proposed to monitor the state of the winding insulation and detect the presence of an 

incipient failure and thus able to predict winding faults. Although monitoring insulation and performing safe 

operation can be a solution to winding failure, if failure does occur then the system should be able to cope 

with such an event.  

 
This paper presents a systematic study on the short circuit fault and ways to manage them to provide a 

basis for comparison of the various options available. The focus is given into the single turn-turn SC fault 

mitigation since this type of fault presents the worst case scenario as it leads to the highest short  circuit 

current [17]. Using Finite Element (FE), a comparative study is carried out on a 12 slot-14 pole surface 

mount PM machine. Different machine structural adaptations are employed to adopt the fault mitigation 

techniques. The validity of the fault mitigation technique and their key challenges are addressed. A special 

attention is given to clarify their advantages/ disadvantages and the design trade-offs involved. Amongst the 



investigated fault mitigation techniques, the most effective solution has been identified and validated through 

experiment.  

SC FAULT MITIGATION TECHNIQUES 

As previously explained operation of a PM machine during the SC fault is challenging task due to the PMs’ 

field. Different methods have been proposed to deal with this issue. The proposed methods can be 

categorized into following groups:  

1) phase/machine terminals shorting [27, 28] 

2) phase/machine terminal shorting whilst adopting vertical winding [17] 

3) phase current injection [29] 

4) mechanical shunts [30] 

5) electrical shunts [31] 

6) fuse wire/ switches technique [32] 

7) mechanical design [33-36] 

8) machine topologies [37-39] 

 

The machine terminal shorting method, and phase current injection method, can easily be adopted within 

the drive system. The terminal shorting technique allows the shorted winding to share the total Magneto 

Motive Force (MMF) and thus reduces the SC fault current. The terminal shorting adopting vertical winding 

method improves the FT inherently by eliminating the influence of the fault location on SC fault current. The 

current injection method uses the healthy windings to reduce the flux linking with the shorted turns. The 

shunt mechanism limits the SC fault current by diverting the PM flux via the shunt magnetic pathway. An 

electrical shunt requires additional field windings while a mechanical shunt is triggered by mechanical 

movement. In the fuse wire or switches technique, an open circuit is formed which allows the fault to self-

limit at the fusing current. 

Different mechanical designs which include adjustable magnetic sleeves [33], misalignment between the 

stator and the rotor [34], variable air-gaps [35] and magnetic fluid [36] have been proposed for field 

weakening operation in the PM machine, these methods can also be considered for mitigation of the SC 



fault current. However, application of the mechanical methods de-fluxes not only the faulty phase winding 

but also the adjacent phase windings. As a result the machine cannot provide the performance required by 

the system. In such case redundancy needs to be introduced within the system, this further increases the 

system weight and volume.  

 

Another methodology that could be considered for SC fault mitigation is a hybrid machine design which 

consists of both PMs and field windings. Those are memory motors [37], consequent pole PM machines 

[38] and doubly salient PM machines [39]. Although these machine topologies are possible solutions they 

have an inherently reduced efficiency and power density due to the additional losses caused by the field 

windings. In addition the design requires an additional space to accommodate the field winding. It would 

result in increased size and weight, thus reduced power density. So, the mechanical design and machine 

topologies proposed for field weakening are not considered as a turn-turn fault current limiting option. Herein 

methods that can easily be implemented within PM machines are considered. The following sub-sections 

will describe individually these SC fault current limiting methods in detail. 

COMPARATIVE STUDY ON SC FAULT MITIGATION TECHNIQUES 

This section presents a comparative study between five different fault mitigation techniques as discussed in 

the previous section. The study is carried out on a 6-phase, 12-slot/14-pole surface-mount PM machine (Fig. 

1) designed for application of rotorcraft actuation. The specifications of the considered machine are given in 

Table I. The machine has single layer concentrated winding arrangement which has one coil per phase and 

65 turns per coil. The initial machine is designed to have a high per unit inductance [17] and small mutual 

coupling between the phases. This facilitates the machine to limit the phase SC fault current to the rated 

phase current of the machine (10Apeak) avoiding interaction of adjacent phases. In addition the machine has 

been designed to handle the increased current loading during a fault and thus, continuous operation can be 

sustained.   

2D FE analysis was carried out under different fault conditions whilst employing different fault mitigation 

techniques. In the analysis the non-linearity of the silicon steel laminations is taken into account. 3D 

influences are however neglected based on the machine’s relatively long stack and the short end-windings.  



 

In order to effectively analyse turn-turn faults, an FE model that could specify the location of the fault 

geometrically and electrically is required. Such a model is build considering each individual turns’ 

geometrical location and electrical connection of the winding arrangement. The geometrical representation 

of the turns and their location in the machine are shown in Fig.1. Thus, different turn-turn fault can be 

modelled and analysed. Within this work key focus will be on analysing a single turn-turn fault close to the 

slot opening region as this is the worst case scenario for turn-turn faults [40]. For clarity, such a condition of 

a single turn-turn fault is referred to as a worst-case SC (WSC) fault throughout the paper. The WSC fault 

analysis for considered surface mounted PM machine under different mitigation methodologies are detailed 

below. 

 

 

Fig. 1.  Cross sectional view of 12 slot 14 pole studied PM machine 

 

TABLE I 

Specification of the six phase FT PM Machine 

Outer Diameter  100mm 

Axial length  100mm 

Split ratio  0.6 

Stator 

Shaft 

Rotor
Magnet

Conductor closer 

to outer statorConductor closer to 

inner stator/ slot 

opening



Rated Speed 2000 rpm 

Rated Output Power 2070 W 

Rated Current 7.07 A 

Back-emf 45.75 V 

Phase Resistance 0.22529 Ω 

Phase Inductance 0.0043 H 

A. Terminal Shorting  

This method has been proposed for PM machines in [27, 28] where, a separate H-bridge inverter for each 

phase was used to isolate the phase windings electrically and control them under SC fault. The respective 

faulty phase is short-circuited through the H-bridge converter switches (T1 and T3 are ON while T2 and T4 

are OFF) as shown in Fig.2. In order to avoid imbalance between the phases, this method has also been 

implemented for double star connected PM machines with two separate three-phase voltage source 

inverters [41]. When a fault occurs, a star connected phase will be short-circuited while the remaining star 

connected phases are used to provide the required performance. In fact under faulted operation the field 

produced by the PM is shared almost equally among the turns of the faulty winding, and thus the current will 

be limited. However, phase inductances should be designed sufficiently high to limit the SC current to a safe 

value [6].  

 
Fig. 2.   Illustration of terminal shorting control strategy when each phase is separately controlled through 

an H-bridge inverter 

If the adopted machine is designed to have a 1 per unit inductances [40], this implies that the SC current 

will be limited to the machines’ rated current value in case of a full phase short. For such a machine two 

single turn faults located at the extremes of the slot will be investigated.  One in the slot topmost position 
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(close to the core back) and one at the bottom of the slot(close to the slot opening) as shown in Fig. 1. The 

resulting fault currents in the shorted turn after shorting the machine terminals are shown in Fig. 3. 

 

As can be seen from the results, the fault current in the outer most turn is twice the rated current (10Apeak). 

As expected the inner most turn fault is the worst case scenario and the current induced in a turn is 

significantly (more than four times) higher than the rated phase current. This is mainly due to the slot leakage 

inductances associated to the faulty turn which changes with its location. As a result the SC current with 

respect to the fault location varies [17]. In order to overcome this higher magnitude of SC current, the PM 

machine must be designed with approximately four times higher inductances or able to withstand higher 

currents. In each case this would result in a poor machine weight and performance. If this method is opted 

for, one needs to carefully trade of the fault tolerant capability against machine weight and performance. 
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Fig. 3.   A single turn-turn SC fault current after the application of the shorting the terminal scheme 

 

B. Terminal shorting whilst adopting a vertical winding  

The terminal shorting method with a machine adopting vertical winding [17] was proposed for mitigating SC 

faults independent of their position within the slot. The considered vertical winding arrangement is shown in 

Fig. 4a. Different winding fault locations will be considered to illustrate the key features of this solution. The 



results obtained for three fault locations are shown in Fig. 4b. The locations 1, 2 and 3 indicate the fault at 

1st turn, 33rd turn and 65th turn respectively.     

 

 

(a) 

 

(b) 

Fig. 4. (a) Schematic of the vertical winding and illustration of winding’s fault location in the slot, and (b) a 

turn SC fault current for different fault location of vertical winding 

 

As can be seen in Fig. 4b, similar SC fault currents are obtained for each of the considered fault locations. 

The results show that the SC current in the shorted turn is limited to the rated value regardless of its position 

in the slot. It is worth mentioning here that the possible SC fault that can occur in vertical winding is a single 

turn fault. This is due to the physical arrangement of the concentric coil. In a real machine one would expect 
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a small reduction in the resulting SC current for the outer turns as their end winding (hence turn resistance) 

would increase accordingly. This winding structure has the main disadvantage of increased AC loses but on 

the positive side it also reduces the winding effective thermal resistance in the radial direction. Such a 

winding is thus more beneficial for low speed/ low frequency applications.  

 

C. Current Injection  

The current injection scheme is an alternative fault mitigation method proposed for an open slot, bar wound, 

large PM machine in [29]. The method relies on the principle of nullifying the flux associated with the faulty 

turn so as to suppress the SC current by forcing an adequate predetermined current wave shape in the 

remaining heathy turns. Here this technique is adopted for mitigation of the turn-turn SC fault when the 

machine adopts conventional round conductors such as that shown in fig.1. The current to be injected can 

be obtained from the differential equations (1) and (2). It is worth highlighting here that the mutual coupling 

between phases is assumed to be very small due to the coil arrangement and the machine geometry itself.  
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where, 

- e1:  electromotive force (emf) in the healthy (Nh) turns 

- e2:  emf in the shorted (Ns) turns 

- I1:   phase current  

- Is:   induced current in the shorted (Ns) turns  

- Lh:  self-inductances of healthy (Nh) turns 

- Ls:  self-inductances of shorted (Ns) turns 

- Lm: mutual inductance between Nh and Ns turns 

 



From (2), the optimal current to inject into the healthy winding in order to cancel the SC current (Is = 0) can 

be expressed by  
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where, Ψsc is the no-load flux linkage in the shorted turn. Using Fourier expansion of e2, (3) can be re-written 

as  
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            (4) 

The SC fault current can be therefore nullified by injecting the current estimated by (4). 

 

Fig. 5 shows the resulting current induced in a shorted turn (located at the bottom of the slot) after injection 

of the predetermined phase current for the machine considered. The obtained results clearly show that the 

WSC current can effectively be limited but not completely cancelled. This remaining current might be due to 

an inadequate no load e2 (t) used in (3) as this last is affected by the armature reaction field when the optimal 

current (4) is injected. A solution to overcome this problem consists to calculate the optimal current in an 

online recursive way by estimating Ψsc; this is clearly an inextricable task.  Also it is worth noting that injecting 

a current with inaccurate harmonic components or less precision in the desired current waveform would 

result in excessive current in the shorted turn. Superimposing the respective current harmonics with enough 

precision is the key challenge in this method.  



 

Fig. 5.   Resultant current in the outermost shorted turn after the application of the current injection  

 

D. Mechanical Shunt 

This method proposed in [30] is triggered by a spring loaded mechanism acting on the magnetic wedges to 

decouple the rotor flux from the windings via the slot wedges as shown in Fig. 6a. Under healthy operation 

the slot-opening region is open allowing magnetic coupling between the stator winding and the rotor 

magnetic flux. Under fault, the slot-opening is shorted via magnetic wedges. Hence, a large portion of the 

magnet flux is shorted through the magnetic wedges; consequently the coupling between the stator winding 

and the magnets flux is reduced significantly. In fact it is obvious that the wedge’s height (Hw as shown in 

Fig. 6a) has a significant influence on the magnitude of the SC current since the flux generated by the PM 

is shorted via the wedge. Thus, the wedge has to be designed with an adequate height to limit the SC current 

to a desired value. To investigate this influence, different heights of the mechanical shunt are considered 

under a turn-turn SC fault conditions. The obtained WSC current for different heights of the shunt is given 

in Fig. 6b. 

 

 

The results show that the mechanism effectively limits the WSC fault current; however, it requires the wedge 

to have an optimal height as expected. In the case considered here, the required optimal height is 1.9 mm 
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to maintain the WSC current to the rated phase current value. The key concern is reliability of the spring 

loaded mechanism which could jam or increase the risk of losing parts into the airgap. Apart from the 

reliability of the triggering mechanism, another disadvantage of this method is that it requires a significant 

slot opening height to restrict the WSC current. This consequently results in a reduced slot fill factor and 

thus increased copper loss.  

 

 

(a) 

 

(b) 

Fig. 6.   (a) Shunting the flux via slot opening - mechanical shunt structure and (b) worst-case SC current 

waveform under a turn-turn fault for different wedge heights 
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E. Electrical Shunt  

Similar to mechanical shunt, the electrical shunt method [42] is triggered by an auxiliary winding (called 

“control winding”) which is placed in the slot opening region. In normal operation, the control winding is 

energized and thus a coupling between the stator and the rotor is formed due to saturation of the wedges 

placed at the slot openings. Under faulty condition the supply is disconnected, consequently the flux 

produced by the magnet is shorted through the slot openings.  

 

Fig. 7a shows an arrangement of the electrical shunt adopted in the slot opening of the considered machine. 

The shunt has a number of turns wound around a magnetic core. Similarly to the mechanical shunt, the 

electrical shunt also requires an optimal height of the tooth-shoe to shunt the flux effectively. In this analysis, 

WSC current is investigated for different values of the tooth shoe height (ht) in addition to the initial tooth 

height (Ht). The obtained WSC current for different tooth-shoe heights is given in Fig. 7b.  

 

It is evident from the results that the design requires an additional shunt modification as its height significantly 

influences the magnitude of the WSC current. The main drawback of this method is that the shunt winding 

requires an additional space in the slot which reduces the effective fill factor. This must be considered at the 

design stage as additional copper loss will result due to the additional coils and due to the reduction of the 

available slot area for the main winding. 

 

 

(a) 

Phase winding

Shunt winding 

Ht

Actual stator

Modified tooth-
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(b) 

Fig. 7.  (a) Arrangement of electric shunt and tooth height in the region of slot opening and (b) magnitude 

of WSC current vs. tooth shoe height 

 

 

This method also reduces the generated torque during normal operation unless the slot opening regions are 

subjected to an MMF which drives the magnet flux through the main coils. To confirm the required level of 

MMF to achieve the required torque of the machine under consideration, FE simulations are carried out for 

different numbers of Ampere-turns. It is worth highlighting that although inserting a higher number of 

Ampere-turns (> 100 At) within the slot (compared to the initial slot which has 650 At) is not realistic, several 

unrealistic conditions in the simulation are also considered to predict the MMF requirement for the machine 

to develop the required torque. The torque obtained for different MMFs is presented in Fig. 8.  
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Fig. 8.   Torque vs. shunt winding MMF (At - Ampere turns) under normal operation 

 

From results, it can clearly be seen that the control winding would require a significantly high number of 

Ampere-Turns to produce the required torque. In addition to the extra copper losses generated by the control 

winding, torque reduction under normal operation is the main concern of this control methodology.   

 

COMPARATIVE SUMMARY OF THE DIFFERENT SC FAULT MITIGATION TECHNIQUES 

Table II compares the WSC current, active weight of the machine and generated losses for different fault 

mitigation methods. In the analysis the windings end effects and the requirement of additional cooling for 

the electrical shunt mechanism due to implementation of control windings are not considered; copper eddy 

current losses are however accounted for. The losses generated in the auxiliary winding of the electrical 

shunt are also taken into account where MMF of 100 At (N x I = 10 x 10) is used considering the availability 

of the space in the slot.   

 

 

 

 

 

Original machine



TABLE II 

Comparison between different fault mitigation methods  

Methods 

WSC 

current 

(A) 

Weight 

(kg) 

Winding losses 

at rated 

operation  

(W) 

Torque 

(Nm) 

Torque 

under fault 

(Nm) 

Terminals shorting with 

conventional winding 
52.65 4.06 58.61 9.98 8.14 

Terminal shorting with 

vertical conductor winding 
12.37 4.06 72.09 9.98 8.25 

Current injection 8.12 4.06 60.29 9.98 8.42 

Electrical shunt 10 4.92 104.75 7.35 6.73 

Mechanical shunt 10 4.87 69.50 9.98 8.34 

 

 

As previously discussed, the vertical winding generates slightly higher losses than the conventional type of 

winding; but it has a better WSC limiting capability. The current injection method has a the best WSC limiting 

capability without affecting performance; however as mentioned earlier implementation of this method is not 

simple and the resulting WSC current will still be critical unless the injected current magnitude and its phases 

are precise. Despite being less reliable and heavier, the shunting methods lead to a better WSC current 

limiting capability than the first two control methods. It allows shunting completely the PMs’ flux while 

adopting the required shunt height. However torque reduction and additional winding losses are inevitable 

in the electrical shunt mechanism whilst a mechanically actuated shunt requires a reliable triggering 

mechanism in the event of fault. Hence, considering all these facts amongst the investigated fault mitigation 

topologies it can be concluded that the vertical winding is the preferred method as it is easy to implement, 

is more reliable and  does not incur additional weight. In the next section details of the effectiveness of the 

vertical winding method via an experiment will be presented.  

 



AN EFFECTIVE SC FAULT MITIGATION TECHNIQUE EXPERIMENTATION 

To validate the concept of the vertical winding, a 12-pole/ 18-slot PM machine is wound with vertical 

conductor. In addition a similar prototype with conventional round conductor is used for comparison. The 

experimental prototypes are shown in Fig. 9a,b and associated FE flux density plots are presented in 

Fig.9c,d respectively. The machines’ specifications are detailed in Table III. 

      

(a)                         (b) 

    

(c)                         (d) 

Fig. 9.  (a) Conventional round conductor wound and (b) vertical conductor wound FT-PM machine, and 

associated FE flux density plot of (c) conventional round conductor wound machine and (d) vertical 

conductor wound machine under a healthy operation 



TABLE III 

Specification of the 18-slot 12-pole PMSM  

Number of phase (m) 3 

Number of slot (S) 18 

Number of pole (p) 12 

Number of turns per coil (NC) 40 

Rated current (rms) 7.77 A 

Rated speed (ω) 2000 rpm 

Rated torque 6 Nm 

Output Power 1.25 kW 

 

It is worth highlighting that both machines have similar DC resistance and number of turns and thus, same 

copper fill factor (of Kf = 0.52) is kept in both cases. However, if the slot is completely filled, the fill factor of 

the vertical conductor wound machine is expected to be less than the conventional round conductor wound 

machine. This is due to shape of the vertical conductor which does not facilitate the winding to be placed at 

trapezoidal slot edges as shown in Fig.9d. But, still higher fill factor can be achieved using the vertical 

conductor due to the placement and its compactness.  Also the fill factor can be further improved if parallel 

slot is adopted. This allows the machine to be loaded slightly higher. On the contrary an additional weight 

will be added to the machine. These trade-offs should be considered at the design stage; however this is 

not the scope of this paper and therefore not considered in detail.    

 

To validate the fault limiting capability of the winding, the fault location and the mechanism which enables 

to create the fault are necessary. Thus, in both winding cases the windings are accurately positioned in the 

slot and the short circuits are introduced via external leads connected to the end windings. Several fault 

locations are considered. The fault current is measured under application of shorting terminal method and 

compared with calculated results under same condition. The obtained results for worst-case inter-turn SC 

fault are presented in Fig. 10. 
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(b) 

Fig. 10.   Worst-case inter-turn SC current (a) round conductor winding (b) vertical conductor winding under 

application of shorting the terminal approach at rated operation 

 

The results clearly show that the magnitude of the induced WSC current in the round conductor is almost 

twice that of the vertical winding. This confirms the fault limiting capability of the adopted vertical winding 

within the shorting terminal method.  

 

 



TABLE IV 

Comparison between the experimented machines at nominal speed and torque 

 
Conventional round conductor 

wound machine 

Vertical conductor wound 

machine 

Phase resistance (Rp) 149.56 mΩ 152.47 mΩ 

Phase inductance (Lp) 2.077 mH 2.12 mH 

Back-EMF at rated speed (rms)   47.09 V 47.14 V 

Winding losses at rated operation 33.01 W (1.22 times DC losses) 38.86 W (1.41 times DC losses) 

Efficiency at rated operation 93.4 % 92.7 % 

 

From Table IV, it can be seen that there is a slight difference in both the resistance and the inductances of 

the vertical conductor wound machine with respect to conventional round conductor wound machine. This 

is mainly due to the end-winding’s length of vertical conductor which increases with increasing number of 

turns as they are wound top of each other. Also from the Table IV, it can be seen that at the rated operation 

the vertical winding’s losses are around 1.4 times higher than the DC static losses and these losses around 

20% higher than conventional round conductor wound machines. As result the efficiency of the vertical 

conductor wound machine decreases by 0.7%. However, the vertical conductor wound machine does not 

require any design alterations to limit the WSC to a safe level and it is worth mentioning again that it has a 

better winding radial effective conductivity when compared to the conventional winding. Thus, considering 

both performance and FT the vertical winding is a better solution for fault tolerant application due to its 

inherent fault current limiting capability.  

 

CONCLUSIONS 

In this paper, possible fault mitigation techniques available for the turn-turn SC fault have been investigated. 

Amongst available options five effective methods have been adopted for a comparative study. From the 

analysis, it can be concluded that: 



1. the terminal shorting method and the current injection scheme are easy to implement within the drive 

system without additional hardware. However the terminal shorting method requires the vertical 

winding structure in order to limit the WSC current regardless of the position in the slot of the shorted 

turn(s). Although the current injection scheme would be effective, accurate prediction of the required 

current under online operation would be challenging and a single error will put the system at risk.  

2. though the mechanical shunt is effective, the additional systems in the mechanism to open and close 

the wedges increase the system’s weight. Also it reduces the system reliability due to the mechanism 

which requires a longer triggering time or could jam.  

3. the electrical shunt is a better mitigation technique; however it requires an additional system for 

control winding and reduces the performance significantly at normal operation.  

Considering all these facts, amongst the investigated fault mitigation topologies it is noticeable that terminal 

shorting with the vertical winding is the most effective method as it is easy to implement, more reliable and 

doesn’t engender additional weight. This has been confirmed via both FE analysis and experimental results. 

It is also shown that vertical winding has higher eddy current losses than conventional winding especially at 

high operating frequencies. To achieve the required fault tolerance a slight reduction in the machine 

efficiency has to be conceded.   
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