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Abstract The corpus luteum (CL) is an ovarian tissue that grows in the
wound space created by follicular rupture. It produces the progesterone needed
in the uterus to maintain pregnancy. Rapid growth of the CL and progesterone
transport to the uterus require angiogenesis, the creation of new blood vessels
from pre-existing ones, a process which is regulated by proteins that include
fibroblast growth factor 2 (FGF2).

In this paper we develop a system of time-dependent ordinary differential
equations to model CL growth. The dependent variables represent FGF2, en-
dothelial cells (ECs), luteal cells, and stromal cells (like pericytes), by assuming
that the CL volume is a continuum of the three cell types. We assume that if
the CL volume exceeds that of the ovulated follicle, then growth is inhibited.
This threshold volume partitions the system dynamics into two regimes, so
that the model may be classified as a Filippov (piecewise smooth) system.

We show that normal CL growth requires an appropriate balance between
the growth rates of luteal and stromal cells. We investigate how angiogenesis
influences CL growth by considering how the system dynamics depend on the
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dimensionless EC proliferation rate, ρ5. We find that weak (low ρ5) or strong
(high ρ5) angiogenesis leads to ‘pathological’ CL growth, since the loss of CL
constituents compromises progesterone production or delivery. However, for
intermediate values of ρ5, normal CL growth is predicted. The implications
of these results for cow fertility are also discussed. For example, inadequate
angiogenesis has been linked to infertility in dairy cows.

Keywords corpus luteum � angiogenesis � piecewise smooth systems � sliding
bifurcations

1 Introduction

The corpus luteum (CL) is the tissue which develops from an ovarian folli-
cle during the luteal phase of the oestrous or menstrual cycle (Fig 1(a)). It
emerges from granulosa and theca cells which, after ovulation, differentiate
into large and small steroidogenic luteal cells (LCs), respectively, via a process
known as luteinisation which involves the transition of a pre-ovulated follicle
into a highly vascular CL (Fig 1(b)). Following ovulation, the basement mem-
brane that separates the granulosa and theca cells is broken down by matrix
metalloproteinases and plasminogen activators. This enables endothelial cells
(ECs) and pericytes (PCs) (located in the theca region before ovulation) to
migrate into and vascularise the luteinising granulosa cells (Robinson et al.,
2009).
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Fig. 1 (a) Schematic diagram showing how the corpus luteum (CL) forms after ovulation
in the ovary. At the end of the follicular phase of the menstrual cycle, the mature follicle
ruptures (ovulation), the egg cell (oocyte) is released and the ruptured follicle undergoes a
transformation into the CL. Key: follicular phase (1-3); ovulation (4); luteal phase (5-7);
oestrous or menstrual cycle (1-7). (b) Schematic diagram showing the evolution of the CL
(cross-section) structure after ovulation. Key: small luteal cells (SLCs); large luteal cells
(LLCs); basement membrane (BM).
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It is now well established that angiogenesis plays a key role in the growth
and function of the CL (Reynolds and Redmer, 1996, 1999). Angiogenesis is
the process by which new blood vessels develop from an existing vasculature
(via the sprouting, proliferation and fusion of ECs). It occurs, in a controlled
manner, during tissue repair, wound healing, placental development, and CL
growth (Reynolds and Redmer, 1996). By contrast, uncontrolled angiogenesis
underpins a variety of pathological conditions, such as diabetic retinopathy,
arthritis, chronic inflammation and solid tumour growth.

The extensive vascularisation of the CL enables it to receive one of the
highest blood flows per unit tissue mass and to supply the nutrients needed
for its high metabolic rate (Reynolds and Redmer, 1996; Fraser and Lunn,
2001). The capillary network of the mature CL is so dense that most LCs
are adjacent to one or more capillaries. This is perhaps not surprising, since
in several mammals most (up to 85%) of the cells that proliferate during CL
growth are ECs (Reynolds and Redmer, 1998). This enables the CL to grow
at a rate (0.5 g to ¡5 g in 5 days (Robinson et al., 2007)) that is surpassed
only by the fastest growing tumours. Such dramatic growth is essential for
the CL to produce sufficient progesterone to support the developing embryo
(Robinson et al., 2008).

The CL (mainly LCs (Juengel and Niswender, 1999)) secretes progesterone
which regulates the length of the oestrous and menstrual cycles and is essential
for maintenance of pregnancy. Inadequate progesterone is a major cause of
early embryonic mortality (Juengel and Niswender, 1999). Therefore, impaired
angiogenesis in the CL could cause poor embryonic development and infertility.

Angiogenesis in the CL is controlled by a plethora of angiogenic factors,
including vascular endothelial growth factor (VEGF), fibroblast growth fac-
tor 2 (FGF2) and the platelet-derived growth factor (PDGF) family. These
factors are thought to have complementary rather than redundant actions in
luteal angiogenesis: the absence of any one signal is sufficient to cause marked
alterations in endothelial network formation (Robinson et al., 2009). These
studies clearly demonstrate that luteal endothelial cells are more sensitive to
FGF2 inhibition than any other growth factor. Furthermore, there are dy-
namic changes in FGF2 concentration during the follicle-luteal transition (the
point before and after ovulation) in the cow (see Fig 2(a)), while VEGFA con-
centrations remain constant (Robinson et al., 2009). Hence we focus on the
role played by FGF2.

Even though the mechanisms responsible for the development, maintenance
and regression of the CL have been extensively studied (for review, see (Hunter,
2003)), no mathematical models of this process have yet been developed. In
the remainder of this section, we present data taken from (Robinson et al.,
2007; Mann, 2009) to motivate the model that we develop.

Fig 2(a) shows how the FGF2 concentration in the CL changes in the 12
days that follow oestrous. The surge in FGF2 that occurs during ovulation
(days 1-2) (Robinson et al., 2007) is followed by a rapid decrease until FGF2
levels settle to a steady value. The rapid change in FGF2 levels during the
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two days that proceed ovulation coincides with the initiation of angiogenesis
in the early CL.

Fig 2(b) shows how the CL increases rapidly in size during the early and
mid-luteal stages of the oestrous cycle (Mann, 2009). Fig 2(c)-(d) indicate
how endothelial and pericyte numbers, respectively, in the CL change over
time (Laird, 2010).

Fig. 2 Data on CL development following ovulation: (a) luteal FGF2 concentrations (Robin-
son et al., 2007), (b) CL size (diameter) (Mann, 2009), (c) total luteal endothelial cell area
(Laird, 2010), and (d) total pericyte cell area during CL development (days 1 (ovulation) to
12 (mature CL)) (Laird, 2010). The data are mean + S.E.M.; significant differences between
groups are indicated with a b c; P 0.05. The Von Willebrand Factor (VWF) and Smooth
Muscle Actin (SMA) are endothelial and pericyte markers, respectively.

The main objective of this study is to develop a model that qualitatively
reproduces existing experimental data on CL growth and development (Fig 2).
This can then be used to explore the dependence of physiological and patho-
logical behaviours on parameter values. This, in turn, will enable us to predict
the potential effects of manipulating endothelial cells (angiogenesis) on the
development of the CL, a crucial process in the establishment of pregnancy
and fertility in dairy cows.
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The remainder of the paper is organised as follows. We present the math-
ematical model in section 2, and in section 3 we identify regions of parameter
space in which physically realistic steady states exist. We devote section 4 to
describing how the evolution of the CL is affected by angiogenesis. The paper
concludes in section 5 with a summary of our results and suggestions for future
research directions.

2 Model overview

2.1 The mathematical model

In this section, we develop an ordinary differential equation (ODE) model for
the time evolution of the CL in which the dependent variables represent the
volumes of ECs, LCs, and all other, stromal cells (such as PCs). We denote
by F ptq the concentration of the growth factor, FGF2, and the volumes of the
ECs, LCs and stromal cells by Eptq, Lptq and Rptq, respectively. We postulate
that CL growth is due to cell division of ECs and stromal cells, and volumetric
growth of LCs, and is regulated by the FGF2 contribution as explained below.

2.1.1 Growth factor FGF2, F(t)

Following (Robinson et al., 2007), we assume that ECs produce FGF2 at a con-
stant rate, a1, and LCs produce it at a rate which peaks during the two days
that follow ovulation (see Fig 3). Following the disassembly of the theca vas-
culature after ovulation, extensive proliferation and migration of ECs helps to
re-establish connections with other endothelial and luteal cells. This coincides

FG
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Fig. 3 Schematic illustration of FGF2 production during CL development. ECs produce
FGF2 at constant rate (dotted line) throughout CL development, whereas LCs produce
FGF2 for shorter time period (approximately 2 days) but at greater rate (�4 fold larger)
(Schams et al., 2006; Robinson et al., 2007).
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with a decrease in FGF2 concentration and the formation of new capillary
beds (Robinson et al., 2009). Therefore, we hypothesize that when ECs attach
to LCs, the rate of FGF2 production (by LCs) decreases. More specifically, we
assume that the rate at which individual LCs produce FGF2 is a decreasing
function of E{L:

�
rate at which individual
LCs produce FGF2



�

a2

REL �
E
L

, (1)

where the dimensionless parameter REL is the value of E{L at which FGF2
production (by LCs) is half-maximal. Combining the above processes (and
noting that the net rate of FGF2 production by LCs is a2L{pREL�E{Lq), we
conclude that the evolution of FGF2 is given by:

dF

dt
� a1E �

a2L
2

RELL� E
� dFF, (2)

where a1, a2, REL and dF are positive constants, with dF being the decay rate
of FGF2.

The equations that describe the dynamics of the three cell types are of the
following general form:

d

dt

�
� total volume

of cells
of type C

�
�

�
���
rate of volume
increase due to
cell swelling or
proliferation

�
���

�
���
rate of volume
loss due to
competition
for space

�
��. (3)

where C � E,L,R. We postulate that the CL is contained within an elastic
membrane (Hunter, 2003). The ECs and stromal cells proliferate and increase
in number, whereas LCs increase in volume, until eventually the CL volume
(V � E � L � R) occupies the cavity (V ) left by the mature ovarian follicle
after its rupture during ovulation. The surrounding membrane then becomes
taut and exerts a restraining force on the cells which, if sufficiently large, leads
to competition for space. We assume that this is the dominant mechanism for
volume loss within the CL so that for each cell type the rate of cell death can
be written as: �

� rate of
volume loss

of C

�
� kCV HpV � V q, (4)

where the parameter k indicates how sensitive the cells’ death rate is to com-
petition for space. Implicit in equation (4) is the assumption that all cells are
equally sensitive to competition for space. H is the Heaviside step function
(Hpxq � 1 if x ¡ 0, and Hpxq � 0 otherwise).
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2.1.2 Endothelial cells, E(t)

ECs react to free chemokines (e.g. FGF2). However, it is the presence of acti-
vated receptors on the cell surface that elicits a response from ECs. Responses
such as proliferation result from the integration of the total number of acti-
vated receptors on their surfaces (Rieck et al., 1995; Laird et al., 2013). We
assume that the number of FGF2 receptors on the endothelial cell membrane
is finite and that they can be saturated. Accordingly, the EC proliferation rate
is taken to be an increasing, saturating function of FGF2 and equations (3)
and (4) give

dE

dt
� kE

F

Fh � F
E � kEV HpV � V q, (5)

where the positive parameter kE represents the maximal rate of EC prolifer-
ation, and Fh is the FGF2 concentration at which EC proliferation is half-
maximal.

2.1.3 Luteal cells, L(t)

We account for the dependence of LC swelling on nutrient levels (Reynolds
and Redmer, 1999) by assuming that the LC swelling rate is an increasing,
saturating function of E:

dL

dt
� kL

E

Eh1
� E

L� kLV HpV � V q. (6)

In equation (6) the positive parameter kL is the maximal swelling rate of the
LCs, and Eh1 is the volume of ECs at which the swelling rate is half-maximal.

2.1.4 Stromal cells, R(t)

We assume that the evolution of all stromal cells is similar to that of the ECs
and the LCs, with

dR

dt
� kR

E

Eh2
� E

R� kRV HpV � V q. (7)

In equation (7) the parameter kR represents the maximal proliferation rate of
the stromal cells, and Eh2 is the volume of ECs at which proliferation of the
stromal cells is half-maximal.

In summary, our model consists of four ODEs (2),(5)-(7), which describe
how the concentration of FGF2 and the volumes of endothelial, luteal and
stromal cells change over time.
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2.2 Parameter values

A list of the model parameters and their units are given in Table 1, and their
values are estimated in Appendix A. The growth factor is measured in units
ng{cm3, the volumes of the different cell types in cm3, and the time in days
(d).

Before continuing with our investigation of equations (2),(5)-(7), it is ap-
propriate to nondimensionalise and, in so doing, to reduce the number of
system parameters.

Table 1 Dimensional parameter values used in equations (2),(5)-(7).

Parameter Value Unit Reference

a1 136 ng.pcm3q�2.d�1 estimated
a2 5.1 ng.pcm3q�2.d�1 estimated
k 0.12 pcm3q�1.d�1 estimated
dF 3 d�1 (Beenken and Mohammadi, 2009)
kE 1 d�1 (Lincoln et al., 1982)
kL 1 d�1 (Lincoln et al., 1982)
kR 1 d�1 (Lincoln et al., 1982)
Fh 50 ng.pcm3q�1 estimated
Eh1

1.1 cm3 estimated
Eh2 1.1 cm3 estimated
V 8.2 cm3 estimated
REL 0.2 - estimated

2.3 Nondimensional model

We nondimensionalise equations (2),(5)-(7) by choosing F ptq=FhF̂ pt̂q,

Eptq=V Êpt̂q, Lptq=V L̂pt̂q, Rptq=V R̂pt̂q and t= t̂
kV

, where, F̂ , Ê, L̂, R̂ are the

dimensionless dependent variables and t̂ is the dimensionless time. By substi-
tuting for F , E, L, R and t, in (2),(5)-(7) we obtain the following dimensionless
equations (hats have been dropped for notational convenience):

dF

dt
� ρ1E � ρ2

L2

ρ3L� E
� ρ4F, (8)

dE

dt
� ρ5

F

1 � F
E � EVHpV � 1q, (9)

dL

dt
� ρ6

E

ρ7 � E
L� LV HpV � 1q, (10)

dR

dt
� ρ8

E

ρ9 � E
R�RVHpV � 1q, (11)
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where V � E � L�R, and the dimensionless parameters are given by:

ρ1 �
a1
kFh

, ρ2 �
a2

kFhV
, ρ3 � REL, ρ4 �

dF
kV
, ρ5 �

kE
kV
,

ρ6 �
kL
kV
, ρ7 �

Eh1
V
, ρ8 �

kR
kV
, and ρ9 �

Eh2
V
.

(12)

The dimensionless parameter values used to generate the numerical simula-
tions in section 2.5 were estimated by using equation (12) and the dimensional
values stated in Table 1:

ρ1 � 23, ρ2 � 0.1, ρ3 � 0.19, ρ4 � 3, ρ5 � 1,
ρ6 � 1, ρ7 � 0.13, ρ8 � 1, ρ9 � 0.13.

(13)

2.4 Initial conditions

In the mid-cycle bovine CL, small and large steroidogenic (luteal) cells con-
stitute approximately 68% of the CL volume, the ECs approximately 13%,
and therefore, the other cell types account for the remaining 19% of the total
volume (Wiltbank, 1994). In vivo, it can be difficult accurately to define the
boundary of the CL immediately post ovulation as the CL can have a simi-
lar ultrasonographic appearance to the rest of the ovarian stroma. However,
within 24 hrs the boundaries of the CL can be accurately determined and
based on this we have estimated the diameter of the CL to be 8 mm on day
1, resulting in V pt � 1q � 4

3πR
3 � 0.27 cm3. We close equations (8)-(11) by

imposing the following initial conditions:

F p0q � 4.0, Ep0q � 0.04, Lp0q � 0.18, Rp0q � 0.05, (14)

with F p0q estimated from Fig 2(a) and the value of Fh (as stated in Table 1)
since F ptq=FhF̂ pt̂q.

2.5 Typical numerical results

The Heaviside step function that appears in equations (9)-(11) introduces a
discontinuity into the right-hand sides of equations (9)-(11) at V � 1 (the ‘dis-
continuity boundary’ (Bernardo et al., 2008)), making the system piecewise-
smooth (PWS) (Bernardo et al., 2008; Filippov, 1982). We solve the system
using Piiroinen’s method (Piiroinen and Kuznetsov, 2008), which applies in-
stantaneous resets at the discontinuity (events), by accurately locating the
times at which V � 1.

In Fig 4 we plot the evolution of F,E,L,R and V for a typical simulation.
These results are in good qualitative agreement with the in vivo data presented
in Fig 2. Regarding the FGF2 profile, it should be noted that although the
data (Fig 2) display only a decrease of FGF2, in the simulation (Fig 4(a)) there
is a strong decrease of its level, which reaches a minimum, then increases and
reaches a plateau. This is of course not an exact representation of the reality,
however, from a biological point of view, the important observation is the



10 Sotiris A. Prokopiou1,2 et al.

transient, greatly (�4 fold) increased levels of FGF2 at ovulation (t � 0)
followed by a decrease which then plateau is reached afterwards.

The loss terms in equations (9)-(11) switch on at time t�, when V increases
above the threshold V � 1. In biological terms, t� delineates the shift from
the early-mid to the mid-late luteal (vascularised) stage. For t   t� and V   1
the cells do not experience any growth constraints (Fig 4(b)). In contrast, for
t ¡ t� total CL volume remains fixed (V � 1), but relative constituents of
difference cell types change (Fig 4(b)).

Fig. 4 Profiles of (a) the FGF2 concentration, F ptq, and (b) the CL volume, V ptq � Eptq�
Lptq�Rptq. The numerical results were obtained by solving the dimensionless model defined
by equations (8)-(11) and subject to the initial conditions (14). The parameter values are
specified in equation (13). Note that t � t� is the first time point where V � 1, which implies
the activation of the volume loss terms for each cell type (E,L,R) in equations (9)-(11).

2.6 A simplified model

Equations (8)-(11) define a fourth-order system of ODEs, whose trajectories
are difficult to visualise in phase space. Before analysing the full model, we
consider the simpler case for which L � R � 0, and V � E so that equations
(8)-(11) reduce, at leading order, to the following pair of ODEs:

FGF2 : dF
dt � ρ1E � ρ4F,

CL volume : dE
dt � ρ5

F
1�F E � E2HpE � 1q.

,/.
/- (15)

The behaviour of equations (15) depends on whether E   1 or E ¡ 1, the two
types of behaviour being separated by the boundary E � 1. Analysis of this
simplified model guides our subsequent study of the full model.
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2.6.1 Phase plane analysis and steady states

Insight into the dynamics of this model can be obtained by identifying its
nullclines. Fig 5 shows that the nullcline dF

dt � 0 is a line N1 on which E � ρ4
ρ1
F .

The nullclines on which dE
dt � 0 include the curve N2 on which E � ρ5

F
1�F

(when E ¡ 1), together with the coordinate axes F � 0 and E � 0 (when
E   1). Fig 5 shows how the system dynamics change as ρ5 (the maximum
EC proliferation rate) varies.

Interestingly, in Fig 5(a) the discontinuity boundary E � 1 is shown to
be attractive from both sides (E   1 or E ¡ 1) regardless of the value of
F , while in Figs 5(b)-(c) this occurs only for F   F2 � 1

ρ5�1 (where F2 is
the value of FGF2 at the intersection of nullcline N2 with the discontinuity
boundary). That is, the trajectories evolve onto E � 1, a behaviour called
sliding (Bernardo et al., 2008) which is defined in section 2.7.

Equations (15) admit two steady states (where dE
dt � dF

dt � 0): we denote
by B0 the trivial solution pF,Eq � p0, 0q and by B1 the nontrivial solution
pF,Eq � pΓ, ρ4ρ1Γ q, where Γ � ρ1ρ5

ρ4
� 1. The steady state B1 exists where

E ¡ 1 or, equivalently,

ρ5 ¡ ρ�5 :�
ρ4
ρ1

� 1. (16)

Figs 5(a)-(b) show that when ρ5   ρ�5 sliding states are attracted towards a
point B1s at which pF,Eq � pρ1ρ4 , 1q, and the competing flows from E ¡ 1 and

E   1 are equal and opposite. This point is called a ‘pseudo steady state’ (or
pseudo-equilibrium (Bernardo et al., 2008)). As ρ5 increases through ρ5 � ρ�5 ,
the steady B1s approaches the point where N1 crosses E � 1 at p 1

ρ5�1 , 1q, then
B1s vanishes, and B1 appears at the same point and detaches from E � 1 into
the region E ¡ 1 (Fig 5(c)). This is an example of a boundary equilibrium
bifurcation (see below and (Colombo, 2009; Bernardo et al., 2008)).

(a) ρ5 ! ρ�5 � 1� ρ4
ρ1

(b) ρ5   ρ�5 (c) ρ5 ¡ ρ�5

Fig. 5 Phase plane diagrams for equations (15) showing how the system dynamics change
as ρ5 varies. Sliding occurs along the discontinuity boundary E � 1 towards the pseudo-
steady state, B1s. Key: N1 and N2 are nullclines on which E � ρ4

ρ1
F and E � ρ5

F
1�F

,

respectively. The points F1 � ρ1
ρ4

and F2 � 1
ρ5�1

lie at the intersections of N1 and N2 and

the discontinuity boundary, E � 1. Note that B1 does not exist for ρ5   ρ�5 , and N2 exists
for E ¡ 1.



12 Sotiris A. Prokopiou1,2 et al.

2.6.2 Conclusions from the simplified model

When ρ5 ¡ ρ�5 equations (15) evolve to a steady state B1 for which E ¡ 1
(Fig 5(c)), while for ρ5   ρ�5 the system evolves to a ‘pseudo steady state’ B1s

that lies on the discontinuity boundary E � 1 (Figs 5(a)-(b)).
Physically speaking, high ρ5 (high EC proliferation) implies a large CL,

bigger than the wound space formed after ovulation. Smaller EC proliferation
implies a minimum size of the CL (V � 1). Similar behaviour is expected in
the full model, the main difference being that the composition of the CL must
also be determined. In the next paragraph we return to the full model and in
section 3 we identify its steady state solutions.

2.7 The full model as a Filippov system

We now express equations (8)-(11) in the form that is typically used for
piecewise-smooth (or Filippov (Filippov, 1982)) systems, namely

dx

dt
�

"
f�pxq , Θpxq ¡ 0,

f�pxq , Θpxq   0,
(17)

by setting x � pF,E,L,Rq P R4 and defining

f� :� f� � pE � L�Rq

�
���

0
E
L
R

�
��, (18)

and

f� :�

�
����������

ρ1E � ρ2
L2

ρ3L�E
� ρ4F

ρ5
F

1�F E

ρ6
E

ρ7�E
L

ρ8
E

ρ9�E
R

�
���������
. (19)

The region of state space, D � R4, in which equations (17)-(19) govern the
system dynamics, can be partitioned into two subregions, G� and G� (see
Fig 6), where

G� � tx P R4, Θpxq ¡ 0u and G� � tx P R4, Θpxq   0u, (20)

and Θpxq � E � L�R� 1 � V � 1. The discontinuity boundary is a smooth
hypersurface, Σ, given by:

Σ � tx P R4, Θpxq � 0u. (21)



A model of the bovine corpus luteum 13

Σ separates trajectories on which CL growth is constrained (G�) from regions
in which the CL grows without restriction (G�). Thus the model is a nonlinear
system with an ‘on-off’ feedback controller (the ‘on-off’ feedback being due to
the Heaviside step function) specified by the CL volume, V .

Let the subscript x denote differentiation with respect to x � pF,E,L,R),
so that Θxpxq � p0, 1, 1, 1q is the normal vector to Σ, and let x., .y denote the
scalar product. Then consider the quantity

xΘxpxq, f
�pxqy � EΩ, (22)

where

Ω :�
ρ5F

1 � F
�

ρ6L

ρ7 � E
�

ρ8R

ρ9 � E
. (23)

The scalar product is strictly non-negative since F,E,L,R are positive or zero
(to be biologically realistic) and ρi ¡ 0 for all i. This means that f� always
points towards Θ � 0, so the discontinuity boundary V � 1 is attractive with
respect to G� (‘attractive from below’, as was the case for the 2D model in
section 2.6).

Depending on whether f� points towards or away from the discontinuity
boundary, two kinds of motion are now possible when Θ � 0. These are known
as crossing and sliding, and occur when the quantity

xΘxpxq, f
�pxqy � EΩ � 1 (24)

is positive and negative respectively. If xΘxpxq, f
�pxqy ¡ 0, then the vector

field f� points away from Σ, implying that trajectories evolve from G� to

G� by crossing Σ. Otherwise, f� points towards Σ, so that the discontinuity
boundary attracts trajectories from both G� and G�, and solutions must slide
along Σ. When sliding occurs, the CL volume remains fixed at the threshold
value, V � 1. We denote the sliding region by Σ̂ (see Fig 6), where

Σ̂ �
!
x P Σ, 0 ¤ EΩ ¤ 1

)
. (25)

Its boundaries are given by

BΣ� :�
!
x P Σ : EΩ � 1

)
and BΣ� :�

!
x P Σ : EΩ � 0

)
. (26)

On these surfaces the flow is tangent to the discontinuity boundary: at BΣ� the
condition EΩ � 1 means f�pxq is tangent to Σ, while at BΣ� the condition

EΩ � 0 means f�pxq is tangent to Σ.
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G+ 

G- 

Σ Σ 

Fig. 6 The phase space topology of a Filippov system with discontinuous vector fields. The
discontinuity boundary, Σ, separates the phase space into two regions (G�, G�), and each
region is governed by a different smooth vector field (f�pxq, f�pxq). Solutions of equations

(17)-(19) that are attracted to the sliding region (Σ̂; dark grey) follow a constrained motion
on Σ.

2.7.1 Regular and sliding solutions

Using the above decomposition, we construct solutions of system (17) by con-
sidering separately regular solutions in G�{� and sliding solutions on Σ. Fol-
lowing Filippov (Kuznetsov et al., 2003) we introduce gpxq, a convex combi-

nation of the two vectors f�pxq,

gpxq � λpxqf�pxq � p1 � λpxqqf�pxq, 0 ¤ λ ¤ 1, (27)

with each nonsingular point in the sliding region, i.e. x P Σ̂ such that
xΘxpxq, f

�pxq � f�pxqy � 0. The function λ is defined as

λpxq �
xΘxpxq, f

�pxqy

xΘxpxq, f
�pxq � f�pxqy

� EΩ, (28)

so that gpxq is everywhere tangent to Σ̂. We then add the equation

9x � gpxq, x P Σ̂, (29)

to the system (17), thus extending its definition to include the discontinuity
boundary. Solutions of (29) are called ‘sliding solutions’, and gpxq is called the
‘sliding vector field ’ (Bernardo et al., 2008), given by

gpxq �

�
����������

ρ1E � ρ2
L2

ρ3L�E
� ρ4F

ρ5
F

1�F E � E2Ω

ρ6
E

ρ7�E
L� ELΩ

ρ8
E

ρ9�E
R� ERΩ

�
���������
. (30)

Solutions are then defined in the following way:
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Definition 5.1. A regular orbit is a smooth trajectory of the system (17),
which does not cross the discontinuity boundary Θ � 0. A sliding orbit is a
smooth trajectory of (29), that lies on the discontinuity boundary. An orbit
will generally refer to a continuous curve xptq that is a concatenation of regular
and sliding orbits.

The crossing set x P ΣzΣ̂ is defined as the set of all points x P Σ for
which the two vectors, f�pxq, have nontrivial transverse components to Σ.
At these points a regular orbit of (17) reaching x from G� (region below Σ)
concatenates with a regular orbit entering G� (region above Σ) from x. At
points in the sliding set, x P Σ̂, a regular orbit of (17) reaching x from each of
G� and G� concatenates with a sliding orbit inside Σ̂ passing through x. All
other points on Σ belong to the sliding boundaries BΣ�, and can be treated
as either sliding or crossing points without ambiguity.

It is a standard feature of piecewise-smooth systems that, although solutions
evolve uniquely as time advances, sliding solutions do not have unique histories.

Steady states are defined as points at which f�pxq � 0 or f�pxq � 0, and
pseudo steady states as points at which gpxq � 0. These are only admissible

solutions if they lie in the appropriate regions, namely G�, G�, and Σ̂, respec-
tively. An explanation of the admissibility conditions is presented in Appendix
B.

3 Analytical results

Henceforth, steady states in vector field f�pxq will be indicated by a super-
script �, and those in the sliding vector field gpxq by a superscript s.

The steady states in the regions G� and G�, and in the sliding region Σ̂,
satisfy the relations in Table 2.

Table 2 Steady state expressions and admissibility conditions for steady states in regions
G�{� and Σ̂.

region steady state expression admissibility condition

G� f�pxq � 0 V ¥ 1

G� f�pxq � 0 V ¤ 1

Σ̂ gpxq � 0 0 ¤ EΩ ¤ 1

In addition to the admissibility condition (see Definitions 5.2 and 5.4 in
Appendix B), each model variable F,E,L,R, must be positive for the steady
state to be physically realistic. In the following, we list all steady states that
satisfy these conditions and in Appendix B we translate criteria for solutions
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to be admissible and physically realistic into constraints on the parameters ρi
(i � 1, ..., 9).

3.1 Steady states in G�

There are four steady states A�
i � pFi, Ei, Li, Riq, i � 1, ..., 4 in G�,

A�
1 :� E1 pφpE1q, 1, ψpE1q, νpE1q � ψpE1q � 1q , (31)

A�
2 :� E2 pρ1{ρ4, 1, 0, ηpE2q � 1q , (32)

A�
3 :� E3 pφpE3q, 1, νpE3q � 1, 0q , (33)

A�
4 :� E4 pρ1{ρ4, 1, 0, 0q , (34)

where,

φpEq :�
ρ6

ρ5ρ7 � pρ5 � ρ6qE
, νpEq :�

ρ6
ρ7 � E

, ηpEq :�
ρ8

ρ9 � E
, (35)

ψpEq :�
ρ3ωpEq �

a
pρ3ωpEqq2 � 4ρ2ωpEq

2ρ2
, (36)

ωpEq :� ρ4φpEq � ρ1, (37)

E1 :�
ρ6ρ9 � ρ7ρ8
ρ8 � ρ6

, E2 �
ρ4ρ8 � ρ1ρ5ρ9
ρ1pρ5 � ρ8q

, E4 � ρ5 �
ρ4
ρ1
. (38)

and E3 solves the following cubic polynomial

ρ2pνpE3q � 1q2 � ρ3ωpE3qpνpE3q � 1q � ωpE3q � 0. (39)

For a physically realistic and admissible solution, we require all components
of A�

i , (i � 1, ..., 4) to be positive and the corresponding volume to be such that
V � E�L�R ¡ 1. These conditions lead to constraints on the parameters ρi
given in Appendix B (see equations (57)-(66)). Note also that the steady states
in the vector field f�pxq are vascular, that is, they have E ¡ 0. If f�pxq � 0
and E � 0 then the only possible steady state has x � 0, and V � 0. This is
not an admissible steady state in G� (V ¡ 1 for an admissible solution).
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3.2 Steady states in Σ̂

For each steady state solution (31)-(34) in G�, there is a similar steady state
Asi � pFi, Ei, Li, Riq, i � 1, ..., 4 in Σ̂,

As1 :� E1

�
φpE1q, 1, ψpE1q,

1

E1
� ψpE1q � 1



, (40)

As2 :� E2

�
ρ1
ρ4
, 1, 0,

1

E2
� 1



, (41)

As3 :� Es3

�
φpEs3q, 1,

1

Es3
� 1, 0



, (42)

As4 :�

�
ρ1
ρ4
, 1, 0, 0



. (43)

The functions φ and ψ are given by (35) and (36), and the constants E1, E2

by (38), while Es3 solves the following cubic polynomial

ρ2pE
s
3 � 1q2 � ρ3E

s
3ωpE

s
3qp1 � Es3q � Es3ωpE

s
3q � 0. (44)

The admissibility conditions associated with the steady states in G� and
Σ̂ are presented in Appendix B (see equations (67)-(72)).

3.3 Steady states in G�

Any solution of the form

A� �

�
ρ2
ρ3ρ4

u, 0, u, v



, (45)

satisfies the steady state expression in Table 2, and is physical and admissible
over the range 0 ¤ v ¤ 1�u and 0 ¤ u   1�v. By varying u and v over these
ranges, A� forms a set of steady states lying in a planar surface Π�, given by

Π� �

"
pF,E,L,Rq P G� : F �

ρ2
ρ3ρ4

L, E � 0

*
. (46)

A stability analysis of the plane Π� (see Appendix C) reveals that it is not a
global attractor.

3.4 The 5th steady state in Σ̂

Where the plane Π� (shown in Fig 7) intersects the discontinuity boundary
V � 1, it forms a family of steady states of the sliding vector field that does
not coincide with any of the steady states Asn above. Thus any state of the
form

As5 �

�
ρ2
ρ3ρ4

u, 0, u, 1 � u



, (47)
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satisfies the steady state expression in Table 2, and is physical and admissible
provided that 0 ¤ u ¤ 1. Note that E � 0 implies EΩ � 0, therefore from
(26) we have As5 P BΣ

�. Thus the states As5 (shown in Fig 7) do not lie on the
interior of the region Σ̂, but on its boundary BΣ�. Since u is a variable, the
set of states As5 belongs to a line given by

Πs �

"
pF,E,L,Rq P BΣ� : F �

ρ2
ρ3ρ4

L, E � 0, V � 1

*
. (48)

We remark that there are two limiting cases of equation (47) which we denote
by As5a � p0, 0, 0, 1q and As5b � p ρ2

ρ3ρ4
, 0, 1, 0q, respectively.

Fig. 7 Schematic showing the three-dimensional projections of four-dimensional phase por-
traits. Steady states are presented for the two different regions of phase space (V ¡ 1 and
V   1) and the discontinuity boundary, V � 1. The steady state As5 defines a 1-D manifold
in the discontinuity boundary.

4 Bifurcation analysis

Although numerical simulations for particular values of the system parameters
provide some insight into the system’s dynamics, a more complete understand-
ing relies on determining parameter values at which the qualitative behaviour
of these solutions change, i.e. bifurcations. (For a discussion of how to define
bifurcations in piecewise-smooth systems, see (Bernardo et al., 2008)). An im-
portant characteristic of any bifurcation is its codimension - this is the number
of parameters that need to be varied in order for the bifurcation to occur. In
this section only codimension one bifurcations are considered.
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4.1 Steady state bifurcations at the discontinuity boundary

The admissibility conditions for A�
i and Asi are summarised in Table 3 (for

details see Appendix B) which shows that the parameter ranges for existence of
any two steady states labelled by the same i are mutually exclusive, except at
boundaries where A�

i and Asi coalesce on the switching boundary. For example,
A�

3 (R � 0;V ¡ 1) and As3 (R � 0;V � 1) coincide when νpE3q � 1{E3

(compare (33) to (42)) or, equivalently, when E3 � Es3 �
ρ7

1�ρ6
.

Table 3 Admissibility conditions for steady states

steady parameter in G� in Σ̂ boundary
state grouping

i � 1 ρ6ρ9�ρ7ρ8
ρ9�ρ7

¥ 1 ¤ 1 ρ6 � ρ�6 :� 1 � ρ7
ρ9
p1 � ρ8q

i � 2 ρ4ρ8�ρ1ρ5ρ9
ρ4�ρ1ρ9

¥ 1 ¤ 1 ρ5 � ρ2�5 :� 1 � ρ4
ρ1ρ9

p1 � ρ8q

i � 3 ρ6E3

ρ7�E3
¥ 1 ¤ 1 ρ5 � ρ3�5

:�
�

1 � ρ4pρ6�1qpρ7�ρ3µq
ρ2µ2�ρ1ρ7pρ7�ρ3µq

	
,

µ � ρ6 � p1 � ρ7q

i � 4 ρ1ρ5
ρ1�ρ4

¥ 1 ¤ 1 ρ5 � ρ4�5 :� 1 � ρ4
ρ1

The composition and volume (V ) of the CL vary as ρ5, the maximum rate
of EC proliferation, changes for steady states i � 2, 3, 4 in Table 3. The bounds
in this table are examples of a particular class of discontinuity-induced bifur-
cations known as boundary equilibrium bifurcations (Colombo, 2009; Bernardo
et al., 2008). As ρ5 passes through a bifurcation value ρj�5 (where j � 2,
3, or 4), a steady state A�

j hits the discontinuity boundary and disappears,
while a sliding steady state Asj is created on the discontinuity boundary (or
vice versa). Since one steady state always persists through the bifurcation,
this scenario is classified as persistence. As an example, the persistence of As4
(L � R � 0;V � 1) to A�

4 (L � R � 0;V ¡ 1) as ρ5 increases through ρ4�5 is
illustrated in Fig 8.

4.2 Perturbation of ρ5: the maximum EC proliferation rate

The parameter ρ5 represents the maximum rate of EC proliferation (see equa-
tion (9)), and by varying it we can assess how CL growth (e.g. volume, V ),
and its cellular composition (e.g. ECs, LCs, and stromal cells) are affected by
the amount of angiogenesis that takes place.
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A4
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ρ5
4*

 
 

Fig. 8 Schematic bifurcation diagram for CL volume, V � E�L�R, as ρ5 varies showing
the persistence that is associated with a boundary equilibrium bifurcation. For ρ5   ρ4�5 ,

A�4 is a virtual steady state, and As4 is an admissible pseudo steady state. For ρ5 ¡ ρ4�5 ,

A�4 is admissible and As4 is virtual. Thus, there is one admissible (pseudo-) steady state on
either side of the bifurcation point. Key: solid lines represent admissible solutions; dashed
lines represent virtual ones (for details, see Appendix B).

In Table 1 we fix kE � kL � kR (so that the maximum growth rate for all
cell types is identical) and Eh1 � Eh2 (so that LCs and stromal cells have the
same demand for nutrients and vasculature), and hence ρ6 � ρ8 and ρ7 � ρ9.
These parameter values lead to singular value for the steady states A�,s

1 , since
both the numerator and denominator of E1 in equation (38) vanish.

To consider values of ρ6, ρ7, ρ8, ρ9, close to, but not at, the singular value,
we consider, for fixed values of ρ6 and ρ7, the ellipse: ρ8 � ρ6p1 � r cos θq
and ρ9 � ρ7p1 � r sin θq centred at the singular point pρ8, ρ9q � pρ6, ρ7q and
parametrised by r ¥ 0 and θ P r0, 2πs (see Figure 9(a)). In Figure 9(a) (inset
plots), as θ varies we observe four qualitatively different cases. In case (1),
the growth rate of R exceeds that of L and we expect steady states with
R � 0; in case (2) L and R dominance exchanges. That is, in a low nutrient
(E) environment, L grow at a faster rate than R, however, as the nutrient
abundance increases the growth rate of R exceeds that of L. In case (3), the
growth rate of L exceeds that of R and we expect steady states with L � 0,
and in (4) L and R dominance exchanges, in a manner similar to that observed
for case (2) but with the roles of L and R interchanged.

Figure 9(b) shows how E varies (diagrams for F,L,R are omitted for
brevity) as θ varies, with numbers 1 to 4 representing the four cases of L-
R dominance as described in Figure 9(a).

In biological terms, since we are interested in healthy CL development
(where all four variables are non-zero), a value of θ :� θs P pθ� � π

4 , θ
��q

is chosen, which gives a point S
1

� pρ�8 , ρ
�
9 q on the ellipse, with ρ�8 ¡ ρ6,

ρ�9 ¡ ρ7. For these values, the steady state As1 � 0 exists and is stable. Any
case other than (2) implies a pathological CL. In particular, case (1) implies
As5a :� p0, 0, 0, 1q, an avascular (E � 0) state, where only stromal cells sur-
vive (V � R � 1). More importantly, there are no LCs, which implies no
progesterone production to support embryonic development. Case (3) yields
As3 :� pF,E,L, 0q which may also be regarded as a pathological condition
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(since R � 0), although embryonic development might be sustained due to the
presence of LCs. Choosing θ :� θss � θs � π P pθ�

1

� 5π
4 , θ

��1q gives the sym-

metrical point S
2

� pρ��8 , ρ��9 q with ρ��8   ρ6, ρ��9   ρ7, which corresponds to
case (4) and the system evolves to either As5a or As3.

Figure 10 shows the bifurcation diagram for the ECs obtained by varying
ρ5 in case (2), corresponding to point S

1

. The diagram was generated using the
expressions for the steady states presented in section 3 and plotting only the
segments of the branches which give rise to physically realistic and admissible
states (for details, see Appendix B) for all four variables. As ρ5 varies, different
scenarios, with different steady states, arise. For ρ5 P pρ

�
5 , ρ

��
5 q (intermediate

levels of angiogenesis), the system can evolve to the ‘healthy’ state As1. Outside
this range, the system evolves to a ‘pathogenic’ state: As3pR � 0;V � 1q for
ρ5   ρ�5 (weak angiogenesis), or As2pL � 0;V � 1q, A�

2 pL � 0;V ¡ 1q, and
A�

4 pL � 0, R � 0;V ¡ 1q for ρ5 ¡ ρ��5 (strong angiogenesis).
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Fig. 9 Steady state CL cellular composition depends on four qualitatively different cases
regarding the growth rate of L and R. (a) In the parameter space (ρ8, ρ9), we consider
the ellipse: ρ8 � ρ6p1 � r cos θq, ρ9 � ρ7p1 � r sin θq (with r � 0.3 and θ P [0,2π]) around
the singular point S � pρ6, ρ7q at which LCs and stromal cells have the same demand for
nutrients and vasculature (E). Inset plots present the four different cases. That is, how the
swelling rate of L, given by ρ6

E
ρ7�E

(dashed curve) as in equation (10), and the proliferation

rate of R, given by ρ8
E

ρ9�E
(solid curve) as in equation (11), change as E varies. (b)

Bifurcation diagram showing how the existence and stability of steady state solutions for
the ECs vary as the angle θ varies. For conciseness only steady states that are stable for
some θ P [0,2π] are plotted.
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Fig. 10 Bifurcation diagram showing how the existence and stability of steady state so-
lutions for the EC volume (E) vary with ρ5 (the maximum EC proliferation rate) when

pρ8, ρ9q � pρ�8 , ρ�9 q which corresponds to the point S
1

in Figure 9(a). The steady state so-
lutions are defined in the supporting Legend. Parameter values: as per equation (13) with
ρ8 � ρ�8 � 0.81 and ρ9 � ρ�9 � 0.09. As ρ5 varies, three distinct, biologically realistic
scenarios are observed: if ρ5 is too small (ρ5   ρ�5 ) or too large (ρ5 ¡ ρ��5 ), then pathogenic
development is predicted because one or more cell types are unable to survive (if ρ5   ρ�5
then R � 0; if ρ5 ¡ ρ��5 then L � R � 0). For intermediate values of ρ5 (ρ�5   ρ5   ρ��5 ),
healthy CL growth is predicted with 0   E,L,R.
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4.3 Variation of other parameters

In this section our aim is to check whether the system evolves to a healthy
steady state A�,s

1 (for which 0   E,L,R) by varying parameters for which
reliable estimates are not available (see Appendix A). In particular, parame-
ters a1, a2 (rates of FGF2 production, by ECs and LCs respectively), and k
(a measure of how sensitive the CL cells are to competition for space) were
estimated in limiting cases.

For this reason, we use two different cases, labelled (Ia) and (IIa), to esti-
mate a1 and a2, and two different cases, (Ib) and (IIb), to estimate k. Briefly,
(Ia) represents the limiting case where we assume no LCs (to estimate a1) and
no ECs (to estimate a2), while (IIa) assumes that FGF2 production from LCs
after the first two days of ovulation is minimal (as per Fig 3). (Ib) assumes
F� " Fh, which implies lower EC proliferation at steady state, while (IIb)
assumes F� � Fh. For details see Appendix A. Note that the model studied
in section 4.2 uses case (Ia) to estimate a1, a2, and (Ib) for k.

The results obtained by combining the above different cases are summarised
in Table 4. A combination of (Ia) and (IIb) leads to a change in the steady
state from As1 to A�

1 . Case (IIb) gives a smaller value for k suggesting that this
can lead to a non-constant CL volume (since V ¡ 1 at A�

1 ). The alternative
case for estimating a1 and a2 does not seem to lead to a change of the steady
state.

Table 4 Table summarising how the estimates of a1, a2, k, and the associated stable steady
state depend on the cases used for their estimation.

case a1 a2 k steady state

(Ia) & (Ib) 136 5.1 0.12 As1

(Ia) & (IIb) 136 5.1 0.06 A�
1

(IIa) & (Ib) 124 0.9 0.12 As1

(IIa) & (IIb) 124 0.9 0.06 As1

An additional parameter which merits further investigation is the decay
rate of FGF2, dF , which has an indirect effect on the EC proliferation rate.
Since the decay rate of vascular endothelial growth factor (VEGF), another
potent angiogenic factor, has been estimated to be 15 d�1 (Owen et al., 2011),
which is 5 times larger than the value we use for FGF2, we consider increasing
dF . We recover the steady state As1 for a wide range of dF (0   dF   15 d�1).
However, if dF ¡ 15 d�1, stability shifts from As1 to As4. Bifurcations over
ρ5 show bistability between As3 and A�

4 in a certain region of ρ5. Therefore,
depending on the initial conditions, a steady state is feasible either on the
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discontinuity boundary (V � 1) or above it (V ¡ 1), where only R (for
As3;V � 1) or both L and R (for A�

4 ;V ¡ 1) are zero. By increasing dF the
region of bistability also increases (results not shown due to space limitations).

5 Discussion

In this article, we have developed an ODE model for the growth of the bovine
corpus luteum (CL), an organ responsible for progesterone production during
pregnancy. Angiogenesis, the process of new blood vessel growth from existing
ones, is crucial for CL growth, and inadequate angiogenesis has been linked
to infertility in cows. Therefore, by studying the processes which regulate CL
development, our aim has been to determine how CL growth is influenced by
changes in the parameters associated with endothelial cell proliferation.

The model describes the time evolution of four dependent variables: the
concentration of FGF2, and the volume of the endothelial (ECs), luteal (LCs)
and stromal cells (R). The ECs represent the vascular density in the CL,
while the stromal volume includes cells such as pericytes (PCs). The model
is based on the assumption that the CL volume (V ) can be approximated by
the sum of the volumes of the three cell types, and if V exceeds a threshold
value, then cell growth is inhibited. The theoretical surface (Σ) on which the
volume threshold is attained is called the discontinuity boundary. It separates
the model into two different cases (above or below Σ). The resulting model
reproduces several features of CL development. That is, a transient surge in
FGF2, and CL growth to a steady state volume in which the different cell types
are present in proportions that are consistent with experimental observations.

Preliminary insight into the system dynamics was obtained by considering
a reduced, two-dimensional model with L � R � 0 and V � E � L� R � E.
Given the importance of angiogenesis in the CL, the key bifurcation parameter
was taken to be the maximal rate of EC proliferation, ρ5. If ρ5 was below a
threshold (see equation (16)) the CL volume remained constant (V � 1),
sliding on the discontinuity boundary, and the system evolved to a pseudo
steady state. Sliding is a special case where trajectories initially either above
or below Σ are constrained to lie on Σ. However, if ρ5 exceeded that threshold,
the manifold Σ become unstable and trajectories were attracted to the region
E ¡ 1 (see Figure 5).

These notable cases observed in the reduced model were the motivation
for further investigation into the existence of pseudo steady states in the full
model. Therefore, in the full model, we analysed the real steady states for
the two different vector fields, above and below Σ : E � L � R � 1, and
the pseudo steady states, by exploring parameter constraints for which steady
states in each region can be physically realistic (non zero) and admissible (see
definitions in section B).

As for the reduced model, by varying the ‘angiogenic parameter’, ρ5, we
were able to identify normal and pathological cases of CL growth (see Figure
10). For low ρ5, the system evolves to steady state As3pV � 1q characterised by
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dominance of the LCs and absence of the stromal cells. In this case, although
progesterone levels may be high, there are few blood vessels (ECs) to transport
progesterone to the uterus. When ρ5 is high, the CL volume shifts to steady
state A�

4 pV ¡ 1q for which the CL is predicted to contain only vessels (ECs),
which is biologically implausible. For intermediate values of ρ5, healthy growth
of the CL is predicted, and all cellular components are present. This indicates
that slight changes in EC proliferation rate (ρ5) could have a big impact on
the CL vasculature, its subsequent growth and function, and thereby, fertility.

Fertility in dairy cows has been continually declining over the past 30 years,
with conception rates currently well below 40% (Royal et al., 2000; Lucy,
2001). While the role of ovarian physiology and, in particular, CL growth,
development and function have been the main focus of many experimental
studies (Lucy, 2001; Mann and Lamming, 2001; Perry et al., 2005; Robinson
et al., 2006), mathematical modelling of this biological aspect is scarce. Ex-
isting models have focused on hormone production and its regulation during
the bovine oestrous cycle (Boer et al., 2011; Pring et al., 2012), while Meier
et al. (2009) concentrated on progesterone production. The key hormone, that
induces the formation of the CL as well as likely to play an important role
in initiating luteal angiogenesis is luteinising hormone (LH) (Robinson et al.,
2008). Therefore, it would be interesting in future work to combine our model
of CL growth with existing models (1) to investigate influence of LH on CL
growth, and (2) to determine how progesterone levels influenced by CL growth.
Although our model was motivated from bovine experimental data, the setup
of the model is quite generic, and therefore, it could be possible to fit the
model to measurement data from human or other species.

We conclude by further discussing possible extensions and improvements
to the current model. The results from our model were based on parameter
estimates which were chosen as reasonably as possible from independent data.
However, future work may involve a more systematic parameter sensitivity
analysis to assess the robustness of the results (steady states that the sys-
tem evolves to). PCs are perivascular cells that are typically associated with
ECs in microvessels. Experiments performed by (Redmer et al., 2001) suggest
that PCs represent a large proportion of the proliferating cells during the early
luteal phase. In the same study, PCs appeared to be among the first cells to mi-
grate into the hypoxic granulosa region after ovulation. It has been suggested
that PCs are capable of guiding sprouting processes by migrating ahead of ECs
and expressing VEGF, a potent mitogenic factor that can induce the ECs to
proliferate subsequent to migration (Redmer et al., 2001). We could extend
our model to include multiple angiogenic factors, such as VEGF and FGF2,
and also to account for the way in which PCs influence angiogenesis. For ex-
ample, a CL with low numbers of PCs might be expected to produce a poorly
functioning vasculature. The model could also be used to determine whether
manipulation of PC levels might restore function to a compromised CL. The
ODE model could also be extended to account for spatial effects, either by
formulating a continuum model based on PDEs or by using an agent-based
model that distinguishes between individual cells.
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A Estimation of parameter values

Guided by estimates of the maximum proliferation rate of bovine aorta ECs cultured in
vitro, we suppose initially that the maximum growth rate of all cell types are identical so
that kE � kL � kR � 1 day(d)�1 (Lincoln et al., 1982), and later explore the consequences
of relaxing this assumption.

Regarding the decay rate of FGF2, we fixed dF � 3 d�1 since its half-life is � 8 hrs
(Beenken and Mohammadi, 2009). Concerning Fh, the FGF2 concentration at which the
EC proliferation rate is half-maximal, we chose it to be a typical late level of FGF2 (F�; see
Fig 2(a)), so that Fh � F� � 50 ng.pcm3q�1. We remark that in Fig 2(a) FGF2 has units
ng{g tissue, but since the majority of tissues consist predominantly of water, we convert
from ng{g to ng{cm3 by assuming that 1 g occupies approximately 1 cm3.

A value of V was estimated for the CL volume, above which cells compete for space.
From Fig 2(b), the steady value for the CL diameter is approximately 2.5 cm and, therefore,
V � 4

3
πR3 � 8.2 cm3. In mid-cycle, LCs comprise approximately 68% of the bovine CL

volume and the ECs approximately 13% (Wiltbank, 1994). Therefore, we assume that Eh1
and Eh2, the volume of ECs at which the swelling rate of LCs and stromal cells is half-
maximal, are identical � 13%V � 1.07 cm3.

The above estimates imply that typical proportion of ECs and LCs is ECs:LCs=13:68.
Therefore, an estimate for the parameter REL (as in equation (1)), the value of E{L at which
FGF2 production rate (from LCs) is half-maximal was obtained. That is, REL � 0.19.
The methods for estimating the parameters a1 and a2, and the parameter k are enumerated
below as methods (Ia) and (Ib), respectively.

(Ia). To estimate a1 and a2, we assume a steady state 9F=0, and solve for a1 when

there are no LCs and solve for a2 when there are no ECs. Then, for a1, 9F � a1E � dFF ,

gives a1 � dF
F
E
� dF

F�

E�
� dF

F�

0.13 V
� 3�50

1.1
� 136. For a2, 9F � a2

L
REL

� dFF , gives

a2 � dFREL
F
L
� dFREL

F�

L�
� dFREL

F�

0.68 V
� 3�0.19�50

5.6
� 5.1.

(Ib). To estimate the parameter k, the strength of the tissue constraint to the cell growth

or proliferation, we assume a steady state 9E=0 by taking the limiting case where FGF2 is

sufficiently high (F� " Fh). Therefore, 9E � 0 ñ kEE � kEV ñ k � kE
V
� kE

V
� 0.12.

Dimensional estimates of the model parameters in equations (2), (5)-(7) were estimated
as accurately as possible. Since there is less data with which to determine a1, a2, and k,
than the other parameters, we give here an alternative method to estimate them, as a test
of robustness. These alternative methods are enumerated below as (IIa) and (IIb):

(IIa). Here we estimate a1 and a2 as follows. In Figure 3, a schematic is presented
which illustrates the high FGF2 production by LCs during the first two days, while ECs are
productive all over the cell cycle. Based on that, we assume that the FGF2 production from
LCs after the first two days is minimal. That is, at steady state ( 9F � 0) a2L

REL�
E
L

Ñ 0, or

equivalently,

a1E
� " a2L�

REL � E�

L�

. (49)

In addition, at steady state,

9F � 0 ô a1E
�

�
1� 1

γ



� dFF

�, (50)
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where,

γ � a1E�

a2L�

REL�
E�

L�

� 0.07
a1

a2
, (51)

is the ratio of FGF2 production by ECs to that by LCs. If γ � 10, then

a1 � 143 a2. (52)

Now equation (50) supplies a1 � dFF
�

E�p1� 1
γ
q
� 124, in which case a2 � 0.9.

(IIb). Here we estimate k as follows. We assume a steady state 9E � 0 and FGF2 steady

value being smaller than for (Ib), e.g. F� � Fh, and solving for k implies: k � F�

Fh�F
�

kE
V
�

1
2
kE
V
� 0.06.

B Classification of steady state in Filippov systems

The types of steady states that Filippov systems exhibit are summarised below.

Definition 5.2. A point x P D is termed an admissible steady state of (17) if

f�pxq � 0 and Θpxq ¡ 0, or f�pxq � 0 and Θpxq   0; (53)

a point x P G� is termed a virtual steady state of (17) if

f�pxq � 0 but Θpxq   0, or f�pxq � 0 but Θpxq ¡ 0. (54)

Definition 5.3. A point x P D is termed a pseudo steady state if

gpxq � 0 and Θpxq � 0. (55)

As for Definition 5.2, there may exist solutions to gpxq � 0 which are invalid because

x P ΣzΣ̂. We distinguish such solutions as follows:

Definition 5.4. A pseudo steady state is termed admissible if 0 λ 1 and virtual if λ   0
or λ ¡ 1, with λ as defined in (28).

For some values of the system parameters, a steady state may lie on the discontinuity
boundary. Since f� or f� vanishes there, we find that g also vanishes by (29), so that a
steady state on Σ always coincides with a pseudo steady state. Furthermore this occurs on
the sliding boundary where λ � 0 or 1. We classify such points as follows.

Definition 5.5. A point x P D is termed a boundary steady state of (17) if

f�pxq � 0 and Θpxq � 0, or f�pxq � 0 and Θpxq � 0. (56)

The admissibility conditions for the steady states in G� and Σ̂ are given below.

Conditions for A�1

From equation (38) we deduce that E1 ¥ 0 if either

ρ9

ρ7
¤ ρ8

ρ6
¤ 1 or 1 ¤ ρ8

ρ6
¤ ρ9

ρ7
, (57)
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where ρ8
ρ6

is the ratio of the maximal growth rate of the stromal cells to that of the luteal

cells, and ρ9
ρ7

is the ratio of the half-maximal EC value of the stromal cells to that of the

luteal cells. Similarly, the concentration of FGF2, F � E1φpE1q, is physically realistic if
φpE1q ¥ 0 where, since ρ6 ¡ 0,

φpE1q ¥ 0 ô ρ5ρ7 � E1pρ5 � ρ6q ¥ 0 ô ρ5

ρ6
¥ E1

ρ7 � E1
ô ρ5 ¥ ρ6

ρ9
ρ7
� ρ8
ρ6

ρ9
ρ7
� 1

(58)

since (57) guarantees that E1 ¡ 0. Thus (58) places a lower bound on ρ5.
The value of L is physically realistic if ψpE1q ¥ 0 (ô ωpE1q ¥ 0), which implies

ρ5 ¤ ρ6pρ4 � ρ1E1q
ρ1pρ7 � E1q

, (59)

an upper bound to ρ5 (since E1 ¥ 0).
The value of R is physically realistic if νpE1q�ψpE1q ¥ 1. Substituting in the expression

for ψ (equation (36)) in terms of ω, implies

ρ2 pνpE1q � 1q2 � ρ3ωpE1q pνpE1q � 1q ¥ ωpE1q ¥ 0. (60)

The admissibility condition for A�1 is simply that the volume V � V �
1 satisfies

V �
1 � E1νpE1q � ρ6ρ9 � ρ7ρ8

ρ9 � ρ7
¥ 1. (61)

Conditions for A�2

The components of A�2 are non-negative if

E2 � ρ4ρ8 � ρ1ρ5ρ9

ρ1pρ5 � ρ8q
¥ 0, and ηpE2q � ρ8

ρ9 � E2
¥ 1. (62)

The first inequality supplies the following mutually exclusive set of inequalities:

piq 1 ¤ ρ5

ρ8
¤ ρ4

ρ1ρ9
, or piiq ρ4

ρ1ρ9
¤ ρ5

ρ8
¤ 1.

The second inequality (ηpE2q ¥ 1) yields:

ρ5 ¥ ρ4

ρ1
� ρ8 � ρ9.

The admissibility condition for A�2 is that the volume V � V �
2 satisfies

V �
2 � E2ηpE2q � ρ4ρ8 � ρ1ρ9ρ5

ρ6pρ4 � ρ1ρ9q
¥ 1, (63)

noting that V �
2 ¥ 0 is guaranteed by both cases (i) and (ii) above.

Conditions for A�3

The steady state A�3 is physically realistic if E3, φpE3q, and pνpE3q � 1q are positive. The
solution for E3 as a root of the cubic polynomial (39) is unilluminating so we do not present
it here. We note, however, that (39) has real coefficients, hence it always has at least one
real root, but the root may not be positive for all values of the parameters.

The admissibility condition can be written as

V �
3 � E3νpE3q � ρ6E3

ρ7 � E3
¥ 1. (64)
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Numerical solutions of these equations for the parameter values in (13), with ρ5 allowed
to vary, reveal only one physically realistic steady state solution, A�3 . It becomes unphysical
outside the left bound as L � νpE3q � 1 becomes negative, and inadmissible outside the
right bound as EΩ � V �

3 � E3νpE3q becomes smaller than unity.

Conditions for A�4

The steady state solution A�4 is physically realistic if E4 ¥ 0, implying ρ5
ρ6
� ρ4

ρ1
¥ 0

or, as a condition on ρ5,

ρ5 ¥ ρ4

ρ1
. (65)

The admissibility condition is

V �
4 � ρ5 � ρ4

ρ1
¥ 1 ô ρ5 ¥

�
1� ρ4

ρ1



. (66)

Notice that the ratio ρ4
ρ1

is involved in determining whether both of the steady states

A�2 and A�4 are physically realistic.

We now establish conditions under which the steady states Asn are physically realistic

and satisfy the conditions for Σ̂ in Table 2.

Conditions for As1

Because the first three components of As1 are the same as A�1 , the conditions (57)-(59)
ensure that E1, φpE1q, and ψpE1q are positive. By contrast, the condition for R to be phys-
ically realistic becomes 1

E1
� ψpE1q � 1 ¥ 0. Substituting in the expression for ψ in terms

of ω, a little manipulation gives the condition

ρ2

�
1

E1
� 1


2

� ρ3ωpE1q
�

1

E1
� 1



¥ ωpE1q ¥ 0. (67)

Now consider the admissibility condition 0 ¤ EΩ ¤ 1. The third (L) component of
gpAs1q from (30), which vanishes because As1 is a steady state, gives

E1Ω � ρ6E1

ρ7 � E1
.

Substituting in E1 from (38), after a little rearranging the admissibility condition becomes

0 ¤ ρ6ρ9 � ρ7ρ8

ρ9 � ρ7
¤ 1. (68)

Conditions for As2

Physical values of As2 require E2 ¥ 0 and 1
E2

� 1 ¥ 0, implying 0 ¤ E2 ¤ 1, which

gives

0 ¤ ρ4ρ8 � ρ1ρ5ρ9

ρ1pρ5 � ρ8q
¤ 1. (69)

As for A�2 there are two cases to consider,

(i) ρ5 ¥ ρ8 implies 0 ¤ ρ4ρ8 � ρ1ρ5ρ9 ¤ ρ1pρ5 � ρ8q,
(ii) ρ5 ¤ ρ8 implies 0 ¥ ρ4ρ8 � ρ1ρ5ρ9 ¥ ρ1pρ5 � ρ8q.
which can be rearranged to give conditions on ρ5,

(i) ρ5 ¥ ρ8 implies ρ5 ¥ ρ8
ρ1

ρ1�ρ4
1�ρ9

and ρ5 ¤ ρ4ρ8
ρ1ρ9

,

(ii) ρ5 ¤ ρ8 implies ρ5 ¤ ρ8
ρ1

ρ1�ρ4
1�ρ9

and ρ5 ¥ ρ4ρ8
ρ1ρ9

.
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To evaluate the admissibility condition on EΩ, consider the fourth (R) component of
gpAs2q from (30), which vanishes because As1 is a steady state, and therefore gives

E2Ω � ρ8E2

ρ9 � E2
.

Substituting in E2 from (38) and rearranging gives E2Ω � ρ4ρ8�ρ1ρ5ρ9
ρ4�ρ1ρ9

, hence the admis-

sibility condition becomes

0 ¤ ρ4ρ8 � ρ1ρ5ρ9

ρ4 � ρ1ρ9
¤ 1. (70)

Equation (70) consists of two cases:

(a) ρ4   ρ1ρ9 implies ρ5 ¥ ρ4ρ8
ρ1ρ9

� ρ4
ρ1ρ9

� 1,

(b) ρ4 ¡ ρ1ρ9 implies ρ4ρ8
ρ1ρ9

� ρ4
ρ1ρ9

� 1 ¤ ρ5   ρ4ρ8
ρ1ρ9

, and this can only happen in case (i).

Conditions for As3

For the state As3 to be physically realistic requires that the three quantities Es3 , φpEs3q,
and 1

Es3
� 1, are positive. As for A�3 , the cubic root solution for Es3 is unilluminating, but

we note that (44) always has at least one real root which need not be positive for all values
of the parameters.

The third (L) component of gpAs3q from (30), which vanishes because As3 is a steady
state, gives

Es3Ω � ρ6Es3
ρ7 � Es3

,

with which the admissibility condition can be written as

0 ¤ ρ6Es3
ρ7 � Es3

¤ 1, (71)

in terms of the cubic root Es3 .

Conditions for As4

The condition for As4 to be physically realistic is simply E4 ¡ 0, which gives (65). For the
admissibility condition, note that using the second (E) component of gpAs4q, which vanishes

since As4 is a steady state, we can write E4Ω � ρ5F
1�F

� ρ1ρ5
ρ1�ρ4

, and therefore admissibility

requires 0 ¤ ρ1ρ5
ρ1�ρ4

¤ 1, which rearranges to

0 ¤ ρ5 ¤ 1� ρ4

ρ1
. (72)

C Stability of the plane Π�

The stability of the plane Π� (as defined in equation (46) is of some importance being

a distributed object in the regions G� and Σ̂. It is also rather more simple to express,
requiring the calculation of stability in only two directions orthogonal to each other and to
the plane.

To determine whether Π� is an attractor we first take coordinates u1 � E, u2 �
F � ρ�L, u3 � ρ�F � L, u4 � R, where ρ� � ρ2

ρ3ρ4
. The ui form an orthogonal coordinate

system, since ∇ui �∇uj � 0 for all i � j P p1, 2, 3, 4q with ∇ �
�
d
dF
, d
dE
, d
dL
, d
dR

	
. The u1

and u2 coordinate axes lie perpendicular to Π� (so Π� is the plane u1 � u2 � 0), while u3
and u4 form a coordinate system over the plane Π�.
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The Jacobian of the u1, u2 system at u1 � u2 � 0 expresses the derivative of the flow
through Π�. Using 9u1 � 9E and 9u2 � 9F � ρ� 9L, this is given by

JΠ� �
�

B 9u1
Bu1

B 9u1
Bu2

B 9u2
Bu1

B 9u2
Bu2

�
|u1�u2�0

�

�
��

ρ5u3ρ
�

u3ρ��
?

1�ρ�2
0

ρ1 � ρ� ρ4
ρ3
� ρ7ρ

�u3

ρ8
?

1�ρ�2
�ρ4 1�3ρ�2?

1�ρ�2

�
�,

with eigenvalues µ1 � �ρ4 1�3ρ�2?
1�ρ�2

and µ2 � ρ5u3ρ
�

u3ρ��
?

1�ρ�2
. Note that µ1   0 since

ρ� ¡ 0. Also u3 � ρ�F � L ¡ 0 given that F,L ¡ 0, and therefore µ2 ¡ 0.
As a result, the plane Π� is of ‘saddle type’, having one stable and one (orthogonal)

unstable direction. Π� is therefore not a global attractor.
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