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Summary

1. Dispersal is fundamental to ecological processes at all scales and levels of organisation but progress is

limited by a lack of information about the general shape and form of plant dispersal kernels. We
addressed this gap by synthesising empirical data describing seed dispersal and fitting general dispersal

kernels representing major plant types and dispersal modes.

. A comprehensive literature search resulted in 107 papers describing 168 dispersal kernels for 144

vascular plant species. The data covered 63 families, all the continents except Antarctica, and the broad
vegetation types of forest, grassland, shrubland, and more open habitats (e.g. deserts). We classified
kernels in terms of dispersal mode (ant, ballistic, rodent, vertebrates other than rodents, vehicle or

wind), plant growth form (climber, graminoid, herb, shrub or tree), seed mass and plant height.

. We fitted 11 widely-used probability density functions to each of the 168 datasets to provide a statistical

description of the dispersal kernel. The Exponential Power (ExP) and Log-sech (LogS) functions
performed best. Other 2-parameter functions varied in performance. For example, the Lognormal and
Weibull performed poorly, while the 2Dt and Power law performed moderately well. Of the single-
parameter functions, the Gaussian performed very poorly, while the Exponential performed better. No

function was among the best-fitting for all datasets.

. For 10 plant growth form/dispersal mode combinations for which we had >3 datasets, we fitted ExP and

LogS functions across multiple datasets to provide generalised dispersal kernels. We also fitted these
functions to sub-divisions of these growth form/dispersal mode combinations in terms of seed mass (for
animal-dispersed seeds) or plant height (wind-dispersed) classes. These functions provided generally
good fits to the grouped datasets, despite variation in empirical methods, local conditions, vegetation

type and the exact dispersal process.

. Synthesis. We synthesise the rich empirical information on seed dispersal distances to provide

standardised dispersal kernels for 168 case studies and generalised kernels for plant growth

form/dispersal mode combinations. Potential uses include: a) choosing appropriate dispersal functions
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in mathematical models; b) selecting informative dispersal kernels for one’s empirical study system; and

c) using representative dispersal kernels in cross-taxon comparative studies.

Key-words: dispersal distance, dispersal mode, dispersal location kernel, exponential, exponential power,

Gaussian, log-sech, plant height, probability density function, seed mass
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Introduction

Good estimates of plant dispersal distances are required by ecologists in their attempts to understand and
model processes such as local interactions (Bolker & Pacala 1997), species’ ability to track climate change
(Travis et al. 2013), population dynamics in fragmented landscapes (Gilbert et al. 2014), invasions (Hastings
et al. 2005), metapopulation persistence (Ovaskainen & Cornell 2006), and evolutionary change
(Hallatschek & Fisher 2014). Furthermore, a recent systematic review concluded that limited dispersal
knowledge often compromises conservation planning (Driscoll et al. 2014). The holy grail for dispersal
ecologists is to develop mechanistic models of dispersal, which represent the physical processes involved in
seed movement. These allow predictions of seed dispersal de novo and avoid the great effort required to
measure dispersal directly (Bullock, Shea & Skarpaas 2006). Mechanistic models and have been realised for
wind dispersal (Nathan et al. 2011), and their predictions have been used in models of spatial population
dynamics (Skarpaas & Shea 2007; Soons & Bullock 2008; Bullock et al. 2012). While there is some progress
towards mechanistic representations of seed dispersal by certain other vectors, such as by vertebrates
(Bullock et al. 2011; Cortes & Uriarte 2013) or water (Thompson et al. 2014), we remain a long way from

mechanistic models applicable to every seed dispersal process.

While work towards mechanistic models should continue, remarkably little use has been made of
empirical plant dispersal kernels in elucidating general information for use by ecologists. Plant dispersal
data, gathered for a wide range of species across a variety of habitats, are a rich source of information on
dispersal patterns. Over 20 years ago, Willson (1993) presented an important analysis of seed dispersal
kernels, showing how dispersal distances vary according to plant life form (i.e. herb, shrub, tree) and
dispersal mode (i.e. ballistic, wind, vertebrate). Many more kernels have been published since 1993 and
statistical methods have moved on (Willson analysed kernels using least squares linear regression). Two
recent papers have synthesised empirical plant dispersal data, relating mean or maximum dispersal distance
to variables such as dispersal mode, plant growth form, seed release height, seed mass or terminal velocity
(Thomson et al. 2011; Tamme et al. 2014). These analyses are useful — for example Tamme et al. (2014)

provided R code to predict the maximum dispersal distance from simple plant traits — they offer no
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information on the complete set of dispersal distances (i.e. the shape of the kernel), which is necessary for
many models of spatial dynamics. For example, modelled population spread rates are greatly influenced by
the form and extent of the tail of the dispersal kernel (Kot, Lewis & van den Driessche 1996; Caswell, Lensink
& Neubert 2003). There is great potential for synthesising published dispersal data, to provide ecologists

with general dispersal kernels for different plant types and dispersal modes.

It is common to fit statistical functions to dispersal data, providing so-called phenomenological
dispersal kernels, which are a useful summary of dispersal patterns for activities such as modelling
population spread or linking demography to dispersal patterns (Bullock, Shea & Skarpaas 2006). A variety
of functions have been implemented; Nathan et al. (2012) discuss 13 simple (i.e. one or two parameter)
functions that have been used in different studies. These functions have also been used in different ways,
with inconsistency in what data are fitted and how the function is interpreted (Cousens, Dytham & Law
2008; Nathan et al. 2012). A dispersal kernel is a probability density function of dispersal distances, and the
formulation depends on whether it represents the distribution of distances dispersed (the dispersal distance
kernel) or the distribution of the final locations of dispersers (the dispersal location kernel) (Nathan et al.

2012).

The simplest functions used are the single-parameter Gaussian and Exponential. The Gaussian
distribution represents seeds moving by Brownian motion for a fixed period of time, while the Exponential
results from seeds moving randomly and having a certain probability of settling per unit of time. Because of
these properties, these two functions are especially popular in mathematical developments of theory
concerning spatial dynamics (O'Dwyer & Green 2010; Gilbert et al. 2014; Harsch et al. 2014). Many
individual studies suggest, however, that the Gaussian and Exponential do not represent real dispersal
kernels well (Clark 1998; Bullock & Clarke 2000), and other functions have been proposed to capture better
the high leptokurtosis and long (or even fat, i.e., not exponentially bounded) tails seen in such data. These
functions, in general, do not have a mechanistic basis, but they can provide a good description of the
dispersal kernel. While some studies have contrasted several functions in fitting to empirical data (Clark et

al. 2005; Martinez & Gonzalez-Taboada 2009), generally only one or very few functions are fitted, with little
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justification for the specific function(s) chosen. This suggests a lack of cohesion in approaches to modelling

dispersal, which is likely to constrain progress.

The primary aim of this study is to combine and synthesise published empirical seed dispersal data,
using literature review and statistical fitting of dispersal functions, to provide general dispersal kernels
representing major plant types and dispersal modes. These provide empirically-based information about
dispersal distances and patterns for plant groups. In doing so, we assess which of the simple functions used
in the dispersal literature perform best in representing dispersal kernels across a wide range of species,

ecosystems and study types.
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Methods
EMPIRICAL DISPERSAL DATA

We examined the literature for data describing seed dispersal kernels. Our initial source was our analysis
(Tamme et al. 2014) of maximum dispersal distances, which brought together previous studies that
summarized published dispersal information, and also did a search on ISI Web of Science (WoS) using the
keywords: “seed”, “dispersal” and “distance”. We repeated this WoS search between 31 January 2012
(Tamme et al.’s end date) and 1 November 2014. All papers were examined for data describing seed
distributions with distance from a source. Published data were included in our analyses according to the
following criteria. i) The data described dispersal from a discrete source in 2-dimensional space, such as a
single plant, a small group of plants, or a single depot (e.g. in vertebrate dispersal studies). Linear sources
or large patches were excluded as the resulting dispersal kernels could not reasonably be characterised as
having a point source (different kernels could be fitted (Shaw et al. 2006), but comparison across datasets
would be difficult). ii) The data covered at least four distance locations, to provide a reasonable description
of the kernel. In fact of the datasets included none had only four points; one had five, the rest more. iii) The
data comprised specific distances (‘traps’) or distance classes (‘bins’) and at each of these a measure of seed
density (absolute or relative), number of seeds, or the proportion of dispersed (i.e. all seeds found) or all
(i.e. those counted or placed at the discrete source) seeds. Lists of individual seed dispersal distances were
included. iv) If the data described seedlings/plants at distances rather than seeds, they were excluded as
these are the outcome of spatial variation in recruitment and survival as well as dispersal. v) Data generated
by fitted kernels (e.g. by inverse modelling) or mechanistic modelling were excluded as these assume an
underlying statistical function. vi) Data projected by combining empirical information on vector movement
and seed retention/deposition (e.g. bird movement and gut retention times) were included. This last
decision allowed us to include a large number of datasets for vertebrate dispersal: three for climbers, one
for herbs, 11 for shrubs and 17 for trees. However, dispersal estimated by this method was significantly
further than when estimated by other methods (e.g. following dispersers or genetic markers). The mean

dispersal distances (estimated using the fitted Exponential Power parameters — see below) of trees were
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greater for datasets using seed retention methods (median of the means distances = 3106 m. n = 17) than
for those using other methods (median =168 m. n = 17) (Kruskal Wallis p=0.02). There were too few datasets
to carry out this test on other growth forms. Nevertheless, we retained these datasets, and address this

issue in the Discussion.

Data were extracted from tables or, in the majority of cases, from figures, in which case we used
the Datathief software (Tummers 2006). As the data were presented in a variety of forms, we needed to
represent all dispersal kernels in a common format for analysis and comparison. The most robust approach
was to convert all data into paired seed densities (i.e. m™) and distances, representing the so-called dispersal
location kernel (Nathan et al. 2012). This accommodated spatial discontinuities (i.e. not all distances had
associated data) and the common binning of data into distance classes. This gave us 107 papers presenting
168 dispersal kernels. Some papers reported multiple dispersal datasets, and these were either for different
plant species, for different vectors (in terms of the dispersal mode, e.g. wind vs vertebrate; or the vector
species) of the same species, or for the same species in different environments (e.g. forest vs clearing).
Replicate kernels for a species in the same situation (i.e. vector and environment the same) were analysed
together, accounting for replication. Occasionally different papers contained versions of the same dataset;

for these we selected the most comprehensive dataset.

Most datasets, 125, were given as ‘bin’ data such that numbers or proportions of seeds were
reported for contiguous distance classes. In these cases the distance was assumed to be at the mid-point of
the bin. Forty one kernels were given as ‘trap’ data, with densities or seed numbers reported for discrete

and non-contiguous distances. Only two datasets were given as individual seed distances.

We added supplementary data to each dispersal dataset. i) The dispersal mode: ant, ballistic,
rodent, vertebrates other than rodents (separated as rodents were a large class and other vertebrates are
more mobile), vehicle (cars, etc), wind. In this paper, we use the term dispersal mode (e.g. Willson et al.
1993), which is synonymous with the term dispersal syndrome as used by Tamme et a/ (2014) and Thomson
et al. (2011). Wind-dispersed species were separated into those with an appendage that facilitates wind
dispersal such as samaras or plumes, vs those with simple seeds/fruits. Modes were taken from the original

8
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publications. Each dataset had a specific, stated mode, although different datasets for the same species
sometimes represented different modes (reflecting that many species are dispersed by multiple vectors
(Bullock, Shea & Skarpaas 2006)). In the case of dispersal by vertebrates, some datasets represented
dispersal by a single species (30), while others represented dispersal by multiple species (42). ii) The growth
form: climber, graminoid, herb, shrub or tree. Classifications were taken, and sometimes simplified (e.g.
grasses and sedges into graminoids) to avoid too many classes, from the original publications. iii) Seed mass
(i.e. of the seed, not necessarily the dispersule) from Tamme et al. (2014), the original publication or online
sources, especially the Seed Information Database (Royal Botanic Gardens Kew 2015). iv) Plant height from
Tamme et al. (2014), the original publication or online sources. v) The plant family, the country and
continent, and the vegetation type; taken from the original paper. vi) The maximum distance to which
dispersal was measured. This represented a wide range; of the maximum measurement distances, the
median was 45m, the maximum 6,500m and the minimum 0.2m. But all these kernels showed clear distance
patterns (i.e. none showed a few similar densities close to the source, representing a very partial description

of the kernel).

FITTING DISPERSAL FUNCTIONS

We fitted 11 functions to each of the 168 empirical kernels (Table 1). These are 1- or 2-parameter functions
commonly used in analysing dispersal data as summarised by Nathan et al. (2012), from whose list of
functions we excluded only the General Mixture function (describing a mixture of two unspecified functions)
and the undefined version of the Power Law. Mixtures of functions can indeed provide useful descriptions
of dispersal (e.g. Bullock & Clarke 2000), but they comprise more than two parameters which can lead to
over-fitting and a lack of generality. We used the forms of the functions as dispersal location kernels given
by Nathan et al. (2012) and represent dispersal in two dimensions. As the data were densities we multiplied
these functions by a fitted parameter Q which is the number of seeds dispersed. In some cases Q was
reported in the publication, being the number at the source. But in many cases Q was not reported or known
with any accuracy (the number of seeds found is a poor estimate of Q because it is likely that not all

dispersed seeds were detected by the sampling method), so Q was fitted in each case.
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These functions were fitted to each dataset using SAS Proc NLMIXED, which fits nonlinear mixed
models by maximum likelihood. The shape parameter a, the scale parameter b and Q were fixed effects
while replicates, if present, were added as a random effect to the Q parameter (i.e. with common a and b
values as we assumed these to be fixed) — see eqn S1. We used Poisson errors following examination of the
data and residuals. Zero densities were retained, except that data sets that ended with a series of zero
densities (22 of the 168) at the furthest distances were truncated to the first zero density to avoid zero-
inflation of the data. We assumed dispersal was isotropic in all cases, and indeed all studies apart from one
did not split data according to direction (Bullock & Clarke 2000; we merged data among the directions in
this case). Fits of the functions were compared using AlCc, a corrected AIC which relaxes the large sample
assumption. As with AIC, this penalises functions which have more parameters. The best fitting function for
each dataset was that with lowest AICc, but following convention we included in this best-fit group those
with an AAICc (i.e. difference from the lowest AlCc) <4.The AlCc only determines the best of the available

functions, so goodness of fit was assessed by calculating Nakagawa & Schielzeth’s (2013) general r%:

N (5.2
r2=1_2i_1(371 Vi) ean 1
i) a
where n is the number of observations, y; is the ith observed value, yiis the ith predicted value, and y is the

mean value.
GENERALISING DISPERSAL KERNELS

AlCc values showed that the Exponential power (ExP) and Log-sech (LogS) were by far the most frequent
functions in the best fit group across the 168 datasets. We concluded these would be the two most
appropriate functions for a general description of dispersal kernels according to plant characteristics. Using
two functions allowed us check whether findings were independent of the exact function used. The ExP and
LogS functions did not describe all datasets well, so we applied an arbitrary threshold of r2>0.7 for inclusion
of a case study in the further analyses using the ExP (144 of the 168 datasets) or LogS (142: this is not exactly
the same group as that meeting this criterion for the ExP; 16 datasets were assigned uniquely to ExP or

LogS).

10
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We analysed whether the included studies for either function were a biased set in terms of plant
characteristics of the full set of studies, and so whether our analyses using this set would give a biased
understanding of dispersal kernels (Table S1). This was not the case for growth form, dispersal mode, plant
height or seed mass, with the exception of a slight difference in plant heights for LogS, with excluded plants
being taller (Kruskal Wallis; p=0.043; means 13.04 m vs 8.95 m). We also use Kruskal Wallis to assess if the
included studies represented a biased set of case studies in terms of the methodology —i.e. the maximum

distance over which dispersal was measured. This was not the case for ExP (p=0.283) or LogS (p=0.515).

The mean distance of the ExP is a function of both parameters:

r'(3/b)
I'(2/b)

mean(ExP) = a eqn 2

([ is the gamma function). The Log$S has an unspecified mean for b>1 (which was found for 60 datasets). We
used the ExP mean to compare the datasets in terms of how plant characteristics affected the ExP kernel.
We calculated the ExP mean dispersal distance for each of the 144 case studies with r?>0.7, and tested for
differences in this mean according to four principal plant characteristics: growth form, dispersal mode, plant
height and seed mass. These were shown by Tamme et al. (2014) to be good predictors of measured
maximum dispersal distance, and they represent straightforward classifications of plants into types that
might be used in assigning dispersal kernels for modelling or other studies. We fitted linear models using
SAS Proc MIXED to the ExP means using all combinations of these four factors (seed mass and plant height
were logio transformed). Interaction terms were not included as the data were unbalanced and collinear.
The model with lowest AIC comprised Growth form + Dispersal Mode + Plant height (AIC= 405.8, r’=0.56),
with one other within 4 AIC, i.e. Growth form + Dispersal Mode + Plant height + Seed mass (AIC = 405.9)
(see Table S2 for the full analysis). We also ran the best performing linear model combining classes which
might be expected to have similar dispersal kernels: graminoids and herbs (AIC = 410.1), climbers and trees
(405.8), rodents and other vertebrates (426.4), and vehicles and vertebrates (406.7). None of these reduced

the AIC so we kept the full set of growth forms and dispersal modes in further analyses.

11
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We therefore fitted general ExP and Log$S dispersal functions to the r?>0.7 case studies grouped
according to growth form and dispersal mode. For both ExP and LogS 10 form/mode primary combinations
had a reasonable number (>3) of case studies to fit general functions (Table S3); we considered <3 cases to
be too affected by the particularities of the individual case studies. Preliminary analyses showed an
alternative approach using plant height or seed mass as modifiers of the a and/or b parameters was not
effective and led to poor model convergence. To use the information provided by these extra variables,
where there were sufficient datasets we also fitted functions to subdivisions of the primary form/mode
groups, using the variable most likely to be important for that group: seed mass for animal-dispersed groups
and plant height for wind-dispersed groups (Table 3). While seed mass rather than plant height would be
expected to affect animal dispersal, both might be important for wind dispersal. Thomson et al. (2014)
found that plant height is a much more important predictor of dispersal distance than seed mass, so we
chose this as the grouping criterion for wind-dispersed seeds. The number and bounds of the subdivisions
were arbitrary, but based on the number of datasets and the distribution of values of these variables, using
similar subdivisions across the groups for comparability (Table 3). For both ExP & LogS we fitted Q, a and b
to the density data, with each case and each replicate within a case was included as random factor that
affected Q. Thus we searched for common a and b values across all cases, in accordance with the hypothesis
that all studies within a specific growth form/dispersal mode (+ seed mass or plant height class) combination

followed the same underlying probability density function.

We calculated percentiles of the dispersal distances for each fit of the ExP and LogS using the
integrals of these functions formulated in terms of dispersal distances (i.e., the dispersal distance kernel
rather than the location kernel given in Table 1 — see Nathan et al. (2012), whereby the distance kernel =
the location kernel/2nd). For long-tailed kernels such as these the median is a good measure of the average

dispersal distance and the 95™ percentile summarises the tail (Tamme et al. 2014).
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Results
FITTING DISPERSAL FUNCTIONS TO 168 DATASETS

The 168 datasets covered 63 families, all the continents except Antarctica (30 countries), and the broad
vegetation types of forest (100 datasets), grassland (46), shrubland (6), and more open habitats (16; e.g.
desert, clearfell, urban). The classification of datasets among dispersal modes and growth forms was uneven
(Table 2). While the distribution of dispersal modes in nature is not known in detail, Jordano (2000)
estimated ca. 40-90% of species in forests and 20-50% in shrublands are vertebrate-dispersed, while
frugivory is uncommon in many other vegetation types. This suggests a bias towards measurements of
vertebrate dispersal (43% of datasets), as well as towards forest ecosystems (which account for only 31%

of land cover worldwide (FAO 2010)).

Of the 11 functions, the Exponential Power, 2Dt, Logistic, Gamma & Log-sech converged for all
datasets, but the other functions did not always converge (Table 1). This poor convergence was only
substantial for the Gaussian (37 datasets), which also showed poorest fit with AAICc<4 for only 30 datasets.
The other one parameter function, the Exponential, had a much better performance, being in the best-fit
group in 68 cases. The Lognormal and the Weibull also performed rather poorly. The other functions —
Exponential power, 2Dt, Power law, WALD, Logistic, Log-sech and Gamma — all performed better, but all fell
outside the best-fit group in many cases. Interestingly, the WALD, although based on a mechanistic
representation of dispersal by wind (Katul et al. 2005), was in the best-fit group of only 15 of the 55 wind
dispersal datasets and by this metric performed better than only the Exponential, Gaussian and Lognormal.
The r? values showed generally very good fit with high values (in terms of the median value and number of
datasets for which r’>0.7; Table 1) for most functions except the Gaussian and Lognormal, and the patterns
of r? values followed those of the AlCc values. Fig. 1 shows some example plots of data with the fitted
functions. Tables S4 and S5 present the fitted parameter values for all well-fitting functions for each of the

168 datasets and the supplementary data describing the species and study system.

The Exponential power (ExP; AAICc<4 for 111 cases) and Log-sech (LogS; 119) clearly outperformed

the other functions (but note these numbers are <«168). The ExP can reduce to an Exponential (b=1) or

13
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Gaussian (b=2), and can fit a fat tail (b<1) or a thin tail (b>1). Of the 144 datasets selected as showing good
general fit to the ExP (i.e. r’>0.7), 117 had a b<1, and 27 had b>1, suggesting that a majority of kernels are
fat-tailed. The LogS is always fat-tailed (power-law tail) and flattens (for b<1) or decreases (b>1) close to 0

distance. Of the 142 datasets with good general fit to the LogS, 90 had b<1 and 52 b>1.

Although the case study composition of the best-fit group differed among the functions, there was
no bias in comparison to the full set of case studies in terms of dispersal mode (x* = 45.9, df = 40, p=0.24),
growth form (x? = 21.7, df = 20, p=0.36), plant height (Kruskal Wallis H = 9.6, df = 10, p=0.48) or seed mass
(H =125, df = 10, p=0.25). We also asked whether the study design affected the set of best-fit functions
(e.g. was a function allowing a fatter tail less likely to fit kernels measured over shorter distances?), but the
maximum distance over which dispersal was measured did not differ among the best-fit groups (H = 15.4,

df = 10, p=0.12).
GENERALISED DISPERSAL KERNELS

The fitting of the ExP and LogS functions across grouped datasets provided generalised dispersal kernels for
a number of well-studied plant growth form/dispersal mode combinations (Table 3, Fig. 2). Across the 10
combinations both the ExP and LogS gave similar and generally good fits, with r? ranging from 0.39-0.97
(median 0.73, r’<0.7 for 3 combinations) for the former and 0.32-0.97 (median 0.78, r’<0.7 for 3) for the
latter; although the patterns of r? values across the form/mode combinations differed between ExP and
LogS (note that it is not appropriate to compare the fits of the ExP and LogS using AIC as they were fitted to
different sets of case studies). Similar results were seen for the sub-divisions according to seed mass or

plant height classes, with r’<0.7 for 12 of 38 groups across the ExP and LogS functions.

Median dispersal distances of the fitted functions were in the order Trees (ExP mean of the medians
=20.9 m) > Shrubs (3.05 m) > Herbs and Graminoids (0.38 m). Vertebrates (excluding rodents; ExP mean of
the medians = 22.5 m) dispersed seeds further than Rodents (5.45 m), which dispersed seeds similar
distances to Wind for dispersules with an appendage (8.75 m), while dispersal by Ants (0.87 m), Ballistic
(0.45 m) and Wind for dispersules with no appendage (0.20 m) resulted in the shortest median distances.

The same patterns were found for the 95" percentile and for the LogS function (Table 3). While these
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means are somewhat confounded as growth form and dispersal mode were not found in all possible
combinations, more specific comparisons show the same patterns. For Trees, dispersal distances are of the
order Vertebrate > Wind (with appendage) > Rodent. For Shrubs, Vertebrate > Ant. However, for Herbs,
Wind-dispersal of dispersules with appendages did not result in longer dispersal distances than by Wind

without appendages, Ant or Ballistic.

Taller Herbs, Graminoids or Trees had greater median and 95" percentile distances than shorter
plants within the same growth form/dispersal mode combination, and these differences were substantial
(Table 3; Fig 2c,e,j; Fig S1c,e,j) and consistent between the ExP and LogsS fits. Seed mass did not show a
consistent pattern of effects on animal-dispersed kernels. For the ExP fits, lighter seeds were dispersed
further for Ant-dispersed Herbs (Fig. 2a), Vertebrate-dispersed Shrubs (Fig. 2g) and Rodent-dispersed Trees
(Fig. 2h), but the pattern was reversed for Vertebrate-dispersed Trees (Fig. 2i) and there was little difference
between seed mass classes for Ant-dispersed Shrubs (Fig. 2f). Furthermore, the patterns changed to some
degree when using the LogS function in that this indicated heavier seeds dispersed further in Ant-dispersed
Herbs (Fig. S1a) and Ant-dispersed Shrubs (Fig. S1f) and no pattern for Rodent-dispersed Trees (Fig. S1h).
This indicates a strong pattern for plant height effects on wind dispersal, but an inconsistent pattern for

seed mass effects on animal dispersal.

The two functions ExP and LogS described similar dispersal kernels for each combination of
datasets, as described above. However, these functions have different intrinsic shapes (Nathan et al. 2012)
and were fitted to slightly different datasets. The modelled median and 95" percentile dispersal distances
therefore differed between the ExP and LogS fitted to each combination of datasets (Table 1). This
difference for the median (in terms of the absolute % difference of the LogS value from the ExP value)
ranged from 3% to 476%, with a median of 48%. However, one function did not give a consistently higher

or lower median value than the other.
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Discussion

In this paper we present standardised dispersal kernels for 168 case studies representing a range of plant
types across a wide geographic range, as well as generalised kernels for well-studied plant growth
form/dispersal mode combinations. While it would be preferable to determine dispersal kernels directly in
the system(s) one is studying, dispersal is notoriously difficult and resource-consuming to measure (Bullock,
Shea & Skarpaas 2006). It is indicative of this difficulty that in contrast to our collation of 168 dispersal
datasets for 144 species, the COMPADRE database of plant demographic matrices currently includes 637
species and 6242 matrices (http://www.compadre-db.org/Data/Compadre; accessed 02/06/16) and has
many more to be added. Potential uses of our synthesis of empirical dispersal data include: 1) Choosing
appropriate dispersal functions in generic modelling studies; 2) Selecting informative dispersal kernels for
one’s empirical study system; 3) Using representative dispersal kernels in cross-taxon comparative studies.

Below we expand on each of these uses and discuss points that arise, including those relating to data quality.

CHOOSING APPROPRIATE DISPERSAL FUNCTIONS

Many functions are used to describe empirical dispersal kernels and the choice for a particular study often
seems to arise from personal preference or experience. The Gaussian and Exponential have statistically
mechanistic basis, in that they describe a movement process (Petrovskii & Morozov 2009). Some other
functions have a similar philosophy. For example, the 2Dt is a continuous mixture of Gaussian kernels with
variance parameters distributed as the inverse of a Gamma distribution (Clark et al. 1999). However, the
functions used are often chosen as 2-parameter equations allowing high leptokurtosis and long (sometimes
fat) tails, with little consideration of the underlying mechanism. This suggests that no one function will be
the best as they are generally simple (to allow fitting) statistical descriptions of a complex process. However,
few studies compare the fit of multiple functions to dispersal data. Martinez and Gonzalez-Taboada (2009)
fitted Exponential, 2Dt, Log-normal and Weibull functions (as well as a Weibull-Exponential mixture) to a
number of vertebrate and wind-dispersed trees and shrubs in a forest system and found different functions
performed better for different species, with no relation between dispersal mode and best-fit function. Clark
et al. (2005) fitted Exponential, Gaussian, Inverse Power (i.e. a Power Law function) and 2Dt functions to
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dispersal data for different trees in a forest plot. They found Gaussian and 2Dt functions best fitted wind-
dispersed seeds, while the Inverse Power best fitted the bird- and monkey-dispersed seeds. Greene et al.
(2004), again considering trees from a variety of studies, found the Lognormal performed better than the

2Dt or Weibull.

For this study, we opted for an objective selection of dispersal functions, using 11 listed in a review
by Nathan et al. (2012). This approach gave insights into the performance of different functions when fitted
to a wide range of dispersal kernels. The Log-sech (LogS) and Exponential Power (ExP) showed the best fits
to the datasets. It is difficult to pinpoint why these two functions perform best, but this finding suggests
these might be useful general functions to use in models. However, these functions have quite different
properties and histories of use in dispersal studies. The LogS has been used very rarely, just in one study of
dispersal of birds (Van Houtan et al. 2010). The LogS becomes the Cauchy for b=1 (Nathan et al. 2012), which
is occasionally used in seed dispersal studies (Seri, Maruvka & Shnerb 2012; Munoz et al. 2013). The LogS
also has unattractive properties, such as no mean value for b>1, nor does it have moments. The ExP has
been widely used on a variety of taxa (Nathan et al. 2012) and on many seed dispersal data since Clark et
al. (1998). It has useful properties such as a mean value (egn 2), has moments and it reduces to the
Exponential or Gaussian for certain values of b. An interesting finding was that of the 144 datasets showing
a good fit of the ExP (i.e. r?>0.7), 117 had b<1, which indicates a fat tail. Similarly nine of the 10 ExP functions
estimated for the major growth form/dispersal mode groupings had b<1, as did 17 of the 19 plant
height/seed mass subdivisions of these groupings. As an illustration of the influence of the b parameter, 57
of the 168 datasets had both the ExP and the Exponential in the best-fit group and had b<1 for the ExP (10
had b>1). The median value of the ExP b in these 57 datasets was 0.445 and the 95" percentile (as a measure
of the tail) of the fitted function was a median of 234% more than that of the fitted Exponential. Fat-tailed
kernels are a popular concept in dispersal ecology (Klein, Lavigne & Gouyon 2006; Nathan et al. 2008), but
this property of the ExP allows an explicit test whether empirical kernels are indeed fat-tailed. Because of

these properties, the ExP might be more generally useful than the LogS.
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Our suggestion that no one function would be expected to fit all datasets well is supported by the
fact that no function was always in the best-fit group for each dataset. However, there was strong
differentiation among the functions in how well they were represented in the best-fit groups. Certain
functions are very popular in the wider dispersal literature, such as: the Lognormal (Greene et al. 2004),
which performed very badly here; or the 2Dt (Jones & Muller-Landau 2008) which performed fairly well. It
is particularly interesting that the WALD performed poorly for wind-dispersed datasets. The WALD is an
analytical formulation of a wind-dispersal model (Katul et al. 2005), and has been used widely as a
mechanistic model to generate dispersal kernels (Skarpaas & Shea 2007; Bullock et al. 2012). While its poor
performance when used in this paper as a fitted function does not negate such uses, it does suggest that
more validation is needed. The WALD has a density mode at a distance >0 and the fact that many of the 55
wind-dispersed datasets showed monotonically declining density with distance may explain its poor
performance. It would be useful to revisit the WALD theory to analyse why it fails, such as the simplifying

assumptions used upon the Langevin and the Fokker-Planck equations (Katul et al. 2005).

Our analysis suggests the Gaussian is a very poor representation of the dispersal process. This point
has long been raised in the dispersal literature (Wallace 1966), but our analysis provides an objective
affirmation. While its mathematical properties make the Gaussian popular in mathematical representations
of dispersal, the low kurtosis and thin tail can lead to inaccurate predictions about dispersal distances and
spatial dynamics (Clark et al. 1998; Klein, Lavigne & Gouyon 2006). The second one-parameter function, the
Exponential, has had a similarly negative press to the Gaussian (Bullock & Clarke 2000; Nathan et al. 2012),
but it performed much better than the Gaussian. While it did not perform as well as almost all the 2-
parameter functions (but better than the Lognormal - Table 1), our analyses suggest the Exponential has
some credence as a simple function to use both as a comparator for more complex functions when fitting
data, and as a straightforward function in mathematical modelling studies. It might be argued that the good
fit in many cases may reflect data quality or inadequate sampling at long distances, in that the tail of the
kernel may not be well described. This point is countered by our analysis showing that the distance over

which dispersal was measured in a study did not differ among the best-fit groups for the set of functions.
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This does raise the issue that while the tail of the dispersal kernel is often discussed in the literature and
has a clear meaning in mathematical formulations of the kernel (Klein, Lavighe & Gouyon 2006), it is not
clear what exactly the tail is in empirical measures of dispersal, or what a sufficient measurement of this tail
looks like. Portnoy & Willson (1993) defined the tail as “the set of distance categories beyond the last clear
mode of the data”. By this definition, visual examination of each dataset suggested each represented a

kernel tail to some degree (e.g. Fig. 1).
SELECTING INFORMATIVE DISPERSAL KERNELS

As dispersal is intrinsic to plant life histories, governing local and regional population dynamics, genetic
structuring, evolutionary processes and community dynamics to name a few, knowledge of dispersal kernels
should be a key aim in many studies. The relative scarcity of such information is therefore limiting in ecology.
The individual case studies and the generic dispersal kernels presented in this paper are therefore a
resource to help address this limitation. A researcher might choose one or more case studies that match to
some extent the characteristics of their study system and/or a generalised dispersal kernel which does the
same. While we provide generalised kernels for 10 growth form/dispersal mode combinations, there are a
small number of case studies representing 13 other combinations. The potential uses of such kernels are
multiple. If one has the luxury of choice among multiple case studies, selection could follow alternative
criteria, such as fine-scale measures of short-distance dispersal when studying competition or the Janzen-
Connell effect vs less detail, but measures over long distances, to assess ability to spread or persist in

fragmented landscapes.

Furthermore, the ExP and LogS functions gave somewhat different generalised kernels, as
illustrated by variation in the predicted medians and 95 percentiles. This partially reflects the intrinsic
differences in the functions — the LogS has a power-law tail and a weak effect of distance close to the source,
whereas the ExP represents a smoother decline with distance (Nathan et al. 2012). But the differences also
reflect uncertainty in our analyses due to variation among the datasets within each group in terms of the
ecology of each system and the data-gathering approach. Our parametrisation of both functions will allow
researchers to use them in combination and represent this uncertainty in the kernel.
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Each individual case study, and thus each generalised kernel, relates to a single dispersal mode.
Multiple dispersal agents may be involved in the dispersal of seeds from a plant or of an individual seed.
Thus the ‘total dispersal kernel’ (Nathan et al. 2008) of a plant or population may require combining kernels
for multiple dispersal modes. To do so one should convolve (Neubert & Parker 2004) the relevant dispersal
distance probability density functions (pdf) —i.e. the dispersal location pdf/2nd. Surprisingly, only three of
the 107 studies considered dispersal by multiple modes: ballistic dispersal followed by ant dispersal
(Beaumont, Mackay & Whalen 2009); and dispersal by vehicles vs that by wind (Arnold 1981; Bullock et al.
2003). The same approach could be used if, say, different animal species disperse the seed and one has

individual kernels for each animal vector (Lehouck et al. 2009).

USING REPRESENTATIVE DISPERSAL KERNELS

Empirical dispersal kernels are useful for multi-species studies. These might involve modelling how fast
species may spread, or potential distributions, under a changing climate. Current approaches use a small
number of empirical datasets (Bullock 2012) or simple, pre-determined dispersal functions, such as the
Exponential (Engler & Guisan 2009; Bocedi et al. 2014). A broader range of empirically-determined kernels,
applicable to a wide range of species, should allow more realistic and representative forecasts. Another use
would be to represent dispersal in comparative studies. While plant demographic data has been used in
comparative life history analyses (Salguero-Gomez et al. 2016), dispersal information has not been included.
Other comparative analyses use traits related to dispersal ability, such as plant height, seed mass and
dispersal mode (Baeten et al. 2015). The use of information on the kernel itself should help better integrate

a more rounded understanding of dispersal into such studies.

This potential raises the issue of the how dispersal kernels vary according to plant and vector
characteristics. It should be noted that analysis of the differences among classifications are not the main
focus of this paper, and the classifications are used more to give ecologists well-defined groups from which
to draw dispersal kernels relevant to their needs. We fitted generalised ExP and LogS functions for growth
form and dispersal syndrome combinations and were able to sub-divide these further according to plant
height (wind dispersal) or seed mass (animal dispersal) classes. These functions were fitted to groupings of

20



462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

datasets each of which encompassed a wide range of systems, a diversity of data-gathering methods and
variety in the plants and dispersal vectors studied. For example, of the 30 papers (59 datasets) assessing
non-rodent vertebrate dispersal, the majority studied dispersal by small to medium sized birds (15 papers,
some papers studied more than one group), such as thrushes, tanagers or mockingbirds. Larger birds such
as toucans or cassowaries were covered in six papers, primates such as tamarins or spider monkeys in four
and medium-sized omnivorous mammals such as possums and martens in three. Bears, deer, fruit bats,
iguanas and a large freshwater fish were studied in one paper each, and two papers studied a broad,
unspecified group of vertebrate dispersers. Thus, there is inherent variation among the datasets within each
group. Despite this, the functions fitted to each group had generally high r? values, being >0.7 in the great
majority of cases and being significant at p<0.05 in all. Thus we have confidence in the value of these
generalised functions for wider use. The collecting of further dispersal datasets would allow further
subdivision of datasets according to key variables such as vertebrate type, local wind speed, size of wind-

dispersal appendage, or vegetation type.

Because the datasets varied in terms of distance classes, maximum distance, seed densities and
sampling methods, fitting functions across all the data with a and b varying according to group would not
have been sensible or feasible. However, comparisons of the fitted curves and the dispersal quantiles
allowed tentative conclusions about differences among these groups. Our data suggested average dispersal
distances vary among growth forms in the order Trees > Shrubs > Herbs, Graminoids, and among dispersal
modes in the order Vertebrates (excluding rodents) > Rodents, Wind (with appendage) > Wind (without
appendage), Ant, Ballistic. Taller plants within groups disperse seeds further by wind, but seed mass has an
inconsistent relationship with dispersal distance (see also Thomson et al. (2011)). Variation in whether or
not lighter-seeded species disperse further than heavier-seeded species may arise if larger seeds are
dispersed by larger, more mobile animals (Nathan et al. 2008) and also where a varying number of seeds

are dispersed together in a fruit (Jordano 2000).

Our findings build on the analysis by Willson (1993), who carried out log-linear regression analysis

of collated dispersal kernels (i.e. fitting an Exponential function). Interestingly, she concluded wind-
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dispersed herbs with seed appendages dispersed further than herbs using ballistic or ant dispersal, and
wind-dispersed trees and shrubs dispersed further than those dispersed by vertebrates. These findings
contradict ours and probably reflect the current availability of more data (60 papers compared to our 107)
as well as the more sophisticated analytical methods that are now available. However, this does
demonstrate the need to continue gathering dispersal data directly as it is likely conclusions will develop as

more case studies become available.

MEASURING SEED DISPERSAL

Any statistical synthesis of multiple datasets is bound by the number and quality of the studies used. The
168 datasets represent a great effort by the researchers involved and we hope this synthesis does them
justice by using these studies to provide general information for the wider use of dispersal kernels in
ecological research. However, the findings of this paper, especially the generalised dispersal kernels, are
likely to be much improved upon if further dispersal data are gathered. The fitted kernels provided here can
also be used to inform direct seed dispersal studies. Skarpaas, Shea and Bullock (2005) detailed a Monte
Carlo approach to designing seed dispersal studies efficiently using information on the likely dispersal

kernel, which could be provided by case studies and generalised kernels given in this paper.

While the relatively small number of studies is generally limiting, we can identify three particular
areas of research that require focussed activity. One is to use methods that allow better characterisation of
the tail, such as molecular markers or tracking animal dispersers (Bullock, Shea & Skarpaas 2006). The
variety of methods used to gather data is likely to lead to uncertainty. While we could not analyse this
formally due to the fact that methods used are strongly linked to the characteristics of the system studied,
analysis of biases due to methods would be useful. We did find that estimates of tree seed dispersal by
vertebrates were affected by the methods used. A number of studies combined measures of seed retention,
such as gut passage time, with data on movement by the animal vector. Dispersal distances estimated by
this method were in general further than dispersal measured by other methods, such as following
vertebrate vectors, seed trapping or using molecular markers. It is unclear however, whether this represents
a bias in the data as methods are usually chosen to match the researcher’s understanding of the system,
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such as knowledge that seeds are being carried a long way by vertebrate dispersers (see Cortes & Uriarte
2013). While biases according to method are possible, they do not undermine the aim of this paper, which

is to synthesise existing information of empirical dispersal kernels.

The second research area concerns our finding that dispersal of trees and by vertebrates are
favourite study systems. Studies on other dispersal modes and growth forms would provide much needed
data for relatively understudied dispersal systems; two in particular are dispersal of seeds by humans or by
water. Finally, little is known about how dispersal varies among habitats. In Fig. S2 we examine the seven
species in our analysis for which kernels were measured in different habitat types (usually in different
studies, but through the same dispersal mode). The study methods and habitat contrasts were too
inconsistent to allow patterns to be discerned. It is likely that habitat type and structure will affect the
dispersal process (Westcott et al. 2005; Trakhtenbrot et al. 2014) and so more formal contrasts of kernels
among habitat types would allow characterisation of intraspecific variation in dispersal. Furthermore,
synthesis of such data would be aided by more complete presentation of the gathered data in papers. Many
papers we used presented data in graphs or other summary forms (e.g. summing across replicates).
Analyses would have more power if data are published in their raw form, and we would encourage

researchers to do so.
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Table 1 The probability density functions (dispersal location kernels, taken from Nathan et al. (2012)) fitted to
the 168 seed dispersal datasets, along with summaries of the goodness of fit to these datasets. Distance (in
m) is given by d. Fitted parameters are the scale parameter a and the shape parameter b. Densities were seeds
m™2. T is the gamma function.

Number of the 168 datasets that have:

Median
Name Probability density function AAICC < 4 (best- AAICC not 2507 2
fit group) >4 converged
Log-sech (log- 1/(n?bd?) 119 49 0 142 0.971
hyperbolic secant) (a/a)t/ + (a/a)=1/P
Exponential power (_ ﬁ) 111 57 0 144 0.981
2ma?r(2/b) exp ab
Power law (b-2)(b—1) (1 + g)‘b 101 65 2 135  0.973
2ma? a
Logistic b ab\ 7! 100 68 0 133 0.951
(1+3)
2ma?l(2/b)I(1-(2/b)) ab
b-1 d?
2Dt = (1 + a_z) 98 70 0 136  0.972
Gamma b (g)b‘z exp (_ g) 98 70 0 135 0.974
2ma?T(b) \a a
Inverse Gaussian Vb ex (_ b(d—a)z) 88 77 0 123 | 0.953
(WALD) V8m3ds 2a%d
. b
Weibull 27'[1a2 dP~2exp (_ %) 77 80 11 101 0.829
Exponential b (_ 2) 68 89 11 120  0.876
2ma? a
Lognormal 1 (_ ln(d/a)z) 55 109 4 69 0.489
(2m)3/2bd? 2b2
Gaussian 1 (d_z) 30 101 37 63  0.509
na? P a?
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Table 2 The distribution of the 168 dispersal datasets among growth forms and dispersal modes.

Dispersal Ant Ballistic Rodent Vehicle Vertebrate  Water Wind Wind (no  Total
mode (excl. rodent) (appendage) appendage)
Growth form

Climber 0 1 0 0 3 0 2 0 6
Graminoid 1 0 0 1 0 1 0 9 12
Herb 11 13 1 2 3 0 10 13 53
Shrub 6 2 0 0 15 0 1 4 28
Tree 0 3 12 0 38 0 16 0 69
Total 18 19 13 3 59 1 29 26 168
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Table 3. The a and b values for the Exponential power and Log-sech functions fitted to case studies grouped by growth form and dispersal mode, and

sub-divided where possible by seed mass (animal-dispersed) or plant height (wind-dispersed). These sub-divisions show the actual data ranges (see
text) and so are discontinuous. The goodness of fit (r?) and number of studies (n) are given with median and 95" dispersal distances of the fitted

kernel. See Figs. 2 and S1 for plots of the fits.

Growth form

Dispersal mode

Exponential Power (ExP)

Log-sech (LogS)

Percentile Percentile
a b r n | distances (m) a b r n distances (m)

50th 95th 50th 95th

Herb Ant 0.5281 1.2762 0.743 9 |0.629 |1.572 |0.4580 [0.3859 0.442 | 12 |0.458 |[1.222
0.7-8mg | 2.5x10° |0.1888 0.929 3 |0.561 |6.838 |0.2305 [0.3528 0.871 | 5 [0.231 |0.565

10-36mg | 0.3726 1.1615 0.939 6 [0.499 |1.305 |0.4667 [0.4726 0.620 | 7 |0.467 |1.552

Herb Ballistic (all <10mg & <1m) 0.0917 |0.6349 0.390 10 {0.470 |1.757 |1.0634 |0.8319 0.455 | 12 [1.063 [4.926
Herb Wind + appendage 4.7x10” |0.2336 0.879 10 {0.388 [3.623 |0.1253 |0.6893 0.752 | 10 [0.125 |[0.723
1-3.5m | 1x10°8 0.1423 0.645 5 10985 |17.91 |0.0197 [1.4989 0.996 | 5 [0.020 [0.868

0.1-0.8m | 0.0030 [0.3454 0.686 5 10.406 |2.499 |0.1286 |0.6547 0.804 | 5 [0.129 |[0.679

Herb Wind no appendage (all <1m tall) [4.2x10°® |0.2069 0.881 12 {0.205 |2.223 |0.1297 |0.9075 0.901 | 10 {0.130 |1.303
Graminoid Wind no appendage 3.0x10% |0.1597 0.430 8 |0.190 |2.908 |0.0571 (0.8171 0.749 | 8 |0.057 [0.258
1.75-3m | 31.985 1.0141 0.235 3 14593 |123.3 |31.771 (0.5193 0.839 | 3 (31.77 |119.0

0.06-0.65m | 1x108 0.1549 0.974 5 10.126 |2.015 |0.1420 (1.5777 0.819 | 5 [0.142 |7.836

Shrub Ant 0.1716 |0.5940 0.963 7 |1.116 |4.368 |0.8923 [0.6126 0.966 | 6 [0.892 [4.235
7-9mg|0.1915 |0.6272 0.974 4 11.024 |3.858 [0.7483 |0.5883 0.982 | 4 |0.748 |[3.339

29-40mg|0.2680 |0.6568 0.861 3 (1.229 [4.485 |1.5088 |0.8458 0.868 | 2 |1.509 |12.95

Shrub Vertebrate 1x10°8 0.1339 0.996 18 |14.974 |99.39 |[28.659 |0.8208 0.831 | 18 |28.66 |130.1
0.2-3mg| 1x108 0.1161 0.879 11 |375.7 |9471 29.216 [ 0.8369 0.870 | 11 |29.22 |245.2

31-69mg | 1x10°® 0.1264 0.973 2 [26.01 |[569.7 |25.220 |0.8415 0.980 25.22 [214.2

5000-10500mg (0.0008 |0.3122 0.997 5 10.249 |1.693 |0.0584 [0.8088 0.861 | 5 [0.058 [0.456

Tree Rodent 0.1507 |0.4171 0.703 11 {5.449 |20.29 |8.4496 |0.7566 0.873 | 11 |8.450 |[57.83
195-950mg|2.0615 |0.6538 0.809 5 19.594 |35.12 |7.9526 [0.7733 0.744 | 5 |7.953 |[56.79

2420-18800mg|0.3212 |0.5035 0.811 6 |4.190 |18.58 |8.9256 [0.7269 0.803 | 6 [8.926 |56.64

Tree Vertebrate 1x108 0.1246 0.690 39 |{40.01 |897.1 |49.997 [1.3989 0.807 | 39 |50.00 (1751
0.3-15.1mg| 1x108 0.1288 0.781 10 {1496 |317.9 |15.511 |1.2950 0.740 | 10 [15.51 |[417.2

31-180mg | 1x10°8 0.1237 0.867 11 {49.89 |1132 10.014 |1.7790 0.264 | 9 [10.01 [921.8

200-800mg | 1x10°® 0.1238 0.804 9 |48.68 |1103 97.668 [0.7489 0.624 | 13 |97.67 |655.7

1000-113700mg | 1.8875 |0.3410 0.198 9 |285.2 |1778 22.922 |11.0219 0.439 | 7 (2292 |[307.9

Wind + appendage 0.5602 [0.4289 0.720 21 |17.11 |86.57 |19.709 [0.5853 0.317 | 20 (19.71 |[87.27

Tree 30-46m|1.3437 |0.4654 0.364 7 |25.98 |122.7 |29.601 [0.9953 0.7031| 6 [29.60 |371.6
5-15m|2.7825 |0.8346 0.580 14 {6.663 [20.87 |3.4581 |0.3988 0.4835| 14 {3.458 [9.531
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Fig 1. Six examples of the 168 datasets with the 11 fitted dispersal functions (see Table 1), showing logio seed density against distance. The examples are
chosen to reflect the less common growth form/dispersal mode groupings, which therefore were not among the ten groups (Table 3, Fig. 2) for which general
functions were fitted. Data sources: a) Wada and Uemura (1994), b) Tekiela and Barney (2013), c) Swaine and Beer (1977), d) Kjellsson (1985), e) Bullock and
Clarke (2000), f) (Arnold (1981)). Where plotted, the y axis is not continuous between 0 and the next tick.
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Fig 2. Generalised dispersal kernels for all 10 growth form/dispersal mode combinations for which there were sufficient datasets. Where possible, the datasets
were also split into tall vs short plants (wind-dispersed) or light vs heavy seeds (animal-dispersed). The plots show the data and the fitted Exponential Power
functions (plots for the Log-sech function are shown in the Sl). In contrast to Fig 1, the data are the probability densities, calculated by dividing the measured
seed density by the individual Q (total seed number) value estimated for each dataset while fitting the function. Both axes are logged to gain best visibility of
the data, which cover a large range in both dimensions. The y axis is not continuous between 0 and the next tickmark. Further information is in Table 3.
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Fig. 2. continued
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