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Abstract1

Stream water is a key medium for regional geochemical survey for mineral exploration and2

environmental protection. However, stream waters are transient, and measurements are suscep-3

tible to various sources of temporal variation. In a regional geochemical survey stream water4

data comprise ‘snapshots’ of the state of the medium at a sample time. For this reason the5

British Geological Survey (BGS) has included monitoring streams in its regional geochemical6

baseline surveys (G-BASE) at which daily stream water samples are collected, over variable time7

intervals, to supplement the spatial data collected in once-off sampling events.8

In this study we present results from spatio-temporal analysis of spatial stream water sur-9

veys and the associated monitoring stream data. We show that the variability of monitoring10

stream data from the G-BASE surveys has a temporally correlated component which can be11

treated as independent between streams, and therefore as a component of the nugget (spatially12

uncorrelated variance) of the spatial variograms of stream water survey data. For the variables13

examined this component was small relative to the spatial variability, which indicates that the14

value of stream water data to provide spatial geochemical information is not compromised by15

temporal variability. However, these conclusions are conditioned on the particular data set which16

was collected only in the summer months, specifically to limit temporal variability. Temporal17

variation in stream water analyses may be less tractable in wetter conditions. We show how18

the spatial data from stream water surveys can be mapped by ordinary kriging, with the pre-19

dictions interpreted as an estimate of the temporal (summer months) mean, and the kriging20

variance reflecting the partition of the nugget variance of the spatial variogram between spatial21

and temporal components.22
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1. Introduction24

Geochemical mapping entails the sampling of surface materials, notably soils, stream sedi-25

ments and stream waters. It is generally recognized that regional scale survey of all these media26

can provide information on both geogenic and anthropogenic sources of geochemical variabil-27

ity (De Vivo et al., 2008), and this information can be useful for the investigation of mineral28

resources and for managing potentially harmful elements whether these arise from naturally29

occurring mineralizations or pollution (Cocker, 1999; Simpson et al., 1993). For this reason30

geochemical surveys at regional and national scale have included sampling of all three media31

(De Vivo et al., 2008; Birke et al., 2015). The Geochemical Baseline Survey of the Environment32

(G-BASE), conducted in the United Kingdom by the British Geological Survey (BGS), included33

sampling of stream waters for a limited set of determinands at its inception, and since 1988 rou-34

tine sampling of both stream sediments and stream waters for multi-element analysis (Johnson35

et al., 2005).36

Surveys of stream waters provide general geochemical information, and are also informative37

about issues of water quality of direct relevance for policy, management and regulation. For ex-38

ample, G-BASE stream water data have been used to estimate exposure of non-human species39

to naturally occurring radionuclides (Jones et al., 2009), to understand the significance of ge-40

ogenic sources of arsenic (Breward, 2007) and to estimate carbon dioxide fluxes from surface41

waters (Rawlins et al., 2014). Geochemical surveys of stream waters have been used to investi-42

gate pollution associated with industrial activity (Vaisenen, et al., 1998) and to investigate the43

combined effects of geology and anthropogenic factors on water quality (Reimann et al., 2009).44

While data on stream water are useful, it is, at least potentially, more transient than soil45

or sediment. In a regional survey a stream is visited once, and the sample that is collected46

represents a snapshot of its geochemical composition at a particular time. The water chemistry47

of a particular stream is subject to variation over time over a range of temporal scales. Kirchner48

and Neal (2013) report studies on detailed analysis of the streamwater chemistry from two head-49

water catchments at Plynlimon in Wales. These showed fractal scaling of solute concentrations50

consistent with a model of randomly varying inputs across the catchment followed by dispersion51

driven by water transport across the landscape (Kirchner et al., 2001). The concentration of52
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an analyte in stream water may vary in response to flow rate. One reason for this is a dilution53

effect. An increase in flow rate may also be associated with an increase in the influence of the54

distinctive chemistry of rainwater on the composition of the stream (Appelo and Postma, 2007;55

Drever, 1997), contributions from overland flow or increased leaching of solutes into shallow56

groundwater. Over longer periods stream water composition may respond to seasonal differ-57

ences in rainfall and to anthropogenic inputs, such as artificial fertilizers, which may include58

various trace elements along with the principal nutrients, and slurries and manures which may59

contribute both organic components, macronutrients such as P and trace elements such as Cu.60

These sources of temporal variation must be accounted for when stream water geochemical61

data are interpreted to understand regional spatial variation. Hutchins et al. (1999) compared62

the spatial variability of stream water data from G-BASE sampling in Wales with temporal63

observations made in a single catchment within the country at 2- to 4-week intervals. They64

did not attempt any spatio-temporal statistical modelling of these data, but noted that geo-65

logical, meteorological and anthropogenic effects could be seen in the spatial variation. They66

concluded that more observations on temporal variability of stream water data were needed in67

combination with the spatial sampling for robust inference. In 1997 BGS modified the field68

sampling procedures of the G-BASE survey to include repeated sampling from a small number69

of monitoring sites, sampled daily while the regional survey was conducted nearby. As a result70

the monitoring-site data consist of relatively short local time series, from a few days up to 30 or71

40. This provides information on the short-scale temporal variability of the variables measured72

on stream water in the G-BASE survey.73

While there have been detailed studies on the temporal variation of streamwater chemistry74

within one or two associated catchments (e.g. Neal et al., 2013; Kirchner and Neal, 2013)75

we require a more extensive study of spatio-temporal variability in order to understand how76

temporal variation affects the interpretation of data from spatial surveys with one-off sampling77

of individual streams. In this paper we analyse the data on some key variables from monitoring78

stream sites in the G-BASE survey of part of the English Midlands and the East Anglia region.79

We use a linear mixed model to examine the within-stream variation over time, including the80

extent to which this variation is temporally correlated over short intervals. We then analyse81

the survey sample data (restricted to first-order streams) using statistical models for spatio-82
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temporal variability to examine how the temporal variation, examined at the monitoring sites,83

and the spatial variation interact. On the basis of this we can quantify the implications of84

temporal variation of stream water properties for the spatial interpretation of data from the85

regional survey which comprises only spot samples from any given stream.86

2. Materials and Methods87

2.1 Sampling and data88

The data used in this study were collected in part of the East Midlands and the East Anglia89

region of England from 1996 to 2007, with no sampling in 2001 due to an outbreak of foot and90

mouth disease. In each year sampling was undertaken during the period from June through to91

September, that is to say in summer months. This was a deliberate decision to avoid wetter92

periods of the year and so to sample, as far as possible, when base flows dominate the stream93

flow. We used the stream water survey data and the data from monitoring sites collected in94

this period. Figure 1 shows the spatial distribution of both data sets. The sampled region is95

a lowland area, predominantly under agriculture but with some urban centres. Figure S1 in96

the supplementary material (journal website) shows the solid geology according to a generalized97

lithological classification. The aquifers are almost exclusively sedimentary, with Triassic and98

Jurassic mudstones, Cretaceous chalk, Palaeogene clays and poorly consolidated Pleistocene99

sediments dominating the area. These give rise to a generally subdued topography and so100

streams are relatively slow-flowing. Figure S9 shows the stream water survey sample sites101

collected in each year.102

The data were collected according to the standard G-BASE procedures (Johnson et al.,103

2005). Drainage sample sites, at which both sediment and water specimens were collected, were104

identified in advance on small streams (first or second order). The target sample density was one105

sample per 1.5–2.0 km2, but sample density varied in accordance with drainage density. Figure 1106

shows, for example, that samples were absent or very sparse in a band running approximately107

south-west–north-east where the bedrock is Cretaceous chalk. Filtered samples for major- and108

trace-element analysis were collected from mid-stream using a syringe, and were passed through109

a 0.45-µm filter into sample bottles. Unfiltered samples were also collected for the analyses110
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including pH and conductivity. Johnson et al. (2015) give details of the protocols that were111

followed.112

The locations of forty monitor sites are shown in Figure 1. Sampling was undertaken by113

one or two teams at any one time, and a monitor site was established near the base that the114

team was using at any given time. The monitor site was sampled daily according to the same115

protocols used for the field survey. Out of the forty sites, four were sampled in two successive116

years of the survey, although none for more than 30 to 40 days at a time, and most for a shorter117

period of a week to 10 days.118

Sample analysis was conducted on location for pH and conductivity, with calibration and119

drift checks carried out for each run (Johnson et al., 2005). The trace elements were measured120

by inductively coupled plasma mass spectrometry (ICP-MS) in the BGS laboratories using the121

filtered acidified (1% v/v HNO3) aliquot, whilst DOC was measured as non-purgeable organic122

carbon from the filtered, unacidified aliquot, also in the BGS laboratories. Field duplicates and123

blanks were used as control samples to ensure that errors were not introduced by sampling and124

sample handling. Laboratory analyses of field and ‘blind’ control samples were conducted using125

certified standards and reference materials within an ISO 17025 certified framework (Johnson126

et al., 2005).127

In this study we restricted the survey stream sample sites to those on first-order streams.128

This ensures that, among the data we used, no two sample sites were connected by a flow129

path. Any spatial dependence in the data can therefore be attributed to variation between the130

catchments of the first-order streams.131

In this paper we report on the analysis of seven variables. We considered four elements (As,132

Cu, Co and Ni) which are of potential interest for water quality considerations, and which may133

reflect both anthropogenic and geogenic inputs. We also examined data on water conductivity134

and dissolved organic carbon, which may reflect variation over time in inputs from different135

sources, including overland flow. Finally we included pH which is an important property of136

stream water for understanding its overall geochemistry.137

We have deliberately not considered major constituents of water in this study. Data on water138

constituents are compositional in that the quantity of a component of interest is expressed139

relative to others (Buccianti and Pawlowsky-Glahn, 2005). Statistical analysis of such data140
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requires that they are transformed to an appropriate scale, e.g. by the log-ratio transform141

(Aitchison, 1986). In the analysis of major constituents of water subsets are typically selected142

and rescaled to a subcomposition by dividing the concentration of each constituent by the sum143

of concentrations over the subset. Three-component subcompositions can be represented on a144

ternary diagram; for example, Baca and Threlkeld (2000) considered Mg+, Ca2+ and (Na+ +145

K+) as three constituents of a major cation subcomposition, and Cl−, SO2−
4 and (HCO−

3 +CO2−
3 )146

as a major anion composition to distinguish waters from continental and coastal precipitation.147

The statistical analysis of such compositions requires special treatment, for example by the148

additive log-ratio transformation when we are interested in spatial modelling for prediction. For149

minor constituents the log-transformation of concentrations generally suffices prior to analysis150

because it differs negligibly, up to a constant, from the additive log-ratio transformation (see151

Pawlowsky-Glahn and Olea, 2004). A further advantage of using only the log-transformation152

is that it is straightforward to compare the transformed variable to regulatory thresholds on153

concentrations of potentially harmful elements. This defines the scope of the study reported154

here. We outline in the discussion section the necessary development of our methodology to155

extend it to the analysis of major ions.156

2.2 Statistical analysis157

2.2.1 Exploratory analysis158

Summary statistics were calculated for both the monitoring site data and the first-order159

stream data, considering both the variables on their initial scales and (apart from pH) after a160

transformation to natural logarithms. The log-transformation was used because the variables of161

interest (apart from conductivity), while not major consituents of water are nonetheless compo-162

sitional and the transformation is therefore appropriate as discussed at the end of the previous163

section (Pawlowsky-Glahn and Olea, 2004). In the case of conductivity a log-transformation164

was considered as an option to make the assumption of normality a plausible one. Plots of the165

data time series at monitoring sites were prepared.166

These data were collected over a period of eleven years, with sampling concentrated in local167

blocks each year (see Figure S8 in the supplementary materials). For this reason long-range168

spatial variation in the variables of interest is confounded with any long-term temporal trends.169
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To examine any potential effect of long-term temporal trends (as opposed to the within-season170

temporal variation that we can observe at monitoring sites), we computed spatial variograms171

of the data. A variogram is a function that expresses the spatial dependence of variability, it172

is half the expected squared difference between two observations separated by some interval173

(lag) expressed as a function of the lag (Webster and Oliver, 2007). More information on the174

variogram is provided in section 2.2.3 below. For exploratory purposes we estimated two spatial175

variograms. Each variogram was computed from all available data for lags restricted to no more176

than about 40 km, about one third the largest dimension of the study region, to avoid edge177

effects (Webster and Oliver, 2007). The first used all comparisons among observations, the178

second used only comparisons between observations from sites sampled in the same season. If179

there were large temporal trends over the 11-year period then one might expect the variogram180

estimated from all pair comparisons to be systematically larger than the variogram estimated181

only from within-season comparisons.182

2.2.2 Temporal analysis of monitoring site data183

The daily monitoring site data on the variables of interest were analysed as a combined set of184

time series. The analysis was done by fitting a linear mixed model (Verbeke and Molenberghs,185

2000). In the model used for analysis there was an overall mean value across the domain. This186

is a space-time mean for the summer months (late June to early September) over the period of187

sampling (1997–2007). The model allowed the mean value of data to vary randomly between188

sites, and treated the variation within sites as a temporally correlated random variable. It was189

assumed that the within-site variability was homogeneous across the study region (many more190

data would be needed to fit a more complex model without this assumption). Note that the191

between-site variation will combine both spatial variation and any temporal variation over the192

period of sampling, with the components confounded to some extent as sampling earlier in the193

period was in the west of the region. This makes the between-site component of the model194

difficult to interpret in isolation. However, the focus of our interest in this part of the analysis195

was on the within-site temporal variation.196

The set of N observations of some variable in the monitoring site data was modelled as an197
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N × 1 random variate, Y defined by a linear mixed model where198

Y = Xβ +Usυs + η + ε. (1)

The term Xβ defines a N × 1 vector of mean values for the variable y. In the simplest case X is199

just a vector of ones, and β is a vector length 1 which contains the overall mean, µ. This is the200

model we used in this analysis, but a more general model could be used, for example to specify201

the mean as a function of some covariate. The remaining terms of the model are random effects.202

The matrix U is an N × P design matrix which associates each of the N observations with one203

of the P monitoring sites, all terms in the mth row of U are zero except for the pth column204

which takes the value 1 indicating that the nth observation is at the pth monitoring site. The205

term υs is a normal p× 1 random variate with distribution206

υs ∼ N
{
0P , σ

2
S1P

}
,

where 0N is a P ×1 vector of zeroes, σ2
S denotes a variance, the between-site variance, and 1P is207

an P × 1 vector of ones. Note that we treated the difference between the mean value for the pth208

monitoring site and the mean over the domain as an independent random variable with variance209

σ2
S. This variable captures spatial variation between sites, and any long-term temporal variation210

over the period of sampling.211

The term η is an N × 1 random variate which expresses the temporally correlated variation212

of the variable of interest within any monitoring site. That is to say, it expresses about the213

site mean which is due to factors which operate at different temporal scales and so gives rise214

to components of temporal variation which are, on average, more similar if compared over a215

short time interval than over a long time interval. The variance of this component is σ2
T,c, and216

the values of η for any two of the N observations have a correlation which is expressed in the217

correlation matrix RT. The term η is a normal random variate with distribution218

η ∼ N
{
0N , σ2

T,cRT

}
.

Consider two observations sampled on days ti and tj. The correlation of the corresponding219

values of η is zero if the observations are at different monitoring sites but otherwise is given by220

an autocorrelation function which, under an assumption of second-order stationarity is assumed221
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to depend only on the difference between the two times, the time-lag τ = |ti − tj|. In this study222

we used a Matérn autocorrelation function (Matérn, 1960):223

ρM (τ |κ, φ) =
(τ/φ)κKκ (τ/φ)

2κ−1Γ(κ)
(2)

where Kκ (·) denotes the modified Bessel function of the second kind of order κ, Γ (·) is the224

gamma function, φ is a time parameter, and κ is a parameter which determines the smooth-225

ness of the spatial process. This autocorrelation function decays with increasing temporal lag.226

The smoothness of the temporal variation is described by the parameter κ, with the variation227

appearing smoother the larger this parameter. The autocorrelation decays asymptotically to228

zero, and is typically characterized by the ‘effective temporal range’, the temporal lag at which229

the autocorrelation decays to 0.05. The effective temporal range depends on the values of the230

parameters κ and φ.231

The final term in Eq. [1] is ε which is an independently and identically distributed, and hence232

temporally uncorrelated, error term with variance σ2
T,n. This is modelled as a normal variate:233

ε ∼ N
{
0N , σ2

T,n1N

}
.

This component of the model corresponds to all sources of temporal variation which are not234

resolved by the daily sample interval. It will therefore include short-range components of vari-235

ation (e.g. any source of variation correlated over less than 24 hours or so) and any analytical236

error.237

The temporal statistical model for the monitoring site data has been stated. It has two238

sets of parameters. The first set are variance parameters, which characterize the three random239

components. These are the variance of the between-site random effect, σ2
S, the variance of240

the temporally correlated within-site random effect, σ2
T,c, the parameters of the autocorrelation241

function, κ and φ, and the variance of the uncorrelated random effect, σ2
T,n. In addition to242

the variance parameter there are fixed effects, the values in the vector β which in this study243

is a single constant, the mean µ. We used residual maximum likelihood (REML) to estimate244

the variance parameters, and then estimated β by weighted least squares. This reduces bias in245

the estimates of the variance parameters because these do not depend on some estimate of the246

unknown mean. Under the model in Eq. [1] the random variate Y has an N × N covariance247
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matrix C. We treat the three separate random effects as mutually independent, and so C is the248

sum of three separate covariance matrices:249

C = σ2
SUUT + σ2

T,cRT + σ2
T,n1N . (3)

The negative log residual likelihood can be computed given a set of N observations of our250

variable of interest in the vector y as251

ℓ (ψ|y) =
1

2

(
ln |C|+ ln

∣∣∣XTC−1X
∣∣∣+ yTPy

)
, (4)

where P is252

P = C−1 −C−1X
(
XTC−1X

)
−1

XTC−1, (5)

and ψ denotes a set of variance parameters, ψ =
{
σ2
S, σ

2
T,c, κ, φ, σ

2
T,n

}T
.253

In REML estimation we find a set of variance parameters, ψ̂, which minimizes ℓ as defined254

in Eq. [4], given a set of data, z. This must generally be done by a numerical optimization.255

We used the optim procedure in the R package (R core team, 2014) to find REML estimates of256

the random effects parameters, the values that minimize the negative log residual likelihood as257

defined in Eq. [4]. The L-BFGS-B (Low-memory Broyden-Fletcher-Goldfarb-Shanno, bounded258

algorithm) optimization method was selected (Byrd et al., 1995) as this allows us to put bounds259

on parameters and so to avoid numerical problems if the optimizer considers a negative value260

for a variance. We followed Diggle and Ribeiro (2007) in not attempting to find the κ smooth-261

ness parameter by allowing it to vary freely with the others, but rather specifying a small set262

of discrete values of the parameter and finding the REML estimates of the other parameters263

conditional on each of these values and selecting the one for which ℓ is smallest. We considered264

values of κ = 0.1, 0.5, 1.0, 1.5 and 2.0, although we did not compute the REML estimate with265

κ = 2.0 if there was a clear minimum of the negative residual log-likelihood for some smaller266

value.267

The definition of the negative log residual likelihood in Eq. [4] is explicitly based on an268

assumption of normality. For all monitoring site data the transformation of values to logarithms269

(apart from pH) gave a value of the skewness coefficient within the interval [−1, 1], except for270

cobalt which was slightly larger than 1.0. A skewness coefficient within this interval is a general271
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rule of thumb for success in data transformation (Webster and Oliver, 2007). On this basis, and272

examination of histograms, we regarded an assumption of normality as plausible for the data for273

pH and for the other variables with log transformation. The Box-Cox transformation, of which274

the log is a special case, might be considered to achieve still smaller skewness, particularly275

for cobalt, but this was not done because of the difficulty of comparing variance components276

for variables under different non-linear transformations; the log transform is widely used in277

geochemistry and, as noted above, is particularly suitable for data on small components of278

compositional sets of variables. Furthermore, likelihood-based inference is relatively robust to279

small departures from normality, as shown by Kitanidis (1985), and Pardo-Igúzquiza (1998)280

offers an argument based on maximum entropy for the use of maximum likelihood as a criterion281

for inference even in the non-normal case.282

The fitted model assumes that there is temporal dependence in the random effects (i.e. that283

we require the term η). Under an alternative model this term could be dropped, and the within-284

site temporal variance treated as entirely uncorrelated. It is not possible to test directly the285

significance of the η term in the model specified in Eq. [1] by comparing the model with one286

in which the term is dropped, but these two models can be compared with respect to their287

respective Akaike information criterion, AIC (Akaike, 1973):288

AIC = 2ℓ+ 2P, (6)

where P is the number of parameters in the model and ℓ is the negative residual log-likelihood.289

The second term in Eq. [6] can be regarded a penalty for model complexity. Although the AIC290

is not a formal significance test, if one selects the model with the smallest AIC one minimizes291

the expected information loss through the selection decision (Verbeke and Molenberghs, 2000).292

AIC was computed for the linear mixed model with and without the correlated term η for each293

variable.294

2.2.3 Spatio-temporal analysis of first order stream data295

The first-order stream data were analysed in conjunction with the monitoring site data by296

the computation of space-time variograms. In the previous section we introduced the temporal297

lag, or interval between two observations in time, denoted by τ . Similarly we can define a298

spatial lag by a vector h, an interval between two observations in space. For a random variable299
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Z sampled in space and time the space time variogram is defined as300

γ (h, τ) =
1

2
E
[
{Z(x, t)− Z(x+ h, t+ τ)}2

]
, (7)

where E [·] denotes the statistical expectation of the term in square brackets. For practical301

purposes, with irregular sampling in space, one may define a lag bin (hi, τ) by the time lag τ302

and some range of tolerance about the central direction and scalar distance of the lag h, see303

Webster and Oliver, 2007). A method of moments estimator of the space time variogram is then304

γ̂ (hi, τ) =
1

2Nhi,τ

∑

(h,τ)∈(hi,τ)

[
{z(x, t)− z(x+ h, t+ τ)}2

]
, (8)

where the summation denotes summing over all comparisons between pairs of data points sep-305

arated by time-lag τ and a spatial lag in the lag-bin hi and where there are Nhi,τ such pair306

comparisons.307

Exploratory analysis of spatial variograms (τ = 0) for lag bins centered on four directions308

(North–South, North-East–South-West, East–West and North-West–South-East) for all vari-309

ables gave no evidence of directional dependence (see Figure S10 in the supplementary mate-310

rial). For this reason isotropic space-time variograms (defined on lag distances with all directions311

pooled) were used in further analysis. We considered lag bins centered on distances 5, 10, . . . 40312

km with tolerance ± 2.5km. We limited the maximum lag to 40km, approximately one quarter313

the maximum extent of the region, to avoid edge effects (Webster and Oliver, 2007).314

We estimated two sets of space-time variograms. The first were variograms for a full set of315

spatial lags and a subset of four temporal lags at intervals from zero days up to a maximum lag316

comparable to the effective range of temporal dependence identified for the variable in question317

from the analysis of the monitoring site data described in section 2.2.3. The second set were318

variograms for a full set of temporal lags and a subset of spatial lags: 5, 10, 20 and 40km. These319

were plotted to allow an assessment of the spatio-temporal variability of the variables.320

A standard stochastic model for space-time data, on which the interpretation and modelling321

of space-time variograms is based, is presented by Cressie and Wikle (2011). For a random322

variable, Z, observed at location x at time t323

Z(x, t) = µ(x, t) + ζ(x) + ξ(t) + ϑ(x, t) + δ(x, t). (9)
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The term µ(x, t) is the space-time mean, which may be a constant or may vary with time or324

space or both. The remaining terms are random components of mean zero. The first, ζ(x), is a325

spatial random effect, common to all times, whereas the second random term, ξ(t), is a temporal326

random effect common to all locations. The term ϑ(x, t) is a random effect representing a space-327

time interaction, and δ(x, t) is an independent and identically distributed random effect (i.e.328

uncorrelated in space and time). In the case with a constant mean, the space-time variogram329

γ (h, 0), i.e. for spatial lags with temporal lag fixed at zero, shows the spatial dependence of the330

term ζ(x), with a nugget effect (i.e. apparent intercept at |h| = 0) equal to the variance of δ(x, t).331

Similarly the variogram γ (0, τ) shows the temporal dependence of ξ(t) with a nugget due to332

δ(x, t). For the case with both spatial and temporal lag not equal to zero the variogram γ (h, τ)333

may be modelled as a combination of spatial and temporal effects either with no interaction (a334

so-called separable model) or with some kind of interaction term.335

In this paper we also consider an alternative model:336

Z(x, t) = µ(x, t) + ζ(x) + ηx(t) + δ(x, t). (10)

In this model the temporal random variable of mean zero, η, is specific to the location of interest,337

x, rather than being a temporal random effect common to all locations, which is the key property338

of ξ(t) in Eq. [9]. It is therefore assumed that any two values of the temporal term, ηxi
(tk) and339

ηxj
(tl) are independent if i 6= j. A stationarity assumption is made by which the variance340

of ηx(t) is a constant, σ2
η , irrespective of the location, x, and that the autocorrelation of the341

temporal random effect is a function of the temporal lag only, also independent of location:342

Corr [ηxi
(t), ηxi

(t+ τ)] = ρ(τ), ∀xi, (11)

where Corr[·] denotes the correlation of the two variables in square brackets.343

Under this model the temporal variation at any sampled stream is dominated by local pro-344

cesses at the scale of the stream’s own catchment, and so is not common to any two sample sites345

in different streams (assuming that all streams are of first order and so are not connected by346

any flow path). This could be a plausible model for stream water composition. The problem is347

to evaluate the evidence for the two models. One way to do this would be to fit appropriate spe-348

cific forms of each model by REML and compare them with respect to the maximized likelihood349
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(although this would not be a standard case for likelihood ratio tests). However, the data sets350

on first order stream chemistry comprise of the order of 4000 observations, and likelihood esti-351

mation of models with correlated random effects in this setting is computationally demanding.352

Furthermore, there are various alternative forms of the general model in Eq [9], each making353

different assumptions about the joint behaviour of the spatial and temporal variation (separable354

models and many possible forms on non-separable model). For this reason we based our compar-355

ison on evaluation of method-of-moment estimates of the space-time variogram, obtained with356

Eq. [8].357

Under the model in Eq. [10] the temporal variogram for any non-zero constant spatial lag,358

h̃, γ
(
h̃, τ

)
would be a constant:359

γ
(
h̃, τ

)
=

1

2
E

[{
ζ(x)− ζ(x+ h̃)

}2
]
+ σ2

η + σ2
δ , (12)

In the event that the temporal random effect in the model for the monitor site data shows360

evidence of temporal correlation, one would expect the temporal variogram for any non-zero361

constant spatial lag to show evidence of temporal dependence under the full space-time model362

in Eq. [9], but not under the alternative model in Eq. [10]. To evaluate the evidence for one363

model overagainst the other we examined the spatial variograms estimated for a set of time364

lags, and fitted models by weighted least squares (Webster and Oliver, 2007) to the temporal365

variograms for fixed spatial lags (5, 10, 20 and 40 km). The temporal variograms were either a366

pure nugget (i.e. a constant), consistent with the model in Eq. [10] given Eq. [12] or a Matérn367

with the parameter κ set to the value selected for the temporal model for the variable of interest368

in the analysis of the monitor-site data. One may compare models fitted in this way on a statistic369

Â which is smallest for the model with smallest AIC (Webster and McBratney, 1989; Webster370

and Oliver, 2007):371

Â = np log(R) + 2P, (13)

where np is the number of time lags at which the temporal , R is the mean squared residual372

from the fitted model and P is the number of model parameters. In this case P was 1 for the373

pure nugget model and 3 for the Matérn (the κ parameter was treated as fixed).374

2.2.4 Kriging the first order stream data375
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Under the alternative spatial model, in which the within-stream temporal variation is inde-376

pendent between separate first-order streams, the temporal variation, which we modelled as a377

combination of a temporally correlated random effect and an independent and identically dis-378

tributed random effect in the analysis of the monitoring site data according to Eq. [1], can be379

thought of as representing temporal fluctuation about a local mean. One could think of a single380

sample from a stream as providing an estimate of that mean (for the sampling domain of interest381

here, i.e. the summer months), with an error variance represented by the sum of the variances382

of the within-site random effects in Eq. [1]. We call this variance CT where383

CT = σ2
T,c + σ2

T,n.

If one were to estimate the spatial variogram of a set of first-order stream data, pooling all384

temporal lags, then, because of the independence of this spatial component between streams, it,385

in effect, contributes a quantity CT to the nugget variance of the spatial variogram. The nugget386

variance, denoted by C0, is the apparent intercept of the empirical variogram, representing387

sources of variation which are not spatially correlated at scales resolved by sampling. We would388

expect analytical uncertainty to contribute to the variance of the uncorrelated temporal random389

effect, σ2
T,n, and so this is part of CT. The difference between the nugget variance of the spatial390

variogram and CT will arise from sources of spatial variation in the mean value of the variable391

of interest at a sampling site at finer spatial scales than are resolved by the spatial sampling.392

We estimated spatial variograms of all variables of interest, with all time lags pooled, using393

the variog procedure of the geoR package for the R platform (Diggle and Ribeiro, 2007; R Core394

Team, 2014). We then fitted spatial Matérn models to these variograms using the variofit proce-395

dure in the same package, specifying weighted least squares as proposed by Cressie (1985). This396

provided estimates of the nugget variance C0, the spatially correlated variance C1, a distance397

parameter φ and a smoothness parameter κ.398

One may map properties of the water of first-order streams by ordinary kriging (OK) to399

show the spatial variation of regional geochemistry that they reveal. In the standard case for400

OK (e.g. Webster and Oliver, 2007) the prediction at some unsampled site is the best linear401

unbiased predictor of a new measurement made at that location (with any measurement error),402

and the OK procedure also computes the kriging variance, the expected squared error of the OK403
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prediction, which is minimized. However, if one can partition the nugget variance of the target404

variable of interest into a component for measurement error, and a component that corresponds405

to spatial variation unresolved by sampling (‘microscale variance’), then the OK prediction of406

the ‘signal’ can be obtained, i.e the variable without measurement error (Diggle and Ribeiro,407

2007). The OK predictions are identical at sites which do not correspond exactly to the locations408

of observations, but the kriging variances differ. The kriging variance for the signal is smaller409

than for a new observation. In the context of this work, we can regard CT as measurement410

error, since it contains both analytical error variance and the temporal variation around the411

mean value at the sample site, and the difference between the fitted nugget variance for the412

spatial variograms and CT is an estimate of the microscale variance.413

We used the krige.conv procedure from geoR to obtain kriging predictions of As and Co414

concentrations in first order streams (log scale) by ordinary kriging. We considered both kriging415

of new measurments and of the signal, computing the microscale variance component from the416

fitted nugget as described above.417

3. Results418

Time series for each monitoring site, and the year of measurement, are shown (log arsenic419

concentration) in Figure 2. A full set of plots for all variables is presented in the supplementary420

material (Figures S2–S7). Table 1 gives summary statistics for all data, and histograms of the421

first-order stream survey data.422

Figure 5 shows the spatial variograms for all variables estimated from either all pairs of423

observations or only from pairs of observations within the same sample season. The differences424

between these are all very small, with the exception of Cu. This indicates that there might be425

some long-term temporal trend in Cu concentrations, although these are also confounded with426

spatial variations. A plot of all values against sample date does not show any dominant temporal427

trend for any variable (Figure S8 in the supplementary material). These results indicate that,428

with the possible exception of Cu, the data collected over this period can be combined to show429

spatial variability, with no reason to expect that this is confounded with a long-term trend at430

regional scale.431

Table 2 presents results for the linear mixed model for the monitoring site data. Note that432
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in all cases AM was notably smaller than AIID, i.e. on the basis of the AIC one would select the433

model with a temporally correlated temporal random effect. For three of the seven variables434

(As, Cu, DOC) the best-fitting correlation model for the temporal effect had a value of κ of 0.5.435

In the case of pH the temporally correlated random variation was rougher than this (κ = 0.1),436

and in three cases it was smoother (Conductivity and Co with κ = 1.0 and Ni with κ = 2.0.437

The effective range of correlation are all fairly similar for the elements As, Cu, Co and Ni (21–26438

days). The effective ranges are shorter for conductivity (6 days) and DOC (13 days), but longer439

for pH (58 days). Note that the effective range for pH is rather larger than the longest single440

time series in the data set, and this behaviour may indicate that there are temporal trends in441

pH at seasonal scale over the summer months.442

In all cases the between-site variance, σ2
S is notably larger than the within-site variance443

components. The between-site variance comprises spatial and temporal variation, and for this444

reason we interpret the within-site variances in the context of the spatial analysis of the first-445

order stream survey data.446

Figures 6–12 show space-time variograms for selected lags for all variables. Note that there447

is no systematic increase in the variance with temporal lag for the spatial variograms (the top448

graph in each Figure) and the temporal variograms at spatial lags 5, 10, 20 and 40km appear449

mostly flat. Table 3 presents values of the statistic Â computed from Eq. [13] for the fitting of a450

Matérn or a pure nugget (constant) model to the temporal variograms. For four of the variables451

the pure nugget model is preferred (smaller Â) for the temporal variogram at all spatial lags.452

For the other three variables the Matérn model is favoured at no more than one spatial lag.453

In summary, there is no systematic evidence for a common temporally correlated component in454

the space-time model for the first-order stream survey data, and the model given in Eq. [10] is455

favoured. Under this model the temporally correlated variation at one sample site is independent456

of the variation at sites on other first-order streams. On this basis one can compute a pooled457

spatial variogram of the first-order stream survey data, with all times combined, and treat the458

sum of the two within-site variance components presented in Table 2 as components of the459

spatial nugget variance.460

Figure 13 shows these pooled estimated spatial variograms and the fitted models, the pa-461

rameters of which are in Table 4. The nugget variance, C0, is shown as a horizontal dotted462
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line on each variogram in Figure 13. Also shown is CT, the sum of the temporally correlated463

and independently and identically distributed within-site random effects of the models fitted to464

the monitoring site data. Recall that this is regarded as a component of the nugget variance465

of the spatial variograms, combining analytical error and temporal variation around the mean466

concentration at a site over the summer months. We therefore can regard CT as a measurement467

error when the field spot samples from first-order streams are treated as estimates of the summer468

mean concentration. Note in Table 4 that CT varies from 20% to a little over 40% of the nugget469

of the spatial variogram. Furthermore, with the exception of Cu, CT is also smaller than the470

spatially correlated variance, C1, although the values are close in the case of pH. This indicates471

that, while the temporal variation of stream water data is significant, it is small relative to the472

spatial variation between first-order stream measurements, including the variation at scales too473

fine to be resolved at the sampling density used here.474

Figure 14(a) shows the kriged map of As (log scale), and Figure 14(b) shows the kriging475

standard error (square root of the kriging variance). Note that the latter is computed treating476

CT as measurement error variance and the remainder of the nugget as microscale variance, i.e,.477

it is the standard error of the kriged map treated as a prediction of the local mean value over478

the summer months. The standard error largely represents the density of the observations, it is479

largest where the sampling is sparse, particularly over the Chalk bedrock. Figure 15(a) shows480

the upper limit of the 95% confidence interval for log As (i.e. the prediction plus 1.96 times481

the standard error), where the nugget is all treated as microscale variance (no measurement482

error). This is the confidence interval for the prediction of a new observation. Figure 15(b)483

shows the upper limit of the confidence interval for the prediction of the local summer mean.484

Note that these values are generally smaller. The contour line corresponds to log 10 µg l−1,485

a somewhat arbitrary value (corresponding, in fact, to the regulatory limit for drinking water)486

selected for illustration. The region inside the contour (where the shading is lighter) is where487

the upper confidence limit exceeds this threshold. Note that the region within which the limit of488

the prediction of the summer temporal mean exceeds the threshold is more restricted than the489

region where the limit of the prediction of a new measurement does so. In a regulatory context490

the former may be more relevant. This shows how quantification of the temporal component of491

variability of stream water measurements can help the interpretation of spatial data for practical492
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purposes.493

Figures 16 and 17 correspond to 14 and 15 but represent the data on Co concentration. The494

contour on Figure 17 corresponds to log 3 µg l−1, which is the Statutory regulatory threshold495

(annual mean) for the protection of freshwater life in the UK (Environment Agency, 2011).496

Note again that the subregion where the upper confidence limit exceeds this threshold is more497

restricted when we treat the temporal variance as a measurement error with the spot data an498

estimate of the temporal summer mean.499

4. Discussion500

All variables showed evidence of temporal correlation in the data at monitoring streams,501

indicating that these determinands show variability arising from temporal processes at scales502

coarser than 24 hours or so. Table 2 shows that for all variables the temporally correlated vari-503

ance was larger than the component of variance attributable to a combination of measurement504

error and variation at shorter temporal scales than the sampling interval. The effective range505

of temporal correlation, also shown in Table 2, was similar for all the elemental analyses (21–26506

days), and shorter for conductivity and DOC, and larger for pH.507

The comparison between spatial variograms of the stream survey data, estimated from either508

all pairs of observations or only from pairs of observations within the same sample season (Figure509

5) show that, with the possible exception of copper, there is no evidence of a long-term temporal510

trend in any of the variables confounded with regional-scale spatial variation. The long apparent511

range of temporal dependence of the data on stream water pH at the monitoring site may512

therefore indicate some within-season temporal trend.513

We considered different models for the spatio-temporal variability of all determinands in the514

stream survey data. The space-time variograms of the survey stream data (see Table 3) support515

the alternative space-time model, Eq. [10], under which the temporal variation is correlated516

within sites but not between. This means that we can treat the temporal variance as, effectively,517

the measurement error variance of a spot observation in a data set such as the G-BASE spatial518

stream survey data, if our interest is in the mean value of some variable (at least over the summer519

months). This is based on the assumption that analytical error is a component of the temporal520

nugget in the model for the monitor site data.521
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Given this conclusion, we can observe that the temporal variance is a component of the522

nugget variance if we pool all the survey stream data into a single spatial set, ignoring sample523

time. The temporal variance ranges from 20 to just over 40% of this variance, indicating that a524

good deal of the nugget variability in the spatial variograms can be attributed to spatial variation525

at short spatial scales. For all the variables we considered, the spatially correlated variance of526

the stream water data is larger than the within-site temporal variance (although these two527

quantities are very similar for pH). In this region, and for these variables, we can therefore be528

confident that the temporal variability is small relative to the total spatial variation. The value529

of the stream water data is not undermined by temporal variation.530

Note, however, that this conclusion, while encouraging with respect to the use of the G-531

BASE water data for examining spatial variation, at least in this region, may not hold more532

generally for stream water surveys. G-BASE sampling was specifically planned for the summer533

months, when rainfall is generally smaller which means that stream waters are dominated by534

baseflows and stream water chemistry is therefore dominated by that of shallow groundwater,535

making it less variable. One could not extrapolate our conclusion about the temporal stability536

of stream water analyses to other surveys in which waters were collected at wetter times of year.537

Similarly, the conclusions cannot necessarily be extrapolated to contrasting environments such538

as upland catchments. That said, the data set we have examined is substantial, representing ten539

years of field work and we are not aware of any comparable study in which the examination of540

temporal variation of water properties has been set in the context of such extensively-sampled541

spatial data. The primary significance of this study is that we develop and present a method of542

analysis that can be used to examine such effects.543

We noted that it is possible to account for the temporal variability of stream waters, under544

the model we selected for these data, when kriging the spatial variation of stream water mea-545

surements and interpreting these as estimates of the temporal mean (over the summer months)546

rather than as a prediction of a point measurement. This is advantageous because the uncer-547

tainty under this interpretation is somewhat smaller, as indicated in Figure 15 and 17.548

There is scope for further research on questions raised by this study. There are some specific549

questions raised by features of these data. We noted the possibility that there are within-season550

trends in pH. Examining these would require sampling on longer time series than those available551
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here. Similarly, it would be interesting to investigate whether there is indeed a between-season552

temporal trend in Cu, as suggested by the within and between-season spatial variograms shown553

in Figure 5.554

More general questions of methodology require further work. As noted above, the analysis of555

major components of stream water is often of scientific interest. This is addressed by computing556

subcompositions of the major cations and anions (e.g. Otero et al., 2005). The analysis of data557

in this form would require a different approach, based on multivariate linear mixed models for558

the constituents after a transformation such as the additive log-ratio (Aitchison, 1986). Such559

analyses have been done in a purely spatial context (e.g. Pawlowsky-Glahn and Olea, 2004;560

Lark and Bishop, 2007; Lark et al., 2015). Lark et al (2015) proposed a linear mixed model561

for additive log-ratio transformed data on the composition of seabed sediments by particles562

in different size classes. This was a multivariate model which included a spatially correlated563

linear model of coregionalization for the random component. To apply this model to data on564

major water constituents from this study would require its extension to an appropriate space-565

time model. This would be a substantial development, but of considerable interest. Finally,566

we have assumed stationarity of the temporal variability of stream water properties, but this567

might not hold, and the temporal variability might vary in space. A larger data set would be568

needed to examine this, perhaps using models with a tempered temporal spectrum, similar to569

the approach taken to non-stationary spatial statistical modelling by Haskard and Lark (2009)570

and Lark(2016).571

5. Conclusions572

To conclude, our analysis has shown that key stream water variables show temporally cor-573

related spatial variation within stream which, at least for the summer months of the G-BASE574

surveys, appears to be independent between sites. This means that we can treat the temporal575

variation as a component of the nugget variance of the spatial variograms of stream water survey576

data, and account for this partition of the nugget when computing the variance of the ordinary577

kriging estimate, treated as an estimate of the temporal mean (summer months). The within-578

site temporal variation appears to be small relative to the spatial variability of the variables,579

which means that the temporal variation should not mask the spatial geochemical variation that580
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we hope to examine through stream water surveys. However, the G-BASE surveys are restricted581

to the summer months. Greater temporal variability, interacting in a more complex way with582

spatial effects, might be expected in data sets collected in wetter times of the year.583
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Table 1. Summary statistics of stream water data.

Original scale loge-transformed

Variable Units n Mean Median Standard Skewness Mean Median Standard Skewness
deviation deviation

Survey sites

As µg l−1 4138 2.65 1.40 7.18 18.4 0.43 0.34 0.88 0.74
Cu µg l−1 3908 2.27 1.47 3.79 20.3 0.39 0.38 0.90 0.05
Co µg l−1 4140 0.81 0.49 2.56 33.3 −0.59 −0.71 0.67 1.62
Ni µg l−1 4140 4.75 3.73 6.23 23.1 1.37 1.32 0.53 1.10
Conductivity µS cm−1 4242 1051.0 764.0 2522.2 16.3 6.69 6.64 0.53 1.29
DOC mg l−1 3969 7.22 5.40 6.85 4.3 1.69 1.69 0.74 0.02
pH 4249 7.80 7.84 0.36 −1.94

Monitor sites

As µg l−1 711 1.86 1.59 1.47 1.9 0.33 0.46 0.79 −0.20
Cu µg l−1 713 2.08 1.38 2.41 4.9 0.37 0.32 0.81 0.33
Co µg l−1 713 0.61 0.43 0.66 4.1 −0.75 −0.84 0.63 1.18
Ni µg l−1 713 4.09 3.22 3.54 4.0 1.22 1.17 0.55 0.99
Conductivity µS cm−1 695 821.6 741.0 352.5 2.9 6.65 6.61 0.33 0.94
DOC mg l−1 688 5.06 4.30 3.42 2.6 1.43 1.46 0.62 −0.01
pH 698 7.84 7.86 0.29 −0.2
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Table 2. Results for temporal models fitted by REML.

Variable κ ℓ σ2
S σ2

T,n σ2
T,c φ Rangea AM

b AIID
c

/days /days

As 0.1 −694.8
(log) 0.5 −742.0 0.505 0.008 0.117 8.76 26 −1472.0 −1009.3

1.0 −737.8
1.5 −734.8

Cu 0.1 −243.6
(log) 0.5 −244.6 0.468 0.099 0.140 8.00 24 −477.2 −364.7

1.0 −243.7
1.5 −242.9

Co 0.1 −739.7
(log) 0.5 −751.8

1.0 −751.9 0.349 0.023 0.047 5.20 21 −1491.8 −1330.0
1.5 −751.5

Ni 0.1 −818.6
(log) 0.5 −821.4

1.0 −822.1
1.5 −822.2
2.0 −822.3 0.238 0.022 0.037 4.81 26 −1632.5 −1521.8

Conductivity 0.1 −986.1
(log) 0.5 −987.8

1.0 −991.6 0.085 0.010 0.012 1.44 6 −1970.5 −1870.4
1.5 −991.2

DOC 0.1 −514.7
(log) 0.5 −515.1 0.309 0.039 0.049 4.30 13 −1018.2 −929.9

1.0 −514.5
1.5 −514.0

pH 0.1 −1096.8 0.056 0.000 0.021 41.60 58 −2181.5 −2076.0
0.5 −1094.0
1.0 −1087.7
1.5 −1083.7
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The terms in the first 5 columns are defined in section 2.2.2.

a) Effective temporal range, the number of days over which the temporal correlation of the

correlated within-site random effect decays to 0.05.

b) AM is the AIC, Eq. [6], of the full linear mixed model with a temporally correlated compo-

nent.

c) AIID is the AIC, Eq. [6], of a linear mixed model in which the within-site variation has no

temporal correlation.
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Table 3. Values of Â, computed from Eq [13], for the comparison of alternative models for temporal variograms for different spatial lag bins.

The smallest value for each pair of models is shown in bold.

Spatial lag

5 km 10 km 20 km 40 km

Temporal modela

Correlated Nugget Correlated Nugget Correlated Nugget Correlated Nugget

As 85.9 83.2 75.6 73.3 59.0 64.2 67.2 65.7

Cu 94.9 91.0 76.1 72.4 40.4 36.4 38.0 52.7
Co 49.8 45.8 51.2 47.2 9.2 7.2 69.2 65.2

Ni 29.7 25.9 20.9 17.0 −25.6 −29.6 32.6 28.6

Conductivity 8.7 4.7 −1.6 −5.6 26.6 22.6 52.8 48.8

DOC 45.2 46.7 10.5 6.5 18.1 14.1 40.2 36.2

pH 21.1 20.4 10.6 6.6 −4.9 −8.9 26.8 22.8

a). The correlated temporal model is the Matérn with the parameter κ set at the value selected for the variable in the model of the monitor

site data.
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Table 4. Parameters for models fitted to empirical spatial variograms (all times pooled) for

each analyte and the total variance of the temporal component of variation estimated from the

data at monitoring sites, CT. All terms are defined in section 2.2.4.

Variable C0 C1 κ φ/metres CT
CT

C0

As 0.324 0.473 0.5 18 490 0.125 0.386
Cu 0.539 0.196 1.5 9 882 0.239 0.443
Co 0.279 0.113 1.5 8 895 0.070 0.251
Ni 0.149 0.129 0.5 19 506 0.059 0.396
Conductivity 0.113 0.103 2.0 8 785 0.022 0.195
DOC 0.320 0.203 1.0 9 989 0.088 0.275
pH 0.092 0.026 2.0 9 761 0.021 0.228
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Figure Captions

1. First order stream sample sites (small light grey symbols) and monitoring stream sites (large

dark grey symbols with numbers). Coordinates are in metres relative to the origin of the

British National Grid. The location of the sampled region is seen in an inset map of Great

Britain.

2. Time series plots for log concentration of arsenic at monitoring streams. Plot numbers refer

to monitoring streams as shown in Figure 1, with sampling year also indicated.

3. Histograms of first-order stream data on original scales.

4. Histograms of first-order stream data with log-transformation applied to all but pH.

5. Spatial variograms of all first-order stream data computed from (•) comparisons among all

observations and (◦) comparisons only from observations collected in the same season.

6. Spatial and temporal variograms of first-order stream data on arsenic.

7. Spatial and temporal variograms of first-order stream data on copper.

8. Spatial and temporal variograms of first-order stream data on cobalt.

9. Spatial and temporal variograms of first-order stream data on nickel.

10. Spatial and temporal variograms of first-order stream data on conductivity.

11. Spatial and temporal variograms of first-order stream data on dissolved organic carbon.

12. Spatial and temporal variograms of first-order stream data on pH.

13. Empirical spatial variograms (all times pooled) for each analyte with fitted models (param-

eters in Table 4). The broken horizontal lines show the nugget variance, C0, and the total

variance of the temporal component of variation estimated from the data at monitoring

sites, CT.

14. (a) Kriging prediction of total As content of first order stream water and (b) standard error

of the prediction treated as the summer mean.
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15. Upper bound of the 95% confidence interval of predicted log As content of first order stream

water treated as (a) a point sample or (b) the summer mean. The contour line on each

map encloses the region where this value exceeds log 10µg l−1.

16. (a) Kriging prediction of total Co content of first order stream water and (b) standard

error of the prediction treated as the summer mean.

17. Upper bound of the 95% confidence interval of predicted log Co content of first order

stream water treated as (a) a point sample or (b) the summer mean. The contour line on

each map encloses the region where this value exceeds log 3µg l−1.
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Fig. 3.
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Fig. 4.
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Fig. 5.
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Fig. 6.
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Fig. 7.
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Fig. 8.
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Fig. 9.
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Fig. 10.
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Fig. 11.
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Fig. 12.
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Fig. 13.
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Fig. 14.
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Fig. 15.
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Fig. 16.
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Fig. 17.
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